CN105717553A - Calibration method for gravity gradient instrument of rotary accelerometer - Google Patents
Calibration method for gravity gradient instrument of rotary accelerometer Download PDFInfo
- Publication number
- CN105717553A CN105717553A CN201610065880.XA CN201610065880A CN105717553A CN 105717553 A CN105717553 A CN 105717553A CN 201610065880 A CN201610065880 A CN 201610065880A CN 105717553 A CN105717553 A CN 105717553A
- Authority
- CN
- China
- Prior art keywords
- gravity
- gamma
- mass
- gravity gradient
- gradiometer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V13/00—Manufacturing, calibrating, cleaning, or repairing instruments or devices covered by groups G01V1/00 – G01V11/00
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Geophysics (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Testing Of Balance (AREA)
Abstract
本发明公开了一种旋转加速度计重力梯度仪标定方法,在重力梯度仪外侧空间的四个不同位置上依次放置一定的质量体,通过改变质量体质量大小改变重力梯度仪中心处的引力场,变化的引力场被重力梯度仪敏感到。对重力梯度仪输出信号进行滤波与梯度解调,得到重力梯度仪重力梯度测量结果。测量结果经过计算与质量体质量变化计算得到的重力梯度理论值相比较,得到重力梯度仪两个重力梯度分量的零位和标度系数。本发明可以实现对旋转加速度计重力梯度仪的梯度标定。
The invention discloses a method for calibrating a gravity gradiometer of a rotating accelerometer. Certain mass bodies are sequentially placed at four different positions outside the gravity gradiometer, and the gravitational field at the center of the gravity gradiometer is changed by changing the mass of the mass body. The changing gravitational field is sensed by gravity gradiometers. Filter and gradient demodulate the output signal of the gravity gradiometer to obtain the gravity gradient measurement result of the gravity gradiometer. The measurement results are calculated and compared with the theoretical value of the gravity gradient obtained by calculating the mass change of the mass body, and the zero position and scale coefficient of the two gravity gradient components of the gravity gradiometer are obtained. The invention can realize the gradient calibration of the gravity gradiometer of the rotation accelerometer.
Description
技术领域technical field
本发明涉及一种旋转加速度计重力梯度仪重力梯度标定方法,尤其涉及一种采用改变质量体质量的方法实现旋转加速度计重力梯度仪重力梯度标定,属精密测量技术领域。The invention relates to a gravity gradient calibration method of a rotational accelerometer gravity gradiometer, in particular to a method of changing the mass of a mass body to realize the gravity gradient calibration of a rotational accelerometer gravity gradiometer, and belongs to the technical field of precision measurement.
背景技术Background technique
高精度重力梯度测量对能源勘探、空间科学、地球科学、地质科学的发展以及在惯性导航等方面具有非常重要的应用价值和应用前景。重力梯度测量相对于重力测量有明显的优势,对于地质结构的形状、尺寸和埋藏深度等信息,重力梯度测量能够提供更高的解析度,特别适合于探测和研究局部地质结构及其细节。目前,国外正在进行研究的具有应用前景的重力梯度仪主要有旋转加速度计重力梯度仪、超导重力梯度仪、冷原子重力梯度仪、卫星重力梯度仪等,其中旋转加速度计重力梯度仪技术最成熟,也是最早进行商用的重力梯度仪,且已经进行了大量的勘探工作;国内在上世纪末开始注意到重力梯度仪的应用前景,多个科研单位合作进行了相关研究,并分支了多个不同测量原理的重力梯度仪研究方向,包括旋转加速度计式重力梯度仪、超导重力梯度仪、冷原子重力梯度仪、基于微机械(MEMS)结构的重力梯度仪以及卫星重力梯度仪等,其中旋转加速度计重力梯度仪理论研究基本成熟,国内科研院所已经开发出了重力梯度仪样机,由于敏感器性能、旋转结构稳定性、温控性能等原因,重力梯度仪分辨率仍然较低。High-precision gravity gradient measurement has very important application value and application prospects for the development of energy exploration, space science, earth science, geological science, and inertial navigation. Gravity gradient measurement has obvious advantages over gravity measurement. For information such as the shape, size and burial depth of geological structures, gravity gradient measurement can provide higher resolution, and is especially suitable for detecting and studying local geological structures and their details. At present, the gravity gradiometers with application prospects that are being studied abroad mainly include rotational accelerometer gravity gradiometers, superconducting gravity gradiometers, cold atom gravity gradiometers, satellite gravity gradiometers, etc. Among them, the technology of rotational accelerometer gravity gradiometers is the most Mature and the earliest commercial gravity gradiometer, and a lot of exploration work has been carried out; China began to pay attention to the application prospect of gravity gradiometer at the end of the last century, and many scientific research units cooperated to carry out related research, and branched out a number of different The research direction of the gravity gradiometer of the measurement principle, including the gravity gradiometer of the rotating accelerometer, the superconducting gravity gradiometer, the cold atom gravity gradiometer, the gravity gradiometer based on the micromechanical (MEMS) structure, and the satellite gravity gradiometer, among which the rotation Theoretical research on accelerometer gravity gradiometer is basically mature. Domestic scientific research institutes have developed a prototype of gravity gradiometer. Due to the sensor performance, stability of rotating structure, temperature control performance and other reasons, the resolution of gravity gradiometer is still low.
重力梯度仪是一种高精密测量仪器,制造一台性能优良的重力梯度仪非常困难,即使能够制造重力梯度仪的企业也无法进行批量生产,其重要原因之一是测量元件难于批量生产,而只能在大量样品中筛选出少量合格敏感器件。为了能够测量到更加精确的重力梯度,重力梯度仪在使用前需要对其进行参数标定。目前,有关旋转加速度计重力梯度仪的标定方法并没有相关专利或文献公布或发表。Gravity gradiometer is a kind of high-precision measuring instrument. It is very difficult to manufacture a gravity gradiometer with excellent performance. Even enterprises that can manufacture gravity gradiometer cannot carry out mass production. One of the important reasons is that the measuring components are difficult to mass produce, and Only a small number of qualified sensitive devices can be screened out from a large number of samples. In order to be able to measure a more accurate gravity gradient, the gravity gradiometer needs to be calibrated before use. At present, there are no relevant patents or literature published or published on the calibration method of the rotational accelerometer gravity gradiometer.
发明内容Contents of the invention
技术问题:本发明提供一种简单、高效,实现方便,具有重要实用价值的旋转加速度计重力梯度仪标定方法。Technical problem: The present invention provides a simple, efficient, easy-to-implement, and important practical value calibration method for gravity gradiometers of rotational accelerometers.
技术方案:本发明的旋转加速度计重力梯度仪标定方法,包括以下步骤:Technical solution: The calibration method of the rotational accelerometer gravity gradiometer of the present invention comprises the following steps:
1)对旋转加速度计重力梯度仪进行重力梯度标定前的操作,具体内容有:1) The operation before the gravity gradient calibration of the rotational accelerometer gravity gradiometer, the specific contents are as follows:
建立重力梯度仪坐标系为东北天地理坐标系,记为OXYZ,原点O为重力梯度仪旋转圆盘中心;初始时刻,设置圆盘上加速度计A1的质量中心位于X轴正方向上;Establish the coordinate system of the gravity gradiometer as the northeast sky geographic coordinate system, denoted as OXYZ, and the origin O is the center of the rotating disk of the gravity gradiometer; at the initial moment, set the center of mass of the accelerometer A 1 on the disk to be located in the positive direction of the X axis;
在重力梯度仪坐标系的OXY平面上,设置4个与坐标原点等距离的质量体放置位置,位置1在X、轴正方向上,位置2在Y轴正方向上,位置3在直线方程y=x,位置4在直线方程y=-x上;On the OXY plane of the gravity gradiometer coordinate system, set 4 mass body placement positions equidistant from the coordinate origin, position 1 is in the positive direction of the X and axis, position 2 is in the positive direction of the Y axis, and position 3 is in the line equation y=x , position 4 is on the line equation y=-x;
2)在一个放置位置上放置一块质量体,对重力梯度仪输出信号进行重力梯度解调,得到重力梯度分量(Γyy-Γxx)1,1;然后在上次放置质量体数量的基础上,逐次改变放置位置上质量体的质量,并对重力梯度仪输出信号进行重力梯度解调,其中每次放置的质量体的质量是上一次的两倍;对每个放置位置按照上述操作,最终得到:2) Place a mass body on a placement position, and perform gravity gradient demodulation on the output signal of the gravity gradiometer to obtain the gravity gradient component (Γ yy -Γ xx ) 1,1 ; then, based on the number of mass bodies placed last time , change the mass of the mass body at the placement position successively, and perform gravity gradient demodulation on the output signal of the gravity gradiometer, wherein the mass of the mass body placed each time is twice that of the previous one; follow the above operation for each placement position, and finally get:
位置1的重力梯度分量(Γyy-Γxx)1,1、(Γyy-Γxx)1,2、(Γyy-Γxx)1,4、……、(Γyy-Γxx)1,2 n--1 Gravity gradient components at position 1 (Γ yy -Γ xx ) 1,1 , (Γ yy -Γ xx ) 1,2 , (Γ yy -Γ xx ) 1,4 ,..., (Γ yy -Γ xx ) 1 ,2 n--1
位置2的重力梯度分量(Γyy-Γxx)2,1、(Γyy-Γxx)2,2、(Γyy-Γxx)2,4、……、(Γyy-Γxx)2,2 n-1;Gravity gradient components at position 2 (Γ yy -Γ xx ) 2,1 , (Γ yy -Γ xx ) 2,2 , (Γ yy -Γ xx ) 2,4 , ..., (Γ yy -Γ xx ) 2 ,2 n-1 ;
位置3的重力梯度分量(Γxy)3,1、(Γxy)3,2、(Γxy)3,4、……、(Γxy)3,2 n-1;Gravity gradient components (Γ xy ) 3,1 , (Γ xy ) 3,2 , (Γ xy ) 3,4 , ..., (Γ xy ) 3,2 n-1 at position 3;
位置4的重力梯度分量(Γxy)4,1、(Γxy)4,2、(Γxy)4,4、……、(Γxy)4,2 n-1;Gravity gradient components (Γ xy ) 4,1 , (Γ xy ) 4,2 , (Γ xy ) 4,4 , ..., (Γ xy ) 4,2 n-1 at position 4;
其中n为重力梯度解调的序数,首次放置质量体时n为1,每改变一次质量体质量,序数n增加1;Among them, n is the ordinal number of gravity gradient demodulation. When placing the mass body for the first time, n is 1. Every time the mass body is changed, the ordinal number n increases by 1;
3)根据下式计算得到重力梯度仪重力梯度分量(Γyy-Γxx)的零位:3) Calculate the zero position of the gravity gradient component (Γ yy -Γ xx ) of the gravity gradiometer according to the following formula:
根据下式计算得到重力梯度仪重力梯度分量(Γxy)的零位:The zero position of the gravity gradient component (Γ xy ) of the gravity gradiometer is calculated according to the following formula:
根据下式计算质量体对重力梯度仪中心产生的重力梯度分量理论值:Calculate the theoretical value of the gravity gradient component produced by the mass body to the center of the gravity gradiometer according to the following formula:
其中,(x,y,z)为质量体内部任意一点位置坐标,(Wi,Di,Hi)为第i次放置质量体质心坐标,G为牛顿万有引力常数,ρ为质量体密度,w、d、h分别为质量体的长、宽、高,Γxx为X轴上的重力加速度分量在X轴方向上的空间导数,Γyy为Y轴上的重力加速度分量在Y轴方向上的空间导数,Γxy为X(Y)轴上的重力加速度在Y(X)轴方向上的空间导数;Among them, (x, y, z) are the position coordinates of any point inside the mass body, (W i , D i , H i ) are the coordinates of the center of mass of the mass body placed for the ith time, G is Newton’s gravitational constant, ρ is the density of the mass body, w, d, and h are the length, width, and height of the mass body respectively, Γ xx is the spatial derivative of the gravitational acceleration component on the X-axis in the X-axis direction, and Γ yy is the gravitational acceleration component on the Y-axis in the Y-axis direction The spatial derivative of Γ xy is the spatial derivative of the gravitational acceleration on the X (Y) axis in the Y (X) axis direction;
4)根据下式计算得到位置1不同质量体质量时重力梯度仪测量到的重力梯度分量为:4) According to the following formula, the gravity gradient components measured by the gravity gradiometer at position 1 with different masses are:
对上式进行线性拟合,得到一个质量体质量与重力梯度值的线性关系式,然后根据下式计算得到重力梯度分量(Γyy-Γxx)的标度系数:Perform linear fitting on the above formula to obtain a linear relationship between the mass of the mass and the gravity gradient value, and then calculate the scale coefficient of the gravity gradient component (Γ yy -Γ xx ) according to the following formula:
其中为重力梯度分量理论值线性拟合所得线性关系式的斜率,为位置1的重力梯度仪测量重力梯度分量线性拟合所得线性关系式的斜率;in is the theoretical value of the gravity gradient component The slope of the linear relationship obtained by linear fitting, Measure the gravity gradient component for the gravity gradiometer at position 1 The slope of the linear relationship obtained by linear fitting;
根据下式计算得到位置3不同质量体个数时重力梯度仪测量到的重力梯度分量为:
对上式进行线性拟合,得到一个质量体质量与重力梯度值的线性关系式,然后根据下式计算得到重力梯度分量(Γxy)的标度系数:Perform linear fitting on the above formula to obtain a linear relationship between the mass of the mass body and the gravity gradient value, and then calculate the scale coefficient of the gravity gradient component (Γ xy ) according to the following formula:
其中为重力梯度分量理论值线性拟合所得线性关系式的斜率,其中,为位置3的重力梯度仪测量重力梯度分量线性拟合所得线性关系式的斜率。in is the theoretical value of the gravity gradient component The slope of the linear relationship obtained by linear fitting, where, Measure the gravity gradient component for the gravity gradiometer at position 3 The slope of the linear relationship obtained from the linear fit.
进一步的,本发明方法中,所述的质量体为正方体,密度分布均匀。Further, in the method of the present invention, the mass body is a cube with uniform density distribution.
进一步的,本发明方法中,所述步骤2)中,通过准备多块密度、体积相同的质量体,增加放置质量体数量的方式来增加放置位置上质量体的质量。Further, in the method of the present invention, in the step 2), the quality of the mass body at the placement position is increased by preparing a plurality of mass bodies with the same density and volume, and increasing the number of placed mass bodies.
本发明中,在重力梯度仪外侧空间的四个不同位置上依次放置一定的质量体,通过改变质量体质量改变重力梯度仪中心处的引力场,变化的引力场被重力梯度仪敏感到,然后对重力梯度仪输出信号进行滤波与梯度解调,得到重力梯度仪重力梯度测量结果,测量结果与重力梯度理论值相比较,得到重力梯度仪的两个重力梯度分量的零位和标度系数。In the present invention, certain mass bodies are sequentially placed on four different positions in the outer space of the gravity gradiometer, and the gravitational field at the center of the gravity gradiometer is changed by changing the quality of the mass body, and the changed gravitational field is sensitive to the gravity gradiometer, and then Filter and gradient demodulate the output signal of the gravity gradiometer to obtain the gravity gradient measurement result of the gravity gradiometer, compare the measurement result with the theoretical value of the gravity gradient, and obtain the zero position and scale coefficient of the two gravity gradient components of the gravity gradiometer.
有益效果:本发明与现有技术相比,具有以下优点:Beneficial effect: compared with the prior art, the present invention has the following advantages:
本发明是首次给出旋转加速度计重力梯度仪的标定方法。通常重力梯度仪标定方法是固定质量体质量,采用改变质量体质心到重力梯度仪中心的距离来实现,但该方法对于较小距离时引起的重力梯度畸变较为严重,且质量体质心到重力梯度仪中心之间的距离与重力梯度分量之间并不是线性关系,重力梯度标定误差较大;而本发明方法采用固定质量体中心到重力梯度仪中心的距离,通过改变质量体质量的方式实现重力梯度标定,采用该方法可以显著降低质量体在近距离引起的重力梯度畸变,且质量体质量与重力梯度分量之间能够确保在一定的范围内成线性关系,提高了重力梯度标定精度。The invention provides the calibration method of the gravity gradiometer of the rotational accelerometer for the first time. Usually, the calibration method of the gravity gradiometer is to fix the mass of the mass body, and it is realized by changing the distance from the center of mass of the mass body to the center of the gravity gradiometer. The distance between the center of the meter and the gravity gradient component is not a linear relationship, and the calibration error of the gravity gradient is relatively large; and the method of the present invention adopts the distance from the center of the fixed mass body to the center of the gravity gradient meter, and realizes gravity by changing the mass of the mass body. Gradient calibration, using this method can significantly reduce the gravity gradient distortion caused by the mass body at a short distance, and the linear relationship between the mass body mass and the gravity gradient component can be ensured within a certain range, which improves the gravity gradient calibration accuracy.
附图说明Description of drawings
图1为旋转加速度计重力梯度仪质量体放置示意图。Figure 1 is a schematic diagram of the mass body placement of the rotational accelerometer gravity gradiometer.
图2为重力梯度仪测量到的重力梯度分量(Γyy-Γxx)与质量体个数之间的对应关系。Fig. 2 is the corresponding relationship between the gravity gradient component (Γ yy -Γ xx ) measured by the gravity gradiometer and the number of mass bodies.
图3为重力梯度仪测量到的重力梯度分量(Γxy)与质量体个数之间的对应关系。Fig. 3 is the corresponding relationship between the gravity gradient component (Γ xy ) measured by the gravity gradiometer and the number of mass bodies.
具体实施方式detailed description
下面结合实施例和说明书附图对本发明作进一步地说明。The present invention will be further described below in conjunction with embodiment and accompanying drawing.
1)对旋转加速度计重力梯度仪进行重力梯度标定前的操作,具体内容有:1) The operation before the gravity gradient calibration of the rotational accelerometer gravity gradiometer, the specific contents are as follows:
建立重力梯度仪坐标系为东北天地理坐标系,记为OXYZ,原点O为重力梯度仪旋转圆盘中心;初始时刻,设置圆盘上加速度计A1的质量中心位于X轴正方向上;Establish the coordinate system of the gravity gradiometer as the northeast sky geographic coordinate system, denoted as OXYZ, and the origin O is the center of the rotating disk of the gravity gradiometer; at the initial moment, set the center of mass of the accelerometer A 1 on the disk to be located in the positive direction of the X axis;
在重力梯度仪坐标系的OXY平面上,设置4个与坐标原点等距离的质量体放置位置,位置1在X、轴正方向上,位置2在Y轴正方向上,位置3在直线方程y=x,位置4在直线方程y=-x上;On the OXY plane of the gravity gradiometer coordinate system, set 4 mass body placement positions equidistant from the coordinate origin, position 1 is in the positive direction of the X and axis, position 2 is in the positive direction of the Y axis, and position 3 is in the line equation y=x , position 4 is on the line equation y=-x;
2)在一个放置位置上放置一块质量体,对重力梯度仪输出信号进行重力梯度解调,得到重力梯度分量(Γyy-Γxx)1,1;然后在上次放置质量体数量的基础上,逐次改变放置位置上质量体的质量,并对重力梯度仪输出信号进行重力梯度解调,其中每次放置的质量体的质量是上一次的两倍;对每个放置位置按照上述操作,最终得到:2) Place a mass body on a placement position, and perform gravity gradient demodulation on the output signal of the gravity gradiometer to obtain the gravity gradient component (Γ yy -Γ xx ) 1,1 ; then, based on the number of mass bodies placed last time , change the mass of the mass body at the placement position successively, and perform gravity gradient demodulation on the output signal of the gravity gradiometer, wherein the mass of the mass body placed each time is twice that of the previous one; follow the above operation for each placement position, and finally get:
位置1的重力梯度分量(Γyy-Γxx)1,1、(Γyy-Γxx)1,2、(Γyy-Γxx)1,4、……、(Γyy-Γxx)1,2 n--1 Gravity gradient components at position 1 (Γ yy -Γ xx ) 1,1 , (Γ yy -Γ xx ) 1,2 , (Γ yy -Γ xx ) 1,4 ,..., (Γ yy -Γ xx ) 1 ,2 n--1
位置2的重力梯度分量(Γyy-Γxx)2,1、(Γyy-Γxx)2,2、(Γyy-Γxx)2,4、……、(Γyy-Γxx)2,2 n-1;Gravity gradient components at position 2 (Γ yy -Γ xx ) 2,1 , (Γ yy -Γ xx ) 2,2 , (Γ yy -Γ xx ) 2,4 , ..., (Γ yy -Γ xx ) 2 ,2 n-1 ;
位置3的重力梯度分量(Γxy)3,1、(Γxy)3,2、(Γxy)3,4、……、(Γxy)3,2 n-1;Gravity gradient components (Γ xy ) 3,1 , (Γ xy ) 3,2 , (Γ xy ) 3,4 , ..., (Γ xy ) 3,2 n-1 at position 3;
位置4的重力梯度分量(Γxy)4,1、(Γxy)4,2、(Γxy)4,4、……、(Γxy)4,2 n-1;Gravity gradient components (Γ xy ) 4,1 , (Γ xy ) 4,2 , (Γ xy ) 4,4 , ..., (Γ xy ) 4,2 n-1 at position 4;
其中n为重力梯度解调的序数,首次放置质量体时n为1,每改变一次质量体质量,序数n增加1;Among them, n is the ordinal number of gravity gradient demodulation. When placing the mass body for the first time, n is 1. Every time the mass body is changed, the ordinal number n increases by 1;
3)根据下式计算得到重力梯度仪重力梯度分量(Γyy-Γxx)的零位:3) Calculate the zero position of the gravity gradient component (Γ yy -Γ xx ) of the gravity gradiometer according to the following formula:
根据下式计算得到重力梯度仪重力梯度分量(Γxy)的零位:The zero position of the gravity gradient component (Γ xy ) of the gravity gradiometer is calculated according to the following formula:
根据下式计算质量体对重力梯度仪中心产生的重力梯度分量理论值:Calculate the theoretical value of the gravity gradient component produced by the mass body to the center of the gravity gradiometer according to the following formula:
其中,(x,y,z)为质量体内部任意一点位置坐标,(Wi,Di,Hi)为第i次放置质量体质心坐标,G为牛顿万有引力常数,ρ为质量体密度,w、d、h分别为质量体的长、宽、高,Γxx为X轴上的重力加速度分量在X轴方向上的空间导数,Γyy为Y轴上的重力加速度分量在Y轴方向上的空间导数,Γxy为X(Y)轴上的重力加速度在Y(X)轴方向上的空间导数;Among them, (x, y, z) are the position coordinates of any point inside the mass body, (W i , D i , H i ) are the coordinates of the center of mass of the mass body placed for the ith time, G is Newton’s gravitational constant, ρ is the density of the mass body, w, d, and h are the length, width, and height of the mass body respectively, Γ xx is the spatial derivative of the gravitational acceleration component on the X-axis in the X-axis direction, and Γ yy is the gravitational acceleration component on the Y-axis in the Y-axis direction The spatial derivative of Γ xy is the spatial derivative of the gravitational acceleration on the X (Y) axis in the Y (X) axis direction;
4)将位置1的重力梯度分量(Γyy-Γxx)1,2 n-1与位置2的重力梯度分量(Γyy-Γxx)2,2 n-1一一对应相减后除2,得到位置1不同质量体个数时重力梯度仪测量到的重力梯度分量,即:4) Subtract the gravity gradient component (Γ yy -Γ xx ) 1,2 n-1 at position 1 and the gravity gradient component (Γ yy -Γ xx ) 2,2 n-1 at position 2 one by one and divide by 2 , to obtain the gravitational gradient components measured by the gravity gradiometer at position 1 with different mass bodies, namely:
对梯度仪测量到的i个重力梯度分量(Γyy-Γxx)1,2 i-1进行线性拟合,设计算得到的重力梯度分量(Γyy-Γxx)线性关系式为:Perform linear fitting on the i gravity gradient components (Γ yy -Γ xx ) 1,2 i-1 measured by the gradiometer, and the linear relationship of the gravity gradient components (Γ yy -Γ xx ) obtained by design and calculation is:
其中,分别为重力梯度分量(Γyy-Γxx)测量值线性关系式的斜率和截距,N为质量体个数。in, are the slope and intercept of the linear relational expression of the measured value of the gravity gradient component (Γ yy -Γ xx ), respectively, and N is the number of mass bodies.
采用重力梯度分量理论计算公式(3)计算在相同位置处的质量体对重力梯度仪中心产生的理论重力梯度分量(Γyy-Γxx),并对计算出的重力梯度理论值的进行线性拟合,设计算得到的线性拟合关系式为:The theoretical gravity gradient component (Γ yy -Γ xx ) produced by the mass body at the same position to the center of the gravity gradiometer is calculated by using the theoretical calculation formula (3) of the gravity gradient component, and a linear fitting is performed on the calculated theoretical value of the gravity gradient Together, the linear fitting relational formula calculated by design is:
其中,分别为重力梯度分量(Γyy-Γxx)理论值线性关系式的斜率和截距,N为质量体个数。in, are the slope and intercept of the linear relational expression of the theoretical value of the gravity gradient component (Γ yy -Γ xx ), respectively, and N is the number of mass bodies.
根据下式计算得到重力梯度分量(Γyy-Γxx)的标度系数:The scale coefficient of the gravity gradient component (Γ yy -Γ xx ) is calculated according to the following formula:
将位置3的重力梯度分量(Γxy)3,2 n-1与位置4的重力梯度分量(Γxy)4,2 n-1一一对应相减后除2,得到位置3的不同质量体个数时的重力梯度仪测量到的重力梯度分量为:Subtract the gravitational gradient component (Γ xy ) 3,2 n-1 at position 3 and the gravitational gradient component (Γ xy ) 4,2 n-1 at position 4 in one-to-one correspondence and divide by 2 to obtain the different mass body at position 3 The gravitational gradient components measured by the gravity gradiometer at the number of times are:
对梯度仪测量到的i个重力梯度分量(Γxy)3,2 i-1进行线性拟合,设计算得到的重力梯度分量(Γxy)线性关系式为:Linear fitting is carried out on the i gravity gradient components (Γ xy ) 3,2 i-1 measured by the gradiometer, and the linear relationship formula of the gravity gradient components (Γ xy ) obtained by design and calculation is:
其中,分别为重力梯度分量(Γxy)测量值线性关系式的斜率和截距。in, are the slope and intercept of the linear relational expression of the gravity gradient component (Γ xy ), respectively.
采用重力梯度分量理论计算公式(3)计算在相同位置处的质量体对重力梯度仪中心产生的理论重力梯度分量(Γxy),并对计算出的重力梯度理论值进行线性拟合,设计算得到的线性拟合关系式为:The theoretical calculation formula (3) of the gravity gradient component is used to calculate the theoretical gravity gradient component (Γ xy ) generated by the mass body at the same position to the center of the gravity gradiometer, and the calculated theoretical value of the gravity gradient is linearly fitted, and the design calculation The obtained linear fitting relation is:
其中,分别为重力梯度分量(Γxy)理论值线性关系式的斜率和截距。in, are the slope and intercept of the linear relational expression of the theoretical value of the gravity gradient component (Γ xy ), respectively.
根据下式计算得到重力梯度分量(Γxy)的标度系数:The scale coefficient of the gravity gradient component (Γ xy ) is calculated according to the following formula:
应理解上述实施例仅用于说明本发明技术方案的优选实施方式,而不用于限制本发明的范围。在阅读了本发明之后,本领域技术人员对本发明的各种等同形式的修改和替换均落于本申请权利要求所限定的保护范围。It should be understood that the above examples are only used to illustrate preferred implementations of the technical solutions of the present invention, and are not intended to limit the scope of the present invention. After reading the present invention, modifications and replacements of various equivalent forms of the present invention by those skilled in the art fall within the scope of protection defined by the claims of the present application.
Claims (3)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610065880.XA CN105717553B (en) | 2016-01-29 | 2016-01-29 | A kind of rotating accelerometer gravity gradiometer scaling method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610065880.XA CN105717553B (en) | 2016-01-29 | 2016-01-29 | A kind of rotating accelerometer gravity gradiometer scaling method |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN105717553A true CN105717553A (en) | 2016-06-29 |
| CN105717553B CN105717553B (en) | 2018-01-16 |
Family
ID=56155263
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201610065880.XA Expired - Fee Related CN105717553B (en) | 2016-01-29 | 2016-01-29 | A kind of rotating accelerometer gravity gradiometer scaling method |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN105717553B (en) |
Cited By (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106556878A (en) * | 2016-10-31 | 2017-04-05 | 华中科技大学 | A kind of brace suspension type gravity gradiometer |
| CN107272084A (en) * | 2017-05-08 | 2017-10-20 | 中国船舶重工集团公司第七〇七研究所 | A kind of method for creating the even value gravity gradient tensor excitation of Local approximation |
| CN107576992A (en) * | 2017-09-04 | 2018-01-12 | 东南大学 | A kind of gravity gradiometer self-calibrating method and centrifiigation gradient compensation method |
| CN107643548A (en) * | 2017-09-04 | 2018-01-30 | 东南大学 | A kind of multi-frequency gravity gradient pumping signal production method |
| CN107870371A (en) * | 2017-12-05 | 2018-04-03 | 东南大学 | A Self-Gradient Compensation Method for Gravity Gradient Meter on Moving Base |
| WO2018161474A1 (en) * | 2017-03-09 | 2018-09-13 | 中国科学院电工研究所 | Gravity gradient measurement method and apparatus |
| CN108562398A (en) * | 2018-03-30 | 2018-09-21 | 临沂大学 | A kind of object center of gravity measurement method |
| CN109085654A (en) * | 2018-06-11 | 2018-12-25 | 东南大学 | A kind of rotating accelerometer gravity gradiometer digital modeling emulation mode |
| CN109709628A (en) * | 2019-02-15 | 2019-05-03 | 东南大学 | A calibration method of a rotary accelerometer gravity gradiometer |
| WO2020042696A1 (en) * | 2018-08-27 | 2020-03-05 | 东南大学 | Device and method for compensating for error of moving-base rotating-accelerometer gravity gradiometer |
| CN112327379A (en) * | 2020-09-28 | 2021-02-05 | 中国船舶重工集团公司第七0七研究所 | Full-tensor gravity gradient dynamic measurement system and method |
| CN113267821A (en) * | 2021-04-30 | 2021-08-17 | 北京大学 | Gravity gradient measurement method and system based on angular motion |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5922951A (en) * | 1997-06-11 | 1999-07-13 | The Broken Hill Proprietary Company Ltd. | Gravity gradiometer |
| CN103499845A (en) * | 2013-09-06 | 2014-01-08 | 北京航天控制仪器研究所 | Method utilizing gravity gradiometer to measure gravity gradients |
| CN104459826A (en) * | 2014-11-03 | 2015-03-25 | 东南大学 | Method for simulating gravity gradient signals of gravity gradient meters of rotating accelerometers |
| CN104898176A (en) * | 2015-06-10 | 2015-09-09 | 东南大学 | Gravity gradient demodulating method for gravity gradiometer of rotating accelerometer |
| CN105044798A (en) * | 2015-06-29 | 2015-11-11 | 东南大学 | Rotating accelerometer gravity gradiometer accelerometer scale factor feedback adjustment method |
-
2016
- 2016-01-29 CN CN201610065880.XA patent/CN105717553B/en not_active Expired - Fee Related
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5922951A (en) * | 1997-06-11 | 1999-07-13 | The Broken Hill Proprietary Company Ltd. | Gravity gradiometer |
| CN103499845A (en) * | 2013-09-06 | 2014-01-08 | 北京航天控制仪器研究所 | Method utilizing gravity gradiometer to measure gravity gradients |
| CN104459826A (en) * | 2014-11-03 | 2015-03-25 | 东南大学 | Method for simulating gravity gradient signals of gravity gradient meters of rotating accelerometers |
| CN104898176A (en) * | 2015-06-10 | 2015-09-09 | 东南大学 | Gravity gradient demodulating method for gravity gradiometer of rotating accelerometer |
| CN105044798A (en) * | 2015-06-29 | 2015-11-11 | 东南大学 | Rotating accelerometer gravity gradiometer accelerometer scale factor feedback adjustment method |
Non-Patent Citations (6)
| Title |
|---|
| 侯旭阳 等: "旋转加速度计式重力梯度仪中加速度计标度系数的精确匹配方法研究", 《重力测量技术——惯性技术发展动态发展方向研讨会文集》 * |
| 李海兵等: "旋转加速度计重力梯度仪误差分析", 《中国惯性技术学报》 * |
| 涂良成 等: "旋转重力梯度仪的加速度计动态调节方法与需求分析", 《中国惯性技术学报》 * |
| 王树甫等: "旋转加速度计重力梯度仪标度因子调整方法及误差补偿研究", 《中国惯性技术学报》 * |
| 聂鲁燕等: "重力梯度仪旋转加速度计标度因数匹配方法", 《中国惯性技术学报》 * |
| 钱学武 等: "一种旋转加速度计重力梯度仪重力梯度解调方法", 《物探与化探》 * |
Cited By (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106556878A (en) * | 2016-10-31 | 2017-04-05 | 华中科技大学 | A kind of brace suspension type gravity gradiometer |
| CN106556878B (en) * | 2016-10-31 | 2019-06-07 | 华中科技大学 | A kind of brace suspension type gravity gradiometer |
| WO2018161474A1 (en) * | 2017-03-09 | 2018-09-13 | 中国科学院电工研究所 | Gravity gradient measurement method and apparatus |
| US11402538B2 (en) | 2017-03-09 | 2022-08-02 | Institute Of Electrical Engineering, Chinese Academy Of Sciences | Gravity gradient measurement method and apparatus |
| CN107272084A (en) * | 2017-05-08 | 2017-10-20 | 中国船舶重工集团公司第七〇七研究所 | A kind of method for creating the even value gravity gradient tensor excitation of Local approximation |
| CN107643548B (en) * | 2017-09-04 | 2019-03-12 | 东南大学 | A kind of multi-frequency gravity gradient pumping signal production method |
| CN107576992A (en) * | 2017-09-04 | 2018-01-12 | 东南大学 | A kind of gravity gradiometer self-calibrating method and centrifiigation gradient compensation method |
| CN107643548A (en) * | 2017-09-04 | 2018-01-30 | 东南大学 | A kind of multi-frequency gravity gradient pumping signal production method |
| CN107576992B (en) * | 2017-09-04 | 2019-02-22 | 东南大学 | A Gravity Gradiometer Self-Calibration Method and Centrifugal Gradient Compensation Method |
| CN107870371A (en) * | 2017-12-05 | 2018-04-03 | 东南大学 | A Self-Gradient Compensation Method for Gravity Gradient Meter on Moving Base |
| CN108562398A (en) * | 2018-03-30 | 2018-09-21 | 临沂大学 | A kind of object center of gravity measurement method |
| CN109085654A (en) * | 2018-06-11 | 2018-12-25 | 东南大学 | A kind of rotating accelerometer gravity gradiometer digital modeling emulation mode |
| WO2020042696A1 (en) * | 2018-08-27 | 2020-03-05 | 东南大学 | Device and method for compensating for error of moving-base rotating-accelerometer gravity gradiometer |
| CN109709628A (en) * | 2019-02-15 | 2019-05-03 | 东南大学 | A calibration method of a rotary accelerometer gravity gradiometer |
| WO2020164206A1 (en) * | 2019-02-15 | 2020-08-20 | 东南大学 | Calibration method for gravity gradiometer of rotating accelerometer |
| US11372130B2 (en) | 2019-02-15 | 2022-06-28 | Southeast University | Calibration method for rotating accelerometer gravity gradiometer |
| CN112327379A (en) * | 2020-09-28 | 2021-02-05 | 中国船舶重工集团公司第七0七研究所 | Full-tensor gravity gradient dynamic measurement system and method |
| CN112327379B (en) * | 2020-09-28 | 2022-04-12 | 中国船舶重工集团公司第七0七研究所 | Full-tensor gravity gradient dynamic measurement system and method |
| CN113267821A (en) * | 2021-04-30 | 2021-08-17 | 北京大学 | Gravity gradient measurement method and system based on angular motion |
Also Published As
| Publication number | Publication date |
|---|---|
| CN105717553B (en) | 2018-01-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN105717553B (en) | A kind of rotating accelerometer gravity gradiometer scaling method | |
| CN101887068B (en) | Calibration compensation method for triaxial vector sensor and biaxial vector sensor | |
| CN102853850B (en) | Triaxial MEMS gyroscope rotation integral calibration method based on uniaxial turntable | |
| CN107015287B (en) | A kind of gradiometry device and measurement method | |
| CN103076640B (en) | Method for inverting earth gravitational field by using variance-covariance diagonal tensor principle | |
| CN104459826B (en) | Rotating accelerometer gravity gradiometer gravity gradient signal simulation method | |
| CN109709628B (en) | A calibration method of a rotary accelerometer gravity gradiometer | |
| CN102841218A (en) | Double-shaft centrifuge based gyro accelerometer testing method | |
| CN101158582A (en) | A MEMS gyroscope differential measurement method | |
| CN109766812B (en) | A Post-Compensation Method for Motion Error of Rotary Accelerometer Gravity Gradiometer | |
| CN103389114B (en) | 3 axis MEMS gyro non-orthogonal errors scaling method based on g sensitivity | |
| CN108931824B (en) | A method for calibrating error gain coefficient of gravity gradiometer of moving base rotary accelerometer | |
| CN107870371A (en) | A Self-Gradient Compensation Method for Gravity Gradient Meter on Moving Base | |
| CN102998713A (en) | Satellite gravity gradient inversion method based on power spectrum half analysis | |
| CN103454607B (en) | The bearing calibration of magnetic field sensor signal and the Vehicular navigation system based on the method | |
| CN103091722A (en) | Satellite gravity inversion method based on load error analysis theory | |
| CN111239667B (en) | A Unified Calibration Method for Magnetic Gradient Tensors of Different Orders | |
| Xing et al. | A new and high-precision gravity base network in the south of the Tibetan Plateau | |
| CN107576992B (en) | A Gravity Gradiometer Self-Calibration Method and Centrifugal Gradient Compensation Method | |
| CN106526700B (en) | A method of gravity sensor resolution ratio is assessed using earth gravitational field | |
| CN109085654B (en) | A digital modeling and simulation method of a rotary accelerometer gravity gradiometer | |
| CN105300353B (en) | High-precision inclinometer based on oversampling technology | |
| CN104730473A (en) | Absolute magnetic field measuring device and absolute magnetic field measuring method thereof | |
| CN116793388A (en) | Calibrating method for gyroscope and quartz accelerometer system of precise centrifugal measuring device | |
| CN107272084B (en) | A method of the even value gravity gradient tensor excitation of creation Local approximation |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180116 |