CN105740205B - A kind of switching power converters parameter recorder filtering method and its device - Google Patents
A kind of switching power converters parameter recorder filtering method and its device Download PDFInfo
- Publication number
- CN105740205B CN105740205B CN201610201169.2A CN201610201169A CN105740205B CN 105740205 B CN105740205 B CN 105740205B CN 201610201169 A CN201610201169 A CN 201610201169A CN 105740205 B CN105740205 B CN 105740205B
- Authority
- CN
- China
- Prior art keywords
- signal
- module
- output
- value
- switching power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/14—Fourier, Walsh or analogous domain transformations, e.g. Laplace, Hilbert, Karhunen-Loeve, transforms
- G06F17/141—Discrete Fourier transforms
- G06F17/142—Fast Fourier transforms, e.g. using a Cooley-Tukey type algorithm
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D15/00—Component parts of recorders for measuring arrangements not specially adapted for a specific variable
Landscapes
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Theoretical Computer Science (AREA)
- Discrete Mathematics (AREA)
- Algebra (AREA)
- Databases & Information Systems (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Analogue/Digital Conversion (AREA)
- Dc-Dc Converters (AREA)
Abstract
本发明提供一种开关电源变换器参数记录仪滤波方法及其装置,属于开关电源领域,包括输入端采样模块、开关电源变换器、温度传感器模块、输出端采样模块、处理器模块、非易失存储器模块、独立电源模块和USB接口模块;输入端采样模块和输出端采样模块的输出端均与处理器模块连接;开关电源变换器经温度传感器模块与处理器模块连接;处理器模块的输出端与非易失存储器模块连接;独立电源模块输出端与非易失存储器模块连接供电;非易失存储器模块输出端与USB接口模块连接;通过将开关电源变换器在工作过程中主要元器件的各项参数采集存储在非易失存储器中,实现开关电源变换器出现故障后的数据分析,便于找到故障原因。
The invention provides a switching power supply converter parameter recorder filtering method and its device, belonging to the field of switching power supplies, including an input terminal sampling module, a switching power supply converter, a temperature sensor module, an output terminal sampling module, a processor module, a non-volatile memory module, independent power supply module and USB interface module; the output terminals of the input terminal sampling module and the output terminal sampling module are connected with the processor module; the switching power converter is connected with the processor module through the temperature sensor module; the output terminal of the processor module Connect with the non-volatile memory module; connect the output end of the independent power supply module with the non-volatile memory module for power supply; connect the output end of the non-volatile memory module with the USB interface module; Item parameters are collected and stored in non-volatile memory to realize data analysis after the switching power converter fails, and to find the cause of the failure easily.
Description
技术领域technical field
本发明涉及开关电源领域,具体的来说是涉及一种开关电源变换器参数记录仪滤波方法及其装置。The invention relates to the field of switching power supplies, in particular to a filtering method and device for a parameter recorder of a switching power supply converter.
背景技术Background technique
随着现代电力电子技术的发展,开关电源技术也在不断地进步。目前,开关电源以小型、轻量和高效率的特点被广泛应用于各类电子设备,是当今电子信息产业飞速发展不可缺少的一种电源装置。但是,开关电源中开关管工作在开关状态时,会产生尖峰干扰和谐波信号,虽然经过整流滤波,输出电压和输出电流中的纹波和噪声仍然较大。这些噪声会对后期数据处理造成很大的影响,从而影响开关电源控制系统的性能,导致电源装置的电能质量变差。如何在能够保证数据准确性的同时滤除这些噪声显得十分重要。With the development of modern power electronics technology, switching power supply technology is also constantly improving. At present, switching power supply is widely used in various electronic equipment due to its small size, light weight and high efficiency. It is an indispensable power supply device for the rapid development of today's electronic information industry. However, when the switching tube in the switching power supply works in the switching state, it will generate spike interference and harmonic signals. Although it has been rectified and filtered, the ripple and noise in the output voltage and output current are still relatively large. These noises will have a great impact on the later data processing, thereby affecting the performance of the switching power supply control system, resulting in the deterioration of the power quality of the power supply device. How to filter out these noises while ensuring data accuracy is very important.
开关电源变换器参数记录仪主要是用于对开关电源变换器各参数的实时监测,数据的准确性对其来说,就显得更加重要了。运用传统滤波算法数学模型复杂,CPU运算量大,对快速采样不利,而且无法对历史数据进行修正,从而影响整个开关电源变换器参数记录仪所记录数据的准确性。综上所述,为了使开关电源变换器参数记录仪所记录的数据更具有研究价值,迫切需要一种准确、快速、高效和针对性强的滤波算法。The switching power converter parameter recorder is mainly used for real-time monitoring of the parameters of the switching power converter, and the accuracy of the data is even more important for it. The mathematical model of the traditional filtering algorithm is complicated, the CPU has a large amount of calculation, which is not good for fast sampling, and the historical data cannot be corrected, thus affecting the accuracy of the data recorded by the entire switching power converter parameter recorder. To sum up, in order to make the data recorded by the switching power converter parameter recorder more valuable for research, an accurate, fast, efficient and targeted filtering algorithm is urgently needed.
发明内容Contents of the invention
本发明需要解决的是现有滤波算法无法对历史数据进行修正的问题,提供一种开关电源变换器参数记录仪滤波方法及其装置。What the present invention needs to solve is the problem that the existing filtering algorithm cannot correct historical data, and provides a filtering method and device for a parameter recorder of a switching power supply converter.
本发明通过以下技术方案解决上述问题:The present invention solves the above problems through the following technical solutions:
一种开关电源变换器参数记录仪滤波方法,包括如下步骤:A method for filtering a switching power converter parameter recorder, comprising the steps of:
步骤1,以周期T对待测信号和噪声信号进行A/D采样;Step 1, A/D sampling is performed on the signal to be tested and the noise signal at a period T;
步骤2,把采样数据经过自适应对消算式输出信号e1、e2……en;Step 2, output the sampled data through adaptive cancellation formula e 1 , e 2 ... e n ;
步骤3,每隔时间T′把输出信号进行快速傅里叶变换(FFT)确定自适应对消算式中自适应系数K的值;Step 3, carry out fast Fourier transform (FFT) to the output signal at every time T ' to determine the value of the adaptive coefficient K in the adaptive cancellation formula;
步骤4,由步骤2输出的信号en-1和en根据步骤3中确定的K的值预测出下一点的信号e'n+1;Step 4, the signal e n-1 and e n output by step 2 predict the signal e' n+1 of the next point according to the value of K determined in step 3;
步骤5,将采集运算输出的en+1和预测e'n+1进行差值运算;Step 5, performing a difference operation on the e n+1 output by the collection operation and the predicted e'n+1;
步骤6,当步骤5的差值绝对值小于或等于预设的最大允许误差值Δemax时,取en+1作为信号的有效值,返回步骤2;Step 6, when the absolute value of the difference in step 5 is less than or equal to the preset maximum allowable error value Δe max , take e n+1 as the effective value of the signal, and return to step 2;
步骤7,当步骤5的差值绝对值大于预设的最大允许误差值Δemax时,先令en+1=e'n+1;Step 7, when the absolute value of the difference in step 5 is greater than the preset maximum allowable error value Δe max , shill e n+1 = e'n+1;
步骤8,由步骤2输出的信号en和en+2预测出中间一点的信号e”n+1;Step 8, the signal e" n+1 of the intermediate point is predicted by the signals e n and e n+2 output in step 2;
步骤9,将步骤7中的en+1和预测e”n+1进行差值运算;Step 9, performing a difference operation on e n+1 in step 7 and the predicted e"n+1;
步骤10,当步骤9的差值绝对值小于或等于预设的最大允许误差值Δemax时,取en+1=e'n+1作为信号的有效值,返回步骤2;Step 10, when the absolute value of the difference in step 9 is less than or equal to the preset maximum allowable error value Δe max , take e n+1 = e' n+1 as the effective value of the signal, and return to step 2;
步骤11,当步骤9的差值绝对值大于预设的最大允许误差值Δemax时,先令en+1=(e'n+1+e”n+1)/2,返回步骤2。Step 11, when the absolute value of the difference in step 9 is greater than the preset maximum allowable error value Δe max , shill e n+1 = (e' n+1 +e” n+1 )/2, and return to step 2.
步骤2中的自适应对消算式为The adaptive cancellation formula in step 2 is
e(n)=d(n)-k*N1(n)e(n)=d(n)-k*N 1 (n)
式中,d(n)表示待测信号的采样值,N1(n)表示噪声信号的采样值,k为自适应系数,初始值设为1,e(n)为运算输出信号。In the formula, d(n) represents the sampling value of the signal to be measured, N 1 (n) represents the sampling value of the noise signal, k is the adaptive coefficient, the initial value is set to 1, and e(n) is the operation output signal.
步骤3中确定自适应对消算式中自适应系数K的值的过程为:The process of determining the value of the adaptive coefficient K in the adaptive cancellation formula in step 3 is:
步骤3.1,以周期T'把输出信号进行快速傅里叶变换(FFT),将原来的时域信号转换成为频域信号;Step 3.1, performing fast Fourier transform (FFT) on the output signal with a cycle T', converting the original time domain signal into a frequency domain signal;
步骤3.2,算出频域信号中频率大于20HZ的信号与总信号的比值,当第一次比值大于1/20时,自适应系数K增加0.1,反之,自适应系数K的值不变;Step 3.2, calculate the ratio of the signal with a frequency greater than 20HZ to the total signal in the frequency domain signal, when the ratio is greater than 1/20 for the first time, the adaptive coefficient K increases by 0.1, otherwise, the value of the adaptive coefficient K remains unchanged;
步骤3.3,当下一次频域信号中频率大于20HZ的信号与总信号的比值比上一次时小,继续增大自适应系数K的值,直至频域信号中频率大于20HZ的信号与总信号的比值出现最小值;反之,减小自适应系数K的值,直至频域信号中频率大于20HZ的信号与总信号的比值出现最小值。Step 3.3, when the ratio of the signal with a frequency greater than 20HZ to the total signal in the next frequency domain signal is smaller than the previous time, continue to increase the value of the adaptive coefficient K until the ratio of the signal with a frequency greater than 20HZ to the total signal in the frequency domain signal The minimum value appears; otherwise, reduce the value of the adaptive coefficient K until the ratio of the signal with a frequency greater than 20HZ to the total signal in the frequency domain signal appears the minimum value.
步骤5中的差值运算式为The difference calculation formula in step 5 is
Δe=|e′n+1-en+1|Δe=|e′ n+1 -e n+1 |
Δe<=Δemax Δe <= Δe max
式中,Δe表示采集运算输出信号en+1和预测输出信号e'n+1差值的绝对值的大小,Δemax为最大允许误差值,取值范围为0.01≤Δemax≤1。In the formula, Δe represents the absolute value of the difference between the acquisition operation output signal e n+1 and the predicted output signal e' n+1 , Δe max is the maximum allowable error value, and the value range is 0.01≤Δe max ≤1.
一种开关电源变换器参数记录仪装置,包括输入端采样模块、开关电源变换器、温度传感器模块、输出端采样模块、处理器模块、非易失存储器模块、独立电源模块和USB接口模块;输入端采样模块和输出端采样模块的输出端均与处理器模块连接;开关电源变换器经温度传感器模块与处理器模块连接;处理器模块的输出端与非易失存储器模块连接;独立电源模块输出端与非易失存储器模块连接供电;非易失存储器模块输出端与USB接口模块连接。A switching power converter parameter recorder device, comprising an input sampling module, a switching power converter, a temperature sensor module, an output sampling module, a processor module, a non-volatile memory module, an independent power supply module and a USB interface module; input The output ends of the end sampling module and the output end sampling module are connected to the processor module; the switching power supply converter is connected to the processor module through the temperature sensor module; the output end of the processor module is connected to the non-volatile memory module; the independent power supply module outputs The terminal is connected to the non-volatile memory module for power supply; the output terminal of the non-volatile memory module is connected to the USB interface module.
上述方案中,优选的是输入端采样模块包括第1A/D转换器、第1差分放大电路、第1噪声采样电路、第1电压传感器、电容C1和电阻R1,所述电容C1的一端连接电压输入端,该端同时连接电阻R1、第1噪声采样电路和第1电压传感器的一端,所述电容C1的另一端连接第1噪声采样电路、第1电压传感器、电压输入端的另一端并接地;电阻R1的另一端连接开关电源变换器的输入端,该端同时连接第1差分放大电路的另一端;所述第1差分放大电路、第1噪声采样电路和第1电压传感器的输出端同时与第1A/D转换器的输入端连接;第1A/D转换器的输出端与处理器模块的输入端连接。In the above solution, preferably, the input terminal sampling module includes a first A/D converter, a first differential amplifier circuit, a first noise sampling circuit, a first voltage sensor, a capacitor C1 and a resistor R1, and one end of the capacitor C1 is connected to a voltage The input terminal is connected to the resistance R1, the first noise sampling circuit and one end of the first voltage sensor at the same time, and the other end of the capacitor C1 is connected to the first noise sampling circuit, the first voltage sensor, the other end of the voltage input terminal and grounded; The other end of the resistor R1 is connected to the input end of the switching power converter, and this end is simultaneously connected to the other end of the first differential amplifier circuit; the output end of the first differential amplifier circuit, the first noise sampling circuit and the first voltage sensor are simultaneously connected to the The input end of the first A/D converter is connected; the output end of the first A/D converter is connected with the input end of the processor module.
上述方案中,优选的是所述输出端采样模块包括第2A/D转换器、第2差分放大电路、第2噪声采样电路、第2电压传感器、电容C2和电阻R2,所述电容C2的一端连接电压输出端,该端同时连接电阻R2、第2噪声采样电路第2电压传感器的一端,;所述电容C2的另一端连接第2噪声采样电路和第2电压传感器、电压输出端的另一端并接地;电阻R2的另一端连接开关电源变换器的输入端,该端同时连接第2差分放大电路另一输入端;所述第2差分放大电路、第2噪声采样电路和第2电压传感器的输出端同时与第2A/D转换器的输入端连接;第2A/D转换器的输出端与处理器模块连接。In the above scheme, it is preferred that the output terminal sampling module includes a 2nd A/D converter, a 2nd differential amplifier circuit, a 2nd noise sampling circuit, a 2nd voltage sensor, a capacitor C2 and a resistor R2, and one end of the capacitor C2 Connect the voltage output end, this end is connected with resistance R2, one end of the second voltage sensor of the second noise sampling circuit at the same time; the other end of the capacitor C2 is connected with the second noise sampling circuit and the second voltage sensor, the other end of the voltage output end and Grounding; the other end of the resistor R2 is connected to the input end of the switching power converter, and this end is simultaneously connected to the other input end of the second differential amplifier circuit; the output of the second differential amplifier circuit, the second noise sampling circuit and the second voltage sensor The terminal is connected with the input terminal of the second A/D converter at the same time; the output terminal of the second A/D converter is connected with the processor module.
为了防止高电压对非易失存储器模块的影响,上述方案中,优选的是处理器模块与非易失存储器模块为光耦隔离通信连接的方式。In order to prevent the impact of high voltage on the non-volatile memory module, in the above solution, it is preferred that the processor module and the non-volatile memory module are connected in an optocoupler-isolated communication manner.
为了能更好采集开关电源变换器中各器件的温度,上述方案中,优选的是温度传感器模块至少包括2个温度传感器,温度传感器安装在开关电源变换器的电感、MOS管、变压器和整流二极管附近。In order to better collect the temperature of each device in the switching power converter, in the above scheme, it is preferable that the temperature sensor module includes at least two temperature sensors, and the temperature sensor is installed on the inductor, MOS tube, transformer and rectifier diode of the switching power converter nearby.
本发明的优点与效果是:Advantage and effect of the present invention are:
1、本发明采用双向线性预测方法,能有效滤除开关噪声带来的影响,获得更精准的采样数据;1. The present invention adopts a bidirectional linear prediction method, which can effectively filter out the influence of switching noise and obtain more accurate sampling data;
2、使用线性前向和后向预测方法,其数学模型简洁,能减少CPU的运算量,更有利于快速采样和更兼容于微型处理器。2. Using linear forward and backward prediction methods, its mathematical model is simple, can reduce the amount of calculation of the CPU, is more conducive to rapid sampling and is more compatible with microprocessors.
3、由于采用向后预测手段,将历史数据进行修正,使得采样后的数据精度得到进一步提高,使本发明用在开关电源参数记录仪中更具优势。3. Since the historical data is corrected by means of backward prediction, the accuracy of the sampled data is further improved, which makes the present invention more advantageous when used in a switching power supply parameter recorder.
附图说明Description of drawings
图1为本发明的滤波流程图。Fig. 1 is a filtering flow chart of the present invention.
图2为本发明的总体装置结构图。Fig. 2 is an overall device structure diagram of the present invention.
具体实施方式Detailed ways
以下结合实施例对本发明作进一步说明。The present invention will be further described below in conjunction with embodiment.
一种开关电源变换器参数记录仪滤波方法,如图1所示,包括如下步骤:A switching power converter parameter recorder filtering method, as shown in Figure 1, comprises the following steps:
步骤1,处理器模块以周期T对待测信号和噪声信号进行A/D采样,得到n个待测信号采样值和n个噪声信号采样值,分别设为d1,d2,d3,…,dn和N1,N2,N3,…,Nn;Step 1. The processor module performs A/D sampling on the signal to be tested and the noise signal at a period T to obtain n sampled values of the signal to be tested and n sampled values of the noise signal, which are respectively set as d 1 , d 2 , d 3 ,… ,d n and N 1 ,N 2 ,N 3 ,…,N n ;
步骤2,根据现有的自适应对消系统进行分析,待测信号:Step 2, analyze according to the existing adaptive cancellation system, the signal to be tested:
d(t)=s(t)+N0(t)d(t)=s(t)+N 0 (t)
其中,s(t)为有用信号,N0(t)为噪声信号,是要抵消的噪声,s(t)与N0(t)不相关。Among them, s(t) is a useful signal, N 0 (t) is a noise signal, which is the noise to be offset, and s(t) is not correlated with N 0 (t).
从开关电源变换器参数记录仪的噪声采样电路可采集待测信号中的噪声信号N1(t)。由于噪声信号在采集的过程中主要是发生了衰减,其他参数基本保持不变,所以实际上所采集噪声信号N1(t)与原噪声信号N0(t)基本成线性关系。The noise signal N 1 (t) in the signal to be tested can be collected from the noise sampling circuit of the switching power converter parameter recorder. Since the noise signal is mainly attenuated during the collection process, and other parameters remain basically unchanged, in fact, the collected noise signal N 1 (t) is basically in a linear relationship with the original noise signal N 0 (t).
即which is
y(t)=k*N1(t)y(t)=k*N 1 (t)
其中,k是自适应系数,初始值令k=1,一般取值范围为1≤k≤100,其取值的大小将直接影响系统的对消效果,取值过小,对消效果不明显,取值过大,反而会引入更多噪声。y(t)是由N1(t)经自适应系数k所确定的实际响应。Among them, k is an adaptive coefficient, the initial value is set to k=1, and the general value range is 1≤k≤100, the value of which will directly affect the cancellation effect of the system, if the value is too small, the cancellation effect is not obvious , if the value is too large, it will introduce more noise. y(t) is the actual response determined by N 1 (t) via the adaptive coefficient k.
系统输出信号:System output signal:
e(t)=d(t)-y(t)=s(t)+N0(t)-y(t)e(t)=d(t)-y(t)=s(t)+N 0 (t)-y(t)
为提高噪声对消效果,y(t)应是对d(t)中N0(t)的最佳估计:In order to improve the noise cancellation effect, y(t) should be the best estimate of N 0 (t) in d(t):
因此,自适应对消系统的输出信号:Therefore, the output signal of the adaptive cancellation system:
即,当N1(t)与N0(t)线性相关且k取一定值时,That is, when N 1 (t) is linearly related to N 0 (t) and k takes a certain value,
e(t)=s(t)e(t)=s(t)
此时,系统输出信号为最好对消情况。At this time, the system output signal is the best cancellation situation.
根据初始值令k=1,可以时间T′内输出有用信号e1、e2……en,T′根据自己采集的频率进行设定,本发明设定T′等于AD采样1024个点的时间。According to the initial value of k=1, useful signals e 1 , e 2 ... e n can be output within time T', T' is set according to the frequency collected by oneself, and the present invention sets T' equal to 1024 points of AD sampling time.
步骤3,在步骤2中输出有用信号e1、e2……en后,处理器模块对自适应对消系统输出信号进行快速傅里叶变换(FFT),将有用信号e1、e2……en的时域信号转换成为易于分析的频域信号(信号的频谱),从而判断出自适应对消系统输出信号中频率大于20HZ的信号的含量,即待测信号中工频谐波、开关电源脉宽调制纹波、放大器件产生的热噪声等干扰信号的含量,在处理开关电源变换器参数记录仪的相关数据时,不大于20HZ的信号可认为是有用信号。当增大自适应系数k的值时,大于20HZ的信号含量减小,则继续增大自适应系数k的值,直至频域信号中频率大于20HZ的信号与总信号的比值出现最小值;反之,减小自适应系数k的值,直至频域信号中频率大于20HZ的信号与总信号的比值出现最小值,最终确定自适应系数k的值,当k第一次变化后返回步骤2输出e2,进入下一步。自适应系数k的取值范围为1≤k≤100,初始化令其的值为1,即默认所采集噪声信号N1(t)与原噪声信号N0(t)相等。Step 3, after outputting the useful signals e 1 , e 2 ... e n in step 2, the processor module performs fast Fourier transform (FFT) on the output signal of the adaptive cancellation system, and converts the useful signals e 1 , e 2 The time domain signal of e n is converted into an easy-to-analyze frequency domain signal (signal spectrum), so as to determine the content of the signal whose frequency is greater than 20HZ in the output signal of the adaptive cancellation system, that is, the power frequency harmonic, The content of interference signals such as switching power supply pulse width modulation ripple and thermal noise generated by amplifier devices, when processing the relevant data of the switching power converter parameter recorder, the signal not greater than 20HZ can be considered as a useful signal. When increasing the value of the adaptive coefficient k, the signal content greater than 20HZ decreases, then continue to increase the value of the adaptive coefficient k until the ratio of the signal with a frequency greater than 20HZ to the total signal in the frequency domain signal appears the minimum value; otherwise , reduce the value of the adaptive coefficient k until the ratio of the signal with a frequency greater than 20HZ to the total signal in the frequency domain signal has the minimum value, and finally determine the value of the adaptive coefficient k. When k changes for the first time, return to step 2 and output e 2 , go to the next step. The value range of the adaptive coefficient k is 1≤k≤100, and its value is set to be 1 during initialization, that is, the collected noise signal N 1 (t) is equal to the original noise signal N 0 (t) by default.
步骤4,由步骤2输出的信号en-1和en预测出下一点的信号e'n+1;由于采样时间极端,可以看成线性变化的Step 4, the signal e' n+1 of the next point is predicted from the signals e n-1 and e n output in step 2; due to the extreme sampling time, it can be regarded as a linear change
可向前预测出en-1的下一个采集数据为It can be predicted forward that the next collection data of e n-1 is
e'n+1=2en-en-1 e' n+1 =2e n -e n-1
步骤5,当采集得到en的下一个数据en+1时,计算出预测误差值Δe,即Step 5, when the next data e n+1 of e n is collected, the prediction error value Δe is calculated, namely
Δe=|e′n+1-en+1|Δe=|e′ n+1 -e n+1 |
设Δemax为最大允许误差值,此值大小可根据实际需要而定,取值范围为0.01≤Δemax≤1,在处理开关电源变换器参数记录仪的相关数据时,通常可以令Δemax=0.1,即可满足数据准确性的要求。Let Δe max be the maximum allowable error value. This value can be determined according to actual needs, and the value range is 0.01≤Δe max ≤1. When dealing with the relevant data of the switching power converter parameter recorder, usually Δe max = 0.1, which can meet the requirements of data accuracy.
步骤6,当步骤5中Step 6, when in step 5
Δe<=Δemax Δe <= Δe max
则en+1无需更改,en+1为原采集值作为有效输出值。Then e n+1 does not need to be changed, and e n+1 is the original collection value as the effective output value.
步骤7,当步骤5中Step 7, when step 5
Δe>Δemax Δe>Δe max
先令en+1=e'n+1。Shilling e n+1 = e' n+1 .
步骤8,由步骤2输出的信号en和en+2预测出中间一点的信号e”n+1;Step 8, the signal e" n+1 of the intermediate point is predicted by the signals e n and e n+2 output in step 2;
可向后预测出en+2的前一个采集数据为It can be predicted backward that the previous collection data of e n+2 is
e”n+1=(en+2+en)/2e” n+1 =(e n+2 +e n )/2
步骤9,将步骤7中的en+1和预测e”n+1进行差值运算;Step 9, performing a difference operation on e n+1 in step 7 and the predicted e"n+1;
步骤10,当步骤9的差值绝对值小于或等于预设的最大允许误差值Δemax时,取en+1=e'n+1作为信号的有效值,返回步骤2;Step 10, when the absolute value of the difference in step 9 is less than or equal to the preset maximum allowable error value Δe max , take e n+1 = e' n+1 as the effective value of the signal, and return to step 2;
步骤11,当步骤9的差值绝对值大于预设的最大允许误差值Δemax时,先令en+1=(e'n+1+e”n+1)/2,返回步骤2。Step 11, when the absolute value of the difference in step 9 is greater than the preset maximum allowable error value Δe max , shill e n+1 = (e' n+1 +e” n+1 )/2, and return to step 2.
实现上述方法的一种开关电源变换器参数记录仪装置,如图2所示,包括输入端采样模块、开关电源变换器、温度传感器模块、输出端采样模块、处理器模块、非易失存储器模块、独立电源模块和USB接口模块;输入端采样模块和输出端采样模块的输出端均与处理器模块连接;开关电源变换器经温度传感器模块与处理器模块连接;处理器模块的输出端与非易失存储器模块连接;独立电源模块输出端与非易失存储器模块连接供电;非易失存储器模块输出端与USB接口模块连接。A switching power converter parameter recorder device for realizing the above method, as shown in Figure 2, includes an input sampling module, a switching power converter, a temperature sensor module, an output sampling module, a processor module, and a nonvolatile memory module , an independent power supply module and a USB interface module; the output terminals of the input terminal sampling module and the output terminal sampling module are connected to the processor module; the switching power converter is connected to the processor module through the temperature sensor module; the output terminal of the processor module is connected to the non- The volatile memory module is connected; the output end of the independent power supply module is connected to the non-volatile memory module for power supply; the output end of the non-volatile memory module is connected to the USB interface module.
输入端采样模块包括第1A/D转换器、第1差分放大电路、第1噪声采样电路、第1电压传感器、电容C1和电阻R1,所述电容C1的一端连接电压输入端,该端同时连接电阻R1、第1噪声采样电路和第1电压传感器的一端,所述电容C1的另一端连接第1噪声采样电路、第1电压传感器、电压输入端的另一端并接地;电阻R1的另一端连接开关电源变换器的输入端,该端同时连接第1差分放大电路的另一端;所述第1差分放大电路、第1噪声采样电路和第1电压传感器的输出端同时与第1A/D转换器的输入端连接;第1A/D转换器的输出端与处理器模块的输入端连接,如图2所示。The input terminal sampling module includes a first A/D converter, a first differential amplifier circuit, a first noise sampling circuit, a first voltage sensor, a capacitor C1 and a resistor R1, one end of the capacitor C1 is connected to the voltage input end, and this end is simultaneously connected to the One end of the resistor R1, the first noise sampling circuit, and the first voltage sensor, the other end of the capacitor C1 is connected to the first noise sampling circuit, the first voltage sensor, and the other end of the voltage input end and grounded; the other end of the resistor R1 is connected to the switch The input end of the power converter, which end is connected to the other end of the first differential amplifier circuit at the same time; the output end of the first differential amplifier circuit, the first noise sampling circuit and the first voltage sensor are simultaneously connected with the first A/D converter The input terminal is connected; the output terminal of the first A/D converter is connected with the input terminal of the processor module, as shown in FIG. 2 .
输出端采样模块包括第2A/D转换器、第2差分放大电路、第2噪声采样电路、第2电压传感器、电容C2和电阻R2,所述电容C2的一端连接电压输出端,该端同时连接电阻R2、第2噪声采样电路和第2电压传感器的一端,;所述电容C2的另一端连接第2噪声采样电路和第2电压传感器、电压输出端的另一端并接地;电阻R2的另一端连接开关电源变换器的输入端,该端同时连接第2差分放大电路另一输入端;所述第2差分放大电路、第2噪声采样电路和第2电压传感器的输出端同时与第2A/D转换器的输入端连接;第2A/D转换器的输出端与处理器模块连接,如图2所示。The output terminal sampling module includes a 2nd A/D converter, a 2nd differential amplifier circuit, a 2nd noise sampling circuit, a 2nd voltage sensor, a capacitor C2 and a resistor R2, one end of the capacitor C2 is connected to the voltage output terminal, and this end is simultaneously connected to the Resistor R2, one end of the second noise sampling circuit and the second voltage sensor; the other end of the capacitor C2 is connected to the second noise sampling circuit and the second voltage sensor, and the other end of the voltage output end is grounded; the other end of the resistor R2 is connected to The input terminal of the switching power supply converter, which is connected to the other input terminal of the second differential amplifier circuit at the same time; the output terminal of the second differential amplifier circuit, the second noise sampling circuit and the second voltage sensor are simultaneously connected with the second A/D conversion The input end of the converter is connected; the output end of the second A/D converter is connected with the processor module, as shown in FIG. 2 .
处理器模块与非易失存储器模块为光耦隔离通信连接的方式,光耦隔离就是采用光耦合器进行隔离。光耦合器的结构相当于把发光二极管和光敏三极管封装在一起。光耦隔离电路使被隔离的两部分电路之间没有电的直接连接,主要是防止因有电的连接而引起的干扰。The processor module and the non-volatile memory module are connected in an optocoupler isolation communication mode, and the optocoupler isolation is to use an optocoupler for isolation. The structure of the optocoupler is equivalent to packaging the light emitting diode and the phototransistor together. The optocoupler isolation circuit makes there is no electrical direct connection between the isolated two parts of the circuit, mainly to prevent interference caused by electrical connections.
温度传感器模块至少包括2个温度传感器,温度传感器安装在开关电源变换器的电感、MOS管、变压器和整流二极管附近,可以更好采集各个器件的温度。The temperature sensor module includes at least two temperature sensors. The temperature sensor is installed near the inductor, MOS tube, transformer and rectifier diode of the switching power converter, which can better collect the temperature of each device.
以上已对本发明创造的较佳实施例进行了具体说明,但本发明并不限于实施例,熟悉本领域的技术人员在不违背本发明创造精神的前提下还可以作出种种的等同的变型或替换,这些等同的变型或替换均包含在本申请的范围内。The preferred embodiments of the present invention have been described in detail above, but the present invention is not limited to the embodiments. Those skilled in the art can also make various equivalent modifications or replacements without violating the spirit of the present invention. , these equivalent modifications or replacements are included within the scope of the present application.
Claims (9)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610201169.2A CN105740205B (en) | 2016-04-01 | 2016-04-01 | A kind of switching power converters parameter recorder filtering method and its device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610201169.2A CN105740205B (en) | 2016-04-01 | 2016-04-01 | A kind of switching power converters parameter recorder filtering method and its device |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN105740205A CN105740205A (en) | 2016-07-06 |
| CN105740205B true CN105740205B (en) | 2018-09-18 |
Family
ID=56252605
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201610201169.2A Expired - Fee Related CN105740205B (en) | 2016-04-01 | 2016-04-01 | A kind of switching power converters parameter recorder filtering method and its device |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN105740205B (en) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110108234B (en) * | 2019-06-03 | 2024-06-07 | 呜啦啦(广州)科技有限公司 | Current type bidirectional bending sensor driving device and automatic return-to-zero initialization method |
| CN114076842A (en) * | 2021-11-18 | 2022-02-22 | 中国电信股份有限公司 | Switching power supply, electric energy metering and displaying method and device thereof, and storage medium |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8718291B2 (en) * | 2011-01-05 | 2014-05-06 | Cambridge Silicon Radio Limited | ANC for BT headphones |
| CN103166673B (en) * | 2013-03-04 | 2015-07-29 | 福建京奥通信技术有限公司 | Ultra broadband ICS wireless discharging-directly station |
| CN103760529B (en) * | 2013-12-06 | 2017-01-25 | 河海大学 | Efficient cascading space-time adaptive processing method based on passive detection |
-
2016
- 2016-04-01 CN CN201610201169.2A patent/CN105740205B/en not_active Expired - Fee Related
Also Published As
| Publication number | Publication date |
|---|---|
| CN105740205A (en) | 2016-07-06 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN107490737B (en) | A method for estimating load and mutual inductance of a wireless charging system | |
| CN105048814B (en) | Flyback power supply and control circuit and control method thereof | |
| CN105738689A (en) | System and Method for Measuring Power in a Power Factor Converter | |
| EP2378834B1 (en) | Method and circuit for automatic calibration of the power of electromagnetic oven | |
| CN110579734B (en) | Method for analyzing electric energy quality of single-phase electric energy meter and single-phase electric energy meter | |
| CN107422243A (en) | Gallium nitride HEMT device junction temperature test device, test board, test system and its method | |
| CN105740205B (en) | A kind of switching power converters parameter recorder filtering method and its device | |
| CN114755553A (en) | Test system of low-power consumption shielding grid semiconductor power device | |
| CN110824321A (en) | Stray capacitance obtaining method for IGBT dynamic parameter test platform | |
| Yu et al. | Incipient fault diagnosis method for DC–DC converters based on sensitive fault features | |
| CN110824389A (en) | An IFRA-based synchronous generator winding short-circuit fault detection method | |
| CN108241129B (en) | Device and method for monitoring output filter capacitor of switching power supply | |
| CN119727356A (en) | A high-precision PWM dead-zone effect compensation method and system | |
| CN108872666B (en) | A method and system for detecting a load switch event | |
| CN116520096A (en) | Traveling wave fault positioning method and device based on LMD decomposition | |
| CN115856560B (en) | Method and device for measuring parasitic parameters of source electrode and drain electrode current of power device | |
| CN110702972B (en) | Adaptive sampling method and device for analog signals | |
| CN104714078A (en) | Method for analyzing level signals and method for triggering release | |
| CN118393216A (en) | Transformer core and clamp piece ground current monitoring device with reversed phase full compensation | |
| CN112698142B (en) | Electrolytic capacitor failure parameter identification method in direct current converter | |
| CN116539985A (en) | A Fault Diagnosis Method for Photovoltaic System Converters Based on Digital Twins | |
| CN117147989A (en) | A status monitoring method for ocean energy power generation converters based on digital twins | |
| Wiesinger et al. | A novel real time monitoring unit for PWM converter electrolytic capacitors | |
| KR20110117369A (en) | A medium recording a system, a method for measuring impedance and noise characteristics simultaneously, and a computer readable program for executing the method. | |
| CN113156196A (en) | Electronic transformer-based high-frequency sampling intelligent sensing terminal and implementation method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| TR01 | Transfer of patent right |
Effective date of registration: 20230602 Address after: 541004 No.1, group 303, Lijiang Garden, No.52, Huancheng Beier Road, Qixing District, Guilin City, Guangxi Zhuang Autonomous Region Patentee after: Guilin Lihua Electronic Technology Co.,Ltd. Address before: 541004 No. 15 Yucai Road, Guilin, the Guangxi Zhuang Autonomous Region Patentee before: Guangxi Normal University |
|
| TR01 | Transfer of patent right | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180918 |
|
| CF01 | Termination of patent right due to non-payment of annual fee |