CN105552698B - Side pump bar waveguide DPAL laser - Google Patents
Side pump bar waveguide DPAL laser Download PDFInfo
- Publication number
- CN105552698B CN105552698B CN201610136634.9A CN201610136634A CN105552698B CN 105552698 B CN105552698 B CN 105552698B CN 201610136634 A CN201610136634 A CN 201610136634A CN 105552698 B CN105552698 B CN 105552698B
- Authority
- CN
- China
- Prior art keywords
- pump
- light guide
- waveguide
- window
- dimensional
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005086 pumping Methods 0.000 claims abstract description 20
- 239000004065 semiconductor Substances 0.000 claims abstract description 20
- 150000001340 alkali metals Chemical group 0.000 claims description 21
- 229910052783 alkali metal Inorganic materials 0.000 claims description 17
- 239000007789 gas Substances 0.000 claims description 16
- 230000008878 coupling Effects 0.000 claims description 14
- 238000010168 coupling process Methods 0.000 claims description 14
- 238000005859 coupling reaction Methods 0.000 claims description 14
- 238000002310 reflectometry Methods 0.000 claims description 10
- 238000003491 array Methods 0.000 claims description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 6
- 239000001307 helium Substances 0.000 claims description 5
- 229910052734 helium Inorganic materials 0.000 claims description 5
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 5
- 230000007704 transition Effects 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- 239000007787 solid Substances 0.000 claims description 4
- 229910052786 argon Inorganic materials 0.000 claims description 3
- 238000000265 homogenisation Methods 0.000 claims description 3
- 229910052754 neon Inorganic materials 0.000 claims description 3
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- 238000002834 transmittance Methods 0.000 claims description 2
- 230000003595 spectral effect Effects 0.000 claims 1
- 150000001335 aliphatic alkanes Chemical class 0.000 abstract description 5
- 238000007493 shaping process Methods 0.000 abstract description 5
- 238000006243 chemical reaction Methods 0.000 abstract description 3
- 230000002146 bilateral effect Effects 0.000 abstract description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 229910052701 rubidium Inorganic materials 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229910052792 caesium Inorganic materials 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000005283 ground state Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/091—Processes or apparatus for excitation, e.g. pumping using optical pumping
- H01S3/0915—Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light
- H01S3/0933—Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of a semiconductor, e.g. light emitting diode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Lasers (AREA)
Abstract
Description
技术领域technical field
本发明涉及气体激光器技术,更具体地涉及到一种侧面泵浦板条波导DPAL(半导体泵浦碱金属蒸气激光器)激光器。The present invention relates to gas laser technology, and more particularly to a side-pumped slab waveguide DPAL (semiconductor-pumped alkali vapor laser) laser.
背景技术Background technique
DPAL激光器是一种增益介质为蒸气状态碱金属的新型光泵浦气体激光器,增益介质的温度通常为100~200℃。DPAL的增益介质主要为蒸气状态的钾、铷或铯,其能级结构如图1所示。图中,n是最外层电子所在电子层数,K、Rb、Cs对应的n分别为4、5、6。nS1/2为基态能级,nP1/2和nP3/2为最外层电子自旋-轨道相互作用而劈裂产生的激发态能级。由基态至两上能级的跃迁分别对应于D2和D1线。DPAL laser is a new type of optically pumped gas laser whose gain medium is alkali metal in vapor state, and the temperature of gain medium is usually 100-200℃. The gain medium of DPAL is mainly potassium, rubidium or cesium in the vapor state, and its energy level structure is shown in Figure 1. In the figure, n is the number of electron layers where the outermost electrons are located, and the corresponding n of K, Rb, and Cs are 4, 5, and 6, respectively. nS 1/2 is the ground state energy level, and nP 1/2 and nP 3/2 are the excited state energy levels generated by the splitting of the outermost electron spin-orbit interaction. The transitions from the ground state to the two upper energy levels correspond to the D2 and D1 lines, respectively.
DPAL激光器最早是在2003年,劳伦斯利弗莫尔国家实验室的Krupke等人实现了碱金属激光器D1线激光输出。这种机制的碱金属激光器采用对应D2线波长的泵浦源泵浦,具有95%以上的量子效率,且增益介质是气体,热透镜效应不明显。因此,DPAL激光器被认为是一种有望实现单口径MW级激光输出的新型激光器。其在高功率输出方面的潜力也得到了国内外众多高功率研发机构的关注。The DPAL laser was first developed in 2003 when Krupke et al. of the Lawrence Livermore National Laboratory realized the D1 line laser output of an alkali metal laser. The alkali metal laser of this mechanism is pumped by a pump source corresponding to the wavelength of the D2 line, and has a quantum efficiency of more than 95%, and the gain medium is gas, and the thermal lens effect is not obvious. Therefore, the DPAL laser is considered as a new type of laser that is expected to achieve single-aperture MW-level laser output. Its potential in high-power output has also attracted the attention of many high-power R&D institutions at home and abroad.
2011年,通用原子公司的Zweiback等人使用替代光源研究了侧面泵浦的碱金属激光器,获得了75%的斜率效率,实验验证了侧面泵浦在DPAL功率放大方面的发展潜力。其方案的示意图如图2所示。该方案选用不锈钢作为激光头材质,激光头侧面分别留有尺寸为7cm×1cm的激光窗口和13cm×1cm的泵浦窗口。利用电加热方式加热碱金属蒸气室。使用翠绿宝石激光器作为泵浦光源,使用焦距为100mm和750mm两面正交摆放的柱面透镜构成的像散望远镜对翠绿宝石激光器进行光束整形,再经过1250mm焦距的透镜聚焦进入蒸气室,激光输出窗口为避免反射损失采用布儒斯特窗设计。谐振腔由曲率半径为1m的后腔镜和20%反射率的耦合输出镜构成。In 2011, Zweiback et al. of General Atomics used an alternative light source to study a side-pumped alkali metal laser, and obtained a slope efficiency of 75%, which experimentally verified the development potential of side-pumping in DPAL power amplification. A schematic diagram of the scheme is shown in Figure 2. In this scheme, stainless steel is used as the material of the laser head, and a laser window with a size of 7cm×1cm and a pump window with a size of 13cm×1cm are left on the side of the laser head respectively. The alkali metal vapor chamber is heated by electric heating. The alexandrite laser was used as the pump light source, and the astigmatic telescope composed of cylindrical lenses with focal lengths of 100mm and 750mm placed orthogonally on both sides was used to shape the beam of the alexandrite laser, and then focused into the vapor chamber through the 1250mm focal length lens, and the laser output The window adopts a Brewster window design to avoid reflection loss. The resonant cavity consists of a back cavity mirror with a curvature radius of 1m and a coupling-out mirror with a reflectivity of 20%.
但是,上述方案还存在以下技术缺陷:However, the above solution still has the following technical defects:
(1)图2所示的方案,蒸气室内仅有焦点位置处形成增益区域,激活体积小,未能对蒸气室中碱金属原子进行有效利用;(1) In the scheme shown in Figure 2, the gain area is only formed at the focal position in the vapor chamber, the activation volume is small, and the alkali metal atoms in the vapor chamber cannot be effectively utilized;
(2)蒸气室与加热装置之间放置相对松散,不能进行有效的热管理;(2) The placement between the steam chamber and the heating device is relatively loose, and effective thermal management cannot be performed;
(3)整形光路长,元件多,系统复杂,不利于实现小型化;(3) The shaping optical path is long, the components are many, and the system is complex, which is not conducive to miniaturization;
(4)采用稳定腔设计,模式匹配差,不利于高光束质量输出。(4) The stable cavity design is adopted, and the mode matching is poor, which is not conducive to high beam quality output.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本发明的目的在于提供一种侧面泵浦板条波导DPAL激光器。In view of this, an object of the present invention is to provide a side-pumped slab waveguide DPAL laser.
为了实现上述目的,本发明的侧面泵浦板条波导DPAL激光器,包括LD泵浦模块L、LD泵浦模块R、光导管L、光导管R和一维波导谐振腔,其中:In order to achieve the above object, the side-pumped slab waveguide DPAL laser of the present invention includes an LD pump module L, an LD pump module R, a light guide L, a light guide R and a one-dimensional waveguide resonator, wherein:
所述一维波导谐振腔上设置有泵浦窗口L和泵浦窗口R;The one-dimensional waveguide resonator is provided with a pump window L and a pump window R;
所述LD泵浦模块L和LD泵浦模块R具有相同的结构,均由半导体激光器叠阵或半导体激光器阵列组成;The LD pumping module L and the LD pumping module R have the same structure, and are both composed of semiconductor laser stacks or semiconductor laser arrays;
所述光导管L和光导管R具有相同的结构,且所述光导管L位于所述LD泵浦模块L与所述一维波导谐振腔的泵浦窗口L之间,所述光导管R位于所述LD泵浦模块R与所述一维波导谐振腔的泵浦窗口R之间;泵浦光由所述LD泵浦模块L和LD泵浦模块R发出,分别经过所述光导管L和光导管R汇聚匀化之后进入所述一维波导谐振腔;The light guide L and the light guide R have the same structure, and the light guide L is located between the LD pump module L and the pump window L of the one-dimensional waveguide resonator, and the light guide R is located at the between the LD pump module R and the pump window R of the one-dimensional waveguide resonator; the pump light is emitted by the LD pump module L and the LD pump module R, and passes through the light guide L and the light guide respectively After R convergence and homogenization, it enters the one-dimensional waveguide resonator;
其中,所述LD泵浦模块L和LD泵浦模块R、所述光导管L和光导管R均相对于所述一维波导谐振腔对称放置;以及wherein, the LD pumping module L and the LD pumping module R, the light guide L and the light guide R are symmetrically placed with respect to the one-dimensional waveguide resonator; and
所述LD泵浦模块L与所述LD泵浦模块R的各半导体激光器叠阵或线阵摆放于以各自方向的所述一维波导腔的泵浦窗口为中心的球面上,方向指向所述泵浦窗口。The semiconductor laser stacks or linear arrays of the LD pump module L and the LD pump module R are placed on a spherical surface centered on the pump window of the one-dimensional waveguide cavity in their respective directions, and the directions point to the the pump window.
其中,所述光导管L和光导管R采用实心或空心光导管结构,所述泵浦光在其侧壁上的反射率至少大于90%。Wherein, the light guide L and the light guide R adopt a solid or hollow light guide structure, and the reflectivity of the pump light on the side wall thereof is at least greater than 90%.
其中,所述一维波导谐振腔包括上下波导壁板、全反前腔镜、全反后腔镜、输出耦合镜及泵浦窗口,其中所述上下波导壁板的间距为0.5-2.5mm。Wherein, the one-dimensional waveguide resonator includes upper and lower waveguide wall plates, an all-inversion front cavity mirror, an all-inversion rear cavity mirror, an output coupling mirror and a pump window, wherein the distance between the upper and lower waveguide wall plates is 0.5-2.5mm.
其中,紧贴所述一维波导谐振腔的上下波导壁板还设置有控温装置,且所述控温装置与所述一维波导谐振腔实现一体化。Wherein, the upper and lower waveguide wall plates close to the one-dimensional waveguide resonant cavity are further provided with a temperature control device, and the temperature control device is integrated with the one-dimensional waveguide resonant cavity.
其中,所述一维波导谐振腔的蒸气室内充有用于碰撞加宽的氖气、氩气或氦气和用于加快精细结构混合速率的烷烃类气体。Wherein, the vapor chamber of the one-dimensional waveguide resonant cavity is filled with neon gas, argon gas or helium gas for collision broadening and alkane gas for accelerating the mixing rate of fine structure.
基于上述技术方案可知,本发明的激光器具有如下优点及有益效果:Based on the above technical solutions, the laser of the present invention has the following advantages and beneficial effects:
a、采用双边侧面泵浦模式,由于泵浦光不直接照射激光输出窗口,大大减小了高功率密度泵浦光与烷烃类混充气体反应生成的碳粒污染激光输出窗口片的可能性;a. The bilateral side pumping mode is adopted. Since the pump light does not directly illuminate the laser output window, the possibility of contamination of the laser output window by carbon particles generated by the reaction between the high power density pump light and the alkane mixed gas is greatly reduced;
b、利用光导管实现泵浦光耦合,光导管集成了泵浦光汇聚、泵浦光耦合和泵浦光匀化三重作用,不仅简化了光束整形过程,还可以在一定程度上避免由于半导体激光器堆叠方式带来的泵浦光分布不均匀的问题;b. Use the light guide to realize the pump light coupling. The light guide integrates the triple functions of pump light convergence, pump light coupling and pump light homogenization, which not only simplifies the beam shaping process, but also avoids the problem of semiconductor lasers to a certain extent. The problem of uneven distribution of pump light caused by the stacking method;
c、采用一维波导的结构,回避了半导体激光器快慢轴光束质量差且不一致和光束分布均匀性差的缺点,从而大大简化了对半导体激光器光束整形的要求,也为多阵列半导体激光器进行高功率泵浦提供了有效的解决方案;c. The use of one-dimensional waveguide structure avoids the shortcomings of poor beam quality and inconsistency of the fast and slow axes of semiconductor lasers and poor beam distribution uniformity, thereby greatly simplifying the requirements for beam shaping of semiconductor lasers. It also provides high-power pumping for multi-array semiconductor lasers. Pu provides an effective solution;
d、在横向方向采用非稳腔设计,可以充分利用增益区的横向宽度,并且还可以得到接近衍射极限的准直激光输出;通过这种方式将依赖增加腔长以提高激光功率的“线增比”手段转变为“面增比”技术,不仅可以增大增益区间的利用率,为DPAL高功率输出提供了可行的技术路线,还可以简化对半导体激光器阵列光束整形的步骤;d. Using an unstable cavity design in the lateral direction can make full use of the lateral width of the gain region, and can also obtain a collimated laser output close to the diffraction limit; this way will rely on increasing the cavity length to increase the "line increase" of the laser power. The conversion of the "ratio" method into the "area increase ratio" technology can not only increase the utilization rate of the gain interval, but also provide a feasible technical route for the high power output of DPAL, and can also simplify the steps of beam shaping of the semiconductor laser array;
e、控温装置与波导结构紧密贴合,一方面可使加热过程更加有效且均匀,另一方面也使整个装置更加紧凑;e. The temperature control device is closely attached to the waveguide structure, which can make the heating process more effective and uniform on the one hand, and make the whole device more compact on the other hand;
f、整个装置采用模块化思想,泵浦模块的数量可以在光导管耦合方案的承受能力之上增加;f. The whole device adopts the idea of modularization, and the number of pump modules can be increased beyond the affordability of the light guide coupling scheme;
g、本发明适用于多种光泵气体激光器,举例来说,蒸气室内的缓冲气体更换为氖气、氦气等惰性气体,将与碱金属蒸气形成宽带泵浦碱金属准分子激光器(XPAL)系统。g. The present invention is suitable for a variety of optically pumped gas lasers. For example, the buffer gas in the vapor chamber is replaced with inert gases such as neon and helium, which will form a broadband pumped alkali metal excimer laser (XPAL) with the alkali metal vapor. system.
附图说明Description of drawings
图1为现有技术中的碱金属蒸气激光器的能级结构示意图;1 is a schematic diagram of the energy level structure of an alkali metal vapor laser in the prior art;
图2为现有技术中典型的侧面泵浦DPAL激光器;Fig. 2 is a typical side-pumped DPAL laser in the prior art;
图3为本发明的侧面泵浦板条波导DPAL激光器的装置俯视图;3 is a top view of the device of the side-pumped slab waveguide DPAL laser of the present invention;
图4为本发明的侧面泵浦板条波导DPAL激光器的装置侧视图;4 is a side view of the device of the side-pumped slab waveguide DPAL laser of the present invention;
图5为本发明的侧面泵浦板条波导DPAL激光器的一维波导谐振腔示意图。5 is a schematic diagram of a one-dimensional waveguide resonator of the side-pumped slab waveguide DPAL laser of the present invention.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明。In order to make the objectives, technical solutions and advantages of the present invention more clearly understood, the present invention will be further described in detail below in conjunction with specific embodiments and with reference to the accompanying drawings.
本发明公开了一种侧面泵浦板条波导DPAL激光器,包括LD泵浦模块L、LD泵浦模块R、光导管L、光导管R和一维波导谐振腔,其中:The invention discloses a side-pumped slab waveguide DPAL laser, comprising an LD pumping module L, an LD pumping module R, a light guide L, a light guide R and a one-dimensional waveguide resonant cavity, wherein:
一维波导谐振腔上设置有泵浦窗口L和泵浦窗口R;The one-dimensional waveguide resonator is provided with a pump window L and a pump window R;
LD泵浦模块L和LD泵浦模块R具有相同的结构,均由半导体激光器叠阵或半导体激光器阵列组成;The LD pumping module L and the LD pumping module R have the same structure, and both consist of semiconductor laser stacks or semiconductor laser arrays;
光导管L和光导管R具有相同的结构,且光导管L位于LD泵浦模块L与一维波导谐振腔的泵浦窗口L之间,光导管R位于LD泵浦模块R与一维波导谐振腔的泵浦窗口R之间;泵浦光由LD泵浦模块L和LD泵浦模块R发出,分别经过光导管L和光导管R汇聚匀化之后进入一维波导谐振腔;The light guide L and the light guide R have the same structure, and the light guide L is located between the LD pump module L and the pump window L of the one-dimensional waveguide resonator, and the light guide R is located between the LD pump module R and the one-dimensional waveguide resonator. between the pump windows R; the pump light is emitted by the LD pump module L and the LD pump module R, and enters the one-dimensional waveguide resonator after being converged and homogenized by the light guide L and the light guide R respectively;
其中,LD泵浦模块L和LD泵浦模块R、光导管L和光导管R均相对于一维波导谐振腔对称放置;以及wherein, the LD pump module L and the LD pump module R, the light guide L and the light guide R are symmetrically placed with respect to the one-dimensional waveguide resonator; and
LD泵浦模块L与LD泵浦模块R的各半导体激光器叠阵或线阵摆放于以各自方向的一维波导腔的泵浦窗口为中心的球面上,方向指向所述泵浦窗口。The semiconductor laser arrays or linear arrays of the LD pump module L and the LD pump module R are placed on a spherical surface centered on the pump window of the one-dimensional waveguide cavity in their respective directions, and the directions point to the pump window.
作为优选,一维波导谐振腔采用非稳-波导混合腔结构。Preferably, the one-dimensional waveguide resonator adopts an unstable-waveguide hybrid cavity structure.
作为优选,该DPAL激光器输出的泵浦光的波长与一维波导谐振腔内碱金属原子的nP1/2→nS1/2跃迁对应的波长相同,泵浦光的线宽与一维波导谐振腔的碱金属蒸气室内缓冲气体加宽后的碱金属原子的nS1/2→nP3/2跃迁谱线线宽相匹配。Preferably, the wavelength of the pump light output by the DPAL laser is the same as the wavelength corresponding to the nP 1/2 →nS 1/2 transition of the alkali metal atoms in the one-dimensional waveguide resonator, and the linewidth of the pump light is resonant with the one-dimensional waveguide. The linewidths of the nS 1/2 →nP 3/2 transition spectra of the alkali metal atoms in the alkali metal vapor chamber of the cavity are matched.
作为优选,光导管L和光导管R采用实心或空心光导管结构,泵浦光在其侧壁上的反射率应尽可能接近100%,至少大于90%。Preferably, the light guide L and the light guide R are solid or hollow light guide structures, and the reflectivity of the pump light on its sidewall should be as close to 100% as possible, at least greater than 90%.
作为优选,所述一维波导谐振腔包括上下波导壁板、全反前腔镜、全反后腔镜、输出耦合镜及泵浦窗口,其中所述上下波导壁板的间距为0.5-2.5mm。Preferably, the one-dimensional waveguide resonator includes upper and lower waveguide walls, an all-inversion front cavity mirror, an all-inversion rear cavity mirror, an output coupling mirror and a pump window, wherein the spacing between the upper and lower waveguide walls is 0.5-2.5mm .
作为优选,所述一维波导腔的上下波导壁板的反射率尽可能接近100%,至少大于95%,并且所用材料具有对碱金属化学性质稳定和良好导热性的特性。Preferably, the reflectivity of the upper and lower waveguide walls of the one-dimensional waveguide cavity is as close to 100% as possible, at least greater than 95%, and the materials used have the properties of chemical stability to alkali metals and good thermal conductivity.
作为优选,所述全反后腔镜的反射率为99%~100%;所述全反前腔镜的反射率为99%~100%。Preferably, the reflectivity of the all-reflection rear cavity mirror is 99%-100%; the reflectivity of the all-reflection front cavity mirror is 99%-100%.
作为优选,所述输出耦合镜的输出耦合率为15%~90%。Preferably, the output coupling ratio of the output coupling mirror is 15%-90%.
作为优选,所述一维波导谐振腔泵浦光窗口的透过率应尽可能接近100%,至少大于95%。Preferably, the transmittance of the pump light window of the one-dimensional waveguide resonator should be as close to 100% as possible, and at least greater than 95%.
作为优选,紧贴所述一维波导谐振腔的上下波导壁板还设置有控温装置,且所述控温装置与所述一维波导谐振腔实现一体化。Preferably, a temperature control device is further provided on the upper and lower waveguide wall plates close to the one-dimensional waveguide resonant cavity, and the temperature control device is integrated with the one-dimensional waveguide resonant cavity.
作为优选,所述一维波导谐振腔的蒸气室内充有用于碰撞加宽的氩气或氦气和用于加快精细结构混合速率的烷烃类气体。Preferably, the vapor chamber of the one-dimensional waveguide resonant cavity is filled with argon gas or helium gas for collisional broadening and alkane gas for accelerating the mixing rate of fine structures.
作为本发明的一个优选实施例,本发明的侧面泵浦板条波导激光器结构如图3、4所示。以下以铷蒸气激光器为例对本发明的装置结构进行介绍。As a preferred embodiment of the present invention, the structure of the side-pumped slab waveguide laser of the present invention is shown in FIGS. 3 and 4 . The structure of the device of the present invention is described below by taking a rubidium vapor laser as an example.
本发明的激光器装置由半导体激光器阵列、光导管、一维波导谐振腔、温控系统组成,其中一维波导谐振腔采用一维波导结构,要求选取有良好导热性和对碱金属化学性质稳定的材料。一维波导谐振腔两侧开有狭长泵浦窗口用于侧面泵浦。激光输出方向安装有前后腔镜和输出耦合镜。一维波导腔两侧贴合温控系统用于控制谐振腔内温度。The laser device of the present invention is composed of a semiconductor laser array, a light guide tube, a one-dimensional waveguide resonant cavity, and a temperature control system, wherein the one-dimensional waveguide resonant cavity adopts a one-dimensional waveguide structure, and it is required to select the one with good thermal conductivity and stable chemical properties of alkali metals. Material. There are long and narrow pump windows on both sides of the one-dimensional waveguide resonator for side pumping. The front and rear cavity mirrors and the output coupling mirror are installed in the laser output direction. A temperature control system is attached on both sides of the one-dimensional waveguide cavity to control the temperature in the resonant cavity.
泵浦源由多个半导体激光器叠阵组成,每个半导体激光器叠阵可采用快慢轴准直微透镜进行准直之后利用体布拉格光栅(VBG)的外腔反馈作用下构成外腔半导体激光器。其出射激光线宽约为0.1nm,慢轴发散角可以控制在50mrad以下,快轴发散角可以控制在1°以内。本发明以DILAS半导体激光器叠阵作为示范例,其准直之后的出射光斑尺寸为11.5×9mm2(慢轴和快轴方向)。本发明拟使用双边12个泵浦模块作为示范例,每边使用6个相同的窄线宽输出的VBG外腔半导体激光器叠阵泵浦模块,在快轴方向摆放两排,在慢轴方向每排摆放3个,使每个LD泵浦模块的光斑指向泵浦光窗口。在一优选实施例中,本发明采用的一维波导谐振腔的泵浦窗口长度为10mm、宽度为1mm,泵浦光传播方向长度为5mm,波导结构由两面可抛光抗碱金属渗透的介质构成(如不锈钢、氧化铝陶瓷、石英玻璃等),反射率为99%-100%。其间距为1mm。为保证光导管的耦合率,窗口内嵌于波导腔内。泵浦光经过光导管,耦合进波导腔内。在一优选实施例中,光导管入光口沿慢轴方向长度为30mm,沿快轴方向长度为18mm,出光口沿慢轴方向长度为10mm,沿快轴方向长度为1mm,且紧贴一维波导腔泵浦窗口。光导管长度大于150mm即可实现对上述泵浦光的100%耦合。波导腔的出光方向安装非稳-波导混合腔和输出耦合镜,其中非稳-波导混合腔由前腔镜和后腔镜构成。其中前腔镜和后腔镜既可以是球面镜也可以是柱面镜,其对应着不同的波导损耗。在一优选实施例中,一维波导的蒸气室的尺寸为10mm×5mm×1mm,前后腔镜的曲率半径分别为-600mm、700mm(正值表示凹面镜,负值表示凸面镜)。腔内填充有碱金属和氦气与烷烃组成的混合气体,用于碱金属原子D2吸收线的加宽,及增大精细结构混合速率。腔内的温度可以通过波导两侧贴合的TEC控温片控制。工作时,腔内温度由TEC控温片稳定控制在其最佳工作温度范围内。The pump source is composed of a plurality of semiconductor laser stacks, each of which can be collimated by a fast and slow axis collimating microlens, and then an external cavity semiconductor laser can be formed under the external cavity feedback of a volume Bragg grating (VBG). The output laser linewidth is about 0.1nm, the slow axis divergence angle can be controlled below 50mrad, and the fast axis divergence angle can be controlled within 1°. The present invention takes the DILAS semiconductor laser stack as an example, and the size of the outgoing light spot after collimation is 11.5×9 mm 2 (slow axis and fast axis direction). The present invention intends to use 12 pump modules on both sides as a demonstration example, and each side uses 6 VBG external cavity semiconductor laser stacked pump modules with the same narrow linewidth output, arranged in two rows in the direction of the fast axis, and in the direction of the slow axis. Place three in each row so that the light spot of each LD pump module points to the pump light window. In a preferred embodiment, the length of the pump window of the one-dimensional waveguide resonator used in the present invention is 10mm, the width is 1mm, the length of the pump light propagation direction is 5mm, and the waveguide structure is composed of a medium that can be polished on both sides and is resistant to alkali metal penetration. (such as stainless steel, alumina ceramics, quartz glass, etc.), the reflectivity is 99%-100%. The spacing is 1mm. To ensure the coupling rate of the light guide, the window is embedded in the waveguide cavity. The pump light passes through the light guide and is coupled into the waveguide cavity. In a preferred embodiment, the length of the light pipe light entrance along the slow axis direction is 30mm, the length along the fast axis direction is 18mm, the length of the light outlet along the slow axis direction is 10mm, the length along the fast axis direction is 1mm, and is close to a Dimensional waveguide cavity pumping window. 100% coupling of the above-mentioned pump light can be achieved when the length of the light guide is greater than 150 mm. An unstable-waveguide hybrid cavity and an output coupling mirror are installed in the light-emitting direction of the waveguide cavity, wherein the unstable-waveguide hybrid cavity is composed of a front cavity mirror and a rear cavity mirror. The front cavity mirror and the rear cavity mirror can be either spherical mirrors or cylindrical mirrors, which correspond to different waveguide losses. In a preferred embodiment, the size of the vapor chamber of the one-dimensional waveguide is 10mm×5mm×1mm, and the curvature radii of the front and rear cavity mirrors are -600mm and 700mm respectively (positive values indicate concave mirrors, and negative values indicate convex mirrors). The cavity is filled with alkali metal and a mixed gas composed of helium and alkane, which is used to widen the D2 absorption line of the alkali metal atom and increase the mixing rate of the fine structure. The temperature in the cavity can be controlled by TEC temperature control sheets attached to both sides of the waveguide. When working, the temperature in the cavity is stably controlled by the TEC temperature control sheet within its optimal working temperature range.
在本发明的另一个优选实施例中,使用光栅压线宽来代替VBG压线宽;在本发明的另一个优选实施例中,也可以采用实心玻璃光导管与玻璃蒸气室一体化的方案。In another preferred embodiment of the present invention, the grating line width is used instead of the VBG line width; in another preferred embodiment of the present invention, a solution in which a solid glass light guide and a glass vapor chamber are integrated can also be used.
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above further describe the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above-mentioned specific embodiments are only specific embodiments of the present invention, and are not intended to limit the present invention. Within the spirit and principle of the present invention, any modifications, equivalent replacements, improvements, etc. made should be included within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610136634.9A CN105552698B (en) | 2016-03-10 | 2016-03-10 | Side pump bar waveguide DPAL laser |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610136634.9A CN105552698B (en) | 2016-03-10 | 2016-03-10 | Side pump bar waveguide DPAL laser |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN105552698A CN105552698A (en) | 2016-05-04 |
| CN105552698B true CN105552698B (en) | 2019-07-23 |
Family
ID=55831730
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201610136634.9A Active CN105552698B (en) | 2016-03-10 | 2016-03-10 | Side pump bar waveguide DPAL laser |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN105552698B (en) |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106654824A (en) * | 2016-12-21 | 2017-05-10 | 中国科学院合肥物质科学研究院 | High-repetition-frequency narrow-linewidth Q-modulation erbium laser |
| CN108535805B (en) * | 2017-03-03 | 2019-12-03 | 中国科学院电子学研究所 | Light pipe and the beam shaping system for applying it |
| CN109164668A (en) * | 2018-09-30 | 2019-01-08 | 青岛海信激光显示股份有限公司 | A kind of laser light source and laser projection system |
| CN110361604B (en) * | 2019-07-23 | 2021-08-13 | 北京无线电计量测试研究所 | Electric field detection quantum component, preparation method and quantum field intensity sensor |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0902511A2 (en) * | 1997-09-12 | 1999-03-17 | Fanuc Ltd | Solid laser oscillator with laser diode excitation |
| US20030099272A1 (en) * | 2001-10-23 | 2003-05-29 | Krupke William F. | Diode-pumped Alkali laser |
| US20080279228A1 (en) * | 2007-03-26 | 2008-11-13 | Beach Raymond J | Optically Pumped Alkali Laser and Amplifier Using Helium-3 Buffer Gas |
| US20080285614A1 (en) * | 2007-05-18 | 2008-11-20 | Cu Aerospace, Llc | Atomic lasers with exciplex assisted absorption |
| US20090022201A1 (en) * | 2007-05-17 | 2009-01-22 | General Atomics | Alkali-Vapor Laser with Transverse Pumping |
| CN201868728U (en) * | 2010-10-26 | 2011-06-15 | 光库通讯(珠海)有限公司 | Alkali vapor laser |
| CN105305215A (en) * | 2015-11-06 | 2016-02-03 | 华中科技大学 | a laser |
-
2016
- 2016-03-10 CN CN201610136634.9A patent/CN105552698B/en active Active
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0902511A2 (en) * | 1997-09-12 | 1999-03-17 | Fanuc Ltd | Solid laser oscillator with laser diode excitation |
| US20030099272A1 (en) * | 2001-10-23 | 2003-05-29 | Krupke William F. | Diode-pumped Alkali laser |
| US20080279228A1 (en) * | 2007-03-26 | 2008-11-13 | Beach Raymond J | Optically Pumped Alkali Laser and Amplifier Using Helium-3 Buffer Gas |
| US20090022201A1 (en) * | 2007-05-17 | 2009-01-22 | General Atomics | Alkali-Vapor Laser with Transverse Pumping |
| US20080285614A1 (en) * | 2007-05-18 | 2008-11-20 | Cu Aerospace, Llc | Atomic lasers with exciplex assisted absorption |
| CN201868728U (en) * | 2010-10-26 | 2011-06-15 | 光库通讯(珠海)有限公司 | Alkali vapor laser |
| CN105305215A (en) * | 2015-11-06 | 2016-02-03 | 华中科技大学 | a laser |
Also Published As
| Publication number | Publication date |
|---|---|
| CN105552698A (en) | 2016-05-04 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6873639B2 (en) | Multipass geometry and constructions for diode-pumped solid-state lasers and fiber lasers, and for optical amplifier and detector | |
| US6834067B2 (en) | Laser with gain medium configured to provide an integrated optical pump cavity | |
| US5485482A (en) | Method for design and construction of efficient, fundamental transverse mode selected, diode pumped, solid state lasers | |
| JP5135207B2 (en) | Tube solid-state laser | |
| US6331993B1 (en) | Diode-pumped gas lasers | |
| CN105552698B (en) | Side pump bar waveguide DPAL laser | |
| US20140133514A1 (en) | Alkali-vapor laser with transverse pumping | |
| CN103779775B (en) | Thulium-holmium double-doped laser, laser gain medium and wavelength regulation and control method | |
| Thomson et al. | Efficient operation of a 400 W diode side-pumped Yb: YAG planar waveguide laser | |
| JP2007538404A (en) | Staggered array type coupler | |
| JP2004527101A (en) | Fiber laser | |
| US6665328B1 (en) | Diode-pumped laser with funnel-coupled pump source | |
| Tünnermann et al. | New concepts for diode-pumped solid-state lasers | |
| JP2004503117A (en) | Optically pumped solid-state slab laser module | |
| CN103999301A (en) | CO2 laser device and CO2 laser processing device | |
| Baker et al. | A planar waveguide Nd: YAG laser with a hybrid waveguide–unstable resonator | |
| KR101857751B1 (en) | Slab solid laser amplifier | |
| Yamaguchi et al. | Efficient Nd: YAG laser end-pumped by a 1 cm aperture laser-diode bar with a GRIN lens array coupling | |
| CN1741328A (en) | diode pumped laser | |
| Griebner et al. | Thermally bonded Yb: YAG planar waveguide laser | |
| TWI423545B (en) | Intracavity upconversion laser | |
| JP2004296671A (en) | Solid state laser device | |
| CN105305215B (en) | A kind of laser | |
| CN117856018A (en) | Monolithic non-planar annular cavity laser based on gradient doped laser ceramics | |
| JP4627445B2 (en) | Laser amplifier |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |