CN105586580A - Method for medium-low temperature quick chemical plating of Ni-P based on copper leaching and plating pretreatment - Google Patents
Method for medium-low temperature quick chemical plating of Ni-P based on copper leaching and plating pretreatment Download PDFInfo
- Publication number
- CN105586580A CN105586580A CN201410656445.5A CN201410656445A CN105586580A CN 105586580 A CN105586580 A CN 105586580A CN 201410656445 A CN201410656445 A CN 201410656445A CN 105586580 A CN105586580 A CN 105586580A
- Authority
- CN
- China
- Prior art keywords
- plating
- plating solution
- copper
- aluminum alloy
- electroless
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000007747 plating Methods 0.000 title claims abstract description 112
- 229910018104 Ni-P Inorganic materials 0.000 title claims abstract description 67
- 229910018536 Ni—P Inorganic materials 0.000 title claims abstract description 67
- 238000000034 method Methods 0.000 title claims abstract description 53
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 51
- 229910052802 copper Inorganic materials 0.000 title claims abstract description 51
- 239000010949 copper Substances 0.000 title claims abstract description 51
- 239000000126 substance Substances 0.000 title description 5
- 238000002386 leaching Methods 0.000 title 1
- 229910000838 Al alloy Inorganic materials 0.000 claims abstract description 59
- 238000007654 immersion Methods 0.000 claims abstract description 46
- 229960001231 choline Drugs 0.000 claims abstract description 16
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 claims abstract description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 16
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 claims abstract description 15
- OASOQJKCZXXDMI-UHFFFAOYSA-N ethane-1,2-diol;hydrochloride Chemical compound Cl.OCCO OASOQJKCZXXDMI-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000002608 ionic liquid Substances 0.000 claims abstract description 15
- 238000007772 electroless plating Methods 0.000 claims abstract description 14
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 12
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Natural products NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims abstract description 8
- 230000002378 acidificating effect Effects 0.000 claims abstract description 8
- 239000002253 acid Substances 0.000 claims abstract description 7
- 150000001879 copper Chemical class 0.000 claims abstract description 7
- 238000004140 cleaning Methods 0.000 claims abstract description 3
- 238000000227 grinding Methods 0.000 claims abstract description 3
- 239000000243 solution Substances 0.000 claims description 59
- 238000002360 preparation method Methods 0.000 claims description 12
- 239000011248 coating agent Substances 0.000 claims description 11
- 238000000576 coating method Methods 0.000 claims description 11
- 241000080590 Niso Species 0.000 claims description 10
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 6
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- 239000012670 alkaline solution Substances 0.000 claims description 5
- 239000004310 lactic acid Substances 0.000 claims description 3
- 235000014655 lactic acid Nutrition 0.000 claims description 3
- 239000001763 2-hydroxyethyl(trimethyl)azanium Substances 0.000 claims description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 2
- 235000019743 Choline chloride Nutrition 0.000 claims description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 2
- SGMZJAMFUVOLNK-UHFFFAOYSA-M choline chloride Chemical compound [Cl-].C[N+](C)(C)CCO SGMZJAMFUVOLNK-UHFFFAOYSA-M 0.000 claims description 2
- 229960003178 choline chloride Drugs 0.000 claims description 2
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical group Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 claims description 2
- -1 choline chloride-ethylene glycol ion Chemical class 0.000 claims 1
- 238000001035 drying Methods 0.000 claims 1
- 239000007788 liquid Substances 0.000 claims 1
- 238000005406 washing Methods 0.000 claims 1
- 230000008569 process Effects 0.000 abstract description 11
- 239000003054 catalyst Substances 0.000 abstract description 4
- 229910045601 alloy Inorganic materials 0.000 abstract description 2
- 239000000956 alloy Substances 0.000 abstract description 2
- 239000003513 alkali Substances 0.000 abstract 1
- 230000008021 deposition Effects 0.000 description 19
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 6
- 238000004381 surface treatment Methods 0.000 description 6
- 229910052725 zinc Inorganic materials 0.000 description 6
- 239000011701 zinc Substances 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 238000007598 dipping method Methods 0.000 description 4
- 229910021591 Copper(I) chloride Inorganic materials 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000008139 complexing agent Substances 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 108091006149 Electron carriers Proteins 0.000 description 1
- VEQPNABPJHWNSG-UHFFFAOYSA-N Nickel(2+) Chemical compound [Ni+2] VEQPNABPJHWNSG-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005246 galvanizing Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910001453 nickel ion Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- ACVYVLVWPXVTIT-UHFFFAOYSA-M phosphinate Chemical compound [O-][PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-M 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
Landscapes
- Chemically Coating (AREA)
Abstract
本发明涉及一种基于浸镀铜预处理的铝合金表面中低温快速化学镀Ni-P的方法,该方法包括以下步骤:1)镀液由氯化胆碱-乙二醇离子液体、铜盐和硫脲组成;2)将铝合金打磨、清洗后依次置于碱溶液和酸溶液中,然后洗涤;3)将处理过的铝合金放入步骤1)所述镀液中,于20~30?C下静置1~6?h,然后依次用氯化胆碱-乙二醇离子液体、水和乙醇洗涤,干燥;4)Ni-P镀液为碱性镀液或酸性镀液;5)将经浸镀铜处理的铝合金置于Ni-P镀液中,在30~60?C下放置0.5~5?h,水洗,干燥。本发明在不输入外加能量且未添加任何催化剂及加速剂的常规镀液中进行化学镀Ni-P,即可实现较低温度下的快速化学镀过程。The invention relates to a method for rapid electroless plating of Ni-P at low temperature on the surface of an aluminum alloy based on copper immersion pretreatment. The method comprises the following steps: 1) The plating solution is composed of choline chloride-ethylene glycol ionic liquid, copper salt and thiourea; 2) After grinding and cleaning the aluminum alloy, place it in an alkali solution and an acid solution in turn, and then wash; 3) Put the treated aluminum alloy into the plating solution described in step 1), and put it in 20~30 ?C at 1~6? h, then sequentially washed with choline chloride-ethylene glycol ionic liquid, water and ethanol, and dried; 4) Ni-P plating solution is alkaline or acidic plating solution; The alloy is placed in the Ni-P plating solution, and placed at 30~60?C for 0.5~5? h, washed with water and dried. The invention performs electroless Ni-P plating in a conventional plating solution without inputting external energy and without adding any catalyst and accelerator, so as to realize a rapid electroless plating process at a relatively low temperature.
Description
技术领域 technical field
本发明涉及一种基于浸镀铜预处理的铝合金表面中低温快速化学镀Ni-P的方法,属于金属表面处理技术领域。 The invention relates to a method for rapid electroless Ni-P plating at low temperature on the surface of an aluminum alloy based on immersion copper pretreatment, and belongs to the technical field of metal surface treatment.
背景技术 Background technique
铝及铝合金是一类重要的轻金属材料,具有价格低廉、密度小、塑性高、成型性好及无低温脆性等优点,在航天、船舶、集成电路及日用品装饰工业等领域有着广泛的应用。但铝的化学性质活泼,标准电位低,抗腐蚀性能差,同时铝及铝合金表面硬度低,耐磨性差。为了克服上述缺点,对铝及铝合金进行表面处理是非常重要的环节。目前,已经发展出了多种表面处理方法,其中化学镀Ni-P合金具有硬度高、耐蚀性好及可焊性佳等优点,是提高铝合金表面性能的重要途径。 Aluminum and aluminum alloys are an important class of light metal materials, which have the advantages of low price, low density, high plasticity, good formability, and no low-temperature brittleness. They are widely used in aerospace, shipbuilding, integrated circuits, and daily necessities decoration industries. However, the chemical properties of aluminum are lively, the standard potential is low, and the corrosion resistance is poor. At the same time, the surface hardness of aluminum and aluminum alloys is low, and the wear resistance is poor. In order to overcome the above shortcomings, surface treatment of aluminum and aluminum alloys is a very important link. At present, a variety of surface treatment methods have been developed, among which electroless Ni-P alloy plating has the advantages of high hardness, good corrosion resistance and good weldability, and is an important way to improve the surface properties of aluminum alloys.
当前,应用较多的化学镀Ni-P工艺普遍是在较高的温度(80~95°C)下进行的。虽然高温下得到镀层的速率较快,但是工艺能耗高,控制困难,设备损耗严重,且在高温下镀液易挥发,使用寿命短;此外,对于某些高温易发生变形的材料,高温可能引起基体的变形和改性,限制了化学镀Ni-P工艺的进一步推广应用。降低化学镀的温度是解决上述问题的有效方法之一,不仅可以提高镀液稳定性、降低成本,而且便于现场操作,但是镀液温度的降低会使沉积速率大为降低,甚至无法施镀。因此提高中低温条件下的沉积速率是当前化学镀 Ni- P领域的重要研究方向。 At present, the most widely used electroless Ni-P plating process is generally carried out at a relatively high temperature (80~95°C). Although the rate of coating at high temperature is fast, the energy consumption of the process is high, the control is difficult, the equipment loss is serious, and the plating solution is volatile at high temperature, and the service life is short; in addition, for some materials that are easily deformed at high temperature, high temperature may The deformation and modification of the substrate are caused, which limits the further popularization and application of the electroless Ni-P plating process. Reducing the temperature of electroless plating is one of the effective ways to solve the above problems. It can not only improve the stability of the plating solution, reduce the cost, but also facilitate on-site operation. However, the reduction of the temperature of the plating solution will greatly reduce the deposition rate, and even make it impossible to apply plating. Therefore, improving the deposition rate under medium and low temperature conditions is the current chemical plating Ni- An important research direction in the field of P.
近年来,国内外研究人员发展了超声波法、脉冲化学镀法、光化学法、加速催化法、电子载体法和有机酸配位剂法等多种方法来提高中低温条件下化学镀Ni-P的沉积速率。其中超声波法、脉冲化学镀方法及光化学法是通过输入外部能量来实现化学镀镀速的提升,而加速催化法、电子载体法和有机酸配位剂法则是通过加入促进剂、催化剂或配位剂等加速次磷酸盐的氧化或降低镍离子的还原活化能而提高沉积速率。上述这些方法虽然都能起到提高化学镀Ni-P沉积速率的作用,但是同时也存在镀液易分解、操作难度大、镀液成分复杂及生产成本高等问题,且沉积速率仍相对较低。 In recent years, researchers at home and abroad have developed a variety of methods such as ultrasonic method, pulse chemical plating method, photochemical method, accelerated catalysis method, electron carrier method and organic acid complexing agent method to improve the electroless Ni-P plating efficiency under medium and low temperature conditions. deposition rate. Among them, the ultrasonic method, the pulse chemical plating method and the photochemical method realize the improvement of the electroless plating speed by inputting external energy, while the accelerated catalytic method, the electronic carrier method and the organic acid complexing agent method are achieved by adding accelerators, catalysts or coordination agents. Agents, etc. accelerate the oxidation of hypophosphite or reduce the reduction activation energy of nickel ions to increase the deposition rate. Although the above-mentioned methods can all play a role in improving the deposition rate of electroless Ni-P, they also have problems such as easy decomposition of the plating solution, difficult operation, complex composition of the plating solution and high production cost, and the deposition rate is still relatively low.
发明内容 Contents of the invention
本发明的目的在于提供一种基于浸镀铜预处理的铝合金表面中低温快速化学镀Ni-P的方法。 The object of the present invention is to provide a method for rapid electroless Ni-P plating at low temperature on the surface of an aluminum alloy based on immersion copper pretreatment.
本发明将铝合金在氯化胆碱-乙二醇离子液体中进行浸镀铜预处理,获得一层铜镀层,然后将其作为铝合金基体的预镀层,在不输入外加能量且未添加任何催化剂及加速剂的常规镀液中进行化学镀Ni-P,即可实现较低温度下的快速化学镀过程。通过与铝合金浸锌处理后化学镀Ni-P及未经浸镀处理铝合金直接化学镀Ni-P对比发现,用本发明所述的方法对铝合金进行浸镀铜处理可显著提高碱性或酸性镀液中化学镀Ni-P的沉积速率,为化学镀工艺在铝合金表面处理方面的进一步推广应用提供了一种新的技术途径。 In the present invention, the aluminum alloy is pretreated by immersion copper plating in choline chloride-ethylene glycol ionic liquid to obtain a layer of copper coating, which is then used as the pre-plating layer of the aluminum alloy substrate without inputting external energy and without adding any The electroless Ni-P plating is carried out in the conventional plating solution of the catalyst and the accelerator, and a rapid electroless plating process at a lower temperature can be realized. By comparing with electroless Ni-P plating on aluminum alloy after galvanizing treatment and direct electroless Ni-P plating on aluminum alloy without immersion plating treatment, it is found that carrying out immersion copper plating treatment on aluminum alloy with the method of the present invention can significantly improve the alkalinity. Or the deposition rate of electroless Ni-P in acid plating solution provides a new technical approach for the further popularization and application of electroless plating process in aluminum alloy surface treatment.
一种基于浸镀铜预处理的铝合金表面中低温快速化学镀Ni-P的方法,其特征在于该方法包括以下步骤: A kind of method based on immersion plating copper pretreated aluminum alloy surface low-temperature fast electroless plating Ni-P method, it is characterized in that the method comprises the following steps:
1)浸镀铜溶液配制:镀液由氯化胆碱-乙二醇离子液体、铜盐和硫脲组成; 1) Preparation of copper immersion plating solution: the plating solution is composed of choline chloride-ethylene glycol ionic liquid, copper salt and thiourea;
2)样品前处理:将铝合金打磨、清洗后置于65~75˚C的碱溶液中,5~10 min后水洗;再将其置于室温下的酸溶液中0.5~3 min,最后用丙酮洗涤; 2) Sample pretreatment: After grinding and cleaning the aluminum alloy, place it in an alkaline solution at 65~75˚C, wash it with water after 5~10 min; then place it in an acid solution at room temperature for 0.5~3 min, and finally washed with acetone;
3)浸镀铜处理:将处理过的铝合金放入步骤1)所述镀液中,于20~30˚C下静置1~6 h,即可在铝合金表面获得一层铜镀层,然后依次用氯化胆碱-乙二醇离子液体、水和乙醇洗涤,随后干燥; 3) Immersion copper plating treatment: put the treated aluminum alloy into the plating solution described in step 1), and let it stand at 20~30˚C for 1~6 h, and then a layer of copper plating can be obtained on the surface of the aluminum alloy. Then successively wash with choline chloride-ethylene glycol ionic liquid, water and ethanol, then dry;
4)化学镀Ni-P镀液配制:Ni-P镀液为碱性镀液或酸性镀液,碱性镀液由NiSO4·6H2O、Na3C6H5O7·2H2O和NaH2PO2·H2O 组成,加入氨水调节镀液的pH在8.0~11.0之间;酸性镀液由NiSO4·6H2O、Na3C6H5O7·2H2O、NaH2PO2·H2O和 CH3COONa·3H2O组成,加入乳酸调节镀液的pH在4.0~7.0之间; 4) Preparation of electroless Ni-P plating solution: Ni-P plating solution is alkaline plating solution or acidic plating solution, alkaline plating solution is composed of NiSO 4 6H 2 O, Na 3 C 6 H 5 O 7 2H 2 O and NaH 2 PO 2 ·H 2 O, adding ammonia water to adjust the pH of the plating solution between 8.0 and 11.0; the acidic plating solution is composed of NiSO 4 ·6H 2 O, Na 3 C 6 H 5 O 7 ·2H 2 O, NaH 2 PO 2 ·H 2 O and CH 3 COONa·3H 2 O, adding lactic acid to adjust the pH of the plating solution between 4.0 and 7.0;
5)化学镀Ni-P:将经浸镀铜处理的铝合金置于化学镀Ni-P镀液中,在30~60˚C下放置0.5~5 h,即可得到Ni-P镀层,水洗,干燥。 5) Electroless Ni-P plating: Place the aluminum alloy that has been dipped in copper in the electroless Ni-P plating solution, and place it at 30~60˚C for 0.5~5 h to get the Ni-P coating, wash with water ,dry.
氯化胆碱-乙二醇离子液体中氯化胆碱与乙二醇的摩尔比为1:2,铜盐的浓度为0.01~0.50 mol/L,硫脲的浓度为0.01~0.40 mol/L。 The molar ratio of choline chloride to ethylene glycol in the choline chloride-ethylene glycol ionic liquid is 1:2, the concentration of copper salt is 0.01~0.50 mol/L, and the concentration of thiourea is 0.01~0.40 mol/L.
所述铜盐为氯化铜。 The copper salt is copper chloride.
步骤2)中碱溶液的组成为:20 g/L Na2CO3、10 g/L NaOH、5 g/L Na3PO4·12H2O,酸溶液的组成为:HF 0.07mL/mL。 Step 2) The composition of the alkaline solution is: 20 g/L Na 2 CO 3 , 10 g/L NaOH, 5 g/L Na 3 PO 4 ·12H 2 O, and the composition of the acid solution is: HF 0.07mL/mL.
Ni-P碱性镀液中NiSO4·6H2O、Na3C6H5O7·2H2O、NaH2PO2·H2O的浓度依次为10.5~16.0 g/L、10.0~24.0 g/L、17.5~40.0 g/L。 The concentrations of NiSO 4 ·6H 2 O, Na 3 C 6 H 5 O 7 ·2H 2 O, NaH 2 PO 2 ·H 2 O in the Ni-P alkaline plating solution are 10.5~16.0 g/L, 10.0~24.0 g/L, 17.5~40.0 g/L.
Ni-P酸性镀液中NiSO4·6H2O、Na3C6H5O7·2H2O、NaH2PO2·H2O、 CH3COONa·3H2O的浓度依次为10.5~16.0 g/L、10.0~24.0 g/L、17.5~40.0 g/L、15~25 g/L。 The concentrations of NiSO 4 ·6H 2 O, Na 3 C 6 H 5 O 7 ·2H 2 O, NaH 2 PO 2 ·H 2 O, CH 3 COONa·3H 2 O in the Ni-P acidic plating solution are 10.5~16.0 g/L, 10.0~24.0 g/L, 17.5~40.0 g/L, 15~25 g/L.
本发明与现有技术相比具有以下优点: Compared with the prior art, the present invention has the following advantages:
1) 本发明对铝合金进行浸镀铜预处理再化学镀Ni-P,短时间内即可在中低温条件下获得均匀致密的Ni-P镀层。 1) In the present invention, the aluminum alloy is pretreated by immersion copper plating and then electroless Ni-P plating, and a uniform and dense Ni-P coating can be obtained under medium and low temperature conditions in a short period of time.
2) 本发明所述浸镀铜预处理的铝合金表面中低温条件下快速化学镀Ni-P方法不需输入外加能量,也不需添加任何催化剂及加速剂。 2) The rapid electroless Ni-P plating method of the present invention does not need to input additional energy, nor does it need to add any catalysts and accelerators under the medium and low temperature conditions of the surface of the aluminum alloy pretreated by immersion plating.
3) 本发明使用绿色环保的氯化胆碱-乙二醇离子液体作为铝合金浸镀铜处理的溶剂,处理方法简单易操作,在一定时间内即可得到均匀的铜打底层。 3) The present invention uses the green and environment-friendly choline chloride-ethylene glycol ionic liquid as the solvent for aluminum alloy copper plating treatment, the treatment method is simple and easy to operate, and a uniform copper bottom layer can be obtained within a certain period of time.
4) 本发明对铝合金经过浸镀铜处理后,在30~60˚C的中低温条件下化学镀Ni-P的沉积速率高于浸锌处理及未处理铝合金的。 4) In the present invention, after the aluminum alloy is dipped in copper, the deposition rate of electroless Ni-P is higher than that of the zinc dipped and untreated aluminum alloy under the medium and low temperature conditions of 30~60°C.
5) 本发明对铝合金经过浸镀铜处理后,得到的Ni-P均匀致密、耐蚀性能优异。 5) In the present invention, after the aluminum alloy is subjected to immersion copper plating treatment, the obtained Ni-P is uniform and dense, and has excellent corrosion resistance.
6) 本发明所述的方法扩大了化学镀Ni-P在铝合金表面处理中的适用范围,为化学镀工艺在铝合金表面处理方面的进一步推广应用提供了一种新的技术途径。 6) The method of the present invention expands the scope of application of electroless Ni-P plating in aluminum alloy surface treatment, and provides a new technical approach for further popularization and application of electroless plating process in aluminum alloy surface treatment.
附图说明 Description of drawings
图1为本发明浸镀铜预处理铝合金与浸锌处理及未经浸镀处理铝合金化学镀Ni-P沉积速率的对比结果图。 Fig. 1 is a comparison result diagram of the electroless Ni-P deposition rate of aluminum alloy pretreated by immersion plating of copper in the present invention and aluminum alloys treated by immersion zinc and without immersion plating treatment.
图2为本发明在铝合金表面经浸镀铜处理所得铜层(a)与Ni-P镀层(b)的微观形貌。 Fig. 2 is the microscopic morphology of the copper layer (a) and the Ni-P plating layer (b) obtained by immersion copper plating on the surface of the aluminum alloy according to the present invention.
具体实施方式 detailed description
实施例1 Example 1
基于浸镀铜预处理的铝合金表面中低温快速化学镀Ni-P的方法,具体工艺条件和操作步骤如下: The method for rapid electroless plating of Ni-P at low temperature on the surface of aluminum alloy based on immersion copper pretreatment, the specific process conditions and operation steps are as follows:
1)浸镀铜溶液配制:称取CuCl2·2H2O 1.70 g、硫脲0.76 g加入到配制好的氯化胆碱-乙二醇离子液体中搅拌溶解,配制成100 mL溶液; 1) Preparation of copper immersion plating solution: Weigh 1.70 g of CuCl 2 2H 2 O and 0.76 g of thiourea into the prepared choline chloride-ethylene glycol ionic liquid, stir and dissolve, and prepare a 100 mL solution;
2)样品前处理:将铝合金打磨、清洗;置于65~75˚C的碱溶液中,5~10 min后水洗;再将其置于室温下的酸溶液中0.5~3 min,最后用丙酮洗涤; 2) Sample pretreatment: grind and clean the aluminum alloy; place it in an alkaline solution at 65~75˚C, wash it with water after 5~10 min; then place it in an acid solution at room temperature for 0.5~3 min, and finally washed with acetone;
3)浸镀铜处理:将处理好的铝合金浸入镀铜溶液中,于30˚C下放置4 h,取出样品,依次用氯化胆碱-乙二醇离子液体、水和乙醇洗涤,然后干燥; 3) Immersion copper plating treatment: immerse the treated aluminum alloy in the copper plating solution, place it at 30˚C for 4 h, take out the sample, wash it with choline chloride-ethylene glycol ionic liquid, water and ethanol in sequence, and then dry;
4)化学镀Ni-P镀液配制:镀液各成分浓度如下:NiSO4·6H2O 10.5 g/L、Na3C6H5O7·2H2O 23.5 g/L、NaH2PO2·H2O 17.5 g/L,加氨水调节pH在9.1~9.4之间; 4) Preparation of electroless Ni-P plating solution: the concentration of each component of the plating solution is as follows: NiSO 4 6H 2 O 10.5 g/L, Na 3 C 6 H 5 O 7 2H 2 O 23.5 g/L, NaH 2 PO 2 ·H 2 O 17.5 g/L, add ammonia to adjust the pH between 9.1 and 9.4;
5)化学镀Ni-P:将经浸镀铜处理的铝合金置于Ni-P镀液中,在40˚C温度下反应0.5 h,得到Ni-P镀层,水洗,干燥。 5) Electroless Ni-P plating: The aluminum alloy treated with immersion copper was placed in the Ni-P plating solution, and reacted at 40 °C for 0.5 h to obtain the Ni-P coating, washed with water, and dried.
图1为本发明浸镀铜预处理铝合金与浸锌处理及未经浸镀处理铝合金化学镀Ni-P沉积速率的对比结果。从图中可以看出,40˚C条件下浸镀铜处理后铝合金表面化学镀Ni-P的沉积速率(5.36 g/dm3·h)高于相同温度条件下浸锌处理(3.04 g/dm3·h)及未经浸镀处理(2.84 g/dm3·h)铝合金的沉积速率。 Fig. 1 is the comparison result of Ni-P deposition rate of electroless plating of aluminum alloy pretreated by immersion copper plating in the present invention and aluminum alloy treated by immersion zinc and without immersion plating treatment. It can be seen from the figure that the deposition rate (5.36 g/dm 3 h) of electroless Ni-P on the aluminum alloy surface after immersion copper plating treatment at 40˚C is higher than that of zinc immersion treatment (3.04 g/dm 3 h) at the same temperature. dm 3 ·h) and the deposition rate of aluminum alloy without immersion treatment (2.84 g/dm 3 ·h).
实施例2 Example 2
基于浸镀铜预处理的铝合金表面中低温快速化学镀Ni-P的方法,具体工艺条件和操作步骤如下: The method for rapid electroless plating of Ni-P at low temperature on the surface of aluminum alloy based on immersion copper pretreatment, the specific process conditions and operation steps are as follows:
1)浸镀铜溶液配制:称取CuCl2·2H2O 2.56 g、硫脲1.14 g加入到配制好的氯化胆碱-乙二醇离子液体中搅拌溶解,配制成100mL的溶液; 1) Preparation of copper immersion plating solution: Weigh 2.56 g of CuCl 2 2H 2 O and 1.14 g of thiourea into the prepared choline chloride-ethylene glycol ionic liquid, stir and dissolve, and prepare a 100 mL solution;
2)样品前处理:同实施例1; 2) Sample pretreatment: same as Example 1;
3)浸镀铜处理:将处理好的铝合金浸入镀铜溶液中,于30˚C下放置3 h,取出样品,依次用氯化胆碱-乙二醇离子液体、水和乙醇洗涤,然后干燥; 3) Immersion copper plating treatment: immerse the treated aluminum alloy in the copper plating solution, place it at 30˚C for 3 h, take out the sample, wash it with choline chloride-ethylene glycol ionic liquid, water and ethanol in sequence, and then dry;
4)化学镀Ni-P镀液配制:同实施例1; 4) Preparation of electroless Ni-P plating solution: same as Example 1;
5)化学镀Ni-P:将经浸镀铜处理的铝合金置于配制好的Ni-P镀液中,在60˚C温度下反应0.5 h,得到Ni-P镀层,水洗,干燥。 5) Electroless Ni-P plating: The aluminum alloy treated with immersion copper was placed in the prepared Ni-P plating solution, and reacted at 60 °C for 0.5 h to obtain a Ni-P coating, washed with water, and dried.
对化学镀Ni-P的沉积速率进行对比,结果如图1所示,60˚C条件下浸镀铜处理后铝合金化学镀Ni-P的沉积速率(14.9 g/dm3·h)明显高于相同温度条件下浸锌处理(8.20 g/dm3·h)及未经浸镀处理(6.32 g/dm3·h)铝合金的沉积速率。 The deposition rate of electroless Ni-P plating was compared, and the results are shown in Figure 1. The deposition rate (14.9 g/dm 3 h) of electroless Ni-P plating on aluminum alloy was significantly higher after immersion copper plating at 60˚C Deposition rates of zinc-dipped (8.20 g/dm 3 ·h) and uncoated (6.32 g/dm 3 ·h) aluminum alloys under the same temperature conditions.
实施例3 Example 3
基于浸镀铜预处理的铝合金表面中低温快速化学镀Ni-P的方法,具体工艺条件和操作步骤如下: The method for rapid electroless plating of Ni-P at low temperature on the surface of aluminum alloy based on immersion copper pretreatment, the specific process conditions and operation steps are as follows:
1)浸镀铜溶液配制:称取CuCl2·2H2O 3.40 g、硫脲1.52 g加入到配制好的氯化胆碱-乙二醇离子液体中搅拌溶解,配制成100mL的溶液; 1) Preparation of copper immersion plating solution: Weigh 3.40 g of CuCl 2 2H 2 O and 1.52 g of thiourea into the prepared choline chloride-ethylene glycol ionic liquid, stir and dissolve, and prepare a 100 mL solution;
2)样品前处理:同实施例1; 2) Sample pretreatment: same as Example 1;
3)浸镀铜处理:将处理好的铝合金浸入镀铜溶液中,于30˚C下放置2 h,取出样品,依次用氯化胆碱-乙二醇离子液体、水和乙醇洗涤,然后干燥; 3) Immersion copper plating treatment: immerse the treated aluminum alloy in the copper plating solution, place it at 30˚C for 2 h, take out the sample, wash it with choline chloride-ethylene glycol ionic liquid, water and ethanol successively, and then dry;
4)化学镀Ni-P镀液配制:同实施例1; 4) Preparation of electroless Ni-P plating solution: same as Example 1;
5)化学镀Ni-P:将经浸镀铜处理的铝合金置于配制好的Ni-P镀液中,在30˚C温度下反应0.5 h,得到Ni-P镀层,水洗,干燥。 5) Electroless Ni-P plating: The aluminum alloy treated with immersion copper was placed in the prepared Ni-P plating solution, and reacted at 30 °C for 0.5 h to obtain a Ni-P coating, washed with water, and dried.
对化学镀Ni-P的速率进行对比,30˚C条件下浸镀铜处理铝合金的沉积速率(2.61 g/dm3·h)高于相同温度条件下浸锌处理(0.46 g/dm3·h)及未经浸镀处理(1.82 g/dm3·h)铝合金的沉积速率。 Comparing the rate of electroless Ni-P plating, the deposition rate (2.61 g/dm 3 h) of immersion copper treatment aluminum alloy at 30˚C is higher than that of zinc immersion treatment (0.46 g/dm 3 h) at the same temperature. h) and the deposition rate of aluminum alloy without dipping treatment (1.82 g/dm 3 ·h).
实施例4 Example 4
基于浸镀铜预处理的铝合金表面中低温快速化学镀Ni-P的方法,具体工艺条件和操作步骤如下: The method for rapid electroless plating of Ni-P at low temperature on the surface of aluminum alloy based on immersion copper pretreatment, the specific process conditions and operation steps are as follows:
1)浸镀铜溶液配制:同实施例2; 1) Preparation of copper immersion plating solution: same as in Example 2;
2)样品前处理:同实施例1; 2) Sample pretreatment: same as Example 1;
3)浸镀铜处理:同实施例2; 3) copper immersion plating treatment: same as embodiment 2;
4)化学镀Ni-P镀液配制:镀液各成分浓度如下:NiSO4·6H2O 15.0 g/L、Na3C6H5O7·2H2O 10.0 g/L、NaH2PO2·H2O 40.0 g/L、CH3COONa·3H2O 20.0 g/L,加乳酸调节pH在4.0~6.0之间; 4) Preparation of electroless Ni-P plating solution: the concentration of each component of the plating solution is as follows: NiSO 4 6H 2 O 15.0 g/L, Na 3 C 6 H 5 O 7 2H 2 O 10.0 g/L, NaH 2 PO 2 H 2 O 40.0 g/L, CH 3 COONa·3H 2 O 20.0 g/L, add lactic acid to adjust the pH between 4.0 and 6.0;
5)化学镀Ni-P:将经浸镀铜处理的铝合金置于配制好的Ni-P镀液中,在60˚C温度下反应1.5 h,得到Ni-P镀层,水洗,干燥。 5) Electroless Ni-P plating: The aluminum alloy treated with immersion copper was placed in the prepared Ni-P plating solution, and reacted at 60 °C for 1.5 h to obtain a Ni-P coating, washed with water, and dried.
对化学镀Ni-P的速率进行对比,60˚C条件下浸镀铜处理铝合金的沉积速率(22.3 g/dm3·h)高于相同温度条件下浸锌处理(14.4 g/dm3·h)及未经浸镀处理(17.7 g/dm3·h)铝合金的沉积速率。图2为本发明在铝合金表面经浸镀铜处理所得铜层(a)与Ni-P镀层(b)的微观形貌,从图中可以看出得到的铜层与Ni-P镀层均匀致密,且无明显缺陷。 Comparing the rate of electroless Ni-P plating, the deposition rate (22.3 g/dm 3 h) of aluminum alloy treated by dipping copper at 60˚C is higher than that of zinc dipping (14.4 g/dm 3 h) at the same temperature. h) and the deposition rate of aluminum alloy without dipping treatment (17.7 g/dm 3 ·h). Fig. 2 is the microscopic morphology of the copper layer (a) and the Ni-P coating (b) obtained by immersion copper plating on the surface of the aluminum alloy according to the present invention. It can be seen from the figure that the obtained copper layer and the Ni-P coating are uniform and compact , with no obvious defects.
Claims (9)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410656445.5A CN105586580A (en) | 2014-11-18 | 2014-11-18 | Method for medium-low temperature quick chemical plating of Ni-P based on copper leaching and plating pretreatment |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410656445.5A CN105586580A (en) | 2014-11-18 | 2014-11-18 | Method for medium-low temperature quick chemical plating of Ni-P based on copper leaching and plating pretreatment |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN105586580A true CN105586580A (en) | 2016-05-18 |
Family
ID=55926475
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201410656445.5A Pending CN105586580A (en) | 2014-11-18 | 2014-11-18 | Method for medium-low temperature quick chemical plating of Ni-P based on copper leaching and plating pretreatment |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN105586580A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR101860468B1 (en) * | 2017-04-19 | 2018-05-23 | 한국생산기술연구원 | Ionic liquid electrolyte composition for electroless plating |
| CN110424034A (en) * | 2019-09-06 | 2019-11-08 | 昆明理工大学 | A kind of irregular ceramic grain surface method for metallising |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20030203232A1 (en) * | 2002-03-26 | 2003-10-30 | Luan Ben Li | Acousto-immersion coating and process for magnesium and its alloys |
| CN1614087A (en) * | 2004-10-11 | 2005-05-11 | 哈尔滨工业大学 | Chemical nickeling solution, method for preparing nickeling layer and aluminium alloy hub coating thereof |
| CN1962938A (en) * | 2005-11-08 | 2007-05-16 | 佛山市顺德区汉达精密电子科技有限公司 | Process for chemical nickel plating on surface of aluminum alloy containing silicon, copper, and magnesium |
| CN101709459A (en) * | 2009-11-06 | 2010-05-19 | 海洋王照明科技股份有限公司 | Surface treatment method of aluminum alloy and treatment liquid |
| CN102115885A (en) * | 2009-12-30 | 2011-07-06 | 上海工程技术大学 | Oil-free self-lubricating plating technique of aluminum alloy parts |
-
2014
- 2014-11-18 CN CN201410656445.5A patent/CN105586580A/en active Pending
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20030203232A1 (en) * | 2002-03-26 | 2003-10-30 | Luan Ben Li | Acousto-immersion coating and process for magnesium and its alloys |
| CN1614087A (en) * | 2004-10-11 | 2005-05-11 | 哈尔滨工业大学 | Chemical nickeling solution, method for preparing nickeling layer and aluminium alloy hub coating thereof |
| CN1962938A (en) * | 2005-11-08 | 2007-05-16 | 佛山市顺德区汉达精密电子科技有限公司 | Process for chemical nickel plating on surface of aluminum alloy containing silicon, copper, and magnesium |
| CN101709459A (en) * | 2009-11-06 | 2010-05-19 | 海洋王照明科技股份有限公司 | Surface treatment method of aluminum alloy and treatment liquid |
| CN102115885A (en) * | 2009-12-30 | 2011-07-06 | 上海工程技术大学 | Oil-free self-lubricating plating technique of aluminum alloy parts |
Non-Patent Citations (1)
| Title |
|---|
| RUIXUE KANG等: "Copper Galvanic Replacement on Aluminum from a Choline Chloride Based Ionic Liquid: Effect of Thiourea", 《JOURNAL OF THE ELECTROCHEMICAL SOCIETY,》 * |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR101860468B1 (en) * | 2017-04-19 | 2018-05-23 | 한국생산기술연구원 | Ionic liquid electrolyte composition for electroless plating |
| CN110424034A (en) * | 2019-09-06 | 2019-11-08 | 昆明理工大学 | A kind of irregular ceramic grain surface method for metallising |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN101235500B (en) | Preparation method of casing with coating | |
| CN102691081B (en) | A kind of electroplating silver solution and electroplating method | |
| JP6622712B2 (en) | Compositions and methods for metallizing non-conductive plastic surfaces | |
| CN103334093B (en) | A kind of activating process of stupalith electroless copper | |
| CN101319316A (en) | A method for electroless nickel plating on aluminum and aluminum alloy surfaces | |
| CN106567114A (en) | Electroplating method for spraying and activating of surface of ABS plastic | |
| ES2688876T3 (en) | Nickel non-electrolytic plating bath | |
| CN102899644B (en) | Method for obtaining a coating containing micronano SiO2 particles on the surface of aluminum and aluminum alloys | |
| CN102031505B (en) | Treating fluid for coarsening and activating polyimide and method for coarsening and activating surface of polyimide | |
| CN101298677A (en) | Preparation of wear resistant corrosion resistant nano-composite deposit on magnesium alloy surface | |
| CN104928658B (en) | A kind of method that activation PCB circuit surfaces realize chemical nickel plating | |
| CN105350295A (en) | Preparation method of polyamide conductive fibers | |
| CN110117783A (en) | A kind of method of Electroless Nickel Plating of Aluminum Alloy mixed metal activation | |
| CN105274504A (en) | Method for chemically plating copper on surface of expanded graphite | |
| CN101275222B (en) | Nickel-Phosphorus-PTFE Composite Plating Solution | |
| CN106048564A (en) | ABS plastic surface palladium-free activation metallization method | |
| CN106119815A (en) | Copper and the method for copper alloy surface chemical nickel plating in a kind of eutectic type ionic liquid | |
| CN106435540B (en) | A kind of pre-treating method carrying out chemical nickel plating on alumina-base material surface | |
| US4244739A (en) | Catalytic solution for the electroless deposition of metals | |
| JP6865734B2 (en) | Pretreatment method for plastic surface for plating | |
| CN105586580A (en) | Method for medium-low temperature quick chemical plating of Ni-P based on copper leaching and plating pretreatment | |
| CN101974741A (en) | Method for performing chemical plating on surface of polytetrafluoroethylene thin film | |
| CN104195533B (en) | A kind of nickel zinc phosphorus chemical plating and preparation method thereof and chemical plating fluid | |
| CN104164685A (en) | Method for plating nickel on steel plate | |
| CN104164684A (en) | Method for plating nickel on surface of oxygen-free copper |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| WD01 | Invention patent application deemed withdrawn after publication | ||
| WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20160518 |