CN105500719A - Method for manufacturing terahertz waveguide preform by means of 3D printing technology - Google Patents
Method for manufacturing terahertz waveguide preform by means of 3D printing technology Download PDFInfo
- Publication number
- CN105500719A CN105500719A CN201610059837.2A CN201610059837A CN105500719A CN 105500719 A CN105500719 A CN 105500719A CN 201610059837 A CN201610059837 A CN 201610059837A CN 105500719 A CN105500719 A CN 105500719A
- Authority
- CN
- China
- Prior art keywords
- preform
- terahertz waveguide
- terahertz
- cross
- preparing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 29
- 238000005516 engineering process Methods 0.000 title claims description 17
- 238000010146 3D printing Methods 0.000 title claims description 16
- 238000004519 manufacturing process Methods 0.000 title description 12
- 239000000463 material Substances 0.000 claims abstract description 11
- 229910052751 metal Inorganic materials 0.000 claims abstract description 9
- 239000002184 metal Substances 0.000 claims abstract description 9
- 229920000642 polymer Polymers 0.000 claims abstract description 8
- 150000002739 metals Chemical class 0.000 claims abstract description 4
- 230000001154 acute effect Effects 0.000 claims description 10
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 5
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 5
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 4
- 239000007769 metal material Substances 0.000 claims description 4
- 229920001577 copolymer Polymers 0.000 claims description 3
- 239000004417 polycarbonate Substances 0.000 claims description 3
- 229920000515 polycarbonate Polymers 0.000 claims description 3
- 239000002861 polymer material Substances 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 239000004925 Acrylic resin Substances 0.000 claims description 2
- 229920000178 Acrylic resin Polymers 0.000 claims description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- 239000004793 Polystyrene Substances 0.000 claims description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 239000010949 copper Substances 0.000 claims description 2
- 125000004122 cyclic group Chemical group 0.000 claims description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 239000010931 gold Substances 0.000 claims description 2
- 229910021389 graphene Inorganic materials 0.000 claims description 2
- 229920002223 polystyrene Polymers 0.000 claims description 2
- -1 polytetrafluoroethylene Polymers 0.000 claims description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 2
- 229920002620 polyvinyl fluoride Polymers 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 239000004332 silver Substances 0.000 claims description 2
- 239000011135 tin Substances 0.000 claims description 2
- 239000002131 composite material Substances 0.000 abstract 1
- 238000009776 industrial production Methods 0.000 abstract 1
- 238000007639 printing Methods 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 238000005253 cladding Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 230000004323 axial length Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/13—Integrated optical circuits characterised by the manufacturing method
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
Abstract
本发明提出一种利用3D打印机制备具有锐角结构的太赫兹波导预制棒的方法。该方法首先以计算机制图软件画出太赫兹波导预制棒的立体结构,之后利用3D打印机逐片进行打印成型太赫兹波导预制棒。该方法适用于包括金属或聚合物及其复合超材料等绝大多数太赫兹波导材料,可制作包括三角形及五角星形等具有锐角结构的各种异型横截面结构的太赫兹波导(如附图所示),增加了结构设计自由度,方便了高熔点金属丝的嵌入,波导纵向结构也可以改变。方法简便,成本低廉,制作出的波导横截面结构丰富,性能优越。本发明适合于大规模工业生产及实验室研究探索应用。
The invention proposes a method for preparing a terahertz waveguide preform with an acute-angle structure by using a 3D printer. In this method, the three-dimensional structure of the terahertz waveguide preform is first drawn with computer graphics software, and then the terahertz waveguide preform is printed piece by piece by using a 3D printer. This method is applicable to most terahertz waveguide materials including metals or polymers and their composite metamaterials, and can produce terahertz waveguides with various special-shaped cross-sectional structures including triangles and pentagrams with acute-angle structures (as shown in the accompanying drawings) As shown), the degree of freedom in structural design is increased, the embedding of high-melting-point metal wires is facilitated, and the longitudinal structure of the waveguide can also be changed. The method is simple and low in cost, and the produced waveguide has rich cross-sectional structures and superior performance. The invention is suitable for large-scale industrial production and laboratory research and exploration applications.
Description
技术领域:Technical field:
本发明涉及一种波导预制棒的制作方法,属于太赫兹波导制备的技术领域。主要涉及的是一种以3D打印制备太赫兹波导预制棒的方法。The invention relates to a method for manufacturing a waveguide preform, and belongs to the technical field of terahertz waveguide preparation. It mainly involves a method for preparing a terahertz waveguide prefabricated rod by 3D printing.
背景技术Background technique
近年来,太赫兹波源和太赫兹波信号探测技术飞速发展,推动太赫兹波技术系统的水平不断上升。缺乏有效的太赫兹波导,现有太赫兹波技术系统中太赫兹波信号主要依赖于自由空间传播,控制难,损耗大,极大地限制了太赫兹波技术的应用推广。太赫兹波导研究探索创新,已成为目前的一个研究热点。奥克兰大学NurfinaYudasari等人在2014年10月20号光学快报(OPTICSEXPRESS)第26042页至第26054页的文章中公开了利用3D打印技术制作出一种十二个圆形空气孔包围芯区的太赫兹波导,其材料为UV固化的聚合物,未经预制棒阶段而直接打印出来,只适合于工作波长较长的太赫兹波导制作,且横截面结构中空气孔均为无锐角的圆形空气孔,纵向结构无变化,制作材料单一。2013年7月8日,犹他大学ShashankPandey等人在2013年10月21号光学快报(OPTICSEXPRESS)第24422页至第24430页的文章中公开了利用3D打印技术进行带有周期性矩形槽的平板波导、y分支器波导及弯曲波导的制作方法,制作波导横截面结构中空气孔均为无锐角的圆形空气孔,制作材料单一。为拓展太赫兹波导结构设计自由度,迫切需要一种能够简便制作带有锐角结构的横截面且可改变纵向结构的太赫兹波导制作新方法。In recent years, the rapid development of terahertz wave source and terahertz wave signal detection technology has promoted the continuous rise of the level of terahertz wave technology system. In the absence of an effective terahertz waveguide, the terahertz wave signal in the existing terahertz wave technology system mainly relies on free space propagation, which is difficult to control and has a large loss, which greatly limits the application and promotion of the terahertz wave technology. The exploration and innovation of terahertz waveguide research has become a current research hotspot. Nurfina Yudasari of the University of Auckland and others disclosed in the article on pages 26042 to 26054 of OPTICS EXPRESS on October 20, 2014, that a terahertz terahertz sensor with twelve circular air holes surrounding the core area was produced using 3D printing technology. The waveguide, whose material is UV-cured polymer, is directly printed without the preform stage, and is only suitable for the production of terahertz waveguides with long operating wavelengths, and the air holes in the cross-sectional structure are circular air holes without acute angles , there is no change in the longitudinal structure, and the production material is single. On July 8, 2013, Shashank Pandey of the University of Utah and others disclosed the use of 3D printing technology in the article on pages 24422 to 24430 of OPTICS EXPRESS on October 21, 2013. A slab waveguide with periodic rectangular grooves . The manufacturing method of the y-splitter waveguide and the curved waveguide. The air holes in the cross-sectional structure of the waveguide are all circular air holes without acute angles, and the manufacturing material is single. In order to expand the design freedom of terahertz waveguide structure, a new method of terahertz waveguide fabrication that can easily fabricate the cross section with acute angle structure and change the longitudinal structure is urgently needed.
发明内容Contents of the invention
针对带有锐角微结构复杂横截面且纵向可变的太赫兹波导的制作,本发明提出一种利用3D打印机按照波导立体结构逐片打印以形成太赫兹波导预制棒进而拉制成太赫兹波导的方法。该方法极大地简化了制作工艺,降低了带有锐角微结构复杂横截面且纵向可变的太赫兹波导预制棒的制作成本,为后续拉制出具有优越传输性能的太赫兹波导,提供了很好的基础。Aiming at the production of terahertz waveguides with complex cross-sections with acute-angle microstructures and longitudinally variable, the present invention proposes a method of using a 3D printer to print piece by piece according to the three-dimensional structure of the waveguide to form a terahertz waveguide preform and then draw it into a terahertz waveguide method. This method greatly simplifies the manufacturing process, reduces the manufacturing cost of terahertz waveguide preforms with complex cross-sections with acute-angle microstructures and variable longitudinal directions, and provides great opportunities for subsequent drawing of terahertz waveguides with superior transmission performance. good foundation.
本发明提出的以3D打印制备太赫兹波导预制棒的方法,是通过以下技术方案实现的:The method for preparing a terahertz waveguide preform by 3D printing proposed by the present invention is realized through the following technical solutions:
利用计算机制图软件画出太赫兹波导预制棒立体结构;在3D打印机喷头内加入相应的太赫兹波导材料,以3D打印的方式逐片打印,最终打印出太赫兹波导预制棒。其中,太赫兹波导预制棒横截面结构,为具有锐角结构的横截面结构,或为沿预制棒轴向变化的横截面结构;太赫兹波导材料,为聚合物或金属材料,或为聚合物和金属组成的超材料;聚合物材料,为聚苯乙烯或聚氟乙烯或环状丙稀树脂或聚碳酸酷或石墨烯或聚四氟乙烯或环烯烃共聚物(COC)或聚甲基丙烯酸甲脂(PMMA),或为这些聚合物中的一部分组成的超材料;金属材料,为铜或铝或金或银或锡,或为这些金属中的一部分组成的超材料;沿预制棒轴向变化的横截面结构,为沿预制棒纵向按光栅结构变化的横截面结构,或为沿预制棒纵向按微环谐振腔结构变化的横截面结构;具有锐角结构的横截面结构,为具有三角形或五角星形或六角星形锐角结构的横截面结构。Use computer graphics software to draw the three-dimensional structure of the terahertz waveguide preform; add the corresponding terahertz waveguide material into the nozzle of the 3D printer, print piece by piece in 3D printing, and finally print the terahertz waveguide preform. Among them, the cross-sectional structure of the terahertz waveguide preform is a cross-sectional structure with an acute angle structure, or a cross-sectional structure that changes along the axial direction of the preform; the material of the terahertz waveguide is a polymer or metal material, or a polymer and Metamaterials composed of metals; polymer materials such as polystyrene or polyvinyl fluoride or cyclic acrylic resin or polycarbonate or graphene or polytetrafluoroethylene or cycloolefin copolymer (COC) or polymethacrylate Grease (PMMA), or a metamaterial composed of a part of these polymers; a metal material, copper or aluminum or gold or silver or tin, or a metamaterial composed of a part of these metals; along the axis of the preform The cross-sectional structure is a cross-sectional structure that varies along the longitudinal direction of the preform according to the grating structure, or a cross-sectional structure that varies along the longitudinal direction of the preform according to the micro-ring resonator structure; the cross-sectional structure with an acute angle structure is a triangular or pentagonal Cross-sectional structure of a star or hexagonal star-shaped acute angle structure.
本发明具有以下显著的有益效果:The present invention has the following remarkable beneficial effects:
1.带锐角横截面微结构的实现,可极大地提升太赫兹波导得结构设计维度,能制作出管束堆积法和组合填充法等传统制作方法难以实现的带有锐角微结构横截面的太赫兹波导预制棒,对于高熔点金属丝在太赫兹波导中的嵌入,各种奇异传输性能太赫兹波导的探索,以及相应功能器件的研制,均提供了更为广阔的天地。1. The realization of microstructures with acute-angled cross-sections can greatly improve the structural design dimension of terahertz waveguides, and can produce terahertz waveguides with acute-angled microstructured cross-sections that are difficult to achieve by traditional fabrication methods such as tube bundle stacking and combined filling methods. Waveguide preforms provide a broader world for the embedding of high melting point metal wires in terahertz waveguides, the exploration of terahertz waveguides with various singular transmission properties, and the development of corresponding functional devices.
2.极大地简化了具有复杂横截面微结构太赫兹波导的实现工艺。带锐角微结构横截面且纵向可变的太赫兹波导预制棒,按照传统工艺实现难度大。本发明大大简化了相应的实现工艺难度。对带锐角微结构和纵向可变横截面结构太赫兹波导预制棒的拉制,即可实现多种具有复杂横截面结构的太赫兹波导的制作。2. It greatly simplifies the realization process of terahertz waveguides with complex cross-sectional microstructures. It is very difficult to realize the terahertz waveguide preform with acute angle microstructure cross section and variable longitudinal direction according to the traditional technology. The invention greatly simplifies the difficulty of the corresponding realization process. By drawing a terahertz waveguide preform with an acute-angle microstructure and a longitudinally variable cross-sectional structure, a variety of terahertz waveguides with complex cross-sectional structures can be fabricated.
3.实现系统结构简单,成本低廉。整个实现系统,仅需要一台3D打印机和相应的太赫兹波导制作材料,以及配备绘图软件的计算机。3. The realization system structure is simple and the cost is low. The entire realization system only needs a 3D printer and corresponding terahertz waveguide production materials, as well as a computer equipped with drawing software.
附图说明Description of drawings
图1.1为采用本发明的方法制作的实施例一预制棒立体结构图。Fig. 1.1 is a three-dimensional structural view of the preform of Example 1 produced by the method of the present invention.
图1.2为采用本发明的方法制作的实施例一预制棒横截面结构图。Fig. 1.2 is a cross-sectional structural view of the preform of Example 1 produced by the method of the present invention.
图2.1为采用本发明的方法制作的实施例二预制棒的侧视图。Fig. 2.1 is a side view of the preform of Example 2 manufactured by the method of the present invention.
附图标号Reference number
1.1为预制棒包层,1.2为预制棒外层空气孔,1.3为预制棒内层空气孔,1.4为预制棒空气芯区,1.5为预制棒内部正五角星结构;1.1 is the cladding of the preform, 1.2 is the air hole in the outer layer of the preform, 1.3 is the air hole in the inner layer of the preform, 1.4 is the air core area of the preform, and 1.5 is the regular five-pointed star structure inside the preform;
2.1为衬底,2.2为第一级微环谐振腔,2.3为直波导,2.4为光栅结构,2.5为第二级微环谐振腔。2.1 is the substrate, 2.2 is the first-stage microring resonator, 2.3 is the straight waveguide, 2.4 is the grating structure, and 2.5 is the second-stage microring resonator.
具体实施方式detailed description
下面结合附图和具体实施方式对本发明作进一步描述。The present invention will be further described below in conjunction with the accompanying drawings and specific embodiments.
实施例一Embodiment one
采用本发明制作太赫兹波导预制棒。The terahertz waveguide prefabricated rod is manufactured by adopting the invention.
首先,利用AutoCAD软件,按照图1.2所示的设计结构画出太赫兹波导预制棒的横截面,其结构包括预制棒包层1.1,预制棒外层空气孔1.2,预制棒内层空气孔1.3,预制棒空气芯区1.4和预制棒内部正五角星结构1.5。其中,预制棒包层1.1和预制棒内部结构1.5的制作材料均为品牌为ZEONEX的环烯烃共聚物,其余部分均为空气。其中,预制棒直径为11毫米,预制棒包层1.1厚度为0.5毫米,内部正五角星结构1.5的支撑结构板厚度为0.3毫米。然后,将其保存成为平版印刷格式的文件。进而,将该平版印刷格式的文件,经由Objet公司的ObjetEden260VS3D打印机(其分辨率为X轴600dpi;Y轴600dpi;Z轴1600dpi)自带的转码软件转码为3D打印机的坐标文件。最后,启动ObjetEden260VS3D打印机,按照坐标文件对预制棒进行逐片打印,打印出太赫兹波导预制棒,打印长度为10厘米,即预制棒轴向长度为10厘米。First, use AutoCAD software to draw the cross-section of the terahertz waveguide preform according to the design structure shown in Figure 1.2. The air core area 1.4 of the preform and the regular five-pointed star structure 1.5 inside the preform. Among them, the preform cladding layer 1.1 and the preform internal structure 1.5 are made of cycloolefin copolymer branded as ZEONEX, and the rest is air. Among them, the diameter of the preform is 11 mm, the thickness of the preform cladding 1.1 is 0.5 mm, and the thickness of the supporting structure plate of the internal regular five-pointed star structure 1.5 is 0.3 mm. Then, save it as a lithographic format file. Furthermore, the file in the lithographic printing format was transcoded into a coordinate file of the 3D printer via the transcoding software that comes with the ObjetEden260VS3D printer of Objet Company (its resolution is 600dpi on the X axis; 600dpi on the Y axis; 1600dpi on the Z axis). Finally, start the ObjetEden260VS3D printer, print the preform piece by piece according to the coordinate file, and print out the terahertz waveguide preform. The printing length is 10 cm, that is, the axial length of the preform is 10 cm.
实施例二Embodiment two
采用本发明制作太赫兹波导预制棒。The terahertz waveguide prefabricated rod is manufactured by adopting the invention.
利用AutoCAD软件,按照图2.1所示的结构画出太赫兹波导预制棒的侧面,其结构包括衬底2.1,第一级微环谐振腔2.2,直波导2.3,光栅结构2.4,第二级微环谐振腔2.5。第一级微环谐振腔2.2,直波导2.3,第二级微环谐振腔2.5的制作材料均为聚碳酸酯(PC);光栅结构2.4的制作材料为金属锡。其中,第一级微环谐振腔2.2部分,外圈椭圆长轴为6毫米,内圈椭圆长轴为4.8毫米,内外圈椭圆同心;第二级微环谐振腔2.5部分,外圈椭圆长轴为7.5毫米,内圈椭圆长轴为6毫米,内外圈椭圆同心。光栅结构2.4共20个周期,其光栅周期为0.1毫米;其中,金属锡部分宽度为0.05毫米,即附图中深色部分宽度为0.05毫米;其余尺寸见附图2.1所示。将其保存成为平版印刷格式的文件;再经由Objet公司的Objet303D打印机(其分辨率为X轴600dpi;Y轴600dpi;Z轴900dpi)3D打印机自带的转码软件,将平版印刷格式的软件,转码为3D打印机的坐标文件;启动3D打印机,将预制棒结构逐片打印于以聚甲基丙烯酸甲脂(PMMA)作为材料的衬底2.1之上,衬底2.1尺寸为6毫米×10毫米,单位为毫米。最终,打印成为太赫兹波导预制棒,打印厚度为1毫米。Use AutoCAD software to draw the side of the terahertz waveguide preform according to the structure shown in Figure 2.1. The structure includes the substrate 2.1, the first-stage microring resonator 2.2, the straight waveguide 2.3, the grating structure 2.4, and the second-stage microring Resonator 2.5. The first-stage microring resonator 2.2, the straight waveguide 2.3, and the second-stage microring resonator 2.5 are made of polycarbonate (PC); the grating structure 2.4 is made of metal tin. Among them, the 2.2 part of the first-stage micro-ring resonator, the major axis of the outer ring ellipse is 6 mm, the major axis of the inner ring ellipse is 4.8 mm, and the inner and outer ring ellipses are concentric; the second-stage micro-ring resonator part 2.5, the major axis of the outer ring ellipse is 7.5mm, the major axis of the inner ellipse is 6mm, and the inner and outer ellipses are concentric. The grating structure 2.4 has a total of 20 periods, and its grating period is 0.1 mm; among them, the width of the metal tin part is 0.05 mm, that is, the width of the dark part in the attached drawing is 0.05 mm; the remaining dimensions are shown in attached drawing 2.1. Save it as a file in lithographic printing format; then through the Objet303D printer of Objet Company (its resolution is X-axis 600dpi; Y-axis 600dpi; Z-axis 900dpi) the transcoding software that comes with the 3D printer, the software in lithographic printing format, Transcode to a coordinate file of the 3D printer; start the 3D printer, and print the preform structure one by one on the substrate 2.1 with polymethyl methacrylate (PMMA) as the material, and the size of the substrate 2.1 is 6 mm×10 mm , in millimeters. In the end, the terahertz waveguide preform was printed with a thickness of 1 mm.
Claims (9)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610059837.2A CN105500719A (en) | 2016-01-28 | 2016-01-28 | Method for manufacturing terahertz waveguide preform by means of 3D printing technology |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610059837.2A CN105500719A (en) | 2016-01-28 | 2016-01-28 | Method for manufacturing terahertz waveguide preform by means of 3D printing technology |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN105500719A true CN105500719A (en) | 2016-04-20 |
Family
ID=55709196
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201610059837.2A Pending CN105500719A (en) | 2016-01-28 | 2016-01-28 | Method for manufacturing terahertz waveguide preform by means of 3D printing technology |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN105500719A (en) |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106405736A (en) * | 2016-10-17 | 2017-02-15 | 吉林大学 | Method for preparing polymer optical waveguide side electrode by employing 3D printing technology and hot embossing technology |
| CN107020378A (en) * | 2017-03-29 | 2017-08-08 | 清华大学 | The preparation method of Terahertz corrugated horn |
| WO2018157920A1 (en) * | 2017-02-28 | 2018-09-07 | Toyota Motor Europe | Three-dimensional dielectric structure |
| CN109501268A (en) * | 2017-09-15 | 2019-03-22 | 波音公司 | The system and method for raw material line and creation raw material line for increasing material manufacturing object |
| CN109551757A (en) * | 2018-10-18 | 2019-04-02 | 上海无线电设备研究所 | A kind of preparation method of flexibility Terahertz absorbing material |
| CN109613652A (en) * | 2018-12-20 | 2019-04-12 | 苏州席正通信科技有限公司 | A kind of optical waveguide fiber outbound course of 3D printing |
| CN110119038A (en) * | 2018-02-06 | 2019-08-13 | 中国科学院金属研究所 | A kind of adjustable THz wave optical window of thermal field and its preparation method and application |
| US10498446B2 (en) | 2017-04-20 | 2019-12-03 | Harris Corporation | Electronic system including waveguide with passive optical elements and related methods |
| CN112033931A (en) * | 2020-09-07 | 2020-12-04 | 科竟达生物科技有限公司 | Optical waveguide, manufacturing method thereof, biosensing system comprising optical waveguide and application of biosensing system |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1317098A (en) * | 1998-09-09 | 2001-10-10 | 康宁股份有限公司 | Radially nonuniform and azimuthally asymmetric optical fiber |
| CN104355531A (en) * | 2014-10-29 | 2015-02-18 | 上海大学 | 3D (3-Dimensional) printing doped fiber preform rod preparation system |
| US20150078712A1 (en) * | 2013-09-17 | 2015-03-19 | Telefonaktiebolaget L M Ericsson (Publ) | Method, Apparatus and Optical Interconnect Manufactured by 3D Printing |
| CN104656186A (en) * | 2013-11-21 | 2015-05-27 | 大连惟康科技有限公司 | Hollow optical fiber |
| CN105252779A (en) * | 2015-11-25 | 2016-01-20 | 上海无线电设备研究所 | Three-dimensional forming manufacturing system and method for wave absorbing material |
-
2016
- 2016-01-28 CN CN201610059837.2A patent/CN105500719A/en active Pending
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1317098A (en) * | 1998-09-09 | 2001-10-10 | 康宁股份有限公司 | Radially nonuniform and azimuthally asymmetric optical fiber |
| US20150078712A1 (en) * | 2013-09-17 | 2015-03-19 | Telefonaktiebolaget L M Ericsson (Publ) | Method, Apparatus and Optical Interconnect Manufactured by 3D Printing |
| CN104656186A (en) * | 2013-11-21 | 2015-05-27 | 大连惟康科技有限公司 | Hollow optical fiber |
| CN104355531A (en) * | 2014-10-29 | 2015-02-18 | 上海大学 | 3D (3-Dimensional) printing doped fiber preform rod preparation system |
| CN105252779A (en) * | 2015-11-25 | 2016-01-20 | 上海无线电设备研究所 | Three-dimensional forming manufacturing system and method for wave absorbing material |
Non-Patent Citations (1)
| Title |
|---|
| SHASHANK PANDEY ET AL.: "Terahertz plasmonic waveguides created via 3D printing", 《OPTICS EXPRESS》 * |
Cited By (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106405736A (en) * | 2016-10-17 | 2017-02-15 | 吉林大学 | Method for preparing polymer optical waveguide side electrode by employing 3D printing technology and hot embossing technology |
| CN106405736B (en) * | 2016-10-17 | 2019-04-05 | 吉林大学 | A method of polymer optical wave guide side electrode is prepared using 3D printing and hot press printing technology |
| WO2018157920A1 (en) * | 2017-02-28 | 2018-09-07 | Toyota Motor Europe | Three-dimensional dielectric structure |
| US11024934B2 (en) | 2017-02-28 | 2021-06-01 | Toyota Motor Europe | Three-dimensional dielectric structure |
| CN107020378A (en) * | 2017-03-29 | 2017-08-08 | 清华大学 | The preparation method of Terahertz corrugated horn |
| CN107020378B (en) * | 2017-03-29 | 2020-01-10 | 清华大学 | Preparation method of terahertz corrugated horn antenna |
| US10498446B2 (en) | 2017-04-20 | 2019-12-03 | Harris Corporation | Electronic system including waveguide with passive optical elements and related methods |
| CN109501268A (en) * | 2017-09-15 | 2019-03-22 | 波音公司 | The system and method for raw material line and creation raw material line for increasing material manufacturing object |
| CN109501268B (en) * | 2017-09-15 | 2023-08-15 | 波音公司 | System and method for additive manufacturing of a raw material line of an object and creation of a raw material line |
| CN110119038A (en) * | 2018-02-06 | 2019-08-13 | 中国科学院金属研究所 | A kind of adjustable THz wave optical window of thermal field and its preparation method and application |
| CN109551757B (en) * | 2018-10-18 | 2020-12-22 | 上海无线电设备研究所 | Preparation method of flexible terahertz wave-absorbing material |
| CN109551757A (en) * | 2018-10-18 | 2019-04-02 | 上海无线电设备研究所 | A kind of preparation method of flexibility Terahertz absorbing material |
| CN109613652A (en) * | 2018-12-20 | 2019-04-12 | 苏州席正通信科技有限公司 | A kind of optical waveguide fiber outbound course of 3D printing |
| CN112033931A (en) * | 2020-09-07 | 2020-12-04 | 科竟达生物科技有限公司 | Optical waveguide, manufacturing method thereof, biosensing system comprising optical waveguide and application of biosensing system |
| CN112033931B (en) * | 2020-09-07 | 2024-04-12 | 科竟达生物科技有限公司 | Optical waveguide, method for manufacturing the same, biosensor system containing the same and application thereof |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN105500719A (en) | Method for manufacturing terahertz waveguide preform by means of 3D printing technology | |
| Luo et al. | Toward optical fibre fabrication using 3D printing technology | |
| Li et al. | A review of coating materials used to improve the performance of optical fiber sensors | |
| Tong | Micro/nanofibre optical sensors: challenges and prospects | |
| Wang et al. | Fabricating microstructures on glass for microfluidic chips by glass molding process | |
| Zhao et al. | Optical fibers with special shaped cores drawn from 3D printed preforms | |
| Talataisong et al. | Suspended-core microstructured polymer optical fibers and potential applications in sensing | |
| Yan et al. | Photonic crystal fiber SPR liquid sensor based on elliptical detective channel | |
| Xin et al. | Fiber-based optical trapping and manipulation | |
| Luo et al. | Selectively enhanced 3D printing process and performance analysis of continuous carbon fiber composite material | |
| Xu et al. | In-fiber structured particles and filament arrays from the perspective of fluid instabilities | |
| Wang et al. | High sensitivity refractive index sensor based on dual-core photonic crystal fiber with hexagonal lattice | |
| Zheng et al. | Fabrication of embedded microball lens in PMMA with high repetition rate femtosecond fiber laser | |
| CN110501308B (en) | Terahertz microstructure double-core optical fiber ultrasensitive microfluidic sensor | |
| CN106017724A (en) | Liquid-filled D-type hollow core double-cladding optical fiber SPR temperature sensor | |
| Lu et al. | Fabrication of micro-structured LED diffusion plate using efficient micro injection molding and micro-ground mold core | |
| Zhang et al. | Compressive and energy absorption properties of pyramidal lattice structures by various preparation methods | |
| CN211263845U (en) | Microfluid terahertz photonic crystal fiber based on equal-difference layered structure | |
| Wang et al. | Study the formation process of cuboid microprotrusion by glass molding process | |
| Arrospide et al. | Harnessing deep-hole drilling to fabricate air-structured polymer optical fibres | |
| Yang et al. | Fabrication and formability of continuous carbon fiber reinforced resin matrix composites using additive manufacturing | |
| CN212181075U (en) | Layered microstructure porous optical fiber terahertz low-loss waveguide | |
| Kuo et al. | Enhancing the cooling efficiency of aluminum-filled epoxy resin rapid tool by changing inner surface roughness of cooling channels | |
| Lin et al. | Analysis of melt front behavior of a light guiding plate during the filling phase of micro-injection molding | |
| Xu et al. | An ultrashort wavelength multi/demultiplexer via rectangular liquid-infiltrated dual-core polymer optical fiber |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication | ||
| RJ01 | Rejection of invention patent application after publication |
Application publication date: 20160420 |