CN105607948A - Virtual machine migration prediction method based on SLA - Google Patents
Virtual machine migration prediction method based on SLA Download PDFInfo
- Publication number
- CN105607948A CN105607948A CN201510961787.2A CN201510961787A CN105607948A CN 105607948 A CN105607948 A CN 105607948A CN 201510961787 A CN201510961787 A CN 201510961787A CN 105607948 A CN105607948 A CN 105607948A
- Authority
- CN
- China
- Prior art keywords
- virtual machine
- sla
- migration
- curve
- time interval
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/48—Program initiating; Program switching, e.g. by interrupt
- G06F9/4806—Task transfer initiation or dispatching
- G06F9/4843—Task transfer initiation or dispatching by program, e.g. task dispatcher, supervisor, operating system
- G06F9/485—Task life-cycle, e.g. stopping, restarting, resuming execution
- G06F9/4856—Task life-cycle, e.g. stopping, restarting, resuming execution resumption being on a different machine, e.g. task migration, virtual machine migration
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5083—Techniques for rebalancing the load in a distributed system
- G06F9/5088—Techniques for rebalancing the load in a distributed system involving task migration
Landscapes
- Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
技术领域 technical field
本发明涉及云计算技术领域,特别是一种基于SLA的虚拟机迁移预测方法。 The invention relates to the technical field of cloud computing, in particular to an SLA-based virtual machine migration prediction method.
背景技术 Background technique
在云计算环境中,为了充分利用资源,可能会出现多个应用按照SLA分配的虚拟机位于同一台服务器上的情况。而且可能也会出现虚拟机资源的总和超过了服务器的物理资源上限情况,当某应用的负载增加时,其他应用的资源就被抢占。这时候云服务商就无法满足SLA中对用户做出的资源的承诺。这时候往往采用虚拟机迁移的方法进行缓解。 In a cloud computing environment, in order to make full use of resources, it may happen that virtual machines assigned by multiple applications according to the SLA are located on the same server. Moreover, it may also happen that the sum of virtual machine resources exceeds the upper limit of physical resources of the server. When the load of an application increases, the resources of other applications are preempted. At this time, the cloud service provider cannot meet the resource commitment made to the user in the SLA. At this time, virtual machine migration is often used to alleviate the problem.
传统方法是基于警报的虚拟机性能隔离的方法,这种方法首先对每台主机进行资源监视,以内存为例,当某台主机的内存使用率高于一个阈值时,发出警告,并自动进行虚拟机迁移。这种方法的好处是迁移的操作一定是正确的,因为资源抢占的情况的确发生了。但是这种方法的缺点是,在需要迁移时主机的资源非常紧缺,无法满足SLA的虚拟机会由于无法获得更多的资源而导致负载增大,这台物理机上的所有虚拟机的资源负载就会各自趋近于某个常量。这时已经无法知道是哪台虚拟机需要被迁移。而如果迁移的虚拟机并不是无法满足SLA的虚拟机的话,那台负载猛增的虚拟机可能还留在这台主机上,仍然有可能继续抢占资源,无法满足SLA的状况还可能会继续发生。 The traditional method is to isolate the performance of virtual machines based on alarms. This method first monitors the resources of each host. Taking memory as an example, when the memory usage of a certain host is higher than a threshold, a warning is issued and automatically Virtual machine migration. The advantage of this method is that the migration operation must be correct, because resource preemption does occur. However, the disadvantage of this method is that when migration is required, the resources of the host are very scarce, and the virtual machine that cannot meet the SLA will increase the load because it cannot obtain more resources, and the resource load of all virtual machines on this physical machine will be reduced. Each tends to a certain constant. At this time, it is impossible to know which virtual machine needs to be migrated. And if the migrated virtual machine is not a virtual machine that cannot meet the SLA, the virtual machine with a sharp increase in load may still remain on this host, and it may still continue to seize resources, and the situation that cannot meet the SLA may continue to occur .
发明内容 Contents of the invention
本发明解决的技术问题在于一种基于SLA的虚拟机迁移预测方法;解决前述现有技术存在的问题。 The technical problem solved by the present invention is an SLA-based virtual machine migration prediction method, which solves the problems in the aforementioned prior art.
本发明解决上述技术问题的技术方案是: The technical scheme that the present invention solves the problems of the technologies described above is:
所述的方法包括以下步骤: Described method comprises the following steps:
步骤1:对每台虚拟机的资源使用情况每隔一段时间进行一次监控; Step 1: Monitor the resource usage of each virtual machine at regular intervals;
步骤2:基于监控数据通过数学的方法进行曲线拟合后,得到这条曲线的方程,然后预测出下一个时间间隔虚拟机使用的资源数量; Step 2: After curve fitting by mathematical method based on the monitoring data, the equation of this curve is obtained, and then the amount of resources used by the virtual machine in the next time interval is predicted;
步骤3:比较下一时间间隔资源使用量与SLA规定的阈值的大小,如果超过了阈值,则这台虚拟机很可能即将会负载过大,那么执行步骤4,否则等待一段时间,在下一次监控时间间隔到来时,执行步骤1; Step 3: Compare the resource usage in the next time interval with the threshold specified by the SLA. If the threshold is exceeded, the virtual machine is likely to be overloaded soon. Then perform step 4. Otherwise, wait for a while and monitor it next time When the time interval comes, execute step 1;
步骤4:将这台虚拟机迁移到较为空闲的主机上去。 Step 4: Migrate this virtual machine to a relatively idle host.
所述曲线拟合指的是将监控数据保存为历史数据,再选取合适的曲线进行曲线拟合,然后选择符合曲线特征的方程,可以选择的常用曲线有对数函数、指数函数、二次函数、二次以上的多项式函数、三角函数等。 The curve fitting refers to saving the monitoring data as historical data, then selecting a suitable curve for curve fitting, and then selecting an equation that conforms to the characteristics of the curve. Commonly used curves that can be selected include logarithmic function, exponential function, and quadratic function , polynomial functions above quadratic, trigonometric functions, etc.
所述资源使用情况指的是虚拟机的性能指标,如CPU使用率、内存使用率等,具体的指标可根据业务需求进行选择。 The resource usage refers to performance indicators of the virtual machine, such as CPU usage, memory usage, etc. The specific indicators can be selected according to business requirements.
本发明的方法能产生如下的有益效果: Method of the present invention can produce following beneficial effect:
1、本发明方法是一种主动的虚拟机迁移策略,在还未发生主机资源紧缺的情况前预测出了是哪台虚拟机负载猛增并进行迁移。这种方法能够保证肯定不会发生虚拟机资源不足。 1. The method of the present invention is an active virtual machine migration strategy, which predicts which virtual machine has a sharp increase in load and performs migration before the host resource shortage occurs. This approach ensures that virtual machine resource insufficiency will never occur.
2、本发明方法是一种成本与性能均衡的迁移策略,能保证首先使用空闲的物理机资源,在负载过高不能满足SLA的情况下才进行迁移。 2. The method of the present invention is a cost- and performance-balanced migration strategy, which can ensure that idle physical machine resources are used first, and migration is performed only when the load is too high to meet the SLA.
附图说明 Description of drawings
下面结合附图对本发明进一步说明: Below in conjunction with accompanying drawing, the present invention is further described:
图1为本发明的流程图; Fig. 1 is a flowchart of the present invention;
具体实施方式 detailed description
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。 The technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts fall within the protection scope of the present invention.
算法可以把虚拟机根据其对资源的需求来区分重要的程度,这可以类比为有许多不同价值的宝物。通过监控数据就可以知道每台主机的空闲资源的数量。越大的空闲资源可以容纳的虚拟机也越多,这类似于有若干个空的背包。于是虚拟机迁移策略的问题就变成了0-1背包问题。 Algorithms can differentiate the importance of virtual machines according to their demand for resources, which can be compared to treasures with many different values. By monitoring the data, you can know the number of idle resources of each host. Larger free resources can accommodate more virtual machines, which is similar to having several empty backpacks. Therefore, the problem of virtual machine migration strategy becomes a 0-1 knapsack problem.
算法的输入参数为虚拟机对资源的需求量、虚拟机的总数、主机的空闲资源量。SS为虚拟机迁移策略栈。分别计算m个主机的空闲资源组成背包集BagSet并进行排序后,对每台虚拟机的资源使用通过PolyFitForecast进行预测。 The input parameters of the algorithm are the virtual machine's demand for resources, the total number of virtual machines, and the idle resources of the host. SS is a virtual machine migration policy stack. After calculating the idle resources of m hosts to form a BagSet and sorting them, the resource usage of each virtual machine is predicted by PolyFitForecast.
将需要迁移的向虚拟机放入宝物集TreasureSet中。对背包集中每个背包解0-1背包问题得出需要迁移到当前主机的虚拟机集合放入策略栈中。 Put the virtual machine that needs to be migrated into the treasure set TreasureSet. Solve the 0-1 knapsack problem for each knapsack in the knapsack set to get the set of virtual machines that need to be migrated to the current host and put them into the policy stack.
背包集(BagSet)中每个背包解0-1背包问题的算法如下: The algorithm for solving the 0-1 knapsack problem for each knapsack in the knapsack set (BagSet) is as follows:
解决0-1背包问题,可以使用动态规划的算法,由于解0-1背包问题的方法是一个经典的算法,得到的解为一定为最优解,于是就可以得到最佳的虚拟机迁移策略。 To solve the 0-1 knapsack problem, you can use the dynamic programming algorithm. Since the method of solving the 0-1 knapsack problem is a classic algorithm, the solution obtained must be the optimal solution, so you can get the best virtual machine migration strategy .
。 .
Claims (3)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201510961787.2A CN105607948A (en) | 2015-12-18 | 2015-12-18 | Virtual machine migration prediction method based on SLA |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201510961787.2A CN105607948A (en) | 2015-12-18 | 2015-12-18 | Virtual machine migration prediction method based on SLA |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN105607948A true CN105607948A (en) | 2016-05-25 |
Family
ID=55987902
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201510961787.2A Pending CN105607948A (en) | 2015-12-18 | 2015-12-18 | Virtual machine migration prediction method based on SLA |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN105607948A (en) |
Cited By (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106020936A (en) * | 2016-06-07 | 2016-10-12 | 深圳证券通信有限公司 | Virtual machine dispatching method and device for financial cloud platform on basis of operating loads |
| CN106899660A (en) * | 2017-01-26 | 2017-06-27 | 华南理工大学 | Cloud data center energy-saving distribution implementation method based on trundle gray forecast model |
| CN107391230A (en) * | 2017-07-27 | 2017-11-24 | 郑州云海信息技术有限公司 | A kind of implementation method and device for determining virtual machine load |
| CN107579852A (en) * | 2017-09-15 | 2018-01-12 | 郑州云海信息技术有限公司 | System and method for virtual network performance isolation based on history model in cloud server |
| WO2018076791A1 (en) * | 2016-10-31 | 2018-05-03 | 华为技术有限公司 | Resource load balancing control method and cluster scheduler |
| CN108255581A (en) * | 2018-01-15 | 2018-07-06 | 郑州云海信息技术有限公司 | A kind of load based on neural network model determines method, apparatus and system |
| CN108268321A (en) * | 2016-12-30 | 2018-07-10 | 三星电子株式会社 | For migrating the method for workload and machine frame system |
| CN108519919A (en) * | 2018-03-19 | 2018-09-11 | 山东超越数控电子股份有限公司 | A method of realizing server resource dynamic dispatching under virtual cluster environment |
| CN110275773A (en) * | 2018-10-30 | 2019-09-24 | 湖北省农村信用社联合社网络信息中心 | Paas resource circulation utilization index system based on truthful data models fitting |
| WO2020134364A1 (en) * | 2018-12-28 | 2020-07-02 | 中兴通讯股份有限公司 | Virtual machine migration method, cloud computing management platform, and storage medium |
| US11301307B2 (en) | 2019-07-24 | 2022-04-12 | Red Hat, Inc. | Predictive analysis for migration schedulers |
| CN118473942A (en) * | 2024-07-08 | 2024-08-09 | 西安电子科技大学 | Version cutting method for agile VMware virtualization resource pool |
Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20090031307A1 (en) * | 2007-07-24 | 2009-01-29 | International Business Machines Corporation | Managing a virtual machine |
| CN102004671A (en) * | 2010-11-15 | 2011-04-06 | 北京航空航天大学 | Resource management method of data center based on statistic model in cloud computing environment |
| US20110246669A1 (en) * | 2010-03-30 | 2011-10-06 | Hitachi, Ltd. | Method and system of virtual machine migration |
| CN102981893A (en) * | 2012-12-25 | 2013-03-20 | 国网电力科学研究院 | Method and system for dispatching virtual machine |
| CN103607459A (en) * | 2013-11-21 | 2014-02-26 | 东北大学 | Dynamic resource monitoring and scheduling method of cloud computing platform IaaS layer |
| CN103778474A (en) * | 2012-10-18 | 2014-05-07 | 华为技术有限公司 | Resource load capacity prediction method, analysis prediction system and service operation monitoring system |
| CN104038941A (en) * | 2013-03-06 | 2014-09-10 | 中国联合网络通信集团有限公司 | Network capacity expansion method and network capacity expansion device |
| CN104283946A (en) * | 2014-09-26 | 2015-01-14 | 东北大学 | A resource adaptive adjustment system and method for multiple virtual machines under a single physical machine |
| CN104765642A (en) * | 2015-03-24 | 2015-07-08 | 长沙理工大学 | Virtual machine deployment method and system based on dynamic prediction model in cloud environment |
| CN104991854A (en) * | 2015-06-12 | 2015-10-21 | 北京奇虎科技有限公司 | Method and system for monitoring and statistics of server sources |
-
2015
- 2015-12-18 CN CN201510961787.2A patent/CN105607948A/en active Pending
Patent Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20090031307A1 (en) * | 2007-07-24 | 2009-01-29 | International Business Machines Corporation | Managing a virtual machine |
| US20110246669A1 (en) * | 2010-03-30 | 2011-10-06 | Hitachi, Ltd. | Method and system of virtual machine migration |
| CN102004671A (en) * | 2010-11-15 | 2011-04-06 | 北京航空航天大学 | Resource management method of data center based on statistic model in cloud computing environment |
| CN103778474A (en) * | 2012-10-18 | 2014-05-07 | 华为技术有限公司 | Resource load capacity prediction method, analysis prediction system and service operation monitoring system |
| CN102981893A (en) * | 2012-12-25 | 2013-03-20 | 国网电力科学研究院 | Method and system for dispatching virtual machine |
| CN104038941A (en) * | 2013-03-06 | 2014-09-10 | 中国联合网络通信集团有限公司 | Network capacity expansion method and network capacity expansion device |
| CN103607459A (en) * | 2013-11-21 | 2014-02-26 | 东北大学 | Dynamic resource monitoring and scheduling method of cloud computing platform IaaS layer |
| CN104283946A (en) * | 2014-09-26 | 2015-01-14 | 东北大学 | A resource adaptive adjustment system and method for multiple virtual machines under a single physical machine |
| CN104765642A (en) * | 2015-03-24 | 2015-07-08 | 长沙理工大学 | Virtual machine deployment method and system based on dynamic prediction model in cloud environment |
| CN104991854A (en) * | 2015-06-12 | 2015-10-21 | 北京奇虎科技有限公司 | Method and system for monitoring and statistics of server sources |
Cited By (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106020936A (en) * | 2016-06-07 | 2016-10-12 | 深圳证券通信有限公司 | Virtual machine dispatching method and device for financial cloud platform on basis of operating loads |
| WO2018076791A1 (en) * | 2016-10-31 | 2018-05-03 | 华为技术有限公司 | Resource load balancing control method and cluster scheduler |
| US10924535B2 (en) | 2016-10-31 | 2021-02-16 | Huawei Technologies Co., Ltd. | Resource load balancing control method and cluster scheduler |
| CN108268321A (en) * | 2016-12-30 | 2018-07-10 | 三星电子株式会社 | For migrating the method for workload and machine frame system |
| CN108268321B (en) * | 2016-12-30 | 2023-11-07 | 三星电子株式会社 | Method and rack system for migrating workload |
| CN106899660A (en) * | 2017-01-26 | 2017-06-27 | 华南理工大学 | Cloud data center energy-saving distribution implementation method based on trundle gray forecast model |
| CN107391230B (en) * | 2017-07-27 | 2021-03-09 | 苏州浪潮智能科技有限公司 | Implementation method and device for determining load of virtual machine |
| CN107391230A (en) * | 2017-07-27 | 2017-11-24 | 郑州云海信息技术有限公司 | A kind of implementation method and device for determining virtual machine load |
| CN107579852A (en) * | 2017-09-15 | 2018-01-12 | 郑州云海信息技术有限公司 | System and method for virtual network performance isolation based on history model in cloud server |
| CN108255581A (en) * | 2018-01-15 | 2018-07-06 | 郑州云海信息技术有限公司 | A kind of load based on neural network model determines method, apparatus and system |
| CN108519919A (en) * | 2018-03-19 | 2018-09-11 | 山东超越数控电子股份有限公司 | A method of realizing server resource dynamic dispatching under virtual cluster environment |
| CN110275773A (en) * | 2018-10-30 | 2019-09-24 | 湖北省农村信用社联合社网络信息中心 | Paas resource circulation utilization index system based on truthful data models fitting |
| CN110275773B (en) * | 2018-10-30 | 2020-08-28 | 湖北省农村信用社联合社网络信息中心 | Paas resource recycling index system based on real data model fitting |
| WO2020134364A1 (en) * | 2018-12-28 | 2020-07-02 | 中兴通讯股份有限公司 | Virtual machine migration method, cloud computing management platform, and storage medium |
| US11301307B2 (en) | 2019-07-24 | 2022-04-12 | Red Hat, Inc. | Predictive analysis for migration schedulers |
| CN118473942A (en) * | 2024-07-08 | 2024-08-09 | 西安电子科技大学 | Version cutting method for agile VMware virtualization resource pool |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN105607948A (en) | Virtual machine migration prediction method based on SLA | |
| CN111176792B (en) | Resource scheduling method and device and related equipment | |
| CN106326000B (en) | Resource regulating method and device in a kind of cloud computing system | |
| US10541939B2 (en) | Systems and methods for provision of a guaranteed batch | |
| CN107562512B (en) | Method, device and system for migrating virtual machine | |
| CN103970587B (en) | A kind of method, apparatus and system of scheduling of resource | |
| CN102232282A (en) | Method and apparatus for realizing load balance of resources in data center | |
| CN103473115B (en) | virtual machine placement method and device | |
| CN104102523A (en) | Method for migrating virtual machine and resource scheduling platform | |
| CN107220108B (en) | Method and system for realizing load balance of cloud data center | |
| CN105491138A (en) | Load rate based graded triggering distributed load scheduling method | |
| US20160154676A1 (en) | Method of Resource Allocation in a Server System | |
| EP3423940A1 (en) | A method and device for scheduling resources | |
| CN107122233A (en) | A kind of adaptive real-time scheduling methods of many VCPU towards TSN business | |
| WO2015144008A1 (en) | Method and device for allocating physical machine to virtual machine | |
| CN117032937B (en) | Task scheduling method based on GPU, electronic device and storage medium | |
| CN105045667B (en) | A kind of resource pool management method for virtual machine vCPU scheduling | |
| CN107220125A (en) | A kind of cloud resource dispatching method and device | |
| CN105242954A (en) | Mapping method between virtual CPUs (Central Processing Unit) and physical CPUs, and electronic equipment | |
| CN104461673A (en) | Virtual machine transferring judgment method and device | |
| CN104199724B (en) | A kind of virtual resources method for optimizing scheduling based on cost performance | |
| CN108429704B (en) | Node resource allocation method and device | |
| US9213575B2 (en) | Methods and systems for energy management in a virtualized data center | |
| CN108268310B (en) | Method and device for determining minimum scheduling granularity | |
| CN106227600B (en) | A kind of multidimensional virtual resource allocation method based on Energy-aware |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication |
Application publication date: 20160525 |
|
| RJ01 | Rejection of invention patent application after publication |