[go: up one dir, main page]

CN105405890B - Semiconductor device including charged body sidewall and method of manufacturing the same - Google Patents

Semiconductor device including charged body sidewall and method of manufacturing the same Download PDF

Info

Publication number
CN105405890B
CN105405890B CN201510746438.9A CN201510746438A CN105405890B CN 105405890 B CN105405890 B CN 105405890B CN 201510746438 A CN201510746438 A CN 201510746438A CN 105405890 B CN105405890 B CN 105405890B
Authority
CN
China
Prior art keywords
semiconductor layer
layer
fin
semiconductor
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510746438.9A
Other languages
Chinese (zh)
Other versions
CN105405890A (en
Inventor
朱慧珑
魏星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Microelectronics of CAS
Original Assignee
Institute of Microelectronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Microelectronics of CAS filed Critical Institute of Microelectronics of CAS
Priority to CN201510746438.9A priority Critical patent/CN105405890B/en
Publication of CN105405890A publication Critical patent/CN105405890A/en
Application granted granted Critical
Publication of CN105405890B publication Critical patent/CN105405890B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/62Fin field-effect transistors [FinFET]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/024Manufacture or treatment of FETs having insulated gates [IGFET] of fin field-effect transistors [FinFET]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/113Isolations within a component, i.e. internal isolations
    • H10D62/114PN junction isolations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/17Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
    • H10D62/213Channel regions of field-effect devices
    • H10D62/221Channel regions of field-effect devices of FETs
    • H10D62/235Channel regions of field-effect devices of FETs of IGFETs

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)
  • Non-Volatile Memory (AREA)

Abstract

公开了包括带电荷体侧墙的半导体器件及其制造方法。半导体器件可以是n型器件或p型器件,各自均可以包括:在衬底上依次形成的构图的第一半导体层和第二半导体层,其中,第一半导体层和第二半导体层被构图为鳍状结构,且第一半导体层相对于第二半导体层横向凹入;在所述横向凹入中形成的体侧墙,体侧墙包括电介质材料;在衬底上形成的隔离层,所述隔离层的顶面位于第一半导体层的顶面和底面之间,其中鳍状结构在隔离层上方的部分充当该半导体器件的鳍;以及在隔离层上形成的与鳍相交的栅堆叠。对于n型器件,体侧墙可以带有净负电荷,使得第一半导体层呈现p型;而对于p型器件,体侧墙可以带有净正电荷,使得第一半导体层呈现n型。

A semiconductor device including charged bulk spacers and a method of manufacturing the same are disclosed. The semiconductor device may be an n-type device or a p-type device, each of which may include: a patterned first semiconductor layer and a second semiconductor layer sequentially formed on a substrate, wherein the first semiconductor layer and the second semiconductor layer are patterned as a fin structure, and the first semiconductor layer is laterally recessed relative to the second semiconductor layer; a body spacer formed in the lateral recess, the body spacer includes a dielectric material; an isolation layer formed on a substrate, the The top surface of the isolation layer is located between the top surface and the bottom surface of the first semiconductor layer, wherein the portion of the fin structure above the isolation layer serves as a fin of the semiconductor device; and a gate stack intersecting the fin is formed on the isolation layer. For an n-type device, the body spacer can have a net negative charge, making the first semiconductor layer appear p-type; while for a p-type device, the body spacer can have a net positive charge, making the first semiconductor layer appear n-type.

Description

包括带电荷体侧墙的半导体器件及其制造方法Semiconductor device including charged bulk spacers and method of manufacturing the same

技术领域technical field

本公开涉及半导体领域,更具体地,涉及一种包括带电荷体侧墙的半导体器件及其制造方法。The present disclosure relates to the field of semiconductors, and more particularly, to a semiconductor device including charged spacers and a manufacturing method thereof.

背景技术Background technique

随着平面型半导体器件的尺寸越来越小,短沟道效应愈加明显。为此,提出了立体型半导体器件如FinFET(鳍式场效应晶体管)。一般而言,FinFET包括在衬底上竖直形成的鳍以及与鳍相交的栅极。因此,沟道区形成于鳍中,且其宽度主要由鳍的高度决定。然而,在集成电路制造工艺中,难以控制晶片上形成的鳍的高度相同,从而导致晶片上器件性能的不一致性。As the size of planar semiconductor devices becomes smaller and smaller, the short channel effect becomes more and more obvious. For this reason, three-dimensional semiconductor devices such as FinFETs (Fin Field Effect Transistors) have been proposed. In general, a FinFET includes a fin formed vertically on a substrate and a gate intersecting the fin. Thus, a channel region is formed in the fin, and its width is mainly determined by the height of the fin. However, in the integrated circuit manufacturing process, it is difficult to control the fins formed on the wafer to have the same height, which leads to inconsistency in device performance on the wafer.

特别是,在体FinFET(即,形成于体半导体衬底上的FinFET)中,在源漏区之间可能存在经由鳍下方衬底部分的泄漏,这也可称作穿通(punch-through)。目前,难以形成高质量的穿通阻止层。In particular, in bulk FinFETs (ie, FinFETs formed on a bulk semiconductor substrate), there may be leakage between the source and drain regions through the portion of the substrate below the fin, which may also be referred to as punch-through. Currently, it is difficult to form a high-quality punch-through prevention layer.

发明内容Contents of the invention

本公开的目的至少部分地在于提供一种具有新颖的穿通阻止层结构的半导体器件及其制造方法。It is an object of the present disclosure, at least in part, to provide a semiconductor device with a novel punchthrough stop layer structure and a method of manufacturing the same.

根据本公开的一个方面,提供了一种n型半导体器件,包括:在衬底上依次形成的构图的第一半导体层和第二半导体层,其中,第一半导体层和第二半导体层被构图为鳍状结构,且第一半导体层相对于第二半导体层横向凹入;在所述横向凹入中形成的体侧墙,体侧墙包括电介质材料;在衬底上形成的隔离层,所述隔离层的顶面位于第一半导体层的顶面和底面之间,其中鳍状结构在隔离层上方的部分充当该半导体器件的鳍;以及在隔离层上形成的与鳍相交的栅堆叠,其中,体侧墙带有净负电荷,使得第一半导体层呈现p型。According to one aspect of the present disclosure, there is provided an n-type semiconductor device, comprising: a patterned first semiconductor layer and a second semiconductor layer sequentially formed on a substrate, wherein the first semiconductor layer and the second semiconductor layer are patterned is a fin structure, and the first semiconductor layer is laterally recessed relative to the second semiconductor layer; the body spacer formed in the lateral recess, the body spacer includes a dielectric material; the isolation layer formed on the substrate, the The top surface of the isolation layer is located between the top surface and the bottom surface of the first semiconductor layer, wherein the portion of the fin structure above the isolation layer serves as a fin of the semiconductor device; and a gate stack intersecting the fin is formed on the isolation layer, Wherein, the body sidewall has a net negative charge, so that the first semiconductor layer presents a p-type.

根据本公开的另一方面,提供了一种p型半导体器件,包括:在衬底上依次形成的构图的第一半导体层和第二半导体层,其中,第一半导体层和第二半导体层被构图为鳍状结构,且第一半导体层相对于第二半导体层横向凹入;在所述横向凹入中形成的体侧墙,体侧墙包括电介质材料;在衬底上形成的隔离层,所述隔离层的顶面位于第一半导体层的顶面和底面之间,其中鳍状结构在隔离层上方的部分充当该半导体器件的鳍;以及在隔离层上形成的与鳍相交的栅堆叠,其中,体侧墙带有净正电荷,使得第一半导体层呈现n型。According to another aspect of the present disclosure, there is provided a p-type semiconductor device, including: a patterned first semiconductor layer and a second semiconductor layer sequentially formed on a substrate, wherein the first semiconductor layer and the second semiconductor layer are The patterning is a fin-like structure, and the first semiconductor layer is laterally recessed relative to the second semiconductor layer; a body spacer formed in the lateral recess, the body spacer includes a dielectric material; an isolation layer formed on the substrate, The top surface of the isolation layer is located between the top surface and the bottom surface of the first semiconductor layer, wherein the portion of the fin structure above the isolation layer serves as a fin of the semiconductor device; and a gate stack intersecting the fin is formed on the isolation layer , wherein the body spacer has a net positive charge, so that the first semiconductor layer is n-type.

根据本公开的另一方面,提供了一种制造n型半导体器件的方法,包括:在衬底上依次形成第一半导体层和第二半导体层;对第二半导体层、第一半导体层进行构图,以形成鳍状结构;选择性刻蚀鳍状结构中的第一半导体层,使其横向凹入;在所述横向凹入中填充带净负电荷的电介质,以形成体侧墙;在衬底上形成隔离层,所述隔离层露出所述体侧墙的一部分,其中鳍状结构在隔离层上方的部分充当该半导体器件的鳍;以及在隔离层上形成与鳍相交的栅堆叠。According to another aspect of the present disclosure, there is provided a method of manufacturing an n-type semiconductor device, comprising: sequentially forming a first semiconductor layer and a second semiconductor layer on a substrate; patterning the second semiconductor layer and the first semiconductor layer , to form a fin-like structure; selectively etch the first semiconductor layer in the fin-like structure to make it laterally recessed; fill the dielectric with a net negative charge in the lateral recess to form a body spacer; forming an isolation layer on the bottom, the isolation layer exposing a portion of the body sidewall, wherein the portion of the fin structure above the isolation layer serves as a fin of the semiconductor device; and forming a gate stack intersecting the fin on the isolation layer.

根据本公开的另一方面,提供了一种制造p型半导体器件的方法,包括:在衬底上依次形成第一半导体层和第二半导体层;对第二半导体层、第一半导体层进行构图,以形成鳍状结构;选择性刻蚀鳍状结构中的第一半导体层,使其横向凹入;在所述横向凹入中填充带净正电荷的电介质,以形成体侧墙;在衬底上形成隔离层,所述隔离层露出所述体侧墙的一部分,其中鳍状结构在隔离层上方的部分充当该半导体器件的鳍;以及在隔离层上形成与鳍相交的栅堆叠。According to another aspect of the present disclosure, there is provided a method of manufacturing a p-type semiconductor device, comprising: sequentially forming a first semiconductor layer and a second semiconductor layer on a substrate; patterning the second semiconductor layer and the first semiconductor layer , to form a fin-like structure; selectively etch the first semiconductor layer in the fin-like structure to make it laterally recessed; fill the dielectric with a net positive charge in the lateral recess to form a body spacer; forming an isolation layer on the bottom, the isolation layer exposing a portion of the body sidewall, wherein the portion of the fin structure above the isolation layer serves as a fin of the semiconductor device; and forming a gate stack intersecting the fin on the isolation layer.

根据本公开的实施例,鳍状结构包括第一半导体层和第二半导体层,且第一半导体层相对于第二半导体层凹入。在第一半导体层的该横向凹入中,形成带电荷的体侧墙。具体地,对于n型器件,体侧墙带有负电荷,从而在第一半导体层中引入空穴,使得第一半导体层呈现p型;对于p型器件,体侧墙带有正电荷,从而在第一半导体层中引入电子,使得第一半导体层呈现n型。因此,第一半导体层可以很好地充当该半导体器件的穿通阻止层。与通过离子注入或热扩散等方式形成的常规穿通阻止层相比,可以在鳍的高度方向上实现更陡峭的穿通阻止层电子或空穴分布,并因此减小随机掺杂波动。According to an embodiment of the present disclosure, the fin structure includes a first semiconductor layer and a second semiconductor layer, and the first semiconductor layer is recessed relative to the second semiconductor layer. In this lateral recess of the first semiconductor layer, charged bulk spacers are formed. Specifically, for an n-type device, the body sidewall has a negative charge, thereby introducing holes into the first semiconductor layer, so that the first semiconductor layer presents a p-type; for a p-type device, the body sidewall has a positive charge, so that Electrons are introduced into the first semiconductor layer so that the first semiconductor layer exhibits an n-type. Therefore, the first semiconductor layer can well serve as a punch-through preventing layer of the semiconductor device. Compared with the conventional punch-through preventing layer formed by ion implantation or thermal diffusion, etc., a steeper distribution of electrons or holes in the punch-through preventing layer in the height direction of the fin can be achieved, thereby reducing random doping fluctuations.

附图说明Description of drawings

通过以下参照附图对本公开实施例的描述,本公开的上述以及其他目的、特征和优点将更为清楚,在附图中:The above and other objects, features and advantages of the present disclosure will be more clearly described through the following description of the embodiments of the present disclosure with reference to the accompanying drawings, in which:

图1-10是示出了根据本公开实施例的制造半导体器件流程的示意图。1-10 are schematic diagrams illustrating the flow of manufacturing a semiconductor device according to an embodiment of the present disclosure.

具体实施方式Detailed ways

以下,将参照附图来描述本公开的实施例。但是应该理解,这些描述只是示例性的,而并非要限制本公开的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本公开的概念。Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. It should be understood, however, that these descriptions are exemplary only, and are not intended to limit the scope of the present disclosure. Also, in the following description, descriptions of well-known structures and techniques are omitted to avoid unnecessarily obscuring the concepts of the present disclosure.

在附图中示出了根据本公开实施例的各种结构示意图。这些图并非是按比例绘制的,其中为了清楚表达的目的,放大了某些细节,并且可能省略了某些细节。图中所示出的各种区域、层的形状以及它们之间的相对大小、位置关系仅是示例性的,实际中可能由于制造公差或技术限制而有所偏差,并且本领域技术人员根据实际所需可以另外设计具有不同形状、大小、相对位置的区域/层。Various structural schematic diagrams according to embodiments of the present disclosure are shown in the accompanying drawings. The figures are not drawn to scale, with certain details exaggerated and possibly omitted for clarity of presentation. The shapes of the various regions and layers shown in the figure, as well as their relative sizes and positional relationships are only exemplary, and may deviate due to manufacturing tolerances or technical limitations in practice, and those skilled in the art will Regions/layers with different shapes, sizes, and relative positions can be additionally designed as needed.

在本公开的上下文中,当将一层/元件称作位于另一层/元件“上”时,该层/元件可以直接位于该另一层/元件上,或者它们之间可以存在居中层/元件。另外,如果在一种朝向中一层/元件位于另一层/元件“上”,那么当调转朝向时,该层/元件可以位于该另一层/元件“下”。In the context of the present disclosure, when a layer/element is referred to as being "on" another layer/element, the layer/element may be directly on the other layer/element, or there may be intervening layers/elements in between. element. Additionally, if a layer/element is "on" another layer/element in one orientation, the layer/element can be located "below" the other layer/element when the orientation is reversed.

根据本公开的实施例,可以在衬底上例如通过外延形成至少一个半导体层。这样,在例如通过刻蚀来构图鳍状结构时,为形成相同高度的鳍状结构,刻蚀进入衬底中的深度相对于常规技术可以减小(甚至可以为零,这种情况下,完全通过所述至少一个半导体层来形成鳍状结构),从而可以更加容易控制刻蚀深度的一致性。此外,外延层的厚度一致性可以相对容易地控制,结果,可以改善最终形成的鳍状结构的高度的一致性。According to an embodiment of the present disclosure, at least one semiconductor layer may be formed on a substrate, eg, by epitaxy. Like this, when patterning the fin structure by etching, for example, in order to form the fin structure of the same height, the depth of etching into the substrate can be reduced (or even zero, in this case, completely The fin structure is formed by the at least one semiconductor layer), so that it is easier to control the consistency of the etching depth. In addition, the thickness uniformity of the epitaxial layer can be relatively easily controlled, and as a result, the height uniformity of the fin structure finally formed can be improved.

根本公开的优选实施例,所述至少一个半导体层包括两个或更多的半导体层。在这些半导体层中,相邻的半导体层可以相对于彼此具有刻蚀选择性,从而可以选择性刻蚀每一半导体层。在形成鳍状结构之后,可以选择性刻蚀其中的某一层(或多层),使其横向变窄(凹入)。可以在这种横向凹入中填充电介质,以形成体侧墙(body spacer)。另外,如此形成隔离层,使得隔离层露出体侧墙的一部分。从而体侧墙位于最终形成鳍的底部(初始形成的鳍状结构被隔离层所包围的部分不再充当用来形成沟道的真正鳍)。In preferred embodiments of the underlying disclosure, said at least one semiconductor layer comprises two or more semiconductor layers. Among these semiconductor layers, adjacent semiconductor layers may have etch selectivity with respect to each other, so that each semiconductor layer may be selectively etched. After the fin structure is formed, a certain layer (or multiple layers) therein can be selectively etched to make it narrow (recessed) laterally. Dielectric can be filled in such lateral recesses to form body spacers. In addition, the isolation layer is formed such that the isolation layer exposes a portion of the body side wall. The body sidewalls are thus located at the bottom of the fins that are eventually formed (the portion of the initially formed fin structure surrounded by the isolation layer no longer acts as a true fin for channel formation).

这样,在最终形成鳍的底部,由于体侧墙,随后形成的栅与鳍之间的电介质层较厚,从而形成的寄生电容相对较小。In this way, at the bottom of the fin finally formed, due to the body sidewall, the dielectric layer between the subsequently formed gate and the fin is relatively thick, so that the parasitic capacitance formed is relatively small.

根据本公开的实施例,体侧墙可以带电荷。具体地,对于n型器件,体侧墙带有负电荷,从而在第一半导体层中引入空穴,使得第一半导体层呈现p型;对于p型器件,体侧墙带有正电荷,从而在第一半导体层中引入电子,使得第一半导体层呈现n型。因此,第一半导体层可以充当穿通阻止层。According to embodiments of the present disclosure, the body side walls may be charged. Specifically, for an n-type device, the body sidewall has a negative charge, thereby introducing holes into the first semiconductor layer, so that the first semiconductor layer presents a p-type; for a p-type device, the body sidewall has a positive charge, so that Electrons are introduced into the first semiconductor layer so that the first semiconductor layer exhibits an n-type. Therefore, the first semiconductor layer can function as a punch-through preventing layer.

本公开可以各种形式呈现,以下将描述其中一些示例。The disclosure can be presented in various forms, some examples of which are described below.

如图1所示,提供衬底1002。该衬底1002可以是各种形式的衬底,例如但不限于体半导体材料衬底如体Si衬底、绝缘体上半导体(SOI)衬底、SiGe衬底等。在以下的描述中,为方便说明,以体Si衬底为例进行描述。As shown in Figure 1, a substrate 1002 is provided. The substrate 1002 may be various forms of substrates, such as but not limited to bulk semiconductor material substrates such as bulk Si substrates, semiconductor-on-insulator (SOI) substrates, SiGe substrates, and the like. In the following description, for convenience of description, a bulk Si substrate is used as an example for description.

在衬底1002中,可以形成n型阱或者p型阱1002-1,以供随后在其上分别形成p型器件或者n型器件。例如,n型阱可以通过在衬底1002中注入n型杂质如P或As来形成,p型阱可以通过在衬底1002中注入p型杂质如B来形成。如果需要,在注入之后还可以进行退火。本领域技术人员能够想到多种方式来形成n型阱、p型阱,在此不再赘述。In the substrate 1002, an n-type well or a p-type well 1002-1 may be formed for subsequent formation of a p-type device or an n-type device respectively thereon. For example, an n-type well can be formed by implanting n-type impurities such as P or As into the substrate 1002 , and a p-type well can be formed by implanting p-type impurities such as B into the substrate 1002 . Annealing can also be performed after implantation, if desired. Those skilled in the art can think of multiple ways to form the n-type well and the p-type well, which will not be repeated here.

在衬底1002上,例如通过外延生长,形成第一半导体层1004。例如,第一半导体层1004可以包括SiGe(Ge原子百分比例如为约5-20%),厚度为约10-50nm。On the substrate 1002, for example, by epitaxial growth, a first semiconductor layer 1004 is formed. For example, the first semiconductor layer 1004 may include SiGe (Ge atomic percentage is, for example, about 5-20%) with a thickness of about 10-50 nm.

接下来,在第一半导体层1004上,例如通过外延生长,形成第二半导体层1006。例如,第二半导体层1006可以包括Si,厚度为约20-100nm。Next, a second semiconductor layer 1006 is formed on the first semiconductor layer 1004, for example, by epitaxial growth. For example, the second semiconductor layer 1006 may comprise Si and have a thickness of about 20-100 nm.

在第二半导体层1006上,可以形成保护层1008。保护层1008例如可以包括氧化物(例如,氧化硅),厚度为约10-50nm。这种保护层1008可以在随后的处理中保护鳍的端部。在该示例中,保护层1008已被构图(例如,通过光刻)为与之后要形成的鳍相对应的形状。On the second semiconductor layer 1006, a protective layer 1008 may be formed. The protection layer 1008 may include, for example, oxide (eg, silicon oxide) with a thickness of about 10-50 nm. This protective layer 1008 may protect the ends of the fins during subsequent processing. In this example, protective layer 1008 has been patterned (eg, by photolithography) into a shape corresponding to the fins to be formed later.

然后,如图2所示,以构图的保护层1008为掩模,依次选择性刻蚀例如反应离子刻蚀(RIE)第二半导体层1006和第一半导体层1004,从而形成鳍状结构F1。在此需要指出的是,尽管在该实施例中刻蚀停止于衬底1002,但是本公开不限于此。例如,刻蚀还可以进一步进行到衬底1002中,从而得到的鳍状结构在底部还包括一部分阱1002-1。Then, as shown in FIG. 2 , the second semiconductor layer 1006 and the first semiconductor layer 1004 are sequentially selectively etched such as reactive ion etching (RIE) using the patterned protective layer 1008 as a mask, thereby forming the fin structure F1 . It should be noted here that although the etching stops at the substrate 1002 in this embodiment, the present disclosure is not limited thereto. For example, the etching may further proceed into the substrate 1002, so that the resulting fin structure also includes a portion of the well 1002-1 at the bottom.

这里需要指出的是,通过刻蚀所形成的(鳍状结构之间的)沟槽的形状不一定是图2中所示的规则矩形形状,可以是例如从上到下逐渐变小的锥台形。It should be pointed out here that the shape of the groove (between the fin structures) formed by etching is not necessarily the regular rectangular shape shown in FIG. .

接着,如图3所示,可以相对于保护层1008(例如,氧化硅)、衬底1002和第二半导体层1006(例如,Si),选择性刻蚀第一半导体层1004(例如,SiGe),使得第一半导体层1004横向凹入。因此,鳍状结构中由第一半导体层构成的部分变窄。该横向凹入的宽度(图中水平方向上的维度)可以为约3~10nm。Next, as shown in FIG. 3 , the first semiconductor layer 1004 (for example, SiGe) may be selectively etched relative to the protective layer 1008 (for example, silicon oxide), the substrate 1002 and the second semiconductor layer 1006 (for example, Si). , making the first semiconductor layer 1004 concave laterally. Therefore, the portion of the fin structure made of the first semiconductor layer is narrowed. The width of the lateral depression (dimension in the horizontal direction in the figure) may be about 3-10 nm.

然后,如图4所示,在横向凹入中填充电介质,以形成体侧墙1010。例如,这种填充例如可以通过淀积电介质,然后回蚀(例如,RIE)以选择性去除淀积的电介质位于横向凹入之外的部分来实现。体侧墙1010可以包括氮化物(例如,氮化硅)或低K电介质如SiOF、SiCOH、SiO、SiCO、SiCON或高K电介质等。在淀积的电介质包括氮化物的示例中,在淀积电介质之前,可选地可以淀积一层薄氧化物(未示出)作为垫层,以便缓解氮化物的应力。Then, as shown in FIG. 4 , a dielectric is filled in the lateral recess to form a body spacer 1010 . Such filling can be accomplished, for example, by depositing a dielectric followed by etch back (eg, RIE) to selectively remove portions of the deposited dielectric that lie outside the lateral recess. The body spacer 1010 may include nitride (eg, silicon nitride) or a low-K dielectric such as SiOF, SiCOH, SiO, SiCO, SiCON, or a high-K dielectric, among others. In examples where the deposited dielectric includes nitride, a thin layer of oxide (not shown) may optionally be deposited as a pad layer prior to depositing the dielectric to relieve nitride stress.

根据本公开的实施例,体侧墙1010可以带有电荷,以便在第一半导体层1002中引入空穴或电子。具体地,带电的体侧墙1010可以改变鳍状结构中与之相对应的部分(即,第一半导体层1002)中的电势场,这种电势场可以使热产生的电子或空穴拉入或拉出其中,从而使得电子或空穴囤积在鳍状结构的该部分中。According to an embodiment of the present disclosure, the body spacer 1010 may be charged so as to introduce holes or electrons into the first semiconductor layer 1002 . Specifically, the charged body spacer 1010 can change the electric potential field in the corresponding part (ie, the first semiconductor layer 1002 ) in the fin structure, and this electric potential field can pull in the thermally generated electrons or holes. Or pulled out of it, causing electrons or holes to accumulate in that part of the fin structure.

体侧墙中的电荷可以通过形成体侧墙的电介质的至少一部分中包含的电荷来实现。例如,在体侧墙为氧化物/氮化物叠层的示例中,氮化物,或氧化物,或氮化物和氧化物二者可以含电荷。例如,可以进行表面等离子处理(例如,限于表面处,如距表面约1~2nm之内),将电荷引入到电介质中。具体地,等离子轰击电介质层表面从而在其中产生缺陷态,这种缺陷态可以带负电荷或正电荷。The charge in the body spacer may be achieved by charge contained in at least a portion of the dielectric forming the body spacer. For example, in the case where the body spacer is an oxide/nitride stack, either the nitride, or the oxide, or both the nitride and oxide may contain charges. For example, surface plasma treatment (eg, confined to the surface, such as within about 1-2 nm from the surface) can be performed to introduce charge into the dielectric. Specifically, the plasma bombards the surface of the dielectric layer to create defect states therein, which can be negatively or positively charged.

具体地,对于将要在n型阱1002-1上形成的p型器件,第一半导体层1004整体上应呈现n型;或者,对于将要在p型阱1001-1上形成的n型器件,第一半导体层1004整体上应呈现p型。这样,第一半导体层1004随后可以充当穿通阻止层。Specifically, for a p-type device to be formed on the n-type well 1002-1, the first semiconductor layer 1004 should be n-type as a whole; or, for an n-type device to be formed on the p-type well 1001-1, the second A semiconductor layer 1004 should be p-type as a whole. In this way, the first semiconductor layer 1004 can then act as a punch-through stop layer.

为此,针对p型器件的体侧墙1010可以带相对高的净正电荷(例如,密度为约1×1017~1×1021cm-3),从而可以在第一半导体层1004中引入相对高的电子浓度(例如,密度为约1×1017~5×1018cm-3)。或者,针对n型器件的体侧墙1010可以带相对高的净负电荷(例如,密度为约1×1017~1×1021cm-3),从而可以在第一半导体层1004中引入相对高的空穴浓度(例如,密度为约1×1017~5×1018cm-3)。For this reason, the body spacer 1010 for a p-type device can carry a relatively high net positive charge (for example, a density of about 1×10 17 ~1×10 21 cm −3 ), so that it can be introduced into the first semiconductor layer 1004 Relatively high electron concentration (eg, a density of about 1×10 17 to 5×10 18 cm −3 ). Alternatively, the body spacer 1010 for an n-type device may have a relatively high net negative charge (for example, a density of about 1×10 17 ~1×10 21 cm −3 ), so that a relative High hole concentration (eg, a density of about 1×10 17 to 5×10 18 cm −3 ).

在通过上述处理形成具有带电荷体侧墙的鳍状结构之后,可以形成与鳍相交的栅堆叠,并形成最终的半导体器件(例如,FinFET)。After forming the fin structure with charged body sidewalls through the above process, a gate stack intersecting the fin can be formed and a final semiconductor device (eg, FinFET) can be formed.

为了隔离栅堆叠和衬底,在衬底上首先形成隔离层1012,如图5所示。这种隔离层例如可以通过在衬底上淀积电介质材料,且然后进行回蚀来形成。在回蚀过程中,控制回蚀深度,使得回蚀后的隔离层能够使体侧墙的一部分露出(相对于隔离层的顶面突出)。这样,隔离层1012就限定了位于其上方的鳍F。鳍状结构F1在鳍F下方的部分由于被隔离层1012所包围,从而在最终器件中并不充当用来形成沟道区的真正鳍In order to isolate the gate stack and the substrate, an isolation layer 1012 is first formed on the substrate, as shown in FIG. 5 . Such isolation layers can be formed, for example, by depositing a dielectric material on the substrate and then etching back. During the etch-back process, the etch-back depth is controlled so that part of the body sidewall can be exposed (protruding relative to the top surface of the isolation layer) of the isolation layer after etching back. In this way, the isolation layer 1012 defines the fins F above it. The portion of the fin structure F1 below the fin F is surrounded by the isolation layer 1012 and thus does not act as a true fin for forming the channel region in the final device.

在一个示例中,保护层1008和电介质材料1012包括相同的材料,如氧化物。因此,在对电介质材料1012回蚀的过程中,可能同时去除了保护层1008,如图5所示。In one example, protective layer 1008 and dielectric material 1012 include the same material, such as an oxide. Therefore, during the process of etching back the dielectric material 1012, the protection layer 1008 may be removed at the same time, as shown in FIG. 5 .

随后,可以在隔离层1012上形成与鳍相交的栅堆叠。例如,这可以如下进行。具体地,如图6所示(图6(b)示出了沿图6(a)中AA′线的截面图),例如通过淀积,形成牺牲栅介质层1014。例如,牺牲栅介质层1014可以包括氧化物,厚度为约0.8-1.5nm。在图6所示的示例中,仅示出了“∏”形的牺牲栅介质层1014。但是,牺牲栅介质层1014也可以包括在隔离层1012的顶面上延伸的部分。然后,例如通过淀积,形成牺牲栅导体层1016。例如,牺牲栅导体层1016可以包括多晶硅。牺牲栅导体层1016可以完全覆盖鳍,并可以进行平坦化处理例如化学机械抛光(CMP)。之后,对牺牲栅导体层1016进行构图,以形成栅堆叠。在图6的示例中,牺牲栅导体层1016被构图为与鳍相交的条形。此外,还可以构图后的牺牲栅导体层1016为掩模,进一步对栅介质层1014进行构图。Subsequently, gate stacks intersecting the fins may be formed on the isolation layer 1012 . For example, this can be done as follows. Specifically, as shown in FIG. 6 (FIG. 6(b) shows a cross-sectional view along line AA' in FIG. 6(a)), for example, a sacrificial gate dielectric layer 1014 is formed by deposition. For example, the sacrificial gate dielectric layer 1014 may include oxide with a thickness of about 0.8-1.5 nm. In the example shown in FIG. 6 , only the “Π”-shaped sacrificial gate dielectric layer 1014 is shown. However, the sacrificial gate dielectric layer 1014 may also include a portion extending on the top surface of the isolation layer 1012 . A sacrificial gate conductor layer 1016 is then formed, eg, by deposition. For example, the sacrificial gate conductor layer 1016 may include polysilicon. The sacrificial gate conductor layer 1016 may completely cover the fins and may be planarized such as chemical mechanical polishing (CMP). Afterwards, the sacrificial gate conductor layer 1016 is patterned to form a gate stack. In the example of FIG. 6, the sacrificial gate conductor layer 1016 is patterned into stripes intersecting the fins. In addition, the patterned sacrificial gate conductor layer 1016 can also be used as a mask to further pattern the gate dielectric layer 1014 .

如图6(b)中的椭圆虚线圈所示,在鳍F的下部,随后形成的栅导体与鳍(在该示例中,第一半导体层)之间存在体侧墙1010,从而产生的寄生电容相对较小。As shown by the elliptical dotted circle in FIG. 6(b), at the lower part of the fin F, there is a body spacer 1010 between the subsequently formed gate conductor and the fin (in this example, the first semiconductor layer), resulting in parasitic Capacitance is relatively small.

在形成构图的栅导体之后,例如可以栅导体为掩模,进行晕圈(halo)注入和延伸区(extension)注入。After the patterned gate conductor is formed, for example, the gate conductor can be used as a mask to perform halo implantation and extension implantation.

接下来,如图7(图7(b)示出了沿图7(a)中BB′线的截面图)所示,可以在牺牲栅导体层1016的侧壁上形成侧墙1018。例如,可以通过淀积形成厚度约为5-30nm的氮化物,然后对氮化物进行RIE,来形成侧墙1018。本领域技术人员知道多种方式来形成这种侧墙,在此不再赘述。Next, as shown in FIG. 7 ( FIG. 7( b ) shows a cross-sectional view along line BB′ in FIG. 7( a )), spacers 1018 may be formed on the sidewalls of the sacrificial gate conductor layer 1016 . For example, the spacer 1018 can be formed by depositing a nitride with a thickness of about 5-30 nm, and then performing RIE on the nitride. Those skilled in the art know many ways to form such sidewalls, which will not be repeated here.

在鳍之间的沟槽为从上到下逐渐变小的锥台形时(由于刻蚀的特性,通常为这样的情况),侧墙1018基本上不会形成于鳍的侧壁上。When the trenches between the fins are in the shape of a frustum tapering from top to bottom (which is usually the case due to the nature of etching), the sidewalls 1018 are substantially not formed on the sidewalls of the fins.

在形成侧墙之后,可以栅导体及侧墙为掩模,进行源/漏(S/D)注入。随后,可以通过退火,激活注入的离子,以形成源/漏区。After the spacer is formed, the gate conductor and the sidewall can be used as a mask to perform source/drain (S/D) implantation. Subsequently, the implanted ions may be activated by annealing to form source/drain regions.

接下来,如图8所示,例如通过淀积,形成电介质层1020。该电介质层1020例如可以包括氧化物。随后,对该电介质层1020进行平坦化处理例如CMP。该CMP可以停止于侧墙1018,从而露出牺牲栅导体1016。Next, as shown in FIG. 8 , a dielectric layer 1020 is formed, for example, by deposition. The dielectric layer 1020 may include oxide, for example. Subsequently, a planarization process such as CMP is performed on the dielectric layer 1020 . The CMP may stop at spacer 1018 , exposing sacrificial gate conductor 1016 .

随后,如图9所示,例如通过TMAH溶液,选择性去除牺牲栅导体1016,并可以进一步去除牺牲栅介质层1014,从而在侧墙1018内侧形成了空隙。Subsequently, as shown in FIG. 9 , for example, the sacrificial gate conductor 1016 is selectively removed by using TMAH solution, and the sacrificial gate dielectric layer 1014 may be further removed, thereby forming a void inside the sidewall 1018 .

然后,如图10(图10(b)示出了沿图10(a)中BB′线的截面图)所示,通过在空隙中形成栅介质层1022和栅导体层1024,形成最终的栅堆叠。栅介质层1022可以包括高K栅介质例如HfO2,厚度为约1-5nm。栅导体层1024可以包括金属栅导体。优选地,在栅介质层1022和栅导体层1024之间还可以形成功函数调节层(未示出)。Then, as shown in FIG. 10 (FIG. 10(b) shows a cross-sectional view along the BB' line in FIG. 10(a), by forming a gate dielectric layer 1022 and a gate conductor layer 1024 in the gap, the final gate is formed. stack. The gate dielectric layer 1022 may include a high-K gate dielectric such as HfO 2 , with a thickness of about 1-5 nm. The gate conductor layer 1024 may include a metal gate conductor. Preferably, a work function adjusting layer (not shown) may also be formed between the gate dielectric layer 1022 and the gate conductor layer 1024 .

这样,就得到了根据该实施例的半导体器件。如图10所示,该半导体器件可以包括:在衬底1002上依次形成的构图的第一半导体层1004和第二半导体层1006,其中,第一半导体层1004和第二半导体层1006被构图为鳍状结构,且第一半导体层1004相对于第二半导体层1006横向凹入;在横向凹入中形成的带电荷的体侧墙1010;在衬底上1002形成的隔离层1012,隔离层1012的顶面位于第一半导体层1004的顶面和底面之间,其中鳍状结构在隔离层1012(顶面)上方的部分充当该半导体器件的鳍;以及在隔离层上形成的与鳍相交的栅堆叠。In this way, the semiconductor device according to this embodiment is obtained. As shown in FIG. 10, the semiconductor device may include: a patterned first semiconductor layer 1004 and a second semiconductor layer 1006 sequentially formed on a substrate 1002, wherein the first semiconductor layer 1004 and the second semiconductor layer 1006 are patterned as Fin structure, and the first semiconductor layer 1004 is laterally recessed relative to the second semiconductor layer 1006; the charged body spacer 1010 formed in the lateral recess; the isolation layer 1012 formed on the substrate 1002, the isolation layer 1012 The top surface of the first semiconductor layer 1004 is located between the top surface and the bottom surface, wherein the part of the fin structure above the isolation layer 1012 (top surface) serves as the fin of the semiconductor device; and the fin intersecting formed on the isolation layer gate stack.

如上所述,对于p型器件,第一半导体层1004可以呈现n型;而对于n型器件,第一半导体层1004可以呈现p型。这种第一半导体层可以充当穿通阻挡层。而且,这种第一半导体层可以减少B扩散,从而可以在在沟道区和衬底本体之间形成清晰的结。As mentioned above, for a p-type device, the first semiconductor layer 1004 can exhibit an n-type; and for an n-type device, the first semiconductor layer 1004 can exhibit a p-type. Such a first semiconductor layer can act as a punch-through barrier. Furthermore, such a first semiconductor layer can reduce B diffusion so that a clean junction can be formed between the channel region and the substrate body.

在以上的描述中,对于各层的构图、刻蚀等技术细节并没有做出详细的说明。但是本领域技术人员应当理解,可以通过各种技术手段,来形成所需形状的层、区域等。另外,为了形成同一结构,本领域技术人员还可以设计出与以上描述的方法并不完全相同的方法。另外,尽管在以上分别描述了各实施例,但是这并不意味着各个实施例中的措施不能有利地结合使用。In the above description, technical details such as patterning and etching of each layer are not described in detail. However, those skilled in the art should understand that various technical means can be used to form layers, regions, etc. of desired shapes. In addition, in order to form the same structure, those skilled in the art can also design a method that is not exactly the same as the method described above. In addition, although the various embodiments are described above separately, this does not mean that the measures in the various embodiments cannot be advantageously used in combination.

以上对本公开的实施例进行了描述。但是,这些实施例仅仅是为了说明的目的,而并非为了限制本公开的范围。本公开的范围由所附权利要求及其等价物限定。不脱离本公开的范围,本领域技术人员可以做出多种替代和修改,这些替代和修改都应落在本公开的范围之内。The embodiments of the present disclosure have been described above. However, these examples are for illustrative purposes only and are not intended to limit the scope of the present disclosure. The scope of the present disclosure is defined by the appended claims and their equivalents. Various substitutions and modifications can be made by those skilled in the art without departing from the scope of the present disclosure, and these substitutions and modifications should all fall within the scope of the present disclosure.

Claims (10)

1.一种n型半导体器件,包括:1. An n-type semiconductor device, comprising: 在衬底上依次形成的构图的第一半导体层和第二半导体层,其中,第一半导体层和第二半导体层被构图为鳍状结构,且第一半导体层相对于第二半导体层横向凹入;A patterned first semiconductor layer and a second semiconductor layer sequentially formed on a substrate, wherein the first semiconductor layer and the second semiconductor layer are patterned into a fin structure, and the first semiconductor layer is laterally recessed relative to the second semiconductor layer enter; 在所述横向凹入中形成的体侧墙,体侧墙包括电介质材料;a body side wall formed in said lateral recess, the body side wall comprising a dielectric material; 在衬底上形成的隔离层,所述隔离层的顶面位于第一半导体层的顶面和底面之间,其中鳍状结构在隔离层上方的部分充当该半导体器件的鳍;以及an isolation layer formed on the substrate, the top surface of the isolation layer being located between the top surface and the bottom surface of the first semiconductor layer, wherein the portion of the fin structure above the isolation layer serves as a fin of the semiconductor device; and 在隔离层上形成的与鳍相交的栅堆叠,gate stack intersecting the fin formed on the isolation layer, 其中,体侧墙带有净负电荷,使得第一半导体层呈现p型。Wherein, the body sidewall has a net negative charge, so that the first semiconductor layer presents a p-type. 2.根据权利要求1所述的n型半导体器件,其中,体侧墙中负电荷的密度为1×1017~1×1021cm-3,而第一半导体层中空穴的浓度为1×1017~5×1018cm-32. The n-type semiconductor device according to claim 1, wherein the density of negative charges in the body sidewall is 1×10 17 to 1×10 21 cm −3 , and the density of holes in the first semiconductor layer is 1×10 17 cm −3 . 10 17 ~5×10 18 cm -3 . 3.一种p型半导体器件,包括:3. A p-type semiconductor device, comprising: 在衬底上依次形成的构图的第一半导体层和第二半导体层,其中,第一半导体层和第二半导体层被构图为鳍状结构,且第一半导体层相对于第二半导体层横向凹入;A patterned first semiconductor layer and a second semiconductor layer sequentially formed on a substrate, wherein the first semiconductor layer and the second semiconductor layer are patterned into a fin structure, and the first semiconductor layer is laterally recessed relative to the second semiconductor layer enter; 在所述横向凹入中形成的体侧墙,体侧墙包括电介质材料;a body side wall formed in said lateral recess, the body side wall comprising a dielectric material; 在衬底上形成的隔离层,所述隔离层的顶面位于第一半导体层的顶面和底面之间,其中鳍状结构在隔离层上方的部分充当该半导体器件的鳍;以及an isolation layer formed on the substrate, the top surface of the isolation layer being located between the top surface and the bottom surface of the first semiconductor layer, wherein the portion of the fin structure above the isolation layer serves as a fin of the semiconductor device; and 在隔离层上形成的与鳍相交的栅堆叠,gate stack intersecting the fin formed on the isolation layer, 其中,体侧墙带有净正电荷,使得第一半导体层呈现n型。Wherein, the body sidewalls carry net positive charges, so that the first semiconductor layer presents an n-type. 4.根据权利要求3所述的p型半导体器件,其中,体侧墙中正电荷的密度为1×1017~1×1021cm-3,而第一半导体层中电子的浓度为1×1017~5×1018cm-34. The p-type semiconductor device according to claim 3, wherein the density of positive charges in the body sidewall is 1×10 17 to 1×10 21 cm −3 , and the concentration of electrons in the first semiconductor layer is 1×10 17 to 5×10 18 cm -3 . 5.根据权利要求1至4中任一项所述的半导体器件,其中,衬底包括体Si,第一半导体层包括SiGe,第二半导体层包括Si。5. The semiconductor device according to any one of claims 1 to 4, wherein the substrate comprises bulk Si, the first semiconductor layer comprises SiGe, and the second semiconductor layer comprises Si. 6.根据权利要求5所述的半导体器件,其中,体侧墙包括氧化物和氮化物的叠层。6. The semiconductor device of claim 5, wherein the body spacer comprises a stack of oxide and nitride. 7.一种制造n型半导体器件的方法,包括:7. A method of manufacturing an n-type semiconductor device, comprising: 在衬底上依次形成第一半导体层和第二半导体层;sequentially forming a first semiconductor layer and a second semiconductor layer on the substrate; 对第二半导体层、第一半导体层进行构图,以形成鳍状结构;patterning the second semiconductor layer and the first semiconductor layer to form a fin structure; 选择性刻蚀鳍状结构中的第一半导体层,使其横向凹入;selectively etching the first semiconductor layer in the fin structure to make it laterally recessed; 在所述横向凹入中填充带净负电荷的电介质,以形成体侧墙;filling the lateral recesses with a net negatively charged dielectric to form body spacers; 在衬底上形成隔离层,所述隔离层露出所述体侧墙的一部分,其中鳍状结构在隔离层上方的部分充当该半导体器件的鳍;以及forming an isolation layer on the substrate, the isolation layer exposing a portion of the body spacer, wherein the portion of the fin structure above the isolation layer serves as a fin of the semiconductor device; and 在隔离层上形成与鳍相交的栅堆叠。A gate stack intersecting the fin is formed on the isolation layer. 8.一种制造p型半导体器件的方法,包括:8. A method of manufacturing a p-type semiconductor device, comprising: 在衬底上依次形成第一半导体层和第二半导体层;sequentially forming a first semiconductor layer and a second semiconductor layer on the substrate; 对第二半导体层、第一半导体层进行构图,以形成鳍状结构;patterning the second semiconductor layer and the first semiconductor layer to form a fin structure; 选择性刻蚀鳍状结构中的第一半导体层,使其横向凹入;selectively etching the first semiconductor layer in the fin structure to make it laterally recessed; 在所述横向凹入中填充带净正电荷的电介质,以形成体侧墙;filling the lateral recesses with a net positively charged dielectric to form body spacers; 在衬底上形成隔离层,所述隔离层露出所述体侧墙的一部分,其中鳍状结构在隔离层上方的部分充当该半导体器件的鳍;以及forming an isolation layer on the substrate, the isolation layer exposing a portion of the body spacer, wherein the portion of the fin structure above the isolation layer serves as a fin of the semiconductor device; and 在隔离层上形成与鳍相交的栅堆叠。A gate stack intersecting the fin is formed on the isolation layer. 9.根据权利要求7或8所述的方法,其中,衬底包括体Si,第一半导体层包括SiGe,第二半导体层包括Si。9. A method according to claim 7 or 8, wherein the substrate comprises bulk Si, the first semiconductor layer comprises SiGe and the second semiconductor layer comprises Si. 10.根据权利要求7或8所述的方法,其中,形成体侧墙包括:10. The method of claim 7 or 8, wherein forming the body side wall comprises: 在衬底上依次形成氧化物层和氮化物层;以及sequentially forming an oxide layer and a nitride layer on the substrate; and 选择性去除氧化物层和氮化物层在横向凹入之外的部分。Portions of the oxide layer and nitride layer outside the lateral recesses are selectively removed.
CN201510746438.9A 2015-11-05 2015-11-05 Semiconductor device including charged body sidewall and method of manufacturing the same Active CN105405890B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510746438.9A CN105405890B (en) 2015-11-05 2015-11-05 Semiconductor device including charged body sidewall and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510746438.9A CN105405890B (en) 2015-11-05 2015-11-05 Semiconductor device including charged body sidewall and method of manufacturing the same

Publications (2)

Publication Number Publication Date
CN105405890A CN105405890A (en) 2016-03-16
CN105405890B true CN105405890B (en) 2018-07-20

Family

ID=55471269

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510746438.9A Active CN105405890B (en) 2015-11-05 2015-11-05 Semiconductor device including charged body sidewall and method of manufacturing the same

Country Status (1)

Country Link
CN (1) CN105405890B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111192875B (en) * 2018-11-14 2024-08-23 长鑫存储技术有限公司 Semiconductor structure and manufacturing method thereof
US12432903B2 (en) 2022-01-12 2025-09-30 Changxin Memory Technologies, Inc. Semiconductor structure and method for fabricating same
CN116489988A (en) * 2022-01-12 2023-07-25 长鑫存储技术有限公司 Semiconductor structure and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103811345A (en) * 2012-11-09 2014-05-21 中国科学院微电子研究所 Semiconductor device and method for manufacturing the same
CN103887172A (en) * 2012-12-21 2014-06-25 意法半导体公司 Full Substrate Isolation FINFET Transistor
CN104103688A (en) * 2013-04-10 2014-10-15 三星电子株式会社 FIN-FET transistor with punchthrough barrier and leakage protection regions

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7564081B2 (en) * 2005-11-30 2009-07-21 International Business Machines Corporation finFET structure with multiply stressed gate electrode
FR3002813B1 (en) * 2013-03-01 2016-08-05 St Microelectronics Sa METHOD FOR MANUFACTURING A MOS-TOILET TRANSISTOR

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103811345A (en) * 2012-11-09 2014-05-21 中国科学院微电子研究所 Semiconductor device and method for manufacturing the same
CN103887172A (en) * 2012-12-21 2014-06-25 意法半导体公司 Full Substrate Isolation FINFET Transistor
CN104103688A (en) * 2013-04-10 2014-10-15 三星电子株式会社 FIN-FET transistor with punchthrough barrier and leakage protection regions

Also Published As

Publication number Publication date
CN105405890A (en) 2016-03-16

Similar Documents

Publication Publication Date Title
CN103811345B (en) Semiconductor device and method for manufacturing the same
CN103811344B (en) Semiconductor device and method for manufacturing the same
US10868179B2 (en) Fin-type field effect transistor structure and manufacturing method thereof
CN103811341B (en) Semiconductor device and method for manufacturing the same
CN103811320B (en) Semiconductor device and method for manufacturing the same
CN103928335B (en) Semiconductor device and method for manufacturing the same
US9349867B2 (en) Semiconductor devices and methods for manufacturing the same
TWI509710B (en) Semiconductor device with improved gate height uniformity and method of fabricating the same
CN103928334B (en) Semiconductor device and method for manufacturing the same
CN103311296A (en) Semiconductor structure and method with high mobility and high energy bandgap materials
CN104377132A (en) Semiconductor device and method for manufacturing the same
WO2014110853A1 (en) Semiconductor device and manufacturing method thereof
CN103811339B (en) Semiconductor device and method for manufacturing the same
CN104716171B (en) Semiconductor arrangement and method for the production thereof
CN103811340B (en) Semiconductor device and method for manufacturing the same
CN105390497A (en) CMOS device including charged body sidewall and method of fabricating the same
CN105405890B (en) Semiconductor device including charged body sidewall and method of manufacturing the same
CN105374878B (en) Semiconductor device including charged punch-through prevention layer to reduce punch-through and method of fabricating the same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant