[go: up one dir, main page]

CN105717553A - Calibration method for gravity gradient instrument of rotary accelerometer - Google Patents

Calibration method for gravity gradient instrument of rotary accelerometer Download PDF

Info

Publication number
CN105717553A
CN105717553A CN201610065880.XA CN201610065880A CN105717553A CN 105717553 A CN105717553 A CN 105717553A CN 201610065880 A CN201610065880 A CN 201610065880A CN 105717553 A CN105717553 A CN 105717553A
Authority
CN
China
Prior art keywords
gravity
gamma
mass
gravity gradient
gradiometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610065880.XA
Other languages
Chinese (zh)
Other versions
CN105717553B (en
Inventor
蔡体菁
钱学武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201610065880.XA priority Critical patent/CN105717553B/en
Publication of CN105717553A publication Critical patent/CN105717553A/en
Application granted granted Critical
Publication of CN105717553B publication Critical patent/CN105717553B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V13/00Manufacturing, calibrating, cleaning, or repairing instruments or devices covered by groups G01V1/00 – G01V11/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Testing Of Balance (AREA)

Abstract

本发明公开了一种旋转加速度计重力梯度仪标定方法,在重力梯度仪外侧空间的四个不同位置上依次放置一定的质量体,通过改变质量体质量大小改变重力梯度仪中心处的引力场,变化的引力场被重力梯度仪敏感到。对重力梯度仪输出信号进行滤波与梯度解调,得到重力梯度仪重力梯度测量结果。测量结果经过计算与质量体质量变化计算得到的重力梯度理论值相比较,得到重力梯度仪两个重力梯度分量的零位和标度系数。本发明可以实现对旋转加速度计重力梯度仪的梯度标定。

The invention discloses a method for calibrating a gravity gradiometer of a rotating accelerometer. Certain mass bodies are sequentially placed at four different positions outside the gravity gradiometer, and the gravitational field at the center of the gravity gradiometer is changed by changing the mass of the mass body. The changing gravitational field is sensed by gravity gradiometers. Filter and gradient demodulate the output signal of the gravity gradiometer to obtain the gravity gradient measurement result of the gravity gradiometer. The measurement results are calculated and compared with the theoretical value of the gravity gradient obtained by calculating the mass change of the mass body, and the zero position and scale coefficient of the two gravity gradient components of the gravity gradiometer are obtained. The invention can realize the gradient calibration of the gravity gradiometer of the rotation accelerometer.

Description

一种旋转加速度计重力梯度仪标定方法Calibration method of gravity gradiometer for rotating accelerometer

技术领域technical field

本发明涉及一种旋转加速度计重力梯度仪重力梯度标定方法,尤其涉及一种采用改变质量体质量的方法实现旋转加速度计重力梯度仪重力梯度标定,属精密测量技术领域。The invention relates to a gravity gradient calibration method of a rotational accelerometer gravity gradiometer, in particular to a method of changing the mass of a mass body to realize the gravity gradient calibration of a rotational accelerometer gravity gradiometer, and belongs to the technical field of precision measurement.

背景技术Background technique

高精度重力梯度测量对能源勘探、空间科学、地球科学、地质科学的发展以及在惯性导航等方面具有非常重要的应用价值和应用前景。重力梯度测量相对于重力测量有明显的优势,对于地质结构的形状、尺寸和埋藏深度等信息,重力梯度测量能够提供更高的解析度,特别适合于探测和研究局部地质结构及其细节。目前,国外正在进行研究的具有应用前景的重力梯度仪主要有旋转加速度计重力梯度仪、超导重力梯度仪、冷原子重力梯度仪、卫星重力梯度仪等,其中旋转加速度计重力梯度仪技术最成熟,也是最早进行商用的重力梯度仪,且已经进行了大量的勘探工作;国内在上世纪末开始注意到重力梯度仪的应用前景,多个科研单位合作进行了相关研究,并分支了多个不同测量原理的重力梯度仪研究方向,包括旋转加速度计式重力梯度仪、超导重力梯度仪、冷原子重力梯度仪、基于微机械(MEMS)结构的重力梯度仪以及卫星重力梯度仪等,其中旋转加速度计重力梯度仪理论研究基本成熟,国内科研院所已经开发出了重力梯度仪样机,由于敏感器性能、旋转结构稳定性、温控性能等原因,重力梯度仪分辨率仍然较低。High-precision gravity gradient measurement has very important application value and application prospects for the development of energy exploration, space science, earth science, geological science, and inertial navigation. Gravity gradient measurement has obvious advantages over gravity measurement. For information such as the shape, size and burial depth of geological structures, gravity gradient measurement can provide higher resolution, and is especially suitable for detecting and studying local geological structures and their details. At present, the gravity gradiometers with application prospects that are being studied abroad mainly include rotational accelerometer gravity gradiometers, superconducting gravity gradiometers, cold atom gravity gradiometers, satellite gravity gradiometers, etc. Among them, the technology of rotational accelerometer gravity gradiometers is the most Mature and the earliest commercial gravity gradiometer, and a lot of exploration work has been carried out; China began to pay attention to the application prospect of gravity gradiometer at the end of the last century, and many scientific research units cooperated to carry out related research, and branched out a number of different The research direction of the gravity gradiometer of the measurement principle, including the gravity gradiometer of the rotating accelerometer, the superconducting gravity gradiometer, the cold atom gravity gradiometer, the gravity gradiometer based on the micromechanical (MEMS) structure, and the satellite gravity gradiometer, among which the rotation Theoretical research on accelerometer gravity gradiometer is basically mature. Domestic scientific research institutes have developed a prototype of gravity gradiometer. Due to the sensor performance, stability of rotating structure, temperature control performance and other reasons, the resolution of gravity gradiometer is still low.

重力梯度仪是一种高精密测量仪器,制造一台性能优良的重力梯度仪非常困难,即使能够制造重力梯度仪的企业也无法进行批量生产,其重要原因之一是测量元件难于批量生产,而只能在大量样品中筛选出少量合格敏感器件。为了能够测量到更加精确的重力梯度,重力梯度仪在使用前需要对其进行参数标定。目前,有关旋转加速度计重力梯度仪的标定方法并没有相关专利或文献公布或发表。Gravity gradiometer is a kind of high-precision measuring instrument. It is very difficult to manufacture a gravity gradiometer with excellent performance. Even enterprises that can manufacture gravity gradiometer cannot carry out mass production. One of the important reasons is that the measuring components are difficult to mass produce, and Only a small number of qualified sensitive devices can be screened out from a large number of samples. In order to be able to measure a more accurate gravity gradient, the gravity gradiometer needs to be calibrated before use. At present, there are no relevant patents or literature published or published on the calibration method of the rotational accelerometer gravity gradiometer.

发明内容Contents of the invention

技术问题:本发明提供一种简单、高效,实现方便,具有重要实用价值的旋转加速度计重力梯度仪标定方法。Technical problem: The present invention provides a simple, efficient, easy-to-implement, and important practical value calibration method for gravity gradiometers of rotational accelerometers.

技术方案:本发明的旋转加速度计重力梯度仪标定方法,包括以下步骤:Technical solution: The calibration method of the rotational accelerometer gravity gradiometer of the present invention comprises the following steps:

1)对旋转加速度计重力梯度仪进行重力梯度标定前的操作,具体内容有:1) The operation before the gravity gradient calibration of the rotational accelerometer gravity gradiometer, the specific contents are as follows:

建立重力梯度仪坐标系为东北天地理坐标系,记为OXYZ,原点O为重力梯度仪旋转圆盘中心;初始时刻,设置圆盘上加速度计A1的质量中心位于X轴正方向上;Establish the coordinate system of the gravity gradiometer as the northeast sky geographic coordinate system, denoted as OXYZ, and the origin O is the center of the rotating disk of the gravity gradiometer; at the initial moment, set the center of mass of the accelerometer A 1 on the disk to be located in the positive direction of the X axis;

在重力梯度仪坐标系的OXY平面上,设置4个与坐标原点等距离的质量体放置位置,位置1在X、轴正方向上,位置2在Y轴正方向上,位置3在直线方程y=x,位置4在直线方程y=-x上;On the OXY plane of the gravity gradiometer coordinate system, set 4 mass body placement positions equidistant from the coordinate origin, position 1 is in the positive direction of the X and axis, position 2 is in the positive direction of the Y axis, and position 3 is in the line equation y=x , position 4 is on the line equation y=-x;

2)在一个放置位置上放置一块质量体,对重力梯度仪输出信号进行重力梯度解调,得到重力梯度分量(Γyyxx)1,1;然后在上次放置质量体数量的基础上,逐次改变放置位置上质量体的质量,并对重力梯度仪输出信号进行重力梯度解调,其中每次放置的质量体的质量是上一次的两倍;对每个放置位置按照上述操作,最终得到:2) Place a mass body on a placement position, and perform gravity gradient demodulation on the output signal of the gravity gradiometer to obtain the gravity gradient component (Γ yyxx ) 1,1 ; then, based on the number of mass bodies placed last time , change the mass of the mass body at the placement position successively, and perform gravity gradient demodulation on the output signal of the gravity gradiometer, wherein the mass of the mass body placed each time is twice that of the previous one; follow the above operation for each placement position, and finally get:

位置1的重力梯度分量(Γyyxx)1,1、(Γyyxx)1,2、(Γyyxx)1,4、……、(Γyyxx)1,2 n--1 Gravity gradient components at position 1 (Γ yyxx ) 1,1 , (Γ yyxx ) 1,2 , (Γ yyxx ) 1,4 ,..., (Γ yyxx ) 1 ,2 n--1

位置2的重力梯度分量(Γyyxx)2,1、(Γyyxx)2,2、(Γyyxx)2,4、……、(Γyyxx)2,2 n-1Gravity gradient components at position 2 (Γ yyxx ) 2,1 , (Γ yyxx ) 2,2 , (Γ yyxx ) 2,4 , ..., (Γ yyxx ) 2 ,2 n-1 ;

位置3的重力梯度分量(Γxy)3,1、(Γxy)3,2、(Γxy)3,4、……、(Γxy)3,2 n-1Gravity gradient components (Γ xy ) 3,1 , (Γ xy ) 3,2 , (Γ xy ) 3,4 , ..., (Γ xy ) 3,2 n-1 at position 3;

位置4的重力梯度分量(Γxy)4,1、(Γxy)4,2、(Γxy)4,4、……、(Γxy)4,2 n-1Gravity gradient components (Γ xy ) 4,1 , (Γ xy ) 4,2 , (Γ xy ) 4,4 , ..., (Γ xy ) 4,2 n-1 at position 4;

其中n为重力梯度解调的序数,首次放置质量体时n为1,每改变一次质量体质量,序数n增加1;Among them, n is the ordinal number of gravity gradient demodulation. When placing the mass body for the first time, n is 1. Every time the mass body is changed, the ordinal number n increases by 1;

3)根据下式计算得到重力梯度仪重力梯度分量(Γyyxx)的零位:3) Calculate the zero position of the gravity gradient component (Γ yyxx ) of the gravity gradiometer according to the following formula:

ΓΓ ythe y ythe y -- xx xx cc 00 == 11 nno ΣΣ ii == 11 nno (( ΓΓ ythe y ythe y -- ΓΓ xx xx )) 11 ,, 22 ii -- 11 ++ (( ΓΓ ythe y ythe y -- ΓΓ xx xx )) 22 ,, 22 ii -- 11 22

根据下式计算得到重力梯度仪重力梯度分量(Γxy)的零位:The zero position of the gravity gradient component (Γ xy ) of the gravity gradiometer is calculated according to the following formula:

ΓΓ xx ythe y cc 00 == 11 nno ΣΣ ii == 11 nno (( ΓΓ xx ythe y )) 33 ,, 22 ii -- 11 ++ (( ΓΓ xx ythe y )) 44 ,, 22 ii -- 11 22

根据下式计算质量体对重力梯度仪中心产生的重力梯度分量理论值:Calculate the theoretical value of the gravity gradient component produced by the mass body to the center of the gravity gradiometer according to the following formula:

(( ΓΓ ythe y ythe y -- ΓΓ xx xx )) 22 ii -- 11 tt == 33 GG ρρ ∫∫ WW ii -- ww // 22 WW ii ++ ww // 22 dd xx ∫∫ DD. ii -- dd // 22 DD. ii ++ dd // 22 dd ythe y ∫∫ Hh ii -- hh // 22 Hh ii ++ hh // 22 (( ythe y 22 -- xx 22 )) (( xx 22 ++ ythe y 22 ++ xx 22 )) 55 // 22 dd zz (( ΓΓ xx ythe y )) 22 ii -- 11 tt == 33 GG ρρ ∫∫ WW ii -- ww // 22 WW ii ++ ww // 22 dd xx ∫∫ DD. ii -- dd // 22 DD. ii ++ dd // 22 dd ythe y ∫∫ Hh ii -- hh // 22 Hh ii ++ hh // 22 xx ythe y (( xx 22 ++ ythe y 22 ++ zz 22 )) 55 // 22 dd zz

其中,(x,y,z)为质量体内部任意一点位置坐标,(Wi,Di,Hi)为第i次放置质量体质心坐标,G为牛顿万有引力常数,ρ为质量体密度,w、d、h分别为质量体的长、宽、高,Γxx为X轴上的重力加速度分量在X轴方向上的空间导数,Γyy为Y轴上的重力加速度分量在Y轴方向上的空间导数,Γxy为X(Y)轴上的重力加速度在Y(X)轴方向上的空间导数;Among them, (x, y, z) are the position coordinates of any point inside the mass body, (W i , D i , H i ) are the coordinates of the center of mass of the mass body placed for the ith time, G is Newton’s gravitational constant, ρ is the density of the mass body, w, d, and h are the length, width, and height of the mass body respectively, Γ xx is the spatial derivative of the gravitational acceleration component on the X-axis in the X-axis direction, and Γ yy is the gravitational acceleration component on the Y-axis in the Y-axis direction The spatial derivative of Γ xy is the spatial derivative of the gravitational acceleration on the X (Y) axis in the Y (X) axis direction;

4)根据下式计算得到位置1不同质量体质量时重力梯度仪测量到的重力梯度分量为:4) According to the following formula, the gravity gradient components measured by the gravity gradiometer at position 1 with different masses are:

(( ΓΓ ythe y ythe y -- ΓΓ xx xx )) 22 ii -- 11 cc == (( ΓΓ ythe y ythe y -- ΓΓ xx xx )) 11 ,, 22 ii -- 11 -- (( ΓΓ ythe y ythe y -- ΓΓ xx xx )) 22 ,, 22 ii -- 11 22

对上式进行线性拟合,得到一个质量体质量与重力梯度值的线性关系式,然后根据下式计算得到重力梯度分量(Γyyxx)的标度系数:Perform linear fitting on the above formula to obtain a linear relationship between the mass of the mass and the gravity gradient value, and then calculate the scale coefficient of the gravity gradient component (Γ yyxx ) according to the following formula:

KK ythe y ythe y -- xx xx == KK ythe y ythe y -- nno tt KK ythe y ythe y -- nno cc

其中为重力梯度分量理论值线性拟合所得线性关系式的斜率,为位置1的重力梯度仪测量重力梯度分量线性拟合所得线性关系式的斜率;in is the theoretical value of the gravity gradient component The slope of the linear relationship obtained by linear fitting, Measure the gravity gradient component for the gravity gradiometer at position 1 The slope of the linear relationship obtained by linear fitting;

根据下式计算得到位置3不同质量体个数时重力梯度仪测量到的重力梯度分量为: ( Γ x y ) 2 i - 1 c = ( Γ x y ) 1 , 2 i - 1 - ( Γ x y ) 2 , 2 i - 1 2 According to the following formula, the gravity gradient component measured by the gravity gradiometer when the number of different mass bodies in position 3 is obtained is: ( Γ x the y ) 2 i - 1 c = ( Γ x the y ) 1 , 2 i - 1 - ( Γ x the y ) 2 , 2 i - 1 2

对上式进行线性拟合,得到一个质量体质量与重力梯度值的线性关系式,然后根据下式计算得到重力梯度分量(Γxy)的标度系数:Perform linear fitting on the above formula to obtain a linear relationship between the mass of the mass body and the gravity gradient value, and then calculate the scale coefficient of the gravity gradient component (Γ xy ) according to the following formula:

KK xx ythe y == KK xx ythe y tt KK xx ythe y cc

其中为重力梯度分量理论值线性拟合所得线性关系式的斜率,其中,为位置3的重力梯度仪测量重力梯度分量线性拟合所得线性关系式的斜率。in is the theoretical value of the gravity gradient component The slope of the linear relationship obtained by linear fitting, where, Measure the gravity gradient component for the gravity gradiometer at position 3 The slope of the linear relationship obtained from the linear fit.

进一步的,本发明方法中,所述的质量体为正方体,密度分布均匀。Further, in the method of the present invention, the mass body is a cube with uniform density distribution.

进一步的,本发明方法中,所述步骤2)中,通过准备多块密度、体积相同的质量体,增加放置质量体数量的方式来增加放置位置上质量体的质量。Further, in the method of the present invention, in the step 2), the quality of the mass body at the placement position is increased by preparing a plurality of mass bodies with the same density and volume, and increasing the number of placed mass bodies.

本发明中,在重力梯度仪外侧空间的四个不同位置上依次放置一定的质量体,通过改变质量体质量改变重力梯度仪中心处的引力场,变化的引力场被重力梯度仪敏感到,然后对重力梯度仪输出信号进行滤波与梯度解调,得到重力梯度仪重力梯度测量结果,测量结果与重力梯度理论值相比较,得到重力梯度仪的两个重力梯度分量的零位和标度系数。In the present invention, certain mass bodies are sequentially placed on four different positions in the outer space of the gravity gradiometer, and the gravitational field at the center of the gravity gradiometer is changed by changing the quality of the mass body, and the changed gravitational field is sensitive to the gravity gradiometer, and then Filter and gradient demodulate the output signal of the gravity gradiometer to obtain the gravity gradient measurement result of the gravity gradiometer, compare the measurement result with the theoretical value of the gravity gradient, and obtain the zero position and scale coefficient of the two gravity gradient components of the gravity gradiometer.

有益效果:本发明与现有技术相比,具有以下优点:Beneficial effect: compared with the prior art, the present invention has the following advantages:

本发明是首次给出旋转加速度计重力梯度仪的标定方法。通常重力梯度仪标定方法是固定质量体质量,采用改变质量体质心到重力梯度仪中心的距离来实现,但该方法对于较小距离时引起的重力梯度畸变较为严重,且质量体质心到重力梯度仪中心之间的距离与重力梯度分量之间并不是线性关系,重力梯度标定误差较大;而本发明方法采用固定质量体中心到重力梯度仪中心的距离,通过改变质量体质量的方式实现重力梯度标定,采用该方法可以显著降低质量体在近距离引起的重力梯度畸变,且质量体质量与重力梯度分量之间能够确保在一定的范围内成线性关系,提高了重力梯度标定精度。The invention provides the calibration method of the gravity gradiometer of the rotational accelerometer for the first time. Usually, the calibration method of the gravity gradiometer is to fix the mass of the mass body, and it is realized by changing the distance from the center of mass of the mass body to the center of the gravity gradiometer. The distance between the center of the meter and the gravity gradient component is not a linear relationship, and the calibration error of the gravity gradient is relatively large; and the method of the present invention adopts the distance from the center of the fixed mass body to the center of the gravity gradient meter, and realizes gravity by changing the mass of the mass body. Gradient calibration, using this method can significantly reduce the gravity gradient distortion caused by the mass body at a short distance, and the linear relationship between the mass body mass and the gravity gradient component can be ensured within a certain range, which improves the gravity gradient calibration accuracy.

附图说明Description of drawings

图1为旋转加速度计重力梯度仪质量体放置示意图。Figure 1 is a schematic diagram of the mass body placement of the rotational accelerometer gravity gradiometer.

图2为重力梯度仪测量到的重力梯度分量(Γyyxx)与质量体个数之间的对应关系。Fig. 2 is the corresponding relationship between the gravity gradient component (Γ yyxx ) measured by the gravity gradiometer and the number of mass bodies.

图3为重力梯度仪测量到的重力梯度分量(Γxy)与质量体个数之间的对应关系。Fig. 3 is the corresponding relationship between the gravity gradient component (Γ xy ) measured by the gravity gradiometer and the number of mass bodies.

具体实施方式detailed description

下面结合实施例和说明书附图对本发明作进一步地说明。The present invention will be further described below in conjunction with embodiment and accompanying drawing.

1)对旋转加速度计重力梯度仪进行重力梯度标定前的操作,具体内容有:1) The operation before the gravity gradient calibration of the rotational accelerometer gravity gradiometer, the specific contents are as follows:

建立重力梯度仪坐标系为东北天地理坐标系,记为OXYZ,原点O为重力梯度仪旋转圆盘中心;初始时刻,设置圆盘上加速度计A1的质量中心位于X轴正方向上;Establish the coordinate system of the gravity gradiometer as the northeast sky geographic coordinate system, denoted as OXYZ, and the origin O is the center of the rotating disk of the gravity gradiometer; at the initial moment, set the center of mass of the accelerometer A 1 on the disk to be located in the positive direction of the X axis;

在重力梯度仪坐标系的OXY平面上,设置4个与坐标原点等距离的质量体放置位置,位置1在X、轴正方向上,位置2在Y轴正方向上,位置3在直线方程y=x,位置4在直线方程y=-x上;On the OXY plane of the gravity gradiometer coordinate system, set 4 mass body placement positions equidistant from the coordinate origin, position 1 is in the positive direction of the X and axis, position 2 is in the positive direction of the Y axis, and position 3 is in the line equation y=x , position 4 is on the line equation y=-x;

2)在一个放置位置上放置一块质量体,对重力梯度仪输出信号进行重力梯度解调,得到重力梯度分量(Γyyxx)1,1;然后在上次放置质量体数量的基础上,逐次改变放置位置上质量体的质量,并对重力梯度仪输出信号进行重力梯度解调,其中每次放置的质量体的质量是上一次的两倍;对每个放置位置按照上述操作,最终得到:2) Place a mass body on a placement position, and perform gravity gradient demodulation on the output signal of the gravity gradiometer to obtain the gravity gradient component (Γ yyxx ) 1,1 ; then, based on the number of mass bodies placed last time , change the mass of the mass body at the placement position successively, and perform gravity gradient demodulation on the output signal of the gravity gradiometer, wherein the mass of the mass body placed each time is twice that of the previous one; follow the above operation for each placement position, and finally get:

位置1的重力梯度分量(Γyyxx)1,1、(Γyyxx)1,2、(Γyyxx)1,4、……、(Γyyxx)1,2 n--1 Gravity gradient components at position 1 (Γ yyxx ) 1,1 , (Γ yyxx ) 1,2 , (Γ yyxx ) 1,4 ,..., (Γ yyxx ) 1 ,2 n--1

位置2的重力梯度分量(Γyyxx)2,1、(Γyyxx)2,2、(Γyyxx)2,4、……、(Γyyxx)2,2 n-1Gravity gradient components at position 2 (Γ yyxx ) 2,1 , (Γ yyxx ) 2,2 , (Γ yyxx ) 2,4 , ..., (Γ yyxx ) 2 ,2 n-1 ;

位置3的重力梯度分量(Γxy)3,1、(Γxy)3,2、(Γxy)3,4、……、(Γxy)3,2 n-1Gravity gradient components (Γ xy ) 3,1 , (Γ xy ) 3,2 , (Γ xy ) 3,4 , ..., (Γ xy ) 3,2 n-1 at position 3;

位置4的重力梯度分量(Γxy)4,1、(Γxy)4,2、(Γxy)4,4、……、(Γxy)4,2 n-1Gravity gradient components (Γ xy ) 4,1 , (Γ xy ) 4,2 , (Γ xy ) 4,4 , ..., (Γ xy ) 4,2 n-1 at position 4;

其中n为重力梯度解调的序数,首次放置质量体时n为1,每改变一次质量体质量,序数n增加1;Among them, n is the ordinal number of gravity gradient demodulation. When placing the mass body for the first time, n is 1. Every time the mass body is changed, the ordinal number n increases by 1;

3)根据下式计算得到重力梯度仪重力梯度分量(Γyyxx)的零位:3) Calculate the zero position of the gravity gradient component (Γ yyxx ) of the gravity gradiometer according to the following formula:

ΓΓ ythe y ythe y -- xx xx cc 00 == 11 nno ΣΣ ii == 11 nno (( ΓΓ ythe y ythe y -- ΓΓ xx xx )) 11 ,, 22 ii -- 11 ++ (( ΓΓ ythe y ythe y -- ΓΓ xx xx )) 22 ,, 22 ii -- 11 22 -- -- -- (( 11 ))

根据下式计算得到重力梯度仪重力梯度分量(Γxy)的零位:The zero position of the gravity gradient component (Γ xy ) of the gravity gradiometer is calculated according to the following formula:

ΓΓ xx ythe y cc 00 == 11 nno ΣΣ ii == 11 nno (( ΓΓ xx ythe y )) 33 ,, 22 ii -- 11 ++ (( ΓΓ xx ythe y )) 44 ,, 22 ii -- 11 22 -- -- -- (( 22 ))

根据下式计算质量体对重力梯度仪中心产生的重力梯度分量理论值:Calculate the theoretical value of the gravity gradient component produced by the mass body to the center of the gravity gradiometer according to the following formula:

(( ΓΓ ythe y ythe y -- ΓΓ xx xx )) 22 ii -- 11 tt == 33 GG ρρ ∫∫ WW ii -- ww // 22 WW ii ++ ww // 22 dd xx ∫∫ DD. ii -- dd // 22 DD. ii ++ dd // 22 dd ythe y ∫∫ Hh ii -- hh // 22 Hh ii ++ hh // 22 (( ythe y 22 -- xx 22 )) (( xx 22 ++ ythe y 22 ++ xx 22 )) 55 // 22 dd zz (( ΓΓ xx ythe y )) 22 ii -- 11 tt == 33 GG ρρ ∫∫ WW ii -- ww // 22 WW ii ++ ww // 22 dd xx ∫∫ DD. ii -- dd // 22 DD. ii ++ dd // 22 dd ythe y ∫∫ Hh ii -- hh // 22 Hh ii ++ hh // 22 xx ythe y (( xx 22 ++ ythe y 22 ++ zz 22 )) 55 // 22 dd zz -- -- -- (( 33 ))

其中,(x,y,z)为质量体内部任意一点位置坐标,(Wi,Di,Hi)为第i次放置质量体质心坐标,G为牛顿万有引力常数,ρ为质量体密度,w、d、h分别为质量体的长、宽、高,Γxx为X轴上的重力加速度分量在X轴方向上的空间导数,Γyy为Y轴上的重力加速度分量在Y轴方向上的空间导数,Γxy为X(Y)轴上的重力加速度在Y(X)轴方向上的空间导数;Among them, (x, y, z) are the position coordinates of any point inside the mass body, (W i , D i , H i ) are the coordinates of the center of mass of the mass body placed for the ith time, G is Newton’s gravitational constant, ρ is the density of the mass body, w, d, and h are the length, width, and height of the mass body respectively, Γ xx is the spatial derivative of the gravitational acceleration component on the X-axis in the X-axis direction, and Γ yy is the gravitational acceleration component on the Y-axis in the Y-axis direction The spatial derivative of Γ xy is the spatial derivative of the gravitational acceleration on the X (Y) axis in the Y (X) axis direction;

4)将位置1的重力梯度分量(Γyyxx)1,2 n-1与位置2的重力梯度分量(Γyyxx)2,2 n-1一一对应相减后除2,得到位置1不同质量体个数时重力梯度仪测量到的重力梯度分量,即:4) Subtract the gravity gradient component (Γ yyxx ) 1,2 n-1 at position 1 and the gravity gradient component (Γ yyxx ) 2,2 n-1 at position 2 one by one and divide by 2 , to obtain the gravitational gradient components measured by the gravity gradiometer at position 1 with different mass bodies, namely:

(( ΓΓ ythe y ythe y -- ΓΓ xx xx )) 22 ii -- 11 cc == (( ΓΓ ythe y ythe y -- ΓΓ xx xx )) 11 ,, 22 ii -- 11 -- (( ΓΓ ythe y ythe y -- ΓΓ xx xx )) 22 ,, 22 ii -- 11 22 -- -- -- (( 44 ))

对梯度仪测量到的i个重力梯度分量(Γyyxx)1,2 i-1进行线性拟合,设计算得到的重力梯度分量(Γyyxx)线性关系式为:Perform linear fitting on the i gravity gradient components (Γ yyxx ) 1,2 i-1 measured by the gradiometer, and the linear relationship of the gravity gradient components (Γ yyxx ) obtained by design and calculation is:

ΓΓ ythe y ythe y -- xx xx cc == KK ythe y ythe y -- xx xx cc NN ++ BB ythe y ythe y -- nno cc -- -- -- (( 55 ))

其中,分别为重力梯度分量(Γyyxx)测量值线性关系式的斜率和截距,N为质量体个数。in, are the slope and intercept of the linear relational expression of the measured value of the gravity gradient component (Γ yyxx ), respectively, and N is the number of mass bodies.

采用重力梯度分量理论计算公式(3)计算在相同位置处的质量体对重力梯度仪中心产生的理论重力梯度分量(Γyyxx),并对计算出的重力梯度理论值的进行线性拟合,设计算得到的线性拟合关系式为:The theoretical gravity gradient component (Γ yyxx ) produced by the mass body at the same position to the center of the gravity gradiometer is calculated by using the theoretical calculation formula (3) of the gravity gradient component, and a linear fitting is performed on the calculated theoretical value of the gravity gradient Together, the linear fitting relational formula calculated by design is:

ΓΓ ythe y ythe y -- xx xx tt == KK ythe y ythe y -- xx xx tt NN ++ BB ythe y ythe y -- xx xx tt -- -- -- (( 66 ))

其中,分别为重力梯度分量(Γyyxx)理论值线性关系式的斜率和截距,N为质量体个数。in, are the slope and intercept of the linear relational expression of the theoretical value of the gravity gradient component (Γ yyxx ), respectively, and N is the number of mass bodies.

根据下式计算得到重力梯度分量(Γyyxx)的标度系数:The scale coefficient of the gravity gradient component (Γ yyxx ) is calculated according to the following formula:

KK ythe y ythe y -- xx xx == KK ythe y ythe y -- xx xx tt KK ythe y ythe y -- xx xx cc -- -- -- (( 77 ))

将位置3的重力梯度分量(Γxy)3,2 n-1与位置4的重力梯度分量(Γxy)4,2 n-1一一对应相减后除2,得到位置3的不同质量体个数时的重力梯度仪测量到的重力梯度分量为:Subtract the gravitational gradient component (Γ xy ) 3,2 n-1 at position 3 and the gravitational gradient component (Γ xy ) 4,2 n-1 at position 4 in one-to-one correspondence and divide by 2 to obtain the different mass body at position 3 The gravitational gradient components measured by the gravity gradiometer at the number of times are:

(( ΓΓ xx ythe y )) 22 ii -- 11 cc == (( ΓΓ xx ythe y )) 11 ,, 22 ii -- 11 -- (( ΓΓ xx ythe y )) 22 ,, 22 ii -- 11 22 -- -- -- (( 88 ))

对梯度仪测量到的i个重力梯度分量(Γxy)3,2 i-1进行线性拟合,设计算得到的重力梯度分量(Γxy)线性关系式为:Linear fitting is carried out on the i gravity gradient components (Γ xy ) 3,2 i-1 measured by the gradiometer, and the linear relationship formula of the gravity gradient components (Γ xy ) obtained by design and calculation is:

ΓΓ xx ythe y cc == KK xx ythe y cc NN ++ BB xx ythe y cc -- -- -- (( 99 ))

其中,分别为重力梯度分量(Γxy)测量值线性关系式的斜率和截距。in, are the slope and intercept of the linear relational expression of the gravity gradient component (Γ xy ), respectively.

采用重力梯度分量理论计算公式(3)计算在相同位置处的质量体对重力梯度仪中心产生的理论重力梯度分量(Γxy),并对计算出的重力梯度理论值进行线性拟合,设计算得到的线性拟合关系式为:The theoretical calculation formula (3) of the gravity gradient component is used to calculate the theoretical gravity gradient component (Γ xy ) generated by the mass body at the same position to the center of the gravity gradiometer, and the calculated theoretical value of the gravity gradient is linearly fitted, and the design calculation The obtained linear fitting relation is:

ΓΓ xx ythe y tt == KK xx ythe y tt NN ++ BB xx ythe y tt -- -- -- (( 1010 ))

其中,分别为重力梯度分量(Γxy)理论值线性关系式的斜率和截距。in, are the slope and intercept of the linear relational expression of the theoretical value of the gravity gradient component (Γ xy ), respectively.

根据下式计算得到重力梯度分量(Γxy)的标度系数:The scale coefficient of the gravity gradient component (Γ xy ) is calculated according to the following formula:

KK xx ythe y == KK xx ythe y tt KK xx ythe y cc -- -- -- (( 1111 ))

应理解上述实施例仅用于说明本发明技术方案的优选实施方式,而不用于限制本发明的范围。在阅读了本发明之后,本领域技术人员对本发明的各种等同形式的修改和替换均落于本申请权利要求所限定的保护范围。It should be understood that the above examples are only used to illustrate preferred implementations of the technical solutions of the present invention, and are not intended to limit the scope of the present invention. After reading the present invention, modifications and replacements of various equivalent forms of the present invention by those skilled in the art fall within the scope of protection defined by the claims of the present application.

Claims (3)

1. A calibration method for a gravity gradiometer of a rotary accelerometer is characterized by comprising the following steps:
1) the operation before gravity gradient calibration is carried out on the rotating accelerometer gravity gradiometer comprises the following specific contents:
establishing a gravity gradiometer coordinate system as a northeast geographic coordinate system, and recording the coordinate system as OXYZ, wherein an origin O is the center of a rotating disk of the gravity gradiometer; at the initial moment, an accelerometer A on the disc is set1The center of mass of (2) is located in the positive direction of the X axis;
setting 4 mass body placing positions which are equidistant to a coordinate origin on an XY plane of a gravity gradiometer coordinate system, wherein the position 1 is in the positive direction of X and an axis, the position 2 is in the positive direction of Y axis, the position 3 is in the linear equation Y which is equal to X, and the position 4 is in the linear equation Y which is equal to X;
2) placing a mass body at a placing position, and performing gravity gradient demodulation on the output signal of the gravity gradiometer to obtain a gravity gradient component (yy-xx)1,1(ii) a Then on the basis of the number of the mass bodies placed at the last time, the mass of the mass bodies at the placing positions is changed gradually, and the gravity gradient demodulation is carried out on the output signal of the gravity gradiometer, wherein the mass of the mass body placed at each time is twice of that of the mass body placed at the last time; for each placement position, according to the above operation, the following results are obtained:
gravity gradient component of position 1: (yy-xx)1,1、(yy-xx)1,2、(yy-xx)1,4、……、(yy-xx)1,2 n--1
Gravity gradient component of position 2: (yy-xx)2,1、(yy-xx)2,2、(yy-xx)2,4、……、(yy-xx)2,2 n-1
Gravity gradient component of position 3: (xy)3,1、(xy)3,2、(xy)3,4、……、(xy)3,2 n-1
Gravity gradient component of position 4: (xy)4,1、(xy)4,2、(xy)4,4、……、(xy)4,2 n-1
Wherein n is the ordinal number of gravity gradient demodulation, n is 1 when the mass body is placed for the first time, and the ordinal number n is increased by 1 when the mass body is changed every time;
3) calculating the gravity gradient component of the gravity gradiometer according to the formula (yy-xx) Zero position of (2):
Γ y y - x x c 0 = 1 n Σ i = 1 n ( Γ y y - Γ x x ) 1 , 2 i - 1 + ( Γ y y - Γ x x ) 2 , 2 i - 1 2
calculating the gravity gradient component of the gravity gradiometer according to the formula (xy) Zero position of (2):
Γ x y c 0 = 1 n Σ i = 1 n ( Γ x y ) 3 , 2 i - 1 + ( Γ x y ) 4 , 2 i - 1 2
calculating the gravity gradient component theoretical value generated by the mass body to the center of the gravity gradiometer according to the following formula:
( Γ y y - Γ x x ) 2 i - 1 t = 3 G ρ ∫ W i - w / 2 W i + w / 2 d x ∫ D i - d / 2 D i + d / 2 d y ∫ H i - h / 2 H i + h / 2 ( y 2 - x 2 ) ( x 2 + y 2 + z 2 ) 5 / 2 d z ( Γ x y ) 2 i - 1 t = 3 G ρ ∫ W i - w / 2 W i + w / 2 d x ∫ D i - d / 2 D i + d / 2 d y ∫ H i - h / 2 H i + h / 2 x y ( x 2 + y 2 + z 2 ) 5 / 2 d z
wherein, (x, y, z) is the position coordinate of any point in the mass body, (W)i,Di,Hi) The mass center coordinate of the mass body is placed for the ith time, G is a Newton universal gravitation constant, rho is the density of the mass body, w, d and h are respectively the length, width and height of the mass body,xxis the gravity acceleration component on the X axis in the X axis directionThe spatial derivative of (a) is determined,yyis the spatial derivative of the gravitational acceleration component on the Y-axis in the Y-direction,xyis the spatial derivative of the acceleration of gravity in the X (Y) axis in the direction of the Y (X) axis;
4) the gravity gradient component measured by the gravity gradiometer when the mass of different masses at the position 1 is obtained by calculation according to the following formula is:
( Γ y y - Γ x x ) 2 i - 1 c = ( Γ y y - Γ x x ) 1 , 2 i - 1 - ( Γ y y - Γ x x ) 2 , 2 i - 1 2
performing linear fitting on the above formula to obtain a linear relation formula of the mass body and the gravity gradient value, and then calculating according to the following formula to obtain the gravity gradient component (yy-xx) Scale factor of (c):
K y y - x x = K y y - x x t K y y - x x c
whereinAs theoretical values of gravity gradient componentsThe slope of the linear relation obtained by linear fitting,measuring gravity gradient components for a gravity gradiometer of position 1Linearly fitting to obtain the slope of a linear relation;
the gravity gradient component measured by the gravity gradiometer when the number of different masses at the position 3 is calculated according to the following formula is:
( Γ x y ) 2 i - 1 c = ( Γ x y ) 1 , 2 i - 1 - ( Γ x y ) 2 , 2 i - 1 2
performing linear fitting on the above formula to obtain a linear relation formula of the mass body and the gravity gradient value, and then calculating according to the following formula to obtain the gravity gradient component (xy) Scale factor of (c):
K x y = K x y t K x y c
whereinAs theoretical values of gravity gradient componentsLinearly fitting the slope of the resulting linear relationship, wherein,measuring the gradient component for a gravity gradiometer at position 3And linearly fitting the slope of the obtained linear relation.
2. The method for calibrating a gravity gradiometer of a rotary accelerometer according to claim 1 wherein the mass is a cube and the density distribution is uniform.
3. The calibration method for the gravity gradiometer of the rotary accelerometer according to claim 1 or 2, wherein in the step 2), the mass of the mass body at the placement position is increased by preparing a plurality of mass bodies with the same density and volume and increasing the number of the placed mass bodies.
CN201610065880.XA 2016-01-29 2016-01-29 A kind of rotating accelerometer gravity gradiometer scaling method Expired - Fee Related CN105717553B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610065880.XA CN105717553B (en) 2016-01-29 2016-01-29 A kind of rotating accelerometer gravity gradiometer scaling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610065880.XA CN105717553B (en) 2016-01-29 2016-01-29 A kind of rotating accelerometer gravity gradiometer scaling method

Publications (2)

Publication Number Publication Date
CN105717553A true CN105717553A (en) 2016-06-29
CN105717553B CN105717553B (en) 2018-01-16

Family

ID=56155263

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610065880.XA Expired - Fee Related CN105717553B (en) 2016-01-29 2016-01-29 A kind of rotating accelerometer gravity gradiometer scaling method

Country Status (1)

Country Link
CN (1) CN105717553B (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106556878A (en) * 2016-10-31 2017-04-05 华中科技大学 A kind of brace suspension type gravity gradiometer
CN107272084A (en) * 2017-05-08 2017-10-20 中国船舶重工集团公司第七〇七研究所 A kind of method for creating the even value gravity gradient tensor excitation of Local approximation
CN107576992A (en) * 2017-09-04 2018-01-12 东南大学 A kind of gravity gradiometer self-calibrating method and centrifiigation gradient compensation method
CN107643548A (en) * 2017-09-04 2018-01-30 东南大学 A kind of multi-frequency gravity gradient pumping signal production method
CN107870371A (en) * 2017-12-05 2018-04-03 东南大学 A Self-Gradient Compensation Method for Gravity Gradient Meter on Moving Base
WO2018161474A1 (en) * 2017-03-09 2018-09-13 中国科学院电工研究所 Gravity gradient measurement method and apparatus
CN108562398A (en) * 2018-03-30 2018-09-21 临沂大学 A kind of object center of gravity measurement method
CN109085654A (en) * 2018-06-11 2018-12-25 东南大学 A kind of rotating accelerometer gravity gradiometer digital modeling emulation mode
CN109709628A (en) * 2019-02-15 2019-05-03 东南大学 A calibration method of a rotary accelerometer gravity gradiometer
WO2020042696A1 (en) * 2018-08-27 2020-03-05 东南大学 Device and method for compensating for error of moving-base rotating-accelerometer gravity gradiometer
CN112327379A (en) * 2020-09-28 2021-02-05 中国船舶重工集团公司第七0七研究所 Full-tensor gravity gradient dynamic measurement system and method
CN113267821A (en) * 2021-04-30 2021-08-17 北京大学 Gravity gradient measurement method and system based on angular motion

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5922951A (en) * 1997-06-11 1999-07-13 The Broken Hill Proprietary Company Ltd. Gravity gradiometer
CN103499845A (en) * 2013-09-06 2014-01-08 北京航天控制仪器研究所 Method utilizing gravity gradiometer to measure gravity gradients
CN104459826A (en) * 2014-11-03 2015-03-25 东南大学 Method for simulating gravity gradient signals of gravity gradient meters of rotating accelerometers
CN104898176A (en) * 2015-06-10 2015-09-09 东南大学 Gravity gradient demodulating method for gravity gradiometer of rotating accelerometer
CN105044798A (en) * 2015-06-29 2015-11-11 东南大学 Rotating accelerometer gravity gradiometer accelerometer scale factor feedback adjustment method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5922951A (en) * 1997-06-11 1999-07-13 The Broken Hill Proprietary Company Ltd. Gravity gradiometer
CN103499845A (en) * 2013-09-06 2014-01-08 北京航天控制仪器研究所 Method utilizing gravity gradiometer to measure gravity gradients
CN104459826A (en) * 2014-11-03 2015-03-25 东南大学 Method for simulating gravity gradient signals of gravity gradient meters of rotating accelerometers
CN104898176A (en) * 2015-06-10 2015-09-09 东南大学 Gravity gradient demodulating method for gravity gradiometer of rotating accelerometer
CN105044798A (en) * 2015-06-29 2015-11-11 东南大学 Rotating accelerometer gravity gradiometer accelerometer scale factor feedback adjustment method

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
侯旭阳 等: "旋转加速度计式重力梯度仪中加速度计标度系数的精确匹配方法研究", 《重力测量技术——惯性技术发展动态发展方向研讨会文集》 *
李海兵等: "旋转加速度计重力梯度仪误差分析", 《中国惯性技术学报》 *
涂良成 等: "旋转重力梯度仪的加速度计动态调节方法与需求分析", 《中国惯性技术学报》 *
王树甫等: "旋转加速度计重力梯度仪标度因子调整方法及误差补偿研究", 《中国惯性技术学报》 *
聂鲁燕等: "重力梯度仪旋转加速度计标度因数匹配方法", 《中国惯性技术学报》 *
钱学武 等: "一种旋转加速度计重力梯度仪重力梯度解调方法", 《物探与化探》 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106556878A (en) * 2016-10-31 2017-04-05 华中科技大学 A kind of brace suspension type gravity gradiometer
CN106556878B (en) * 2016-10-31 2019-06-07 华中科技大学 A kind of brace suspension type gravity gradiometer
WO2018161474A1 (en) * 2017-03-09 2018-09-13 中国科学院电工研究所 Gravity gradient measurement method and apparatus
US11402538B2 (en) 2017-03-09 2022-08-02 Institute Of Electrical Engineering, Chinese Academy Of Sciences Gravity gradient measurement method and apparatus
CN107272084A (en) * 2017-05-08 2017-10-20 中国船舶重工集团公司第七〇七研究所 A kind of method for creating the even value gravity gradient tensor excitation of Local approximation
CN107643548B (en) * 2017-09-04 2019-03-12 东南大学 A kind of multi-frequency gravity gradient pumping signal production method
CN107576992A (en) * 2017-09-04 2018-01-12 东南大学 A kind of gravity gradiometer self-calibrating method and centrifiigation gradient compensation method
CN107643548A (en) * 2017-09-04 2018-01-30 东南大学 A kind of multi-frequency gravity gradient pumping signal production method
CN107576992B (en) * 2017-09-04 2019-02-22 东南大学 A Gravity Gradiometer Self-Calibration Method and Centrifugal Gradient Compensation Method
CN107870371A (en) * 2017-12-05 2018-04-03 东南大学 A Self-Gradient Compensation Method for Gravity Gradient Meter on Moving Base
CN108562398A (en) * 2018-03-30 2018-09-21 临沂大学 A kind of object center of gravity measurement method
CN109085654A (en) * 2018-06-11 2018-12-25 东南大学 A kind of rotating accelerometer gravity gradiometer digital modeling emulation mode
WO2020042696A1 (en) * 2018-08-27 2020-03-05 东南大学 Device and method for compensating for error of moving-base rotating-accelerometer gravity gradiometer
CN109709628A (en) * 2019-02-15 2019-05-03 东南大学 A calibration method of a rotary accelerometer gravity gradiometer
WO2020164206A1 (en) * 2019-02-15 2020-08-20 东南大学 Calibration method for gravity gradiometer of rotating accelerometer
US11372130B2 (en) 2019-02-15 2022-06-28 Southeast University Calibration method for rotating accelerometer gravity gradiometer
CN112327379A (en) * 2020-09-28 2021-02-05 中国船舶重工集团公司第七0七研究所 Full-tensor gravity gradient dynamic measurement system and method
CN112327379B (en) * 2020-09-28 2022-04-12 中国船舶重工集团公司第七0七研究所 Full-tensor gravity gradient dynamic measurement system and method
CN113267821A (en) * 2021-04-30 2021-08-17 北京大学 Gravity gradient measurement method and system based on angular motion

Also Published As

Publication number Publication date
CN105717553B (en) 2018-01-16

Similar Documents

Publication Publication Date Title
CN105717553B (en) A kind of rotating accelerometer gravity gradiometer scaling method
CN101887068B (en) Calibration compensation method for triaxial vector sensor and biaxial vector sensor
CN102853850B (en) Triaxial MEMS gyroscope rotation integral calibration method based on uniaxial turntable
CN107015287B (en) A kind of gradiometry device and measurement method
CN103076640B (en) Method for inverting earth gravitational field by using variance-covariance diagonal tensor principle
CN104459826B (en) Rotating accelerometer gravity gradiometer gravity gradient signal simulation method
CN109709628B (en) A calibration method of a rotary accelerometer gravity gradiometer
CN102841218A (en) Double-shaft centrifuge based gyro accelerometer testing method
CN101158582A (en) A MEMS gyroscope differential measurement method
CN109766812B (en) A Post-Compensation Method for Motion Error of Rotary Accelerometer Gravity Gradiometer
CN103389114B (en) 3 axis MEMS gyro non-orthogonal errors scaling method based on g sensitivity
CN108931824B (en) A method for calibrating error gain coefficient of gravity gradiometer of moving base rotary accelerometer
CN107870371A (en) A Self-Gradient Compensation Method for Gravity Gradient Meter on Moving Base
CN102998713A (en) Satellite gravity gradient inversion method based on power spectrum half analysis
CN103454607B (en) The bearing calibration of magnetic field sensor signal and the Vehicular navigation system based on the method
CN103091722A (en) Satellite gravity inversion method based on load error analysis theory
CN111239667B (en) A Unified Calibration Method for Magnetic Gradient Tensors of Different Orders
Xing et al. A new and high-precision gravity base network in the south of the Tibetan Plateau
CN107576992B (en) A Gravity Gradiometer Self-Calibration Method and Centrifugal Gradient Compensation Method
CN106526700B (en) A method of gravity sensor resolution ratio is assessed using earth gravitational field
CN109085654B (en) A digital modeling and simulation method of a rotary accelerometer gravity gradiometer
CN105300353B (en) High-precision inclinometer based on oversampling technology
CN104730473A (en) Absolute magnetic field measuring device and absolute magnetic field measuring method thereof
CN116793388A (en) Calibrating method for gyroscope and quartz accelerometer system of precise centrifugal measuring device
CN107272084B (en) A method of the even value gravity gradient tensor excitation of creation Local approximation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180116