[go: up one dir, main page]

CN105529326B - Memory element and its manufacturing method - Google Patents

Memory element and its manufacturing method Download PDF

Info

Publication number
CN105529326B
CN105529326B CN201410522703.0A CN201410522703A CN105529326B CN 105529326 B CN105529326 B CN 105529326B CN 201410522703 A CN201410522703 A CN 201410522703A CN 105529326 B CN105529326 B CN 105529326B
Authority
CN
China
Prior art keywords
support layer
cup
layer
shaped
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410522703.0A
Other languages
Chinese (zh)
Other versions
CN105529326A (en
Inventor
林志豪
张嘉凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Winbond Electronics Corp
Original Assignee
Winbond Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Winbond Electronics Corp filed Critical Winbond Electronics Corp
Priority to CN201410522703.0A priority Critical patent/CN105529326B/en
Publication of CN105529326A publication Critical patent/CN105529326A/en
Application granted granted Critical
Publication of CN105529326B publication Critical patent/CN105529326B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Semiconductor Memories (AREA)

Abstract

本发明提供一种存储元件及其制造方法,存储元件包括多数个杯状电容器、底支撑层以及顶支撑层。杯状电容器位于衬底上。底支撑层配置于杯状电容器的多数个下侧壁之间的衬底上。顶支撑层配置于杯状电容器的多数个上侧壁周围。顶支撑层与底支撑层彼此之间具有空隙。顶支撑层包括周边支撑层与核心支撑层。周边支撑层配置在杯状电容器外围并与杯状电容器连接。核心支撑层配置在周边支撑层内。而且核心支撑层与周边支撑层相隔一间隙,其连接任意相邻的两个杯状电容器。

The present invention provides a storage element and a manufacturing method thereof, wherein the storage element comprises a plurality of cup-shaped capacitors, a bottom support layer and a top support layer. The cup-shaped capacitor is located on a substrate. The bottom support layer is arranged on the substrate between the plurality of lower side walls of the cup-shaped capacitor. The top support layer is arranged around the plurality of upper side walls of the cup-shaped capacitor. There is a gap between the top support layer and the bottom support layer. The top support layer comprises a peripheral support layer and a core support layer. The peripheral support layer is arranged outside the cup-shaped capacitor and connected to the cup-shaped capacitor. The core support layer is arranged inside the peripheral support layer. Moreover, the core support layer and the peripheral support layer are separated by a gap, which connects any two adjacent cup-shaped capacitors.

Description

存储元件及其制造方法Memory element and its manufacturing method

技术领域technical field

本发明是有关于一种存储元件及其制造方法。The present invention relates to a memory element and its manufacturing method.

背景技术Background technique

随着半导体技术的微小化,传统的电容器工艺已经不敷使用,研究人员开发具有高介电常数的介电材料以及增加电容器的表面积,以增加电容器的电容值。一般而言,增加表面积最常采用的方式就是增加电容高度或大小。然而,上述方式容易导致电容器本身的机械强度不足的问题以及邻近的电容器短路(Short)的问题。当电容器的机械强度不足时,则容易发现电容结构变形甚至倾倒的现象;而当邻近的电容器发生短路现象,则降低产品的可靠度(Reliability)。有鉴于此,如何避免邻近的电容器短路且同时具有强化结构的电容器,已得到业界的高度注意。With the miniaturization of semiconductor technology, the traditional capacitor technology is no longer sufficient. Researchers develop dielectric materials with high dielectric constants and increase the surface area of capacitors to increase the capacitance of capacitors. In general, the most common way to increase surface area is to increase capacitor height or size. However, the above method easily leads to the problem of insufficient mechanical strength of the capacitor itself and the problem of short circuit (Short) of adjacent capacitors. When the mechanical strength of the capacitor is insufficient, it is easy to find that the capacitor structure is deformed or even collapsed; and when the adjacent capacitor is short-circuited, the reliability of the product will be reduced. In view of this, how to prevent adjacent capacitors from short-circuiting while having a reinforced structure has drawn great attention from the industry.

发明内容Contents of the invention

本发明提供一种存储元件及其制造方法,其可避免邻近电容器短路的问题。The present invention provides a memory element and its manufacturing method, which can avoid the problem of short circuit of adjacent capacitors.

本发明提供一种存储元件及其制造方法,其可增加电容器的机械强度。The present invention provides a storage element and a manufacturing method thereof, which can increase the mechanical strength of a capacitor.

本发明提供一种存储元件,其包括多数个杯状电容器、底支撑层以及顶支撑层。杯状电容器位于衬底上。底支撑层配置于杯状电容器的多数个下侧壁之间的衬底上。顶支撑层配置于杯状电容器的多数个上侧壁周围。顶支撑层与底支撑层彼此之间具有空隙。顶支撑层包括周边支撑层与核心支撑层。周边支撑层配置在杯状电容器外围并与杯状电容器连接。核心支撑层配置在周边支撑层内。而且核心支撑层与周边支撑层相隔一间隙,其连接任意相邻的两个杯状电容器。The present invention provides a memory element, which includes a plurality of cup capacitors, a bottom support layer and a top support layer. Cup capacitors are on the substrate. The bottom support layer is disposed on the substrate between the plurality of lower sidewalls of the cup-shaped capacitor. The top supporting layer is configured around the plurality of upper sidewalls of the cup-shaped capacitor. The top support layer and the bottom support layer have gaps between each other. The top support layer includes a peripheral support layer and a core support layer. The peripheral supporting layer is arranged on the periphery of the cup capacitor and connected with the cup capacitor. The core support layer is configured in the peripheral support layer. Moreover, there is a gap between the core support layer and the peripheral support layer, which connects any two adjacent cup-shaped capacitors.

本发明提供一种存储元件的制造方法,其步骤如下。提供衬底。衬底上具有多数个导体区。在衬底上形成底支撑层。底支撑层裸露出导体区。在衬 底上形成多数个杯状下电极。杯状下电极与导体区电性连接。底支撑层位于杯状电容器的多数个下侧壁之间。在衬底上形成顶支撑层,其配置于杯状电容器的多数个上侧壁周围。顶支撑层与底支撑层彼此之间具有一空隙。顶支撑层包括周边支撑层与核心支撑层。周边支撑层位于杯状电容器外围并与杯状电容器连接。核心支撑层位于周边支撑层内,且与周边支撑层相隔一间隙。核心支撑层连接任意相邻的两个杯状电容器。The invention provides a method for manufacturing a memory element, the steps of which are as follows. Provide the substrate. The substrate has a plurality of conductor regions. A bottom support layer is formed on the substrate. The bottom supporting layer exposes the conductor area. A plurality of cup-shaped lower electrodes are formed on the substrate. The cup-shaped lower electrode is electrically connected with the conductor area. The bottom support layer is located between the plurality of lower sidewalls of the cup capacitor. A top support layer is formed on the substrate, which is disposed around the plurality of upper sidewalls of the cup capacitor. There is a gap between the top supporting layer and the bottom supporting layer. The top support layer includes a peripheral support layer and a core support layer. The peripheral support layer is located on the periphery of the cup-shaped capacitor and connected with the cup-shaped capacitor. The core support layer is located in the peripheral support layer and separated from the peripheral support layer by a gap. The core support layer connects any two adjacent cup capacitors.

基于上述,本发明实施例利用配置在任意相邻的两个杯状电容器之间的核心支撑层,以避免邻近的杯状电容器在蚀刻工艺时过度扩孔(Hole Expansion),而导致邻近的杯状电容器短路问题。此外,本发明实施例的核心支撑层可提供额外的机械强度,以避免本发明实施例的杯状电容器变形甚至倾倒的现象。Based on the above, the embodiment of the present invention utilizes a core support layer disposed between any two adjacent cup capacitors to avoid excessive hole expansion (Hole Expansion) of adjacent cup capacitors during the etching process, resulting in adjacent cup capacitors capacitor short circuit problem. In addition, the core supporting layer of the embodiment of the present invention can provide additional mechanical strength, so as to avoid deformation or even toppling of the cup capacitor of the embodiment of the present invention.

为让本发明的上述特征和优点能更明显易懂,下文特举实施例,并配合附图作详细说明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail with reference to the accompanying drawings.

附图说明Description of drawings

图1A至图1H为依照本发明的第一实施例所示出的存储元件的制造流程的俯视示意图;1A to 1H are schematic top views of the manufacturing process of a storage element according to a first embodiment of the present invention;

图2A至图2H分别为沿图1A至图1H的A-A线的剖面示意图;2A to 2H are schematic cross-sectional views along the line A-A of FIGS. 1A to 1H ;

图3A至图3H分别为沿图1A至图1H的B-B线的剖面示意图;3A to 3H are schematic cross-sectional views along the line B-B of FIGS. 1A to 1H ;

图4A至图4F为依照本发明的第二实施例所示出的存储元件的制造流程的俯视示意图;4A to 4F are schematic top views of the manufacturing process of the storage element according to the second embodiment of the present invention;

图5A至图5F分别为沿图4A至图4F的A-A线的剖面示意图;5A to 5F are schematic cross-sectional views along the line A-A of FIGS. 4A to 4F, respectively;

图6A至图6F分别为沿图4A至图4F的B-B线的剖面示意图。FIGS. 6A to 6F are schematic cross-sectional views along line B-B of FIGS. 4A to 4F .

附图标记说明:Explanation of reference signs:

10、40、50:沟槽;10, 40, 50: Groove;

20、60:开口;20, 60: opening;

30、70、80:间隙;30, 70, 80: clearance;

32、72:空隙;32, 72: void;

100、200:衬底;100, 200: substrate;

102、126、202、226:介电层;102, 126, 202, 226: dielectric layer;

104、204:导体区;104, 204: conductor area;

106、106a、110、110a、110b、111、118、118a、206、206a、210、210a、210b、211、218a、218b:支撑层;106, 106a, 110, 110a, 110b, 111, 118, 118a, 206, 206a, 210, 210a, 210b, 211, 218a, 218b: support layer;

108、108a、208、208a:绝缘层;108, 108a, 208, 208a: insulation layer;

112、120、120a、212、220、220a:掩膜层;112, 120, 120a, 212, 220, 220a: mask layer;

114、122、222:光刻胶层;114, 122, 222: photoresist layer;

116、218:材料层;116, 218: material layer;

116a、116b、216a、216b:间隙壁;116a, 116b, 216a, 216b: spacers;

123、223:凹槽;123, 223: groove;

124、128、224、228:电极;124, 128, 224, 228: electrodes;

130、230:电容器;130, 230: capacitors;

219:填充层。219: Padding layer.

具体实施方式Detailed ways

图1A至图1H为依照本发明的第一实施例所示出的存储元件的制造流程的俯视示意图。图2A至图2H分别为沿图1A至图1H的A-A线的剖面示意图。图3A至图3H分别为沿图1A至图1H的B-B线的剖面示意图。1A to 1H are schematic top views of a manufacturing process of a storage device according to a first embodiment of the present invention. 2A to 2H are schematic cross-sectional views along line A-A of FIGS. 1A to 1H . 3A to 3H are schematic cross-sectional views along line B-B in FIGS. 1A to 1H .

请同时参照图1A、图2A以及图3A,首先,提供衬底100。衬底100例如为半导体衬底、半导体化合物衬底或是绝缘层上有半导体衬底(Semiconductor Over Insulator,简称SOI)。半导体例如是IVA族的原子,例如硅或锗。半导体化合物例如是IVA族的原子所形成的半导体化合物,例如是碳化硅或是硅化锗,或是IIIA族原子与VA族原子所形成的半导体化合物,例如是砷化镓。Please refer to FIG. 1A , FIG. 2A and FIG. 3A at the same time. First, a substrate 100 is provided. The substrate 100 is, for example, a semiconductor substrate, a semiconductor compound substrate, or a semiconductor over insulator substrate (Semiconductor Over Insulator, SOI for short). Semiconductors are, for example, atoms of group IVA, such as silicon or germanium. The semiconductor compound is, for example, a semiconductor compound formed of atoms of group IVA, such as silicon carbide or germanium silicide, or a semiconductor compound formed of atoms of group IIIA and group VA, such as gallium arsenide.

然后,在衬底100上依序形成介电层102与多数个导体区104。介电层102的材料可例如是氧化硅、氮氧化硅或低介电常数材料,其形成方法可以利用化学气相沉积法来形成。导体区104配置于介电层102中。在一实施例中,导体区104成一阵列排列。导体区104材料可例如是掺杂多晶硅、非掺杂多晶硅或其组合,其形成方法可以利用化学气相沉积法来形成。在一实施例中,导体区104可例如是与衬底100中的埋入式字线电性连接。Then, a dielectric layer 102 and a plurality of conductor regions 104 are sequentially formed on the substrate 100 . The material of the dielectric layer 102 can be, for example, silicon oxide, silicon oxynitride or a low dielectric constant material, and its formation method can be formed by chemical vapor deposition. The conductor region 104 is disposed in the dielectric layer 102 . In one embodiment, the conductive regions 104 are arranged in an array. The material of the conductor region 104 can be, for example, doped polysilicon, non-doped polysilicon or a combination thereof, and its formation method can be formed by chemical vapor deposition. In one embodiment, the conductive region 104 may be electrically connected to a buried word line in the substrate 100 , for example.

接着,在衬底100上依序形成底支撑层106、绝缘层108以及周边支撑 层110。底支撑层106与周边支撑层110可分别例如是氮化硅(SiN)、氮氧化硅(SiON)、碳氮氧化硅(SiCON)、碳化硅(SiC)或其组合,其形成方法可以利用化学气相沉积法。底支撑层106的厚度例如是50埃至1500埃;周边支撑层110的厚度例如是50埃至2500埃。Next, a bottom support layer 106 , an insulating layer 108 and a peripheral support layer 110 are sequentially formed on the substrate 100 . The bottom support layer 106 and the peripheral support layer 110 can be, for example, silicon nitride (SiN), silicon oxynitride (SiON), silicon oxycarbonitride (SiCON), silicon carbide (SiC) or a combination thereof, and the formation method can use chemical vapor deposition method. The thickness of the bottom support layer 106 is, for example, 50 angstroms to 1500 angstroms; the thickness of the peripheral support layer 110 is, for example, 50 angstroms to 2500 angstroms.

绝缘层108的材料可例如氧化硅或硼磷硅玻璃(BPSG),其形成方法可以利用化学气相沉积法。绝缘层108的的厚度例如是5000埃至30000埃。The material of the insulating layer 108 can be, for example, silicon oxide or borophosphosilicate glass (BPSG), and its formation method can be chemical vapor deposition. The thickness of the insulating layer 108 is, for example, 5000 angstroms to 30000 angstroms.

请同时继续参照图1A、图2A以及图3A,接着,在周边支撑层110上依序形成掩膜层112与图案化的光刻胶层114。在一实施例中,掩膜层112可例如是由硬掩膜层、底抗反射层所构成的复合层,然本发明并不限于此。硬掩膜层的材料可例如是硅材料、金属材料或碳材料等。底抗反射层的材料可例如是有机聚合物、碳或氮氧化硅等。上述硬掩膜层与底抗反射层的形成方法可以利用化学气相沉积法来形成。图案化的光刻胶层114的材料例如是碳、光刻胶类材料或氮氧化物等。Please continue to refer to FIG. 1A , FIG. 2A and FIG. 3A at the same time. Next, a mask layer 112 and a patterned photoresist layer 114 are sequentially formed on the peripheral support layer 110 . In one embodiment, the mask layer 112 may be, for example, a composite layer composed of a hard mask layer and a bottom anti-reflection layer, but the invention is not limited thereto. The material of the hard mask layer can be, for example, silicon material, metal material or carbon material. The material of the bottom anti-reflection layer can be, for example, organic polymer, carbon or silicon oxynitride. The method for forming the hard mask layer and the bottom anti-reflection layer can be formed by chemical vapor deposition. The material of the patterned photoresist layer 114 is, for example, carbon, photoresist-like material, or oxynitride.

请同时参照图1A、图1B、图2A、图2B、图3A以及图3B,以图案化的光刻胶层114为掩膜,进行蚀刻工艺,以形成周边支撑层110a。周边支撑层110a中具有沟槽10,暴露绝缘层108的表面。沟槽10的位置与多数个导体区104的位置部分重叠。沟槽10的形状包括方形、矩形、跑道形或星形。接着,移除周边支撑层110a上剩余的图案化的光刻胶层114和/或掩膜层112。Please refer to FIG. 1A , FIG. 1B , FIG. 2A , FIG. 2B , FIG. 3A and FIG. 3B at the same time, using the patterned photoresist layer 114 as a mask, an etching process is performed to form the peripheral supporting layer 110 a. The peripheral support layer 110 a has a groove 10 therein, exposing the surface of the insulating layer 108 . The location of the trench 10 partially overlaps with the location of the plurality of conductor regions 104 . The shape of the trench 10 includes square, rectangular, racetrack or star. Next, the remaining patterned photoresist layer 114 and/or mask layer 112 on the peripheral support layer 110a is removed.

请同时参照图1B、图2B、图3B,在沟槽10上形成间隙壁材料层116。间隙壁材料层116覆盖周边支撑层110a的顶面以及沟槽10的侧壁与底部上(如图2D与图3D所示)。在一实施例中,间隙壁材料层116可共形地覆盖周边支撑层110a的顶面以及沟槽10的侧壁与底部上。间隙壁材料层116的材料例如是氧化硅(SiO)、氮氧化硅(SiON)或硼磷硅玻璃(BPSG)等。其形成方法例如是化学气相沉积法。间隙壁材料层116的材料不以上述为限,只要与周边支撑层110a之间具有高度的蚀刻选择比均是本发明涵盖的范围。Referring to FIG. 1B , FIG. 2B , and FIG. 3B simultaneously, a spacer material layer 116 is formed on the trench 10 . The spacer material layer 116 covers the top surface of the peripheral support layer 110 a and the sidewalls and bottom of the trench 10 (as shown in FIGS. 2D and 3D ). In one embodiment, the spacer material layer 116 may conformally cover the top surface of the peripheral support layer 110 a and the sidewalls and bottom of the trench 10 . The material of the spacer material layer 116 is, for example, silicon oxide (SiO), silicon oxynitride (SiON) or borophosphosilicate glass (BPSG) and the like. Its formation method is, for example, chemical vapor deposition. The material of the spacer material layer 116 is not limited to the above, as long as it has a high etching selectivity ratio with the peripheral support layer 110a, it is within the scope of the present invention.

接着,请同时参照图1C、图2C、图3C,对间隙壁材料层116进行非等向性蚀刻工艺,以在沟槽10的侧壁上形成间隙壁116a。之后,间隙壁116a所围区域内形成核心支撑层118。具体来说,在沟槽10的侧壁上形成间隙壁116a之后,在周边支撑层110a上形成支撑材料层,以覆盖周边支撑层110a的顶面、间隙壁116a的侧壁以及沟槽10的底部上(未示出)。接着,对支 撑材料层进行回蚀刻工艺,移除部分支撑材料层,暴露周边支撑层110a的顶面,以在沟槽10中形成核心支撑层118(如图2F与图3F所示)。在一实施例中,核心支撑层118可例如是块状。核心支撑层118的形状包括方形、矩形、跑道形或星形。核心支撑层118可例如是氮化硅(SiN)、氮氧化硅(SiON)、碳氮氧化硅(SiCON)、碳化硅(SiC)或其组合,其形成方法可以利用化学气相沉积法来形成。在一实施例中,回蚀刻工艺可例如是干式蚀刻工艺或湿式蚀刻工艺。Next, referring to FIG. 1C , FIG. 2C , and FIG. 3C , an anisotropic etching process is performed on the spacer material layer 116 to form a spacer 116 a on the sidewall of the trench 10 . Afterwards, the core support layer 118 is formed in the area surrounded by the spacer wall 116a. Specifically, after the spacers 116a are formed on the sidewalls of the trench 10, a support material layer is formed on the peripheral support layer 110a to cover the top surface of the peripheral support layer 110a, the sidewalls of the spacers 116a and the sides of the trench 10. on the bottom (not shown). Next, an etch-back process is performed on the support material layer to remove part of the support material layer and expose the top surface of the peripheral support layer 110a to form a core support layer 118 in the trench 10 (as shown in FIG. 2F and FIG. 3F ). In one embodiment, the core support layer 118 may be, for example, block-shaped. Shapes of the core support layer 118 include square, rectangular, racetrack, or star. The core support layer 118 can be, for example, silicon nitride (SiN), silicon oxynitride (SiON), silicon oxycarbonitride (SiCON), silicon carbide (SiC) or a combination thereof, which can be formed by chemical vapor deposition. In an embodiment, the etch back process may be, for example, a dry etch process or a wet etch process.

请同时参照图1D、图2D以及图3D,在衬底100上依序形成掩膜层120与图案化的光刻胶层122。在一实施例中,掩膜层120可例如是由硬掩膜层、底抗反射层所构成的复合层,本发明并不限于此。硬掩膜层的材料可例如是硅材料、金属材料或碳材料等。硅材料可例如是未掺杂多晶硅或氮氧化硅(SiON)等。底抗反射层的材料可例如是有机聚合物、碳或氮氧化硅等。上述硬掩膜层与底抗反射层的形成方法可以利用化学气相沉积法来形成。图案化的光刻胶层122的材料可例如是碳、光刻胶类材料或氮氧化物等。图案化的光刻胶层122具有多数个凹槽123。凹槽123的位置与下方的导体区104的位置相对应。Referring to FIG. 1D , FIG. 2D and FIG. 3D simultaneously, a mask layer 120 and a patterned photoresist layer 122 are sequentially formed on the substrate 100 . In an embodiment, the mask layer 120 may be, for example, a composite layer composed of a hard mask layer and a bottom anti-reflection layer, and the invention is not limited thereto. The material of the hard mask layer can be, for example, silicon material, metal material or carbon material. The silicon material can be, for example, undoped polysilicon or silicon oxynitride (SiON). The material of the bottom anti-reflection layer can be, for example, organic polymer, carbon or silicon oxynitride. The method for forming the hard mask layer and the bottom anti-reflection layer can be formed by chemical vapor deposition. The material of the patterned photoresist layer 122 can be, for example, carbon, photoresist-like material, or oxynitride. The patterned photoresist layer 122 has a plurality of grooves 123 . The position of the groove 123 corresponds to the position of the conductor region 104 below.

请同时参照图1E、图1F、图2E、图2F、图3E以及图3F,以图案化的光刻胶层122为掩膜,进行蚀刻工艺,移除部分掩膜层120,以形成图案化的掩膜层120a。然后,以图案化的掩膜层120a为掩膜,进行蚀刻工艺,移除部分周边支撑层110a、核心支撑层118、绝缘层108以及底支撑层106,以形成周边支撑层110b、核心支撑层118a、绝缘层108a以及底支撑层106a,并形成多数个开口20,暴露多数个导体区104。在进行蚀刻工艺时,图案化的光刻胶层122亦同时被移除。此外,由于每一开口20周围的材料大致相同(大部分为周边支撑层110b),因此,在进行蚀刻工艺时,其可降低因为蚀刻材料的不同造成蚀刻速率的差异,而导致邻近开口20连通的情况。如此一来,便可避免由于邻近开口20的连通所导致后续的电容短路问题。Please refer to FIG. 1E, FIG. 1F, FIG. 2E, FIG. 2F, FIG. 3E and FIG. 3F at the same time, use the patterned photoresist layer 122 as a mask, perform an etching process, and remove part of the mask layer 120 to form a patterned mask layer 120a. Then, using the patterned mask layer 120a as a mask, an etching process is performed to remove part of the peripheral support layer 110a, the core support layer 118, the insulating layer 108 and the bottom support layer 106 to form the peripheral support layer 110b and the core support layer. 118a, the insulating layer 108a and the bottom support layer 106a, and form a plurality of openings 20, exposing a plurality of conductor regions 104. During the etching process, the patterned photoresist layer 122 is also removed simultaneously. In addition, since the material around each opening 20 is approximately the same (mostly the surrounding support layer 110b), when performing the etching process, it can reduce the difference in the etching rate caused by the difference in the etching material, resulting in the communication between adjacent openings 20. Case. In this way, subsequent capacitive short circuit problems caused by the connection of adjacent openings 20 can be avoided.

请同时参照图1F、图2F以及图3F,在每一开口20的内侧与底部上形成下电极124。具体来说,先在衬底100上共形地形成下电极材料层(未示出)。下电极材料层覆盖每一开口20的内侧与底部以及掩膜层120a的顶面。接着,进行非等向性蚀刻工艺,移除部分下电极材料层,暴露出掩膜层120a的顶面, 以于每一开口20的内侧与底部上形成下电极124。每一开口20中的下电极124与所对应的导体区104电性连接。下电极124的材料可例如是氮化钛(TiN)、氮化钽(TaN)、钨(W)、钛钨(TiW)、铝(Al)、铜(Cu)或金属硅化物,其可利用化学气相沉积法来形成。Referring to FIG. 1F , FIG. 2F and FIG. 3F at the same time, a lower electrode 124 is formed on the inner side and bottom of each opening 20 . Specifically, a lower electrode material layer (not shown) is conformally formed on the substrate 100 first. The bottom electrode material layer covers the inside and bottom of each opening 20 and the top surface of the mask layer 120a. Next, an anisotropic etching process is performed to remove part of the material layer of the lower electrode, exposing the top surface of the mask layer 120 a to form the lower electrode 124 on the inner side and the bottom of each opening 20 . The lower electrode 124 in each opening 20 is electrically connected to the corresponding conductor region 104 . The material of the lower electrode 124 can be, for example, titanium nitride (TiN), tantalum nitride (TaN), tungsten (W), titanium tungsten (TiW), aluminum (Al), copper (Cu) or metal silicide, which can be used formed by chemical vapor deposition.

请同时参照图1F、图1G、图2F、图2G、图3F以及图3G,进行等向性蚀刻工艺,移除图案化的掩膜层120a、间隙壁116b与绝缘层108a,在核心支撑层118a与周边支撑层110b之间形成间隙30。由于周边支撑层110b、核心支撑层118a与间隙壁116b、绝缘层108a的材料不同,且等向性蚀刻工艺对周边支撑层110b、核心支撑层118a与间隙壁116b、绝缘层108a具有高蚀刻选择比,因此,周边支撑层110b与核心支撑层118a的蚀刻速率较慢。于是,蚀刻液从间隙30中流入,移除绝缘层108a,以在底支撑层106a与周边支撑层110b以及核心支撑层118a之间形成空隙(Gap)32,暴露出部分下电极124的外侧。亦即暴露出开口20中的下电极124的外侧。此时,在完全移除绝缘层108a之后,形成一个中间镂空的结构。底支撑层106a、周边支撑层110b、核心支撑层118a以及下电极124支托本发明第一实施例的存储元件的架构。由于周边支撑层110b上的图案化的掩膜层120a亦被移除,因此,下电极124的顶面高于周边支撑层110b与核心支撑层118a的顶面,藉此以增加后续工艺中所形成的杯状电容器130的电荷存储能力(如下图2H与图3H所示)。在一实施例中,上述等向性蚀刻工艺包括湿式蚀刻工艺,其可例如是使用蚀刻缓冲液(Buffer Oxide Etchant,简称BOE)、氢氟酸(HF)、稀释的氢氟酸(Diluted Hydrogen Fluoride,简称DHF)或缓冲氢氟酸(BHF)等。Please refer to FIG. 1F, FIG. 1G, FIG. 2F, FIG. 2G, FIG. 3F, and FIG. 3G at the same time, and perform an isotropic etching process to remove the patterned mask layer 120a, spacer 116b and insulating layer 108a. A gap 30 is formed between 118a and the peripheral support layer 110b. Since the materials of the peripheral support layer 110b, the core support layer 118a, the spacer 116b, and the insulating layer 108a are different, and the isotropic etching process has a high etching selectivity for the peripheral support layer 110b, the core support layer 118a, the spacer 116b, and the insulating layer 108a Therefore, the etching rates of the peripheral support layer 110b and the core support layer 118a are slower. Then, etchant flows in from the gap 30 to remove the insulating layer 108a to form a gap (Gap) 32 between the bottom support layer 106a and the peripheral support layer 110b and the core support layer 118a, exposing part of the outer side of the bottom electrode 124 . That is, the outer side of the lower electrode 124 in the opening 20 is exposed. At this time, after the insulating layer 108a is completely removed, a hollow structure is formed. The bottom support layer 106 a , the peripheral support layer 110 b , the core support layer 118 a and the bottom electrode 124 support the structure of the storage device according to the first embodiment of the present invention. Since the patterned mask layer 120a on the peripheral support layer 110b is also removed, the top surface of the lower electrode 124 is higher than the top surfaces of the peripheral support layer 110b and the core support layer 118a, thereby increasing the subsequent process. The charge storage capacity of the formed cup capacitor 130 (shown in FIG. 2H and FIG. 3H below). In one embodiment, the above-mentioned isotropic etching process includes a wet etching process, which may for example use an etching buffer (Buffer Oxide Etchant, BOE for short), hydrofluoric acid (HF), diluted hydrofluoric acid (Diluted Hydrogen Fluoride , referred to as DHF) or buffered hydrofluoric acid (BHF) and so on.

如图1G所示,周边支撑层110b包围在核心支撑层118a周围,且周边支撑层110b与核心支撑层118a之间具有间隙30。周边支撑层110b与核心支撑层118a构成顶支撑层111,顶支撑层111配置在下电极124的多数个上侧壁周围。由于任意相邻两个开口20之间具有核心支撑层118a,且核心支撑层118a与间隙壁116b的材料具有高蚀刻选择比,因此,其可避免在上述等向性蚀刻工艺中开口20产生过度扩孔的情况。此外,核心支撑层118a还提供额外的机械强度,以支托本发明第一实施例的存储元件的架构。As shown in FIG. 1G , the peripheral support layer 110b surrounds the core support layer 118a, and there is a gap 30 between the peripheral support layer 110b and the core support layer 118a. The peripheral support layer 110 b and the core support layer 118 a form a top support layer 111 , and the top support layer 111 is disposed around a plurality of upper sidewalls of the lower electrode 124 . Since there is a core support layer 118a between any two adjacent openings 20, and the material of the core support layer 118a and the spacer 116b has a high etching selectivity ratio, it can avoid excessive formation of the opening 20 in the above-mentioned isotropic etching process. The case of reaming. In addition, the core support layer 118a also provides additional mechanical strength to support the structure of the memory device of the first embodiment of the present invention.

请同时参照图1H、图2H以及图3H,在下电极124上共形地形成介电层 126与上电极128,以形成多数个杯状电容器130。上电极128还覆盖底支撑层106a、周边支撑层110b以及核心支撑层118a。介电层126介于上电极128与下电极124之间,且介于上电极128与底支撑层106a之间、上电极128与周边支撑层110b之间、以及上电极128与核心支撑层118a之间。在一实施例中,介电层126包括高介电常数材料层,其材料可例如是氧化铪(HfO)、氧化锆(ZrO)、氧化铝(AlO)、氮化铝(AlN)、氧化钛(TiO)、氧化镧(LaO)、氧化钇(YO)、氧化钆(GdO)、氧化钽(TaO)或其组合。上电极126的材料可例如是氮化钛(TiN)、氮化钽(TaN)、钨(W)、钛钨(TiW)、铝(Al)、铜(Cu)或金属硅化物。介电层126及上电极128的形成方法可利用化学气相沉积法或原子层沉积(ALD)工艺来形成。Referring to FIG. 1H , FIG. 2H and FIG. 3H simultaneously, the dielectric layer 126 and the upper electrode 128 are conformally formed on the lower electrode 124 to form a plurality of cup capacitors 130 . The upper electrode 128 also covers the bottom support layer 106a, the peripheral support layer 110b, and the core support layer 118a. The dielectric layer 126 is interposed between the upper electrode 128 and the lower electrode 124, and between the upper electrode 128 and the bottom support layer 106a, between the upper electrode 128 and the peripheral support layer 110b, and between the upper electrode 128 and the core support layer 118a between. In one embodiment, the dielectric layer 126 includes a high dielectric constant material layer, such as hafnium oxide (HfO), zirconium oxide (ZrO), aluminum oxide (AlO), aluminum nitride (AlN), titanium oxide (TiO), lanthanum oxide (LaO), yttrium oxide (YO), gadolinium oxide (GdO), tantalum oxide (TaO), or combinations thereof. The material of the upper electrode 126 can be, for example, titanium nitride (TiN), tantalum nitride (TaN), tungsten (W), titanium tungsten (TiW), aluminum (Al), copper (Cu) or metal silicide. The dielectric layer 126 and the top electrode 128 can be formed by chemical vapor deposition or atomic layer deposition (ALD) process.

请同时参照图1H以及3H,本发明第一实施例的存储元件包括多数个杯状电容器130、底支撑层106a以及顶支撑层111。杯状电容器130位于衬底100上。底支撑层106a配置于杯状电容器130的多数个下侧壁之间的衬底100上。顶支撑层111配置于杯状电容器130的多数个上侧壁周围。更具体地说,顶支撑层111包括周边支撑层110b与核心支撑层118a。周边支撑层110b配置在杯状电容器130外围并与杯状电容器130连接。核心支撑层118a配置在周边支撑层110b之内。周边支撑层110b、核心支撑层118a与底支撑层106a彼此之间具有空隙32。核心支撑层118a与周边支撑层110b之间具有间隙30,其连接任意相邻的两个杯状电容器130。在一实施例中,周边支撑层110b、核心支撑层118a与底支撑层106a之间的空隙32为充填空气。由于充填空气的介电系数趋近于1,因此,较不容易在相邻的杯状电容器130之间产生寄生电容(Parasitic Capacitor)。Please refer to FIGS. 1H and 3H at the same time. The storage device according to the first embodiment of the present invention includes a plurality of cup capacitors 130 , a bottom support layer 106 a and a top support layer 111 . Cup capacitor 130 is located on substrate 100 . The bottom support layer 106 a is disposed on the substrate 100 between the plurality of lower sidewalls of the cup capacitor 130 . The top supporting layer 111 is disposed around a plurality of upper sidewalls of the cup capacitor 130 . More specifically, the top support layer 111 includes a peripheral support layer 110b and a core support layer 118a. The peripheral supporting layer 110 b is disposed on the periphery of the cup capacitor 130 and connected to the cup capacitor 130 . The core support layer 118a is disposed within the peripheral support layer 110b. The peripheral support layer 110b, the core support layer 118a and the bottom support layer 106a have gaps 32 between them. There is a gap 30 between the core support layer 118 a and the peripheral support layer 110 b, which connects any two adjacent cup capacitors 130 . In one embodiment, the gap 32 between the peripheral support layer 110b, the core support layer 118a and the bottom support layer 106a is filled with air. Since the dielectric coefficient of the air filling is close to 1, it is less likely to generate parasitic capacitance (Parasitic Capacitor) between adjacent cup capacitors 130 .

杯状电容器130包括多数个下电极124、上电极128以及介电层126。下电极124位于衬底100上,其中下电极124可例如是杯状下电极。下电极124的多数个下侧壁与底支撑层106a连接。下电极124的多数个上侧壁与顶支撑层111连接。上电极128覆盖下电极126的表面,亦即覆盖下电极126的内侧、底部及外侧。介电层126至少配置在上电极128与下电极124之间。此外,上电极128还覆盖底支撑层106a与顶支撑层111。介电层126还介于上电极128与底支撑层106a之间以及上电极128与顶支撑层111之间。在一实施例中,杯状电容器130的顶面高于周边支撑层110b与核心支撑层118a的 顶面,其可增加杯状电容器130的电荷存储能力。在一实施例中,本发明第一实施例的存储元件还包括多数个导体区104配置在衬底100上。每一导体区104与所对应的杯状电容器130的底部电性连接。The cup capacitor 130 includes a plurality of lower electrodes 124 , upper electrodes 128 and a dielectric layer 126 . The lower electrode 124 is located on the substrate 100 , wherein the lower electrode 124 may be, for example, a cup-shaped lower electrode. A plurality of lower sidewalls of the lower electrode 124 are connected to the bottom support layer 106a. A plurality of upper sidewalls of the lower electrode 124 are connected to the top supporting layer 111 . The upper electrode 128 covers the surface of the lower electrode 126 , that is, covers the inner side, the bottom and the outer side of the lower electrode 126 . The dielectric layer 126 is at least disposed between the upper electrode 128 and the lower electrode 124 . In addition, the upper electrode 128 also covers the bottom support layer 106 a and the top support layer 111 . The dielectric layer 126 is also interposed between the upper electrode 128 and the bottom support layer 106 a and between the upper electrode 128 and the top support layer 111 . In one embodiment, the top surface of the cup capacitor 130 is higher than the top surfaces of the peripheral support layer 110 b and the core support layer 118 a, which can increase the charge storage capacity of the cup capacitor 130 . In an embodiment, the storage device according to the first embodiment of the present invention further includes a plurality of conductor regions 104 disposed on the substrate 100 . Each conductive region 104 is electrically connected to the bottom of the corresponding cup capacitor 130 .

图4A至图4F为依照本发明的第二实施例所示出的存储元件的制造流程的俯视示意图。图5A至图5F分别为沿图4A至图4F的A-A线的剖面示意图。图6A至图6F分别为沿图4A至图4F的B-B线的剖面示意图。4A to 4F are schematic top views of the manufacturing process of the storage device according to the second embodiment of the present invention. 5A to 5F are schematic cross-sectional views along line A-A of FIGS. 4A to 4F . FIGS. 6A to 6F are schematic cross-sectional views along line B-B of FIGS. 4A to 4F .

请同时参照图4A、图5A以及图6A,依照第一实施例的方法在衬底200上依序形成介电层202、多数个导体区204。底支撑层206、绝缘层208以及具有沟槽40的周边支撑层210。并在沟槽40的侧壁上形成间隙壁216a。介电层202、多数个导体区204、底支撑层206、绝缘层208以及具有沟槽40的周边支撑层210以及间隙壁216a的材料与形成方法如上述第一实施例的介电层102、多数个导体区104、底支撑层106、绝缘层108、周边支撑层210以及间隙壁116a所述,于此不再赘述。Please refer to FIG. 4A , FIG. 5A and FIG. 6A at the same time. According to the method of the first embodiment, a dielectric layer 202 and a plurality of conductor regions 204 are sequentially formed on the substrate 200 . The bottom support layer 206 , the insulating layer 208 and the peripheral support layer 210 having the trench 40 . And a spacer wall 216 a is formed on the sidewall of the trench 40 . The materials and formation methods of the dielectric layer 202, the plurality of conductor regions 204, the bottom support layer 206, the insulating layer 208, the peripheral support layer 210 having the trench 40, and the spacers 216a are the same as those of the dielectric layer 102, The plurality of conductor regions 104 , the bottom support layer 106 , the insulating layer 108 , the peripheral support layer 210 and the spacers 116 a are described above, and will not be repeated here.

接着,在周边支撑层210a上共形地形成支撑材料层218,以覆盖周边支撑层210a的顶面、间隙壁216a的侧壁以及沟槽40的底部上。支撑材料层218可例如是氮化硅(SiN)、氮氧化硅(SiON)、碳氮氧化硅(SiCON)、碳化硅(SiC)或其组合,其形成方法可以利用化学气相沉积法来形成。Next, a support material layer 218 is conformally formed on the peripheral support layer 210 a to cover the top surface of the peripheral support layer 210 a , the sidewalls of the spacers 216 a and the bottom of the trench 40 . The supporting material layer 218 can be, for example, silicon nitride (SiN), silicon oxynitride (SiON), silicon oxycarbonitride (SiCON), silicon carbide (SiC) or a combination thereof, which can be formed by chemical vapor deposition.

之后,请参照图4B、图5B以及图6B,对支撑材料层218进行非等向性蚀刻工艺,移除部分支撑材料层218,以于间隙壁216a的侧壁上形成核心支撑层218a。核心支撑层218a围出沟槽50。在一实施例中,非等向性蚀刻工艺可例如是干式蚀刻工艺。干式蚀刻工艺可例如是反应性离子蚀刻工艺(RIE)。核心支撑层218a位于周边支撑层210a内。间隙壁216a配置在周边支撑层210a与核心支撑层218a之间。在一实施例中,核心支撑层218a可例如是环状。核心支撑层218a的形状包括方形、矩形、跑道形或星形。After that, referring to FIG. 4B , FIG. 5B and FIG. 6B , an anisotropic etching process is performed on the support material layer 218 to remove part of the support material layer 218 to form a core support layer 218 a on the sidewall of the spacer 216 a. The core support layer 218 a surrounds the trench 50 . In one embodiment, the anisotropic etching process may be, for example, a dry etching process. The dry etching process may be, for example, a reactive ion etching process (RIE). The core support layer 218a is located within the peripheral support layer 210a. The spacer 216a is disposed between the peripheral support layer 210a and the core support layer 218a. In one embodiment, the core support layer 218a may be ring-shaped, for example. Shapes of the core support layer 218a include square, rectangular, racetrack, or star.

请同时参照图4B、图5B以及图6B,在核心支撑层218a中形成填充层219。具体来说,先在核心支撑层218a上形成填充材料层,其覆盖周边支撑层210a、间隙壁216a以及核心支撑层218a的顶面且填入沟槽50中(未示出)。然后,利用平坦化工艺,移除部分填充材料层,暴露周边支撑层210a、间隙壁216a以及核心支撑层218a的顶面,以在沟槽50中形成填充层219。在一实施例中,平坦化工艺可例如是化学机械研磨工艺(CMP)或回蚀刻工艺。 填充材料层的材料可例如包括氧化硅,其形成方法可以利用化学气相沉积法来形成。Referring to FIG. 4B , FIG. 5B and FIG. 6B simultaneously, the filling layer 219 is formed in the core support layer 218 a. Specifically, a filling material layer is firstly formed on the core support layer 218a, which covers the peripheral support layer 210a, the spacers 216a and the top surfaces of the core support layer 218a and is filled into the groove 50 (not shown). Then, a part of the filling material layer is removed by a planarization process, exposing top surfaces of the peripheral support layer 210 a , the spacers 216 a and the core support layer 218 a to form the filling layer 219 in the trench 50 . In one embodiment, the planarization process may be, for example, a chemical mechanical polishing process (CMP) or an etch-back process. The material of the filling material layer may include, for example, silicon oxide, and its formation method may be formed by chemical vapor deposition.

请同时参照图4C、图5C以及图6C,其步骤如同图1D、图2D以及图3D所述,在周边支撑层210a上依序形成掩膜层220与图案化的光刻胶层222。掩膜层220覆盖周边支撑层210a、间隙壁216a以及核心支撑层218a的顶面。图案化的光刻胶层222具有多数个凹槽223。凹槽223的位置与下方的导体区204的位置相对应。掩膜层220与图案化的光刻胶层222的材料与形成方法如上述第一实施例的掩膜层120与图案化的光刻胶层122,在此不再赘述。Please refer to FIG. 4C, FIG. 5C and FIG. 6C at the same time. The steps are as described in FIG. 1D, FIG. 2D and FIG. The mask layer 220 covers the top surfaces of the peripheral support layer 210a, the spacers 216a, and the core support layer 218a. The patterned photoresist layer 222 has a plurality of grooves 223 . The position of the groove 223 corresponds to the position of the conductor region 204 below. The materials and formation methods of the mask layer 220 and the patterned photoresist layer 222 are the same as those of the mask layer 120 and the patterned photoresist layer 122 in the first embodiment above, and will not be repeated here.

请同时参照图4D、图5D以及图6D,其步骤如同图1F、图2F以及图3F所述,以图案化的光刻胶层222为掩膜,进行蚀刻工艺,移除部分掩膜层220,以形成图案化的掩膜层220a。然后,以图案化的掩膜层220a为掩膜,进行蚀刻工艺,移除部分周边支撑层210a、核心支撑层218a、绝缘层208以及底支撑层206,以形成周边支撑层210b、核心支撑层218b、绝缘层208a以及底支撑层206a,并形成多数个开口60,暴露多数个导体区204。在进行蚀刻工艺时,图案化的光刻胶层222亦同时被移除。开口60的形成方法如上述第一实施例的开口20,于此不再赘述。Please refer to FIG. 4D, FIG. 5D and FIG. 6D at the same time. The steps are as described in FIG. 1F, FIG. 2F and FIG. , to form a patterned mask layer 220a. Then, using the patterned mask layer 220a as a mask, an etching process is performed to remove part of the peripheral support layer 210a, the core support layer 218a, the insulating layer 208 and the bottom support layer 206 to form the peripheral support layer 210b and the core support layer. 218b, the insulating layer 208a and the bottom supporting layer 206a, and form a plurality of openings 60 to expose a plurality of conductor regions 204 . During the etching process, the patterned photoresist layer 222 is also removed simultaneously. The method for forming the opening 60 is the same as that of the opening 20 in the first embodiment above, and will not be repeated here.

之后,在每一开口60的内侧与底部上形成下电极224。下电极224的材料与形成方法如上述第一实施例的下电极124所述,在此不再赘述。Afterwards, the bottom electrode 224 is formed on the inner side and the bottom of each opening 60 . The material and forming method of the bottom electrode 224 are as described above for the bottom electrode 124 of the first embodiment, and will not be repeated here.

请同时参照图4E、图5E以及图6E,进行等向性蚀刻工艺,移除图案化的掩膜层220a、间隙壁216b、绝缘层208a,以暴露部分下电极224的外侧。在移除绝缘层208a与间隙壁216b的时候,亦移除填充层219及其下方的绝缘层208a,以于核心支撑层218b中形成间隙70。具体来说,进行等向性蚀刻工艺,移除间隙壁216b与填充层219之后,在核心支撑层218b与周边支撑层210b之间形成间隙80,且在核心支撑层218b中形成间隙70。由于周边支撑层210b、核心支撑层218b与间隙壁216b、绝缘层208a、填充层219的材料不同,且等向性蚀刻工艺对周边支撑层210b、核心支撑层218b与间隙壁216b、绝缘层208a、填充层219具有高蚀刻选择比,因此,周边支撑层110b与核心支撑层118b的蚀刻速率较慢。然后,蚀刻液从间隙70与间隙80中流入,移除绝缘层208a,以在底支撑层206a与周边支撑层210b以及核心支撑层218b之间形成空隙72,亦即暴露出开口60中的下电极224的外侧。此时, 在完全移除绝缘层208a之后,形成一个中间镂空的结构。其以底支撑层206a、周边支撑层210b、核心支撑层218b以及下电极224支托本发明第二实施例的存储元件的架构。在一实施例中,上述等向性蚀刻工艺包括湿式蚀刻工艺,其可例如是使用蚀刻缓冲液(Buffer Oxide Etchant,简称BOE)、氢氟酸(HF)、稀释的氢氟酸(Diluted Hydrogen Fluoride,简称DHF)或缓冲氢氟酸(BHF)等。Referring to FIG. 4E , FIG. 5E and FIG. 6E at the same time, an isotropic etching process is performed to remove the patterned mask layer 220 a , spacers 216 b , and insulating layer 208 a to expose part of the outer side of the lower electrode 224 . When the insulating layer 208a and the spacer 216b are removed, the filling layer 219 and the underlying insulating layer 208a are also removed to form the gap 70 in the core support layer 218b. Specifically, after an isotropic etching process is performed to remove the spacers 216b and the filling layer 219, a gap 80 is formed between the core support layer 218b and the peripheral support layer 210b, and a gap 70 is formed in the core support layer 218b. Since the materials of the peripheral support layer 210b, the core support layer 218b, the spacer 216b, the insulating layer 208a, and the filling layer 219 are different, and the isotropic etching process has a significant impact on the peripheral support layer 210b, the core support layer 218b, the spacer 216b, and the insulating layer 208a. 1. The filling layer 219 has a high etching selectivity ratio, therefore, the etching rates of the peripheral supporting layer 110b and the core supporting layer 118b are relatively slow. Then, etchant flows in from the gap 70 and the gap 80 to remove the insulating layer 208a to form a gap 72 between the bottom support layer 206a, the peripheral support layer 210b and the core support layer 218b, that is, expose the lower part of the opening 60. The outside of the electrode 224. At this time, after the insulating layer 208a is completely removed, a hollow structure is formed. It uses the bottom support layer 206 a , the peripheral support layer 210 b , the core support layer 218 b and the bottom electrode 224 to support the structure of the storage device according to the second embodiment of the present invention. In one embodiment, the above-mentioned isotropic etching process includes a wet etching process, which may for example use an etching buffer (Buffer Oxide Etchant, BOE for short), hydrofluoric acid (HF), diluted hydrofluoric acid (Diluted Hydrogen Fluoride , referred to as DHF) or buffered hydrofluoric acid (BHF) and so on.

如图4E所示,周边支撑层210b包围核心支撑层218b,且周边支撑层210b与核心支撑层218b之间具有间隙80。核心支撑层218b可例如是环状,其中具有间隙70。由于任意相邻两个开口60之间具有核心支撑层218b,且核心支撑层218b与间隙壁216b的材料具有高蚀刻选择比,因此,其可避免在上述等向性蚀刻工艺中开口60产生过度扩孔的情况。而且核心支撑层218b还提供额外的机械强度,以支托本发明第二实施例的存储元件的架构。此外,核心支撑层218b中具有间隙70。在进行上述等向性蚀刻工艺时,蚀刻液除了从间隙80流入之外,其亦可从间隙70流入,以加速绝缘层208a的移除,进而达到节省工艺时间的功效。As shown in FIG. 4E, the peripheral support layer 210b surrounds the core support layer 218b, and there is a gap 80 between the peripheral support layer 210b and the core support layer 218b. The core support layer 218b may, for example, be ring-shaped with a gap 70 therein. Since there is a core support layer 218b between any two adjacent openings 60, and the material of the core support layer 218b and the spacer wall 216b has a high etching selectivity ratio, it can avoid excessive formation of the opening 60 in the above-mentioned isotropic etching process. The case of reaming. Moreover, the core supporting layer 218b also provides additional mechanical strength to support the structure of the storage device in the second embodiment of the present invention. Additionally, the core support layer 218b has gaps 70 therein. When performing the above isotropic etching process, the etchant can also flow in from the gap 70 in addition to flowing in from the gap 80 to speed up the removal of the insulating layer 208 a, thereby achieving the effect of saving process time.

请同时参照图4F、图5F以及图6F,其步骤如同图1H、图2H以及图3H所述,在下电极224上共形地形成介电层226与上电极228,以形成多数个杯状电容器230。上电极228还覆盖底支撑层206a、周边支撑层210b以及核心支撑层218b。介电层226还介于上电极228与底支撑层206a之间以及上电极228与周边支撑层210b以及核心支撑层218b之间。介电层226与上电极228的材料与形成方法如上述第一实施例的介电层126与上电极128,在此不再赘述。Please refer to FIG. 4F, FIG. 5F and FIG. 6F at the same time. The steps are as described in FIG. 1H, FIG. 2H and FIG. 230. The upper electrode 228 also covers the bottom support layer 206a, the peripheral support layer 210b and the core support layer 218b. The dielectric layer 226 is also interposed between the upper electrode 228 and the bottom support layer 206a and between the upper electrode 228 and the peripheral support layer 210b and the core support layer 218b. The materials and formation methods of the dielectric layer 226 and the upper electrode 228 are the same as those of the dielectric layer 126 and the upper electrode 128 in the first embodiment above, and will not be repeated here.

综上所述,本发明实施例利用配置在任意相邻的两个杯状电容器之间的核心支撑层,以避免邻近的杯状电容器在进行等向性蚀刻工艺的过程中过度扩孔,而导致两个相邻的杯状电容器短路问题。而且,本发明实施例的周边支撑层与核心支撑层可提供额外的机械强度,以避免本发明实施例的杯状电容器变形甚至倾倒的现象,进而提升产品的可靠度。由于本发明实施例的周边支撑层、核心支撑层与底支撑层之间的空隙为充填空气(其介电系数趋近于1),因此,较不容易在相邻的杯状电容器之间产生寄生电容。此外,本发明另一实施例的核心支撑层中具有间隙,其可加速绝缘层的移除,以达到 节省工艺时间的功效。In summary, the embodiment of the present invention utilizes the core support layer disposed between any two adjacent cup capacitors to avoid excessive hole expansion of adjacent cup capacitors during the isotropic etching process, while Causes a short circuit problem between two adjacent cup capacitors. Moreover, the peripheral support layer and the core support layer of the embodiment of the present invention can provide additional mechanical strength, so as to prevent the cup capacitor of the embodiment of the present invention from being deformed or even toppled over, thereby improving the reliability of the product. Since the gaps between the peripheral support layer, the core support layer and the bottom support layer in the embodiment of the present invention are filled with air (its dielectric coefficient is close to 1), therefore, it is less likely to generate a gap between adjacent cup-shaped capacitors. parasitic capacitance. In addition, another embodiment of the present invention has gaps in the core support layer, which can speed up the removal of the insulating layer, so as to achieve the effect of saving process time.

最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。Finally, it should be noted that: the above embodiments are only used to illustrate the technical solutions of the present invention, rather than limiting them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: It is still possible to modify the technical solutions described in the foregoing embodiments, or perform equivalent replacements for some or all of the technical features; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the technical solutions of the various embodiments of the present invention. scope.

Claims (10)

1.一种存储元件,其特征在于,包括:1. A storage element, characterized in that, comprising: 多数个杯状电容器,位于衬底上;a plurality of cup capacitors on the substrate; 底支撑层,配置于所述杯状电容器的多数个下侧壁之间的所述衬底上;以及a bottom support layer disposed on the substrate between the plurality of lower sidewalls of the cup capacitor; and 顶支撑层,配置于所述杯状电容器的多数个上侧壁周围,与所述底支撑层彼此之间具有空隙,所述顶支撑层包括:The top support layer is arranged around the plurality of upper side walls of the cup-shaped capacitor, and there is a gap between the bottom support layer and the top support layer, and the top support layer includes: 周边支撑层,在所述杯状电容器外围并与所述杯状电容器连接;以及a peripheral support layer surrounding and connected to the capacitor cup; and 核心支撑层,在所述周边支撑层内,且与所述周边支撑层相隔一间隙,连接任意相邻的两个杯状电容器。The core support layer is in the peripheral support layer and separated from the peripheral support layer by a gap, and connects any two adjacent cup-shaped capacitors. 2.根据权利要求1所述的存储元件,其特征在于,所述杯状电容器包括:2. The memory element according to claim 1, wherein the cup capacitor comprises: 多数个杯状下电极,位于所述衬底上,所述杯状下电极的多数个下侧壁与所述底支撑层连接,所述杯状下电极的多数个上侧壁与所述顶支撑层连接;A plurality of cup-shaped lower electrodes are located on the substrate, the plurality of lower side walls of the cup-shaped lower electrodes are connected to the bottom support layer, and the plurality of upper side walls of the cup-shaped lower electrodes are connected to the top support layer connection; 上电极,覆盖所述杯状下电极的表面;以及an upper electrode covering the surface of the cup-shaped lower electrode; and 介电层,至少配置在所述上电极与所述杯状下电极之间。The dielectric layer is disposed at least between the upper electrode and the cup-shaped lower electrode. 3.根据权利要求2所述的存储元件,其特征在于,所述上电极还覆盖所述底支撑层以及所述顶支撑层,且所述介电层还介于所述上电极与所述底支撑层之间以及所述上电极与所述顶支撑层之间。3. The memory element according to claim 2, wherein the upper electrode also covers the bottom support layer and the top support layer, and the dielectric layer is also interposed between the upper electrode and the top support layer. Between the bottom support layer and between the upper electrode and the top support layer. 4.根据权利要求1所述的存储元件,其特征在于,所述核心支撑层为块状或环状。4 . The memory element according to claim 1 , wherein the core supporting layer is block-shaped or ring-shaped. 5.根据权利要求1所述的存储元件,其特征在于,所述核心支撑层的形状包括矩形、跑道形或星形。5. The storage element according to claim 1, wherein the shape of the core support layer comprises a rectangle, a racetrack or a star. 6.根据权利要求1所述的存储元件,其特征在于,所述底支撑层、所述顶支撑层的材料各自包括氮化硅、氮氧化硅、碳氮氧化硅、碳化硅或其组合。6 . The memory element according to claim 1 , wherein materials of the bottom support layer and the top support layer each comprise silicon nitride, silicon oxynitride, silicon oxycarbonitride, silicon carbide or a combination thereof. 7.根据权利要求1所述的存储元件,其特征在于,还包括多数个导体区配置在所述衬底上,其中每一导体区与所对应的所述杯状电容器的底部电性连接。7. The memory device according to claim 1, further comprising a plurality of conductor regions disposed on the substrate, wherein each conductor region is electrically connected to the bottom of the corresponding cup-shaped capacitor. 8.根据权利要求1所述的存储元件,其特征在于,所述顶支撑层与所述底支撑层之间的所述空隙为充填空气。8. The memory element according to claim 1, wherein the gap between the top support layer and the bottom support layer is filled with air. 9.一种存储元件的制造方法,其特征在于,包括:9. A method for manufacturing a memory element, comprising: 提供衬底,所述衬底上具有多数个导体区;providing a substrate having a plurality of conductor regions thereon; 在所述衬底上形成底支撑层,所述底支撑层裸露出所述导体区;forming a bottom support layer on the substrate, the bottom support layer exposing the conductor region; 在所述衬底上形成多数个杯状下电极,所述杯状下电极与所述导体区电性连接,其中所述底支撑层位于所述杯状电容器的多数个下侧壁之间;以及forming a plurality of cup-shaped lower electrodes on the substrate, the cup-shaped lower electrodes are electrically connected to the conductor region, wherein the bottom support layer is located between the plurality of lower sidewalls of the cup-shaped capacitor; as well as 在所述衬底上形成顶支撑层,配置于所述杯状电容器的多数个上侧壁周围,与所述底支撑层彼此之间具有空隙,所述顶支撑层包括:A top support layer is formed on the substrate, disposed around a plurality of upper sidewalls of the cup-shaped capacitor, and has a gap with the bottom support layer, and the top support layer includes: 周边支撑层,在所述杯状电容器外围并与所述杯状电容器连接;以及a peripheral support layer surrounding and connected to the capacitor cup; and 核心支撑层,在所述周边支撑层内,且与所述周边支撑层相隔一间隙,连接任意相邻的两个杯状电容器。The core support layer is in the peripheral support layer and separated from the peripheral support layer by a gap, and connects any two adjacent cup-shaped capacitors. 10.根据权利要求9所述的存储元件的制造方法,其特征在于,所述核心支撑层为块状或环状。10 . The method for manufacturing a memory element according to claim 9 , wherein the core support layer is block-shaped or ring-shaped. 11 .
CN201410522703.0A 2014-09-30 2014-09-30 Memory element and its manufacturing method Active CN105529326B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410522703.0A CN105529326B (en) 2014-09-30 2014-09-30 Memory element and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410522703.0A CN105529326B (en) 2014-09-30 2014-09-30 Memory element and its manufacturing method

Publications (2)

Publication Number Publication Date
CN105529326A CN105529326A (en) 2016-04-27
CN105529326B true CN105529326B (en) 2018-09-14

Family

ID=55771447

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410522703.0A Active CN105529326B (en) 2014-09-30 2014-09-30 Memory element and its manufacturing method

Country Status (1)

Country Link
CN (1) CN105529326B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230200049A1 (en) * 2021-12-20 2023-06-22 Nanya Technology Corporation Memory device having double sided capacitor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101803024A (en) * 2007-08-13 2010-08-11 美光科技公司 methods of forming a plurality of capacitors
CN102117776A (en) * 2010-01-05 2011-07-06 华邦电子股份有限公司 Stacked capacitor structure and capacitor manufacturing method of buried gate word line device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101803024A (en) * 2007-08-13 2010-08-11 美光科技公司 methods of forming a plurality of capacitors
CN102117776A (en) * 2010-01-05 2011-07-06 华邦电子股份有限公司 Stacked capacitor structure and capacitor manufacturing method of buried gate word line device

Also Published As

Publication number Publication date
CN105529326A (en) 2016-04-27

Similar Documents

Publication Publication Date Title
CN109994474B (en) Semiconductor device with a semiconductor layer having a plurality of semiconductor layers
US10910468B2 (en) Capacitor structure
CN108346661B (en) Semiconductor device
CN109509836B (en) Method for forming memory capacitor
TWI654767B (en) Capacitor structure and method of manufacturing the same
KR101895460B1 (en) Capacitor structures and methods of forming the same
US11647635B2 (en) Ferroelectric memory device and method of forming the same
US9276058B2 (en) Methods of manufacturing semiconductor devices
US12167607B2 (en) Ferroelectric memory device and method of forming the same
CN111354727A (en) Method of manufacturing semiconductor device
US10504904B2 (en) Semiconductor arrangement with capacitor and method of fabricating the same
US11342334B2 (en) Memory cell and method
CN114792693A (en) Semiconductor die and method of making the same
CN116209250A (en) Semiconductor device, manufacturing method thereof, electronic device
KR20130067136A (en) Method of manufacturing semiconductor device
CN106469725B (en) Memory element and method of manufacturing the same
US9875932B2 (en) Methods of forming contact holes using pillar masks and mask bridges
TWI553886B (en) Memory device and method of fabricating the same
CN105529326B (en) Memory element and its manufacturing method
US7727850B2 (en) Method for forming capacitor of semiconductor device
US11049860B2 (en) Semiconductor device and method for fabricating the same
KR20080108697A (en) Forming method of capacitor and manufacturing method of semiconductor device
JP2024061654A (en) Capacitor structure and semiconductor device including the same
CN118234370A (en) Semiconductor device and method for manufacturing the same
CN115701757A (en) Memory structure and manufacturing method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant