CN105425282A - An Electrochemical Geophone Based on Force Balance Feedback - Google Patents
An Electrochemical Geophone Based on Force Balance Feedback Download PDFInfo
- Publication number
- CN105425282A CN105425282A CN201510764438.1A CN201510764438A CN105425282A CN 105425282 A CN105425282 A CN 105425282A CN 201510764438 A CN201510764438 A CN 201510764438A CN 105425282 A CN105425282 A CN 105425282A
- Authority
- CN
- China
- Prior art keywords
- feedback
- vibration
- unit
- pickup unit
- force
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000006243 chemical reaction Methods 0.000 claims abstract description 13
- 238000001514 detection method Methods 0.000 claims abstract description 12
- 239000003792 electrolyte Substances 0.000 claims description 14
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 230000008859 change Effects 0.000 claims description 4
- 230000009471 action Effects 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 238000006479 redox reaction Methods 0.000 claims description 3
- 230000002441 reversible effect Effects 0.000 claims description 3
- 239000007769 metal material Substances 0.000 claims description 2
- 238000003672 processing method Methods 0.000 claims description 2
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 claims 1
- 229920005372 Plexiglas® Polymers 0.000 claims 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims 1
- 229910052710 silicon Inorganic materials 0.000 claims 1
- 239000010703 silicon Substances 0.000 claims 1
- 238000000034 method Methods 0.000 description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 7
- 229910052802 copper Inorganic materials 0.000 description 7
- 239000010949 copper Substances 0.000 description 7
- 239000012528 membrane Substances 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000008713 feedback mechanism Effects 0.000 description 3
- 238000004806 packaging method and process Methods 0.000 description 3
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 230000008054 signal transmission Effects 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910001172 neodymium magnet Inorganic materials 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/16—Receiving elements for seismic signals; Arrangements or adaptations of receiving elements
- G01V1/18—Receiving elements, e.g. seismometer, geophone or torque detectors, for localised single point measurements
- G01V1/181—Geophones
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Acoustics & Sound (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Geophysics (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Abstract
本发明提供了一种电化学地震检波器,包括拾振单元、转换单元、反馈单元、输出单元、检测电路及反馈电路,其中,拾振单元感应外部震动力,产生震动信号,转换单元将震动信号转换为输出电流,检测电路检测输出电流,得到所述输出信号,反馈电路根据所述输出信号,产生反馈电流,反馈单元根据反馈电流,产生与震动力的方向相反的反馈力,并使该反馈力作用于拾振单元上。本发明既能保证大幅度的拓展电化学检波器的频带范围,又能保证检波器输出的稳定性以及减小非线性失真度。
The invention provides an electrochemical geophone, which includes a vibration pickup unit, a conversion unit, a feedback unit, an output unit, a detection circuit and a feedback circuit, wherein the vibration pickup unit senses an external vibration force to generate a vibration signal, and the conversion unit converts the vibration The signal is converted into an output current, the detection circuit detects the output current to obtain the output signal, the feedback circuit generates a feedback current according to the output signal, and the feedback unit generates a feedback force opposite to the direction of the vibration force according to the feedback current, and makes the The feedback force acts on the vibration pickup unit. The invention can not only greatly expand the frequency band range of the electrochemical detector, but also ensure the stability of the output of the detector and reduce the nonlinear distortion.
Description
技术领域technical field
本发明涉及微机电结构(MEMS)地震检波器技术领域,尤其涉及一种基于力平衡反馈的电化学地震检波器。The invention relates to the technical field of microelectromechanical structure (MEMS) geophones, in particular to an electrochemical geophone based on force balance feedback.
背景技术Background technique
地震检波器可以用来检测由于地震、火山等自然运动引起的震动信号,它可以将很微小的被测量(位移、速度、加速度)转变为不同的信号形式(光、电信号等)。基于MEMS的电化学地震检波器由于其低频灵敏度高而且制作成本低的优点逐渐被广泛应用,但是检波器的原始工作带宽很窄(0.5Hz-10Hz),并不能满足实际的工作需要(小于0.0167Hz),这时就需要借助其它方法来向更低频拓展检波器的工作带宽。Geophones can be used to detect vibration signals caused by natural movements such as earthquakes and volcanoes. It can convert very small measurands (displacement, velocity, acceleration) into different signal forms (light, electrical signals, etc.). Electrochemical geophones based on MEMS are gradually being widely used due to their advantages of high low-frequency sensitivity and low manufacturing cost, but the original operating bandwidth of the geophone is very narrow (0.5Hz-10Hz), which cannot meet the actual work needs (less than 0.0167 Hz), then other methods are needed to expand the working bandwidth of the detector to lower frequencies.
目前拓展频带的方法有很多,在动圈式地震检波器的研究中提出过一种方法,通过增大惯性摆体的质量或者减小弹簧的有效弹性系数,可以降低动圈式震动检波器的谐振频率,从而实现向低频的拓展,提高其工作带宽。然而实际应用中,增加惯性体的质量会使得传感器的体积和质量都增大;而且由于材料和技术的限制,弹簧的弹性系数的减小也有很大的局限性。因此,通过改变检波器的这两个参数来大幅提高频带范围是不实用的。At present, there are many methods to expand the frequency band. In the study of the moving coil geophone, a method was proposed. By increasing the mass of the inertial pendulum or reducing the effective elastic coefficient of the spring, the dynamic coefficient of the moving coil geophone can be reduced. Resonant frequency, so as to realize the extension to low frequency and improve its working bandwidth. However, in practical applications, increasing the mass of the inertial body will increase the volume and quality of the sensor; and due to material and technical limitations, the reduction of the elastic coefficient of the spring also has great limitations. Therefore, it is not practical to greatly increase the frequency band range by changing these two parameters of the detector.
利用信号处理电路也可以达到拓展频带的目的,根据震动传感器的频响特性,使用低频补偿的方法来进行频带拓展(ZhengyuZhang,TheStudyofBandwidthExpansionBasedonElectrochemicalVibrationSensor),即使用一个带阻滤波器来补偿传感器的灵敏度曲线,减小检波器在低频时灵敏度的衰减,使之可以在一个较宽的频带内工作。遗憾的是,利用这种方法最多可以使检波器的工作频带拓展到0.05Hz-20Hz,若再用这种方法提高低频灵敏度的话,系统就会失去稳定性,使输出信号发生漂移。The purpose of expanding the frequency band can also be achieved by using the signal processing circuit. According to the frequency response characteristics of the vibration sensor, the method of low-frequency compensation is used to expand the frequency band (Zhengyu Zhang, The Study of Bandwidth Expansion Based on Electrochemical Vibration Sensor), that is, a band-stop filter is used to compensate the sensitivity curve of the sensor, reducing The attenuation of the sensitivity of the small detector at low frequencies allows it to work in a wider frequency band. Unfortunately, using this method can expand the working frequency band of the detector to 0.05Hz-20Hz at most. If this method is used to improve the low-frequency sensitivity, the system will lose stability and cause the output signal to drift.
上述方法虽然都可以在一定程度上拓展检波器工作带宽,但是都存在一定的局限性,而且MEMS电化学地震检波器采用的是液体惯性摆体,许多技术不能直接采用。Although the above methods can expand the working bandwidth of the geophone to a certain extent, they all have certain limitations, and the MEMS electrochemical geophone uses a liquid inertial pendulum, and many technologies cannot be directly adopted.
发明内容Contents of the invention
(一)要解决的技术问题(1) Technical problems to be solved
本发明的目的在于,提供一种基于力平衡反馈的电化学地震检波器,既能保证大幅度的拓展电化学检波器的频带范围,又能保证检波器输出的稳定性以及减小线性失真度。The object of the present invention is to provide an electrochemical geophone based on force balance feedback, which can not only greatly expand the frequency band range of the electrochemical geophone, but also ensure the stability of the geophone output and reduce the linear distortion .
(二)技术方案(2) Technical solution
本发明提供一种电化学地震检波器,用于检测外部震动力产生输出信号,包括拾振单元、转换单元、反馈单元、输出单元、检测电路及反馈电路,其中:The present invention provides an electrochemical geophone, which is used to detect an external vibration force to generate an output signal, including a vibration pickup unit, a conversion unit, a feedback unit, an output unit, a detection circuit and a feedback circuit, wherein:
拾振单元用于感应外部震动力,产生震动信号;The vibration pickup unit is used to sense the external vibration force and generate a vibration signal;
转换单元采用电化学原理将所述震动信号转换为输出电流;The conversion unit converts the vibration signal into an output current by using an electrochemical principle;
检测电路用于检测所述输出电流,得到所述输出信号;The detection circuit is used to detect the output current to obtain the output signal;
反馈电路根据所述输出信号,产生反馈电流;The feedback circuit generates a feedback current according to the output signal;
反馈单元根据所述反馈电流,产生反馈力,并使该反馈力作用于拾振单元上,其中,反馈力与震动力的方向相反。The feedback unit generates a feedback force according to the feedback current, and makes the feedback force act on the vibration pickup unit, wherein the direction of the feedback force is opposite to that of the vibration force.
(三)有益效果(3) Beneficial effects
本发明具有以下优点:The present invention has the following advantages:
1、采用了力平衡反馈机制,从系统的输出端引出信号加入到输入端,形成负反馈系统,负反馈具有稳定闭环增益的作用,对于频率上升(或下降)所引起的开环增益的变化同样具有稳定作用,即能减小频率变化对闭环增益的影响,从而展宽闭环增益的频带,提高系统的稳定性。1. The force balance feedback mechanism is adopted, and the signal drawn from the output end of the system is added to the input end to form a negative feedback system. Negative feedback has the function of stabilizing the closed-loop gain, and the change of the open-loop gain caused by the frequency increase (or decrease) It also has a stabilizing effect, that is, it can reduce the influence of frequency changes on the closed-loop gain, thereby broadening the frequency band of the closed-loop gain and improving the stability of the system.
2、通过力平衡反馈机制,较大的输入信号会产生较大的负反馈力,从而使系统的净输入信号变小,进而增大了检波器可测量信号的上限,扩大了检波器的工作范围。2. Through the force balance feedback mechanism, a larger input signal will generate a larger negative feedback force, thereby reducing the net input signal of the system, thereby increasing the upper limit of the measurable signal of the geophone and expanding the work of the geophone scope.
3、通过力平衡反馈机制,若输入信号保持不变,加入负反馈之后,则闭环增益会减小,系统的净输入及输出也会随之减小,使器件更容易工作在工作范围内。并且引入负反馈能够使闭环传输特性曲线变平缓,线性范围明显展宽,提高了检波器系统的线性度,有效地减小了幅度与相位的非线性失真。3. Through the force balance feedback mechanism, if the input signal remains unchanged, after adding negative feedback, the closed-loop gain will decrease, and the net input and output of the system will also decrease accordingly, making it easier for the device to work within the working range. In addition, the introduction of negative feedback can make the closed-loop transmission characteristic curve smoother, and the linear range is obviously widened, which improves the linearity of the detector system and effectively reduces the nonlinear distortion of the amplitude and phase.
附图说明Description of drawings
图1是本发明实施例提供的基于MEMS技术的电化学地震检波器的结构示意图;Fig. 1 is the structural representation of the electrochemical geophone based on MEMS technology that the embodiment of the present invention provides;
图2是本发明实施例提供的电化学地震检波器的电路信号传输框图。Fig. 2 is a circuit signal transmission block diagram of the electrochemical geophone provided by the embodiment of the present invention.
具体实施方式detailed description
本发明提供一种电化学地震检波器,包括拾振单元、转换单元、反馈单元、输出单元、检测电路及反馈电路,其中,拾振单元感应外部震动力,产生震动信号,转换单元将震动信号转换为输出电流,检测电路检测输出电流,得到所述输出信号,反馈电路根据所述输出信号,产生反馈电流,反馈单元根据反馈电流,产生与震动力的方向相反的反馈力,并使该反馈力作用于拾振单元上。本发明既能保证大幅度的拓展电化学检波器的频带范围,又能保证检波器输出的稳定性以及减小线性失真度。The invention provides an electrochemical geophone, comprising a vibration pickup unit, a conversion unit, a feedback unit, an output unit, a detection circuit and a feedback circuit, wherein the vibration pickup unit senses an external vibration force to generate a vibration signal, and the conversion unit converts the vibration signal converted into an output current, the detection circuit detects the output current to obtain the output signal, the feedback circuit generates a feedback current according to the output signal, and the feedback unit generates a feedback force opposite to the direction of the vibration force according to the feedback current, and makes the feedback Force acts on the vibration pickup unit. The invention can not only greatly expand the frequency band range of the electrochemical detector, but also ensure the stability of the output of the detector and reduce the linear distortion.
根据本发明的一种实施方式,电化学地震检波器包括拾振单元、转换单元、反馈单元、输出单元、检测电路及反馈电路,其中:拾振单元用于检测外部震动力,产生震动信号;转换单元采用电化学原理将震动信号转换为输出电流;检测电路用于检测输出电流,得到输出信号;反馈电路根据输出信号,产生反馈电流;反馈单元根据反馈电流,产生反馈力,并使该反馈力作用于拾振单元上,其中,反馈力与震动力的方向相反。According to an embodiment of the present invention, the electrochemical geophone includes a vibration pickup unit, a conversion unit, a feedback unit, an output unit, a detection circuit and a feedback circuit, wherein: the vibration pickup unit is used to detect external vibration force and generate a vibration signal; The conversion unit uses the electrochemical principle to convert the vibration signal into an output current; the detection circuit is used to detect the output current to obtain an output signal; the feedback circuit generates a feedback current according to the output signal; the feedback unit generates a feedback force according to the feedback current, and makes the feedback A force acts on the vibration pickup unit, wherein the feedback force is in the opposite direction to the vibration force.
根据本发明的一种实施方式,反馈单元包括第一支架、线圈和磁铁,磁铁可以是钕铁硼或其它材料的永磁铁,第一支架和线圈固定在拾振单元的上表面,磁铁垂直固定在第一支架上,并套设于线圈中,反馈电流经过所述线圈时产生感应磁场,使磁铁在感应磁场的作用下对线圈产生反馈力,线圈将该反馈力作用于拾振单元上。According to one embodiment of the present invention, the feedback unit includes a first bracket, a coil and a magnet, the magnet may be a permanent magnet of NdFeB or other materials, the first bracket and the coil are fixed on the upper surface of the vibration pickup unit, and the magnet is fixed vertically On the first bracket, it is sleeved in the coil. When the feedback current passes through the coil, an induced magnetic field is generated, so that the magnet generates a feedback force to the coil under the action of the induced magnetic field, and the coil acts on the vibration pickup unit with the feedback force.
反馈力的方向取决于线圈中反馈电流的方向,反馈电流方向可以根据线圈接入电路端的不同而变化,根据反馈电流方向的不同,线圈会产生与磁铁的极性相同或相反方向的感应磁场,本发明的目的是拓展系统的频带,需要调整反馈电流的方向,以产生与磁铁极性相反的感应磁场,从而产生与震动方向相反的负反馈力。The direction of the feedback force depends on the direction of the feedback current in the coil. The direction of the feedback current can change according to the connection of the coil to the circuit end. According to the direction of the feedback current, the coil will generate an induced magnetic field with the same or opposite polarity as the magnet. The purpose of the present invention is to expand the frequency band of the system, and the direction of the feedback current needs to be adjusted to generate an induced magnetic field opposite to the polarity of the magnet, thereby generating a negative feedback force opposite to the vibration direction.
根据本发明的一种实施方式,线圈通过第一橡胶膜固定在拾振单元的上表面,从而使得线圈可以通过橡胶膜将该反馈力作用于拾振单元上,由于橡胶膜比较柔软,故使得反馈力作用于拾振单元时非常平稳。According to one embodiment of the present invention, the coil is fixed on the upper surface of the vibration pickup unit through the first rubber film, so that the feedback force of the coil can be applied to the vibration pickup unit through the rubber film. Since the rubber film is relatively soft, it makes the The feedback force acts very smoothly on the pickup unit.
根据本发明的一种实施方式,拾振单元的下表面固定有第二橡胶膜,第一橡胶膜和第二橡胶膜分别与一金属框固定连接,金属框可以是铜框。According to an embodiment of the present invention, a second rubber film is fixed on the lower surface of the vibration pickup unit, and the first rubber film and the second rubber film are respectively fixedly connected to a metal frame, and the metal frame may be a copper frame.
根据本发明的一种实施方式,反馈单元还包括第二支架,其与拾振单元的下表面固定,并且,第二支架与金属框通过一弹簧连接。According to an embodiment of the present invention, the feedback unit further includes a second bracket, which is fixed to the lower surface of the vibration pickup unit, and the second bracket is connected to the metal frame through a spring.
根据本发明的一种实施方式,拾振单元包括外壳,其由有机玻璃制成。拾振单元还包括电解液,其封装在外壳中,电解液可以是由碘化钾与碘单质混合溶液或其它可发生可逆氧化还原反应的混合溶液构成,转换单元为敏感核心,其设于电解液中,其中,敏感核心在加上偏置电压后,电解液会在敏感核心的电极表面发生可逆氧化还原反应,以产生相应的输出电流,当敏感核心接受到震动信号时,输出电流会发生变化,输出电流与震动信号的幅值以及频率成比例,敏感核心由硅基材料与金属材料采用MEMS加工方法制成,并且,所述敏感核心为多层结构,并设有通孔,所述电解液可以从通孔中流过。According to one embodiment of the present invention, the vibration pickup unit includes a housing made of organic glass. The vibration pickup unit also includes an electrolyte, which is packaged in the shell. The electrolyte can be composed of a mixed solution of potassium iodide and iodine element or other mixed solutions that can undergo reversible redox reactions. The conversion unit is a sensitive core, which is located in the electrolyte. , wherein, after the sensitive core is applied with a bias voltage, the electrolyte will undergo a reversible oxidation-reduction reaction on the electrode surface of the sensitive core to generate a corresponding output current. When the sensitive core receives a vibration signal, the output current will change. The output current is proportional to the amplitude and frequency of the vibration signal. The sensitive core is made of silicon-based materials and metal materials using MEMS processing methods, and the sensitive core is a multi-layer structure with through holes. The electrolyte can flow through the through hole.
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with specific embodiments and with reference to the accompanying drawings.
图1是本发明实施例提供的基于MEMS技术的电化学地震检波器的结构示意图,如图1所示,电化学地震检波器的机械结构包括封装外壳1、反馈铜框2、电解液3、敏感核心4、弹簧5、橡胶膜6、反馈支架7、磁铁8反馈线圈9、输出导线10,其中,封装外壳1的为中空,内部充满电解液3,敏感核心4设于电解液3中,并引出一根输出导线10,封装外壳1的上下表面各设有橡胶膜6(对应于上述的第一橡胶膜和第二橡胶膜)和反馈支架7(对应于上述的第一支架和第二支架),上下两个橡胶膜6分别与反馈铜框2固定连接,其中,上面的反馈支架7上固定有磁铁8,磁铁8外套设有反馈线圈9,并且该反馈线圈9固定在上面的橡胶膜6上,下表面的反馈支架7通过弹簧与反馈铜框2固定连接。Fig. 1 is a structural schematic diagram of an electrochemical geophone based on MEMS technology provided by an embodiment of the present invention. As shown in Fig. 1, the mechanical structure of the electrochemical geophone includes a packaging shell 1, a feedback copper frame 2, an electrolyte 3, Sensitive core 4, spring 5, rubber membrane 6, feedback bracket 7, magnet 8, feedback coil 9, output wire 10, wherein the encapsulation shell 1 is hollow, and the inside is filled with electrolyte 3, and the sensitive core 4 is set in electrolyte 3, And lead out an output wire 10, the upper and lower surfaces of the packaging shell 1 are respectively provided with a rubber film 6 (corresponding to the above-mentioned first rubber film and second rubber film) and a feedback bracket 7 (corresponding to the above-mentioned first bracket and second rubber film) bracket), the upper and lower two rubber membranes 6 are respectively fixedly connected with the feedback copper frame 2, wherein, the upper feedback bracket 7 is fixed with a magnet 8, and the magnet 8 is covered with a feedback coil 9, and the feedback coil 9 is fixed on the upper rubber The feedback bracket 7 on the upper and lower surfaces of the film 6 is fixedly connected with the feedback copper frame 2 through a spring.
图2是本发明实施例提供的电化学地震检波器的电路信号传输框图,如图2所示,其还包括外部检测电路和反馈电路。Fig. 2 is a circuit signal transmission block diagram of the electrochemical geophone provided by the embodiment of the present invention. As shown in Fig. 2, it also includes an external detection circuit and a feedback circuit.
在本实施例中,电化学地震检波器通过封装外壳1、电解液3和橡胶膜6检测到震动信号,敏感核心4经过电化学原理转换将震动信号转换为输出电流,再经过检测电路得到输出信号,输出信号经过反馈电路,得到反馈电流,反馈电流经由反馈线圈9时产生感应磁场,使磁铁在感应磁场的作用下对反馈线圈9产生反馈力,反馈线圈9通过橡胶膜6将该反馈力作用于拾振单元上。反馈力与震动力相叠加,成为最终检波器所受的合力。其中,电化学地震检波器的反馈单元由反馈铜框2、反馈支架7、橡胶膜6、反馈线圈9共同构成,反馈铜框2与橡胶膜6、电解液3构成惯性摆体,弹簧5与反馈铜框2固连以抵消重力,反馈线圈9和输出导线10与外部电路相连接。In this embodiment, the electrochemical geophone detects the vibration signal through the packaging shell 1, the electrolyte 3 and the rubber film 6, and the sensitive core 4 converts the vibration signal into an output current through the conversion of the electrochemical principle, and then obtains the output through the detection circuit signal, the output signal passes through the feedback circuit to obtain a feedback current, and when the feedback current passes through the feedback coil 9, an induced magnetic field is generated, so that the magnet generates a feedback force on the feedback coil 9 under the action of the induced magnetic field, and the feedback coil 9 passes the rubber membrane 6 to generate the feedback force Act on the vibration pickup unit. The feedback force and the vibration force are superimposed to become the resultant force on the final detector. Among them, the feedback unit of the electrochemical geophone is composed of the feedback copper frame 2, the feedback bracket 7, the rubber membrane 6, and the feedback coil 9. The feedback copper frame 2, the rubber membrane 6, and the electrolyte 3 form an inertial pendulum. The spring 5 and the The feedback copper frame 2 is fixedly connected to counteract the gravity, and the feedback coil 9 and the output wire 10 are connected with the external circuit.
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201510764438.1A CN105425282A (en) | 2015-11-10 | 2015-11-10 | An Electrochemical Geophone Based on Force Balance Feedback |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201510764438.1A CN105425282A (en) | 2015-11-10 | 2015-11-10 | An Electrochemical Geophone Based on Force Balance Feedback |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN105425282A true CN105425282A (en) | 2016-03-23 |
Family
ID=55503606
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201510764438.1A Pending CN105425282A (en) | 2015-11-10 | 2015-11-10 | An Electrochemical Geophone Based on Force Balance Feedback |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN105425282A (en) |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106019361A (en) * | 2016-05-18 | 2016-10-12 | 中国科学院地质与地球物理研究所 | Moving coil type dual-parameter geophone and detection system |
| CN106597527A (en) * | 2017-03-03 | 2017-04-26 | 中国科学院电子学研究所 | Integrated triaxial electrochemical geophone and detection method thereof |
| CN106908834A (en) * | 2017-02-20 | 2017-06-30 | 中国科学院电子学研究所 | Electrochemistry microseism wave detector |
| CN107479088A (en) * | 2017-06-15 | 2017-12-15 | 中石化石油工程技术服务有限公司 | A kind of closed-loop digital acceleration detector harmonic distortion system and method for testing |
| CN108562935A (en) * | 2018-07-03 | 2018-09-21 | 吉林大学 | Wideband electrochemistry seismometer suspension |
| RU2698527C1 (en) * | 2018-12-26 | 2019-08-28 | федеральное государственное автономное образовательное учреждение высшего образования "Московский физико-технический институт (национальный исследовательский университет)" | Molecular-electronic hydrophone with feedback based on magnetohydrodynamic effect |
| CN110850467A (en) * | 2019-12-09 | 2020-02-28 | 西北核技术研究院 | Digital low-frequency seismic sensor |
| CN112666367A (en) * | 2020-12-31 | 2021-04-16 | 中国科学院空天信息创新研究院 | MEMS electrochemical angular acceleration sensor and method based on magnetofluid feedback |
| CN114779321A (en) * | 2022-04-27 | 2022-07-22 | 吉林大学 | Short-period seismic sensor |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20030029719A1 (en) * | 2001-08-10 | 2003-02-13 | Abramovich Igor A. | Electrochemical transducer and a method for fabricating the same |
| CN202383300U (en) * | 2011-12-05 | 2012-08-15 | 珠海市泰德企业有限公司 | Force balance feedback broadband seismometer |
| CN103048680A (en) * | 2011-10-13 | 2013-04-17 | 中国科学院电子学研究所 | Electrochemical seism radiodetector based on MEMS (Micro-electromechanical Systems) technology |
| CN103235337A (en) * | 2013-05-21 | 2013-08-07 | 中国科学院电子学研究所 | Electrochemical seismic detector based on mechanical seal and packaging method thereof |
| CN103472480A (en) * | 2013-09-22 | 2013-12-25 | 中国科学院电子学研究所 | Electrochemical sensitive element, manufacturing method of electrochemical sensitive element and seismic detector applying electrochemical sensitive element |
| WO2015077394A1 (en) * | 2013-11-20 | 2015-05-28 | Arizona Board Of Regents On Behalf Of Arizona State University | Microfabrication technology for producing sensing cells for molecular electronic transducer based seismometer |
-
2015
- 2015-11-10 CN CN201510764438.1A patent/CN105425282A/en active Pending
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20030029719A1 (en) * | 2001-08-10 | 2003-02-13 | Abramovich Igor A. | Electrochemical transducer and a method for fabricating the same |
| CN103048680A (en) * | 2011-10-13 | 2013-04-17 | 中国科学院电子学研究所 | Electrochemical seism radiodetector based on MEMS (Micro-electromechanical Systems) technology |
| CN202383300U (en) * | 2011-12-05 | 2012-08-15 | 珠海市泰德企业有限公司 | Force balance feedback broadband seismometer |
| CN103235337A (en) * | 2013-05-21 | 2013-08-07 | 中国科学院电子学研究所 | Electrochemical seismic detector based on mechanical seal and packaging method thereof |
| CN103472480A (en) * | 2013-09-22 | 2013-12-25 | 中国科学院电子学研究所 | Electrochemical sensitive element, manufacturing method of electrochemical sensitive element and seismic detector applying electrochemical sensitive element |
| WO2015077394A1 (en) * | 2013-11-20 | 2015-05-28 | Arizona Board Of Regents On Behalf Of Arizona State University | Microfabrication technology for producing sensing cells for molecular electronic transducer based seismometer |
Non-Patent Citations (2)
| Title |
|---|
| 何文涛 等: "MEMS宽带电化学地震检波器", 《光学 精密工程》 * |
| 曹双兰 等: "用于深部探测的地震检波器低频拓展技术", 《地球物理学进展》 * |
Cited By (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106019361B (en) * | 2016-05-18 | 2017-07-04 | 中国科学院地质与地球物理研究所 | The two-parameter geophone of moving-coil type and demodulation system |
| CN106019361A (en) * | 2016-05-18 | 2016-10-12 | 中国科学院地质与地球物理研究所 | Moving coil type dual-parameter geophone and detection system |
| CN106908834B (en) * | 2017-02-20 | 2019-07-05 | 中国科学院电子学研究所 | Electrochemistry microseism wave detector |
| CN106908834A (en) * | 2017-02-20 | 2017-06-30 | 中国科学院电子学研究所 | Electrochemistry microseism wave detector |
| CN106597527A (en) * | 2017-03-03 | 2017-04-26 | 中国科学院电子学研究所 | Integrated triaxial electrochemical geophone and detection method thereof |
| CN107479088A (en) * | 2017-06-15 | 2017-12-15 | 中石化石油工程技术服务有限公司 | A kind of closed-loop digital acceleration detector harmonic distortion system and method for testing |
| CN108562935A (en) * | 2018-07-03 | 2018-09-21 | 吉林大学 | Wideband electrochemistry seismometer suspension |
| CN108562935B (en) * | 2018-07-03 | 2023-10-10 | 吉林大学 | Broadband electrochemical seismometer suspension system |
| RU2698527C1 (en) * | 2018-12-26 | 2019-08-28 | федеральное государственное автономное образовательное учреждение высшего образования "Московский физико-технический институт (национальный исследовательский университет)" | Molecular-electronic hydrophone with feedback based on magnetohydrodynamic effect |
| CN110850467A (en) * | 2019-12-09 | 2020-02-28 | 西北核技术研究院 | Digital low-frequency seismic sensor |
| CN112666367A (en) * | 2020-12-31 | 2021-04-16 | 中国科学院空天信息创新研究院 | MEMS electrochemical angular acceleration sensor and method based on magnetofluid feedback |
| CN114779321A (en) * | 2022-04-27 | 2022-07-22 | 吉林大学 | Short-period seismic sensor |
| CN114779321B (en) * | 2022-04-27 | 2025-09-26 | 吉林大学 | A short-period seismic sensor |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN105425282A (en) | An Electrochemical Geophone Based on Force Balance Feedback | |
| CN106908834B (en) | Electrochemistry microseism wave detector | |
| Agafonov et al. | Electrochemical seismometers of linear and angular motion | |
| CN106840367A (en) | A kind of floated low-frequency shock transducer of multiaxis | |
| CN102608355A (en) | Resonance-equilibrium tunnel current type three-axis acceleration transducer and manufacturing method thereof | |
| CN108761134B (en) | Linear output detection method of weak coupling resonant sensor | |
| CN102252746B (en) | Big-damping-ratio-based double parameter speed and acceleration output vibration pickup | |
| CN221550942U (en) | Accelerometer using geophone | |
| CN112666367B (en) | MEMS electrochemical angular acceleration sensor and method based on magnetofluid feedback | |
| Xu et al. | The electrochemical seismometer based on fine-tune sensing electrodes for undersea exploration | |
| CN106706108B (en) | MEMS co-vibration spherical vibrator vector hydrophone based on piezoelectric effect | |
| CN106526659B (en) | Array electrochemistry feedback seismograph | |
| CN103292787A (en) | Tilt angle sensor | |
| Leugoud et al. | Second generation of a rotational electrochemical seismometer using magnetohydrodynamic technology | |
| CN104931034B (en) | Micro-mechanical gyroscope bandwidth broadning method based on dipole penalty method | |
| CN106918720A (en) | A kind of filament restricted type acceleration transducer | |
| CN102602879B (en) | Two step corrosion manufacture methods of resonance type accelerometer resonance beam and brace summer | |
| CN106199687A (en) | Simple component geophone | |
| CN111323615B (en) | Suspended wire pendulum accelerometer | |
| CN103454596B (en) | Alternating magnetic field sensing device | |
| RU2559154C2 (en) | Compensation-type pendulum accelerometer | |
| CN117169546A (en) | Double-mass-block sensitive acceleration sensor based on modal localization effect | |
| CN105954540A (en) | Electrochemical inertia sensor based on planar interdigital electrode structure | |
| CN112797968B (en) | Gyro bandwidth expansion method, device and system under force balance closed loop detection | |
| CN108562935B (en) | Broadband electrochemical seismometer suspension system |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication | ||
| RJ01 | Rejection of invention patent application after publication |
Application publication date: 20160323 |