CN105742727B - A kind of preparation method of secondary cell, purposes and its cathode - Google Patents
A kind of preparation method of secondary cell, purposes and its cathode Download PDFInfo
- Publication number
- CN105742727B CN105742727B CN201410749445.XA CN201410749445A CN105742727B CN 105742727 B CN105742727 B CN 105742727B CN 201410749445 A CN201410749445 A CN 201410749445A CN 105742727 B CN105742727 B CN 105742727B
- Authority
- CN
- China
- Prior art keywords
- conductive liquid
- ether
- lithium
- solid electrolyte
- potassium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 28
- 239000011734 sodium Substances 0.000 claims abstract description 115
- 229910001338 liquidmetal Inorganic materials 0.000 claims abstract description 103
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims abstract description 87
- 229910052708 sodium Inorganic materials 0.000 claims abstract description 87
- 239000007784 solid electrolyte Substances 0.000 claims abstract description 70
- 239000007788 liquid Substances 0.000 claims abstract description 61
- 239000007787 solid Substances 0.000 claims abstract description 58
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 50
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims abstract description 49
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 47
- 229910052700 potassium Inorganic materials 0.000 claims abstract description 47
- 239000011591 potassium Substances 0.000 claims abstract description 46
- 150000001491 aromatic compounds Chemical class 0.000 claims abstract description 14
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical group C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 claims description 31
- ZUHZGEOKBKGPSW-UHFFFAOYSA-N tetraglyme Chemical compound COCCOCCOCCOCCOC ZUHZGEOKBKGPSW-UHFFFAOYSA-N 0.000 claims description 30
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical group COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 claims description 22
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 20
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 claims description 18
- 239000002904 solvent Substances 0.000 claims description 17
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 claims description 16
- 239000000919 ceramic Substances 0.000 claims description 15
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 claims description 15
- 238000004146 energy storage Methods 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 15
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 claims description 14
- DHKHKXVYLBGOIT-UHFFFAOYSA-N 1,1-Diethoxyethane Chemical compound CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 claims description 12
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 12
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 12
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 claims description 10
- 229910052783 alkali metal Inorganic materials 0.000 claims description 10
- 150000001340 alkali metals Chemical class 0.000 claims description 10
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 claims description 9
- 150000004056 anthraquinones Chemical class 0.000 claims description 9
- 150000002790 naphthalenes Chemical class 0.000 claims description 7
- LEEANUDEDHYDTG-UHFFFAOYSA-N 1,2-dimethoxypropane Chemical class COCC(C)OC LEEANUDEDHYDTG-UHFFFAOYSA-N 0.000 claims description 6
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 claims description 6
- PZHIWRCQKBBTOW-UHFFFAOYSA-N 1-ethoxybutane Chemical compound CCCCOCC PZHIWRCQKBBTOW-UHFFFAOYSA-N 0.000 claims description 6
- BPIUIOXAFBGMNB-UHFFFAOYSA-N 1-hexoxyhexane Chemical class CCCCCCOCCCCCC BPIUIOXAFBGMNB-UHFFFAOYSA-N 0.000 claims description 6
- AOPDRZXCEAKHHW-UHFFFAOYSA-N 1-pentoxypentane Chemical compound CCCCCOCCCCC AOPDRZXCEAKHHW-UHFFFAOYSA-N 0.000 claims description 6
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical class CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 claims description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 6
- AQZGPSLYZOOYQP-UHFFFAOYSA-N Diisoamyl ether Chemical compound CC(C)CCOCCC(C)C AQZGPSLYZOOYQP-UHFFFAOYSA-N 0.000 claims description 6
- ZAFNJMIOTHYJRJ-UHFFFAOYSA-N Diisopropyl ether Chemical compound CC(C)OC(C)C ZAFNJMIOTHYJRJ-UHFFFAOYSA-N 0.000 claims description 6
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 claims description 6
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 claims description 6
- 229910052786 argon Inorganic materials 0.000 claims description 6
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 claims description 6
- 239000012965 benzophenone Substances 0.000 claims description 6
- POLCUAVZOMRGSN-UHFFFAOYSA-N dipropyl ether Chemical compound CCCOCCC POLCUAVZOMRGSN-UHFFFAOYSA-N 0.000 claims description 6
- 230000005611 electricity Effects 0.000 claims description 6
- 230000001681 protective effect Effects 0.000 claims description 6
- 239000002002 slurry Substances 0.000 claims description 6
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 6
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 5
- 229910001416 lithium ion Inorganic materials 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 5
- 238000010248 power generation Methods 0.000 claims description 5
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 claims description 4
- 229910052740 iodine Inorganic materials 0.000 claims description 4
- 239000011630 iodine Substances 0.000 claims description 4
- 239000007769 metal material Substances 0.000 claims description 4
- LKPFBGKZCCBZDK-UHFFFAOYSA-N n-hydroxypiperidine Chemical compound ON1CCCCC1 LKPFBGKZCCBZDK-UHFFFAOYSA-N 0.000 claims description 4
- 239000002585 base Substances 0.000 claims description 3
- 230000033228 biological regulation Effects 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 238000004891 communication Methods 0.000 claims description 3
- NKDDWNXOKDWJAK-UHFFFAOYSA-N dimethoxymethane Chemical compound COCOC NKDDWNXOKDWJAK-UHFFFAOYSA-N 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 239000012530 fluid Substances 0.000 claims 10
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims 6
- HIXDQWDOVZUNNA-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-hydroxy-7-methoxychromen-4-one Chemical compound C=1C(OC)=CC(O)=C(C(C=2)=O)C=1OC=2C1=CC=C(OC)C(OC)=C1 HIXDQWDOVZUNNA-UHFFFAOYSA-N 0.000 claims 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims 3
- 239000010931 gold Substances 0.000 claims 3
- 229910052737 gold Inorganic materials 0.000 claims 3
- 239000012528 membrane Substances 0.000 claims 3
- 125000006091 1,3-dioxolane group Chemical class 0.000 claims 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims 2
- 150000004054 benzoquinones Chemical class 0.000 claims 2
- 229910052593 corundum Inorganic materials 0.000 claims 2
- 239000000428 dust Substances 0.000 claims 2
- 239000007789 gas Substances 0.000 claims 2
- GDOPTJXRTPNYNR-UHFFFAOYSA-N methyl-cyclopentane Natural products CC1CCCC1 GDOPTJXRTPNYNR-UHFFFAOYSA-N 0.000 claims 2
- 229910001845 yogo sapphire Inorganic materials 0.000 claims 2
- 229910003405 Li10GeP2S12 Inorganic materials 0.000 claims 1
- 229910002984 Li7La3Zr2O12 Inorganic materials 0.000 claims 1
- 229910020657 Na3V2(PO4)3 Inorganic materials 0.000 claims 1
- 229910019441 NaTi2(PO4)3 Inorganic materials 0.000 claims 1
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Inorganic materials O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 claims 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 claims 1
- 229910052573 porcelain Inorganic materials 0.000 claims 1
- 230000003068 static effect Effects 0.000 claims 1
- 229910052751 metal Inorganic materials 0.000 abstract description 74
- 239000002184 metal Substances 0.000 abstract description 74
- 239000007774 positive electrode material Substances 0.000 abstract description 59
- 239000003792 electrolyte Substances 0.000 abstract description 12
- 239000004210 ether based solvent Substances 0.000 abstract description 8
- 238000003860 storage Methods 0.000 description 21
- 238000007600 charging Methods 0.000 description 14
- 235000010290 biphenyl Nutrition 0.000 description 13
- 239000004305 biphenyl Substances 0.000 description 13
- 238000007599 discharging Methods 0.000 description 13
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 11
- 238000010586 diagram Methods 0.000 description 11
- 239000010406 cathode material Substances 0.000 description 10
- 230000008569 process Effects 0.000 description 9
- 239000003115 supporting electrolyte Substances 0.000 description 9
- 238000007086 side reaction Methods 0.000 description 7
- 229910001415 sodium ion Inorganic materials 0.000 description 7
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 6
- 229910052717 sulfur Inorganic materials 0.000 description 6
- 210000001787 dendrite Anatomy 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 5
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 5
- XGPOMXSYOKFBHS-UHFFFAOYSA-M sodium;trifluoromethanesulfonate Chemical compound [Na+].[O-]S(=O)(=O)C(F)(F)F XGPOMXSYOKFBHS-UHFFFAOYSA-M 0.000 description 5
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 4
- SBUOHGKIOVRDKY-UHFFFAOYSA-N 4-methyl-1,3-dioxolane Chemical compound CC1COCO1 SBUOHGKIOVRDKY-UHFFFAOYSA-N 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 4
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 4
- AFPRJLBZLPBTPZ-UHFFFAOYSA-N acenaphthoquinone Chemical class C1=CC(C(C2=O)=O)=C3C2=CC=CC3=C1 AFPRJLBZLPBTPZ-UHFFFAOYSA-N 0.000 description 4
- 150000001454 anthracenes Chemical class 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000007773 negative electrode material Substances 0.000 description 4
- 230000010287 polarization Effects 0.000 description 4
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 230000009977 dual effect Effects 0.000 description 3
- IFLREYGFSNHWGE-UHFFFAOYSA-N tetracene Chemical compound C1=CC=CC2=CC3=CC4=CC=CC=C4C=C3C=C21 IFLREYGFSNHWGE-UHFFFAOYSA-N 0.000 description 3
- -1 x-methylnaphthalene Chemical compound 0.000 description 3
- 150000004057 1,4-benzoquinones Chemical class 0.000 description 2
- APQSQLNWAIULLK-UHFFFAOYSA-N 1,4-dimethylnaphthalene Chemical compound C1=CC=C2C(C)=CC=C(C)C2=C1 APQSQLNWAIULLK-UHFFFAOYSA-N 0.000 description 2
- YYVYAPXYZVYDHN-UHFFFAOYSA-N 9,10-phenanthroquinone Chemical class C1=CC=C2C(=O)C(=O)C3=CC=CC=C3C2=C1 YYVYAPXYZVYDHN-UHFFFAOYSA-N 0.000 description 2
- 229910003249 Na3Zr2Si2PO12 Inorganic materials 0.000 description 2
- 238000001237 Raman spectrum Methods 0.000 description 2
- BNOODXBBXFZASF-UHFFFAOYSA-N [Na].[S] Chemical compound [Na].[S] BNOODXBBXFZASF-UHFFFAOYSA-N 0.000 description 2
- CWRYPZZKDGJXCA-UHFFFAOYSA-N acenaphthene Chemical compound C1=CC(CC2)=C3C2=CC=CC3=C1 CWRYPZZKDGJXCA-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- ZCILODAAHLISPY-UHFFFAOYSA-N biphenyl ether Natural products C1=C(CC=C)C(O)=CC(OC=2C(=CC(CC=C)=CC=2)O)=C1 ZCILODAAHLISPY-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 2
- SLIUAWYAILUBJU-UHFFFAOYSA-N pentacene Chemical compound C1=CC=CC2=CC3=CC4=CC5=CC=CC=C5C=C4C=C3C=C21 SLIUAWYAILUBJU-UHFFFAOYSA-N 0.000 description 2
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical compound C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 2
- SCOAVUHOIJMIBW-UHFFFAOYSA-N phenanthrene-1,2-dione Chemical class C1=CC=C2C(C=CC(C3=O)=O)=C3C=CC2=C1 SCOAVUHOIJMIBW-UHFFFAOYSA-N 0.000 description 2
- 239000005077 polysulfide Substances 0.000 description 2
- 229920001021 polysulfide Polymers 0.000 description 2
- 150000008117 polysulfides Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- NAQWICRLNQSPPW-UHFFFAOYSA-N 1,2,3,4-tetrachloronaphthalene Chemical compound C1=CC=CC2=C(Cl)C(Cl)=C(Cl)C(Cl)=C21 NAQWICRLNQSPPW-UHFFFAOYSA-N 0.000 description 1
- YJTKZCDBKVTVBY-UHFFFAOYSA-N 1,3-Diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 YJTKZCDBKVTVBY-UHFFFAOYSA-N 0.000 description 1
- AMCBMCWLCDERHY-UHFFFAOYSA-N 1,3-dichloronaphthalene Chemical compound C1=CC=CC2=CC(Cl)=CC(Cl)=C21 AMCBMCWLCDERHY-UHFFFAOYSA-N 0.000 description 1
- 239000005967 1,4-Dimethylnaphthalene Substances 0.000 description 1
- HLQDGCWIOSOMDP-UHFFFAOYSA-N 2,3,4,5-tetrachlorobiphenyl Chemical group ClC1=C(Cl)C(Cl)=CC(C=2C=CC=CC=2)=C1Cl HLQDGCWIOSOMDP-UHFFFAOYSA-N 0.000 description 1
- YTBRNEUEFCNVHC-UHFFFAOYSA-N 4,4'-dichlorobiphenyl Chemical group C1=CC(Cl)=CC=C1C1=CC=C(Cl)C=C1 YTBRNEUEFCNVHC-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- XBDYBAVJXHJMNQ-UHFFFAOYSA-N Tetrahydroanthracene Natural products C1=CC=C2C=C(CCCC3)C3=CC2=C1 XBDYBAVJXHJMNQ-UHFFFAOYSA-N 0.000 description 1
- NBVHDOZEOGAKLK-UHFFFAOYSA-N [N]=O.CC1C(N(CCC1)C)(C)C Chemical class [N]=O.CC1C(N(CCC1)C)(C)C NBVHDOZEOGAKLK-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010277 constant-current charging Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012983 electrochemical energy storage Methods 0.000 description 1
- 238000000157 electrochemical-induced impedance spectroscopy Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 238000001453 impedance spectrum Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000005486 organic electrolyte Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229910001414 potassium ion Inorganic materials 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- UWHCKJMYHZGTIT-UHFFFAOYSA-N tetraethylene glycol Chemical compound OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- ITMCEJHCFYSIIV-UHFFFAOYSA-N triflic acid Chemical compound OS(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-N 0.000 description 1
- 229910001456 vanadium ion Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明公开了一种二次电池、用途及其负极的制备方法,所述二次电池包括固态的金属钠或锂或钾、导电液态金属、固体电解质、正极材料和电池壳体;所述固态的金属钠或锂或钾和所述导电液态金属容置于所述固体电解质构成的固体电解质管内,或者,所述固态的金属钠或锂或钾和所述导电液态金属填充在所述电池壳体与所述固体电解质之间,所述固态的金属钠或锂或钾与导电液态金属一起构成所述二次电池的高容量负极;所述正极材料填充在所述电池壳体与所述固体电解质之间,形成所述二次电池的正极,其中所述导电液态金属包括金属钠、锂、钾中任一种或几种与芳香族化合物以及醚类溶剂混合生成的液体。
The invention discloses a secondary battery, its use and a preparation method for its negative electrode. The secondary battery includes solid metal sodium or lithium or potassium, conductive liquid metal, solid electrolyte, positive electrode material and battery case; the solid state The metal sodium or lithium or potassium and the conductive liquid metal are accommodated in the solid electrolyte tube formed by the solid electrolyte, or the solid metal sodium or lithium or potassium and the conductive liquid metal are filled in the battery shell Between the body and the solid electrolyte, the solid metal sodium or lithium or potassium together with the conductive liquid metal constitute the high-capacity negative electrode of the secondary battery; the positive electrode material is filled between the battery case and the solid Between the electrolytes, the positive electrode of the secondary battery is formed, wherein the conductive liquid metal includes a liquid formed by mixing any one or more of metal sodium, lithium, and potassium with aromatic compounds and ether solvents.
Description
技术领域technical field
本发明涉及电池技术领域,尤其涉及一种二次电池、用途及其负极的制备方法。The invention relates to the technical field of batteries, in particular to a secondary battery, its use and a preparation method for its negative electrode.
背景技术Background technique
随着传统化石能源的日益枯竭及带来的环境问题日益突出,开发利用太阳能、风能等可再生能源迫在眉睫。然而,由于太阳能、风能的波动性与间歇性导致了电网的不稳定,所以需要大力发展大规模储能技术。大规模储能技术可以有效的解决太阳能、风能等可再生能源间歇性供电的问题,实现需求管理、消除昼夜峰谷差、平滑负荷等。With the depletion of traditional fossil energy and the increasingly prominent environmental problems, it is imminent to develop and utilize renewable energy such as solar energy and wind energy. However, due to the instability and intermittency of solar and wind energy, the power grid is unstable, so it is necessary to vigorously develop large-scale energy storage technology. Large-scale energy storage technology can effectively solve the problem of intermittent power supply from renewable energy sources such as solar energy and wind energy, realize demand management, eliminate peak and valley differences between day and night, and smooth loads.
目前主要的大规模储能技术有抽水蓄能、压缩空气储能、飞轮储能、电化学储能等。各种储能技术具有各自的使用条件及优势,都处于积极的研发与演示阶段。其中储能用化学电源如钠硫电池、全钒液流电池、锂离子电池作为大规模储能设备已经有了一些演示。At present, the main large-scale energy storage technologies include pumped hydro storage, compressed air energy storage, flywheel energy storage, electrochemical energy storage, etc. Various energy storage technologies have their own conditions of use and advantages, and are in the active research and development and demonstration stages. Among them, chemical power sources for energy storage, such as sodium-sulfur batteries, all-vanadium redox flow batteries, and lithium-ion batteries, have been demonstrated as large-scale energy storage devices.
然而钠硫电池需要在300度高温下运行,熔融态金属钠和硫的直接使用导致了这种电池存在着严重的腐蚀问题以及安全隐患。全钒液流电池所用的钒离子属于剧毒物质且资源有限,另外其运行过程中存在着正负极活性物质的相互扩散的问题,而且这种储能电池的能量密度并不高。锂离子电池作为大规模储能电池具有较好的性能,但是锂离子储能电池的制造成本高。因此目前并没有一种储能电池能够能满足低成本、安全性好、原材料丰富等综合性的要求。金属钠或锂基的电池具有高能量密度的优势,但是金属钠或锂在有机电解液电池里面进行充放电时都会有枝晶以及副反应生成,在此我们提出了一种可以克服枝晶生长、副反应以及获得金属电池高能量密度的室温电池设计。However, sodium-sulfur batteries need to operate at a high temperature of 300 degrees, and the direct use of molten metal sodium and sulfur has led to serious corrosion problems and potential safety hazards in this battery. The vanadium ions used in the all-vanadium redox flow battery are highly toxic substances and have limited resources. In addition, there is a problem of interdiffusion of positive and negative active materials during its operation, and the energy density of this energy storage battery is not high. Lithium-ion batteries have good performance as large-scale energy storage batteries, but the manufacturing cost of lithium-ion energy storage batteries is high. Therefore, there is currently no energy storage battery that can meet the comprehensive requirements of low cost, good safety, and abundant raw materials. Metal sodium or lithium-based batteries have the advantage of high energy density, but metal sodium or lithium will have dendrites and side reactions when charging and discharging in organic electrolyte batteries. Here we propose a method that can overcome dendrite growth. , side reactions, and room-temperature battery design to achieve high energy densities for metal batteries.
发明内容Contents of the invention
本发明实施例提供了一种新型的二次电池、用途及其负极的制备方法。通过将固态的金属钠或锂或钾置于导电液态金属负极中,极大的提高了导电液态金属负极的容量从而提高了电池的能量密度,同时也解决了固态的金属负极与固体电解质之间界面电阻大、枝晶生长以及副反应的问题。本发明的二次电池具有高比能量、长循环寿命的特性,可用于太阳能、风能等电站输出电能的存储。The embodiment of the present invention provides a new type of secondary battery, its application and its negative electrode preparation method. By placing solid metal sodium or lithium or potassium in the conductive liquid metal negative electrode, the capacity of the conductive liquid metal negative electrode is greatly improved, thereby increasing the energy density of the battery, and it also solves the problem between the solid metal negative electrode and the solid electrolyte. The problems of high interface resistance, dendrite growth and side reactions. The secondary battery of the invention has the characteristics of high specific energy and long cycle life, and can be used for storing output electric energy of power stations such as solar energy and wind energy.
第一方面,本发明实施例提供了一种二次电池,所述二次电池包括固态的金属钠或锂或钾、导电液态金属、固体电解质、正极材料和电池壳体;In the first aspect, an embodiment of the present invention provides a secondary battery, the secondary battery includes solid metal sodium or lithium or potassium, conductive liquid metal, solid electrolyte, positive electrode material and battery case;
所述固态的金属钠或锂或钾和所述导电液态金属容置于所述固体电解质管内,或者,所述固态的金属钠或锂或钾和所述导电液态金属填充在所述电池壳体与所述固体电解质之间,所述固态的金属钠或锂或钾与导电液态金属一起构成所述二次电池的负极;The solid metal sodium or lithium or potassium and the conductive liquid metal are accommodated in the solid electrolyte tube, or the solid metal sodium or lithium or potassium and the conductive liquid metal are filled in the battery case Between the solid electrolyte, the solid metal sodium or lithium or potassium together with the conductive liquid metal constitute the negative electrode of the secondary battery;
所述导电液态金属包括金属钠、锂、钾中任一种或几种与芳香族化合物以及醚类溶剂混合生成的液体;The conductive liquid metal includes a liquid formed by mixing any one or more of metal sodium, lithium, and potassium with aromatic compounds and ether solvents;
所述正极材料填充在所述电池壳体与所述固体电解质之间,形成所述二次电池的正极;The positive electrode material is filled between the battery case and the solid electrolyte to form the positive electrode of the secondary battery;
其中,所述正极材料包括多硫离子溶液、蒽醌溶液、苯醌溶液、碘溶液、苯甲酮溶液、四甲氧基哌啶氧化物TEMPO溶液,或者Na0.44MnO2、NaTi2(PO4)3、Na3V2(PO4)3、Na0.8Li0.1Ni0.25Mn0.65O2、NaMg0.1Ni0.4Mn0.2Ti0.3O2、S中任一种或多种与碳粉构成的浆料。Wherein, the positive electrode material includes polysulfide ion solution, anthraquinone solution, benzoquinone solution, iodine solution, benzophenone solution, tetramethoxy piperidine oxide TEMPO solution, or Na 0.44 MnO 2 , NaTi 2 (PO 4 ) 3 , Na 3 V 2 (PO 4 ) 3 , Na 0.8 Li 0.1 Ni 0.25 Mn 0.65 O 2 , NaMg 0.1 Ni 0.4 Mn 0.2 Ti 0.3 O 2 , S slurry composed of any one or more of carbon powder .
优选的,所述二次电池为圆柱电池;Preferably, the secondary battery is a cylindrical battery;
所述固体电解质为管状,容置与所述电池壳体内;The solid electrolyte is tubular and housed in the battery case;
所述固态的金属钠或锂或钾容置于所述固体电解质管内,导电液态金属填充在金属钠或锂或钾与固体电解质之间。The solid metal sodium or lithium or potassium is accommodated in the solid electrolyte tube, and the conductive liquid metal is filled between the metal sodium or lithium or potassium and the solid electrolyte.
优选的,所述二次电池为双液流电池,所述电池还包括:正极储液罐、负极储液罐和两个泵;Preferably, the secondary battery is a dual-flow battery, and the battery further includes: a positive electrode liquid storage tank, a negative electrode liquid storage tank, and two pumps;
所述固体电解质为隔膜,将所述电池壳体分隔为密闭的正极空间和负极空间,其中所述正极空间与所述正极储液罐相连,通过一个泵将正极储液罐中容置的所述正极材料泵入所述正极空间中;所述负极空间与所述负极储液罐相连,所述负极储液罐中容置固态的金属钠或锂或钾和所述导电液态金属,通过一个泵将负极储液罐中容置的所述导电液态金属泵入所述负极空间中。The solid electrolyte is a diaphragm, which separates the battery case into a closed positive electrode space and a negative electrode space, wherein the positive electrode space is connected to the positive electrode liquid storage tank, and all the positive electrode liquid stored in the positive electrode liquid storage tank is pumped The positive electrode material is pumped into the positive electrode space; the negative electrode space is connected to the negative electrode liquid storage tank, and the negative electrode liquid storage tank accommodates solid metal sodium or lithium or potassium and the conductive liquid metal, through a The pump pumps the conductive liquid metal accommodated in the negative electrode liquid storage tank into the negative electrode space.
优选的,所述二次电池为单液流电池,所述电池还包括:正极储液罐和泵;Preferably, the secondary battery is a single flow battery, and the battery further includes: a positive electrode storage tank and a pump;
所述固体电解质为隔膜,将所述电池壳体分隔为密闭的正极空间和负极空间,其中所述正极空间与所述正极储液罐相连,通过所述泵将正极储液罐中容置的所述正极材料泵入所述正极空间中,所述负极空间用于容置所述固态的金属钠或锂或钾和所述导电液态金属。The solid electrolyte is a diaphragm, which separates the battery casing into a closed positive electrode space and a negative electrode space, wherein the positive electrode space is connected to the positive electrode liquid storage tank, and the positive electrode liquid contained in the positive electrode liquid storage tank is pumped The positive electrode material is pumped into the positive electrode space, and the negative electrode space is used to accommodate the solid metal sodium or lithium or potassium and the conductive liquid metal.
优选的,所述二次电池为平板电池;Preferably, the secondary battery is a flat battery;
所述固体电解质为隔膜,将所述电池壳体分隔为密闭的正极空间和负极空间,所述正极空间用于容置所述正极材料,所述负极空间用于容置所述固态的金属钠或锂或钾和所述导电液态金属材料。The solid electrolyte is a separator, which separates the battery casing into a closed positive electrode space and a negative electrode space, the positive electrode space is used to accommodate the positive electrode material, and the negative electrode space is used to accommodate the solid metal sodium Or lithium or potassium and the conductive liquid metal material.
优选的,所述芳香族化合物为联苯、联苯的衍生物、萘、萘的衍生物、蒽或蒽的衍生物中的任意一种或多种;Preferably, the aromatic compound is any one or more of biphenyl, biphenyl derivatives, naphthalene, naphthalene derivatives, anthracene or anthracene derivatives;
所述醚类溶剂包括乙醚、甲醚、乙二醇二甲醚、二乙二醇二甲醚、四乙二醇二甲醚、二丙醚、二异丙醚、乙基丁基醚、二丁醚、二戊醚、二异戊醚、二己醚、四氢呋喃、2-甲基四氢呋喃、1,3-二氧环戊烷、4-甲基-1,3-二氧环戊烷、二甲氧基甲烷、1,2-二甲氧基丙烷、二氧戊烷、1,4-二氧六环、环氧乙烷、环氧丙烷、1,1-二乙氧基乙烷中的任意一种或多种。The ether solvents include diethyl ether, methyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, dipropyl ether, diisopropyl ether, ethyl butyl ether, diethylene glycol dimethyl ether, Butyl ether, dipentyl ether, diisoamyl ether, dihexyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, di Methoxymethane, 1,2-dimethoxypropane, dioxolane, 1,4-dioxane, ethylene oxide, propylene oxide, 1,1-diethoxyethane Any one or more.
优选的,所述导电液态金属的制备方法包括:Preferably, the preparation method of the conductive liquid metal comprises:
在氩气的保护气氛中,将碱金属和芳香族化合物按照一定摩尔比加入醚类溶剂中,静置,得到所述导电液态金属负极材料;In a protective atmosphere of argon, the alkali metal and the aromatic compound are added into an ether solvent according to a certain molar ratio, and left to stand to obtain the conductive liquid metal negative electrode material;
其中,所述碱金属为金属钠、金属锂或金属钾中的任意一种或多种;Wherein, the alkali metal is any one or more of sodium metal, lithium metal or potassium metal;
所述芳香族化合物为联苯、联苯的衍生物、萘、萘的衍生物、蒽或蒽的衍生物中的任意一种或多种;The aromatic compound is any one or more of biphenyl, biphenyl derivatives, naphthalene, naphthalene derivatives, anthracene or anthracene derivatives;
所述醚类溶剂包括乙醚、甲醚、乙二醇二甲醚、二乙二醇二甲醚、四乙二醇二甲醚、二丙醚、二异丙醚、乙基丁基醚、二丁醚、二戊醚、二异戊醚、二己醚、四氢呋喃、2-甲基四氢呋喃、1,3-二氧环戊烷、4-甲基-1,3-二氧环戊烷、二甲氧基甲烷、1,2-二甲氧基丙烷、二氧戊烷、1,4-二氧六环、环氧乙烷、环氧丙烷、1,1-二乙氧基乙烷中的任意一种或多种。The ether solvents include diethyl ether, methyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, dipropyl ether, diisopropyl ether, ethyl butyl ether, diethylene glycol dimethyl ether, Butyl ether, dipentyl ether, diisoamyl ether, dihexyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, di Methoxymethane, 1,2-dimethoxypropane, dioxolane, 1,4-dioxane, ethylene oxide, propylene oxide, 1,1-diethoxyethane Any one or more.
优选的,所述高容量负极的制备方法包括:Preferably, the preparation method of the high-capacity negative electrode comprises:
在氩气的保护气氛中,将上述导电液态金属注入到固体电解质管内,之后将过量的固态金属钠或锂或钾置入导电液态金属中,之后从固态金属上引出负极引线,将固体电解质管口密封后静止两小时后可得到所述高容量负极;In the protective atmosphere of argon, inject the above-mentioned conductive liquid metal into the solid electrolyte tube, then put excess solid metal sodium or lithium or potassium into the conductive liquid metal, and then draw the negative electrode lead from the solid metal, and put the solid electrolyte tube The high-capacity negative electrode can be obtained after standing for two hours after the mouth is sealed;
优选的,所述固体电解质包括用于传导钠离子、锂离子或钾离子的Na3Zr2Si2PO12陶瓷、Na-β″-Al2O3陶瓷、K-β″-Al2O3陶瓷、Li7La3Zr2O12陶瓷或Li10GeP2S12陶瓷中的任意一种。Preferably, the solid electrolyte includes Na 3 Zr 2 Si 2 PO 12 ceramics, Na - β″-Al 2 O 3 ceramics, K-β″-Al 2 O 3 ceramics for conducting sodium ions, lithium ions or potassium ions Any one of ceramics, Li 7 La 3 Zr 2 O 12 ceramics or Li 10 GeP 2 S 12 ceramics.
第二方面,本发明实施例提供了一种上述第一方面所述的二次电池的用途,所述二次电池用于太阳能发电、风力发电、智能电网调峰、分布电站、后备电源或通信基站的大规模储能设备。In the second aspect, the embodiment of the present invention provides a use of the secondary battery described in the first aspect above, and the secondary battery is used for solar power generation, wind power generation, smart grid peak regulation, distributed power station, backup power supply or communication Large-scale energy storage equipment for base stations.
第三方面,本发明实施例提供了一种上述第一方面所述的二次电池的负极的制备方法,包括:In a third aspect, an embodiment of the present invention provides a method for preparing a negative electrode of a secondary battery described in the first aspect above, comprising:
在氩气的保护气氛中,将导电液态金属注入到固体电解质构成的固体电解质管内,或者注入到电池壳体与所述固体电解质之间;In a protective atmosphere of argon, the conductive liquid metal is injected into the solid electrolyte tube formed by the solid electrolyte, or injected between the battery casing and the solid electrolyte;
将过量的固态金属钠或锂或钾置入导电液态金属中;placing an excess of solid metal sodium or lithium or potassium into a conductive liquid metal;
从固态金属上引出负极引线;Draw the negative lead from the solid metal;
将固体电解质管口密封后静止两小时,即得到所述负极。After sealing the nozzle of the solid electrolyte and standing still for two hours, the negative electrode was obtained.
本发明实施例提供的二次电池将固态的金属钠或锂或钾置于导电液态金属负极中,极大的提高了导电液态金属电池的能量密度,具有高的安全性以及低廉的成本,能够工作在室温到150℃的温度区间内。能够应用于制备本发明二次电池的材料资源丰富,电池的比能量高,循环寿命长,可用于太阳能、风能等电站输出电能的存储。The secondary battery provided by the embodiment of the present invention puts solid metal sodium, lithium or potassium in the conductive liquid metal negative electrode, which greatly improves the energy density of the conductive liquid metal battery, has high safety and low cost, and can Work in the temperature range from room temperature to 150°C. The material resource that can be applied to the preparation of the secondary battery of the present invention is abundant, the specific energy of the battery is high, and the cycle life is long, and it can be used for storing output electric energy of power stations such as solar energy and wind energy.
附图说明Description of drawings
下面通过附图和实施例,对本发明实施例的技术方案做进一步详细描述。The technical solutions of the embodiments of the present invention will be further described in detail below with reference to the drawings and embodiments.
图1为本发明实施例提供的圆柱电池结构示意图;Fig. 1 is a schematic structural diagram of a cylindrical battery provided by an embodiment of the present invention;
图2为本发明实施例提供的双液流电池结构示意图;Fig. 2 is a schematic structural diagram of a dual flow battery provided by an embodiment of the present invention;
图3为本发明实施例提供的单液流电池结构示意图;Fig. 3 is a schematic structural diagram of a single flow battery provided by an embodiment of the present invention;
图4为本发明实施例提供的平板电池结构示意图;Fig. 4 is a schematic structural diagram of a flat battery provided by an embodiment of the present invention;
图5为本发明实施例提供的导电液态金属组成的对称电池充放电性能曲线;Fig. 5 is the charging and discharging performance curve of the symmetrical battery composed of conductive liquid metal provided by the embodiment of the present invention;
图6为本发明实施例提供的将金属钠浸入导电液态金属对称电池中的充放电性能曲线;Fig. 6 is the charging and discharging performance curve of the metal sodium immersed in the conductive liquid metal symmetric battery provided by the embodiment of the present invention;
图7为本发明实施例提供的将金属钠浸入导电液态金属对称电池中充放电后的电化学阻抗谱;Fig. 7 is the electrochemical impedance spectrum after charging and discharging the metal sodium immersed in the conductive liquid metal symmetric battery provided by the embodiment of the present invention;
图8为本发明实施例提供的将金属钠浸入导电液态金属中之后金属钠表面与导电液态金属的拉曼图谱;Fig. 8 is the Raman spectrum of the metal sodium surface and the conductive liquid metal after metal sodium is immersed in the conductive liquid metal provided by the embodiment of the present invention;
图9为本发明实施例提供的二次电池的电池充放电性能图。FIG. 9 is a battery charge and discharge performance diagram of the secondary battery provided by the embodiment of the present invention.
图10为本发明实施例提供的固态金属钠、导电液态金属、固体电解质、四甲氧基哌啶氧化物TEMPO液态正极材料构成的电池的充放电性能图;Figure 10 is a charge and discharge performance diagram of a battery composed of solid metal sodium, conductive liquid metal, solid electrolyte, tetramethoxypiperidine oxide TEMPO liquid positive electrode material provided by the embodiment of the present invention;
图11为本发明实施例提供的70℃时固态金属钠、导电液态金属、固体电解质、Na2S8液态正极材料构成的电池的充放电性能图。Fig. 11 is a charge and discharge performance diagram of a battery composed of solid metal sodium, conductive liquid metal, solid electrolyte, and Na 2 S 8 liquid positive electrode material at 70°C provided by the embodiment of the present invention.
具体实施方式Detailed ways
下面结合实施例,对本发明进行进一步的详细说明,但并不意于限制本发明的保护范围。The present invention will be further described in detail below in conjunction with the examples, but it is not intended to limit the protection scope of the present invention.
实施例1Example 1
本实施例用以说明本发明提供的二次电池的构造。This embodiment is used to illustrate the structure of the secondary battery provided by the present invention.
本发明提供的二次电池包括固态的金属钠或锂或钾、导电液态金属、固体电解质、正极材料和电池壳体:The secondary battery provided by the present invention includes solid metal sodium or lithium or potassium, conductive liquid metal, solid electrolyte, positive electrode material and battery case:
所述固态的金属钠或锂或钾和所述导电液态金属容置于所述固体电解质内,或者,所述固态的金属钠或锂或钾和所述导电液态金属填充在所述电池壳体与所述固体电解质之间;所述固态的金属钠或锂或钾与导电液态金属一起构成所述二次电池的负极;这种负极设计比仅用导电液态金属作负极具有更高的容量从而极大地提升了电池的能量密度;同时将固态的金属钠置于导电液态金属中可以使导电液态金属保持更高的电导率;另外将固态金属钠或锂或钾置于导电液态金属中也解决了碱金属在一般有机溶剂里面有副反应发生以及枝晶生长的问题。The solid metal sodium or lithium or potassium and the conductive liquid metal are housed in the solid electrolyte, or the solid metal sodium or lithium or potassium and the conductive liquid metal are filled in the battery case Between the solid electrolyte; the solid metal sodium or lithium or potassium together with the conductive liquid metal constitute the negative electrode of the secondary battery; this negative electrode design has a higher capacity than only using the conductive liquid metal as the negative electrode. The energy density of the battery is greatly improved; at the same time, placing the solid metal sodium in the conductive liquid metal can make the conductive liquid metal maintain a higher conductivity; in addition, placing the solid metal sodium or lithium or potassium in the conductive liquid metal also solves the problem. The problem of side reactions and dendrite growth of alkali metals in general organic solvents is solved.
所述正极材料填充在所述电池壳体与所述固体电解质之间,形成所述二次电池的正极;The positive electrode material is filled between the battery case and the solid electrolyte to form the positive electrode of the secondary battery;
其中,所述正极材料包括多硫离子溶液、蒽醌溶液、苯醌溶液、碘溶液、苯甲酮溶液,四甲氧基哌啶氧化物溶液或Na0.44MnO2、NaTi2(PO4)3、Na3V2(PO4)3、Na0.8Li0.1Ni0.25Mn0.65O2、NaMg0.1Ni0.4Mn0.2Ti0.3O2、S中任一种或多种与碳粉构成的浆料;Wherein, the positive electrode material includes polysulfide ion solution, anthraquinone solution, benzoquinone solution, iodine solution, benzophenone solution, tetramethoxy piperidine oxide solution or Na 0.44 MnO 2 , NaTi 2 (PO 4 ) 3 , Na 3 V 2 (PO 4 ) 3 , Na 0.8 Li 0.1 Ni 0.25 Mn 0.65 O 2 , NaMg 0.1 Ni 0.4 Mn 0.2 Ti 0.3 O 2 , any one or more of S and carbon powder;
所述导电液态金属包括金属钠、锂、钾中任一种或几种与芳香族化合物以及醚类溶剂混合生成的液体;The conductive liquid metal includes a liquid formed by mixing any one or more of metal sodium, lithium, and potassium with aromatic compounds and ether solvents;
所述芳香族化合物为联苯、联苯的衍生物、萘、萘的衍生物、蒽或蒽的衍生物中的任意一种或多种;The aromatic compound is any one or more of biphenyl, biphenyl derivatives, naphthalene, naphthalene derivatives, anthracene or anthracene derivatives;
所述醚类溶剂包括乙醚、甲醚、乙二醇二甲醚、二乙二醇二甲醚、四乙二醇二甲醚、二丙醚、二异丙醚、乙基丁基醚、二丁醚、二戊醚、二异戊醚、二己醚、四氢呋喃、2-甲基四氢呋喃、1,3-二氧环戊烷、4-甲基-1,3-二氧环戊烷、二甲氧基甲烷、1,2-二甲氧基丙烷、二氧戊烷、1,4-二氧六环、环氧乙烷、环氧丙烷、1,1-二乙氧基乙烷中的任意一种或多种;The ether solvents include diethyl ether, methyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, dipropyl ether, diisopropyl ether, ethyl butyl ether, diethylene glycol dimethyl ether, Butyl ether, dipentyl ether, diisoamyl ether, dihexyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, di Methoxymethane, 1,2-dimethoxypropane, dioxolane, 1,4-dioxane, ethylene oxide, propylene oxide, 1,1-diethoxyethane any one or more;
所述固体电解质包括用于传导钠离子、锂离子或钾离子的Na3Zr2Si2PO12陶瓷、Na-β″-Al2O3陶瓷、K-β″-Al2O3陶瓷、Li7La3Zr2O12陶瓷或Li10GeP2S12陶瓷中的任意一种。The solid electrolyte includes Na 3 Zr 2 Si 2 PO 12 ceramics, Na-β″-Al 2 O 3 ceramics, K-β″-Al 2 O 3 ceramics, Li Any one of 7 La 3 Zr 2 O 12 ceramics or Li 10 GeP 2 S 12 ceramics.
本发明二次电池的具体构造可以是多样的,比如圆柱电池、双液流电池、单液流电池、或平板电池,后续会以多个实施例分别说明这几个不同构造的结构特征。The specific structure of the secondary battery of the present invention can be various, such as a cylindrical battery, a double flow battery, a single flow battery, or a flat battery, and the structural features of these different structures will be described with multiple embodiments later.
下面以采用金属钠置于容置有导电液态金属的固体电解质管内构成二次电池的负极为例说明本发明二次电池的工作原理。The working principle of the secondary battery of the present invention will be described below by taking metal sodium placed in a solid electrolyte tube containing conductive liquid metal to form the negative electrode of the secondary battery as an example.
在二次电池放电时,负极的导电液态金属失去电子氧化为联苯(式1),电子从外电路到达正极将正极材料还原;负极的导电液态金属中的钠离子则通过固体电解质到达正极以维持电荷平衡,当导电液态金属氧化为联苯后,固态的金属钠又将其还原(式2),则放电过程继续进行,直至金属钠完全消耗掉整个放电过程才会结束。以下为放电过程反应方程式:When the secondary battery is discharged, the conductive liquid metal at the negative electrode loses electrons and is oxidized to biphenyl (Formula 1), and the electrons reach the positive electrode from the external circuit to reduce the positive electrode material; the sodium ions in the conductive liquid metal at the negative electrode pass through the solid electrolyte to reach the positive electrode and then To maintain charge balance, when the conductive liquid metal is oxidized to biphenyl, the solid metal sodium reduces it again (Formula 2), and the discharge process continues until the metal sodium is completely consumed. The entire discharge process will not end. The following is the reaction equation of the discharge process:
而充电过程则与放电过程相反,电子从正极到达负极同时离子也从正极通过固体电解质到达负极将联苯还原。当导电液态金属中的钠离子达到饱和之后导电液态金属中的钠离子继续被还原为固态金属钠,沉积在集流体或电池壳体上。The charging process is opposite to the discharging process. The electrons go from the positive electrode to the negative electrode, and at the same time, the ions also pass from the positive electrode to the negative electrode through the solid electrolyte to reduce the biphenyl. When the sodium ions in the conductive liquid metal reach saturation, the sodium ions in the conductive liquid metal continue to be reduced to solid metal sodium, which is deposited on the current collector or the battery case.
本发明的二次电池能够工作在室温到150℃的温度区间内,采用这种结构设计提高了导电液态金属负极的容量,同时导电液态金属填充在金属钠与固体电解质之间的设计,解决了固态金属负极与固体电解质界面电阻很大、以及碱金属有枝晶生长和副反应发生的问题。The secondary battery of the present invention can work in the temperature range from room temperature to 150°C. This structural design improves the capacity of the conductive liquid metal negative electrode. At the same time, the design of the conductive liquid metal filled between the metal sodium and the solid electrolyte solves the problem of The interface resistance between the solid metal negative electrode and the solid electrolyte is very large, and the alkali metal has the problems of dendrite growth and side reactions.
实施例2Example 2
本实施例用以说明上述实施例1中所述的圆柱电池的结构。This example is used to illustrate the structure of the cylindrical battery described in Example 1 above.
图1为圆柱电池的结构示意图。如图1所示,圆柱电池可以包括:固态的金属钠或锂或钾、导电液态金属、电池壳体、正极材料和固体电解质管;Figure 1 is a schematic diagram of the structure of a cylindrical battery. As shown in Figure 1, a cylindrical battery can include: solid metal sodium or lithium or potassium, conductive liquid metal, battery casing, positive electrode material and solid electrolyte tube;
所述固体电解质管无接触的嵌套于所述电池壳体内,所述电池壳体内壁与所述固体电解质管外壁之间的密闭空间用于容置所述正极材料;所述固体电解质管内用于容置所述导电液态金属和固态的金属钠或锂或钾组成的负极材料。The solid electrolyte tube is nested in the battery casing without contact, and the closed space between the inner wall of the battery casing and the outer wall of the solid electrolyte tube is used to accommodate the positive electrode material; The negative electrode material composed of the conductive liquid metal and solid metal sodium or lithium or potassium is accommodated.
在二次电池放电时,负极的导电液态金属失去电子氧化为联苯(式1),电子从外电路到达正极将正极材料还原;负极的导电液态金属中的钠离子则通过固体电解质到达正极以维持电荷平衡,当导电液态金属氧化为联苯后,固态的金属钠又将其还原(式2),则放电过程继续进行,直至金属钠完全消耗掉整个放电过程才会结束。而充电过程则与放电过程相反,电子从正极到达负极同时离子也从正极通过固体电解质到达负极将导电液态金属还原。当导电液态金属中的钠离子达到饱和之后导电液态金属中的钠离子继续被还原为固态金属钠,沉积在集流体或电池壳体上。When the secondary battery is discharged, the conductive liquid metal at the negative electrode loses electrons and is oxidized to biphenyl (Formula 1), and the electrons reach the positive electrode from the external circuit to reduce the positive electrode material; the sodium ions in the conductive liquid metal at the negative electrode pass through the solid electrolyte to reach the positive electrode and then To maintain charge balance, when the conductive liquid metal is oxidized to biphenyl, the solid metal sodium reduces it again (Formula 2), and the discharge process continues until the metal sodium is completely consumed. The entire discharge process will not end. The charging process is opposite to the discharging process. Electrons go from the positive electrode to the negative electrode, and at the same time, the ions also pass from the positive electrode to the negative electrode through the solid electrolyte to reduce the conductive liquid metal. When the sodium ions in the conductive liquid metal reach saturation, the sodium ions in the conductive liquid metal continue to be reduced to solid metal sodium, which is deposited on the current collector or the battery case.
实施例3Example 3
本实施例用以说明上述实施例1中所述的双液流电池的结构。This embodiment is used to illustrate the structure of the dual flow battery described in Embodiment 1 above.
图2为双液流电池的结构示意图。如图2所示,双液流电池可以包括:固态的金属钠或锂或钾、导电液态金属、电池壳体、正极材料、固体电解质管、正极储液罐、负极储液罐和两个泵;Figure 2 is a schematic diagram of the structure of a dual flow battery. As shown in Figure 2, a dual-flow battery can include: solid metal sodium or lithium or potassium, conductive liquid metal, battery case, positive electrode material, solid electrolyte tube, positive electrode liquid storage tank, negative electrode liquid storage tank, and two pumps ;
所述固体电解质做为隔膜,将所述电池壳体分隔为密闭的正极空间和负极空间,其中所述正极空间与所述正极储液罐相连,通过一个泵将正极储液罐中容置的所述正极材料泵入所述正极空间中;所述负极空间与所述负极储液罐相连,所述负极储液罐中容置固态的金属钠或锂或钾和所述导电液态金属,通过一个泵将负极储液罐中容置的所述导电液态金属泵入所述负极空间中。双液流电池的工作原理与圆柱电池相似,不再赘述。The solid electrolyte is used as a diaphragm to separate the battery casing into a closed positive electrode space and a negative electrode space, wherein the positive electrode space is connected to the positive electrode liquid storage tank, and the positive electrode liquid stored in the positive electrode liquid storage tank is pumped The positive electrode material is pumped into the positive electrode space; the negative electrode space is connected to the negative electrode liquid storage tank, and the negative electrode liquid storage tank accommodates solid metal sodium or lithium or potassium and the conductive liquid metal, through A pump pumps the conductive liquid metal contained in the negative electrode liquid storage tank into the negative electrode space. The working principle of the dual-flow battery is similar to that of the cylindrical battery, so I won’t repeat it here.
实施例4Example 4
本实施例用以说明上述实施例1中所述的单液流电池的结构。This embodiment is used to illustrate the structure of the single flow battery described in Embodiment 1 above.
图3为单液流电池的结构示意图。如图3所示,单液流电池可以包括:固态的金属钠或锂或钾、导电液态金属、电池壳体、正极材料、固体电解质管、正极储液罐和泵;Figure 3 is a schematic diagram of the structure of a single flow battery. As shown in Figure 3, a single flow battery can include: solid metal sodium or lithium or potassium, conductive liquid metal, battery casing, positive electrode material, solid electrolyte tube, positive electrode liquid storage tank and pump;
所述固体电解质做为隔膜,将所述电池壳体分隔为密闭的正极空间和负极空间,其中所述正极空间与所述正极储液罐相连,通过所述泵将正极储液罐中容置的所述正极材料泵入所述正极空间中,所述负极空间用于容置所述固态的金属钠或锂或钾和所述导电液态金属。单液流电池的工作原理与圆柱电池相似,不再赘述。The solid electrolyte is used as a diaphragm to separate the battery casing into a closed positive electrode space and a negative electrode space, wherein the positive electrode space is connected to the positive electrode liquid storage tank, and the positive electrode liquid storage tank is accommodated by the pump. The positive electrode material is pumped into the positive electrode space, and the negative electrode space is used to accommodate the solid metal sodium or lithium or potassium and the conductive liquid metal. The working principle of a single flow battery is similar to that of a cylindrical battery, and will not be repeated here.
实施例5Example 5
本实施例用以说明上述实施例1中所述的平板电池的结构。This embodiment is used to illustrate the structure of the planar battery described in Embodiment 1 above.
图4为平板电池的结构示意图。如图4所示,所述固体电解质为隔膜,将所述电池壳体分隔为密闭的正极空间和负极空间,所述正极空间用于容置所述正极材料,所述负极空间用于容置所述固态的金属钠或锂或钾和所述导电液态金属材料。平板电池的工作原理与圆柱电池相似,不再赘述。FIG. 4 is a schematic diagram of the structure of a flat battery. As shown in Figure 4, the solid electrolyte is a diaphragm, which separates the battery casing into a closed positive electrode space and a negative electrode space, the positive electrode space is used to accommodate the positive electrode material, and the negative electrode space is used to accommodate The solid metal sodium or lithium or potassium and the conductive liquid metal material. The working principle of the flat battery is similar to that of the cylindrical battery, so I won't repeat it here.
在上述各个实施例中,电池壳体优选为不锈钢壳体,正极材料可以包括液体正极材料或浆料正极材料中的一种。下面分别以实施例6说明本发明实施例1中所述的导电液态金属的制备方法,以及以实施例7-10分别说明本发明实施例1中所述正极材料的制备方法。In each of the above embodiments, the battery casing is preferably a stainless steel casing, and the positive electrode material may include one of a liquid positive electrode material or a slurry positive electrode material. The preparation method of the conductive liquid metal described in the embodiment 1 of the present invention will be described in the following example 6, and the preparation method of the positive electrode material described in the embodiment 1 of the present invention will be described in examples 7-10.
实施例6Example 6
本实施例用以说明上述实施例1中导电液态金属的制备方法。This embodiment is used to illustrate the preparation method of the conductive liquid metal in the above-mentioned embodiment 1.
所述方法包括:The methods include:
在氩气的保护气氛中,将碱金属和芳香族化合物按照一定摩尔比加入醚类溶剂中,静置,得到所述导电液态金属;In a protective atmosphere of argon, adding the alkali metal and the aromatic compound into the ether solvent according to a certain molar ratio, and standing still to obtain the conductive liquid metal;
其中,所述碱金属为金属钠(Na)、金属锂(Li)或金属钾(K)中的任意一种或多种;Wherein, the alkali metal is any one or more of sodium metal (Na), lithium metal (Li) or potassium metal (K);
所述芳香族化合物为联苯(BP)、联苯的衍生物、萘(NP)、萘的衍生物、蒽或蒽的衍生物中的任意一种或多种;The aromatic compound is any one or more of biphenyl (BP), biphenyl derivatives, naphthalene (NP), naphthalene derivatives, anthracene or anthracene derivatives;
其中;联苯的衍生物具体可以为:联苯、二氯联苯、四氯联苯、并三联苯、x-甲基联苯、x-乙基联苯等;Among them; the derivatives of biphenyl can specifically be: biphenyl, dichlorobiphenyl, tetrachlorobiphenyl, terphenyl, x-methylbiphenyl, x-ethylbiphenyl, etc.;
萘的衍生物具体可以为:菲、二氯萘、四氯萘、x-甲基萘、1,4-二甲基萘、x-乙基萘。Specifically, the derivatives of naphthalene can be: phenanthrene, dichloronaphthalene, tetrachloronaphthalene, x-methylnaphthalene, 1,4-dimethylnaphthalene, x-ethylnaphthalene.
所述醚类溶剂包括乙醚、甲醚、乙二醇二甲醚(DME)、二乙二醇二甲醚(DEGDME)、四乙二醇二甲醚(TEGDME)、二丙醚、二异丙醚、乙基丁基醚、二丁醚、二戊醚、二异戊醚、二己醚、四氢呋喃、2-甲基四氢呋喃、1,3-二氧环戊烷、4-甲基-1,3-二氧环戊烷、二甲氧基甲烷、1,2-二甲氧基丙烷、二氧戊烷、1,4-二氧六环、环氧乙烷、环氧丙烷、1,1-二乙氧基乙烷中的任意一种或多种。其中优选为,DME、DEGDME或TEGDME中的一种。The ether solvents include ether, methyl ether, ethylene glycol dimethyl ether (DME), diethylene glycol dimethyl ether (DEGDME), tetraethylene glycol dimethyl ether (TEGDME), dipropyl ether, diisopropyl ether, ethyl butyl ether, dibutyl ether, dipentyl ether, diisoamyl ether, dihexyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 4-methyl-1, 3-dioxolane, dimethoxymethane, 1,2-dimethoxypropane, dioxolane, 1,4-dioxane, ethylene oxide, propylene oxide, 1,1 - any one or more of diethoxyethane. Among them, one of DME, DEGDME or TEGDME is preferred.
碱金属、芳香族化合物在醚类溶剂中混合后发生反应,下面以钠、联苯和DME溶剂混合为例进行说明。Alkali metals and aromatic compounds react after being mixed in ether solvents. The following is an example of mixing sodium, biphenyl and DME solvents.
反应过程如下述式3所示:The reaction process is shown in the following formula 3:
本发明实施例提供的导电液态金属用作本发明二次电池负极材料的一部分,具有液体的流动性、良好的电子导电和离子导电性、低的电位、高的安全性以及良好的浸润性能,成本低廉,材料资源丰富,将这种材料作为电池负极具有高比能量、长循环寿命的特性。The conductive liquid metal provided by the embodiment of the present invention is used as a part of the negative electrode material of the secondary battery of the present invention, and has liquid fluidity, good electronic conductivity and ion conductivity, low potential, high safety and good wettability, The cost is low, and the material resources are abundant. Using this material as the negative electrode of the battery has the characteristics of high specific energy and long cycle life.
实施例7Example 7
本实施例用以说明上述实施例1中正极材料的制备方法。This example is used to illustrate the preparation method of the positive electrode material in the above-mentioned Example 1.
所述正极材料为液体正极材料,具体为:The positive electrode material is a liquid positive electrode material, specifically:
以对苯醌、对苯醌的衍生物、蒽醌、蒽醌的衍生物、苊醌、苊醌的衍生物、菲醌或菲醌的衍生物或四甲基哌啶氮氧化物中任一为溶质,以乙二醇二甲醚、碳酸丙烯酯或四乙二醇二甲醚任一为溶剂同时加入一定量的三氟甲基磺酸钠作为支持电解质构成的液体。Take p-benzoquinone, derivatives of p-benzoquinone, anthraquinone, derivatives of anthraquinone, acenaphthoquinone, derivatives of acenaphthoquinone, phenanthrenequinone or derivatives of phenanthrenequinone or tetramethylpiperidine nitrogen oxide As a solute, any one of ethylene glycol dimethyl ether, propylene carbonate or tetraethylene glycol dimethyl ether is used as a solvent and a certain amount of sodium trifluoromethanesulfonate is added as a liquid composed of a supporting electrolyte.
其制备方法可以为:Its preparation method can be:
以0.1~3mol的对苯醌、对苯醌的衍生物、蒽醌、蒽醌的衍生物、苊醌、苊醌的衍生物、菲醌或菲醌的衍生物中任一为溶质,溶解于1L的以乙二醇二甲醚、碳酸丙烯酯或四乙二醇二甲醚任一溶剂中,加入一定量的三氟甲基磺酸钠支持电解质,即得到所述液体正极材料。Use 0.1-3mol of p-benzoquinone, p-benzoquinone derivatives, anthraquinone, anthraquinone derivatives, acenaphthoquinone, acenaphthoquinone derivatives, phenanthrenequinone or phenanthrenequinone derivatives as the solute, dissolve in The liquid cathode material is obtained by adding a certain amount of sodium trifluoromethanesulfonate supporting electrolyte to 1 L of any solvent of ethylene glycol dimethyl ether, propylene carbonate or tetraethylene glycol dimethyl ether.
比如在一个具体的例子中,以蒽醌-碳酸丙烯酯-三氟甲基磺酸钠液体正极材料为例,其具体制备步骤为:For example, in a specific example, taking anthraquinone-propylene carbonate-sodium trifluoromethanesulfonate liquid positive electrode material as an example, the specific preparation steps are:
称取蒽醌2.08g溶于10mL的碳酸丙烯酯溶剂,同时加入1.4g三氟甲基磺酸钠作为支持电解质,搅拌至完全溶解即可得到所需的液体正极材料。Weigh 2.08g of anthraquinone dissolved in 10mL of propylene carbonate solvent, add 1.4g of sodium trifluoromethanesulfonate as a supporting electrolyte at the same time, stir until completely dissolved to obtain the required liquid cathode material.
实施例8Example 8
本实施例用以说明上述实施例1中正极材料的制备方法。This example is used to illustrate the preparation method of the positive electrode material in the above-mentioned Example 1.
所述正极材料为液体正极材料,具体为:The positive electrode material is a liquid positive electrode material, specifically:
以四甲氧基哌啶氧化物TEMPO为溶质,以碳酸丙烯酯为溶剂同时加入一定量的三氟甲基磺酸钠作为支持电解质,构成的液体。It is a liquid composed of tetramethoxy piperidine oxide TEMPO as solute, propylene carbonate as solvent and a certain amount of sodium trifluoromethanesulfonate as supporting electrolyte.
其制备方法可以为:Its preparation method can be:
将1~3mol的四甲氧基哌啶氮氧化物溶解于1L的碳酸丙烯酯溶剂中,同时加入一定量的三氟甲基磺酸钠支持电解质,静置1小时即得到所述液体正极材料。Dissolve 1-3 mol of tetramethoxypiperidine nitrogen oxide in 1L of propylene carbonate solvent, add a certain amount of sodium trifluoromethanesulfonate supporting electrolyte, and let it stand for 1 hour to obtain the liquid positive electrode material .
实施例9Example 9
本实施例用以说明上述实施例1中正极材料的制备方法。This example is used to illustrate the preparation method of the positive electrode material in the above-mentioned Example 1.
所述正极材料为液体正极材料,具体为:The positive electrode material is a liquid positive electrode material, specifically:
以二苯甲酮、苊、并四苯、并五苯或芘中任一为溶质,以乙二醇二甲醚、二乙二醇二甲醚或四乙二醇二甲醚任一为溶剂,构成的液体。Use any of benzophenone, acenaphthene, naphthacene, pentacene or pyrene as the solute, and any of ethylene glycol dimethyl ether, diglyme, or tetraethylene glycol dimethyl ether as the solvent , composed of liquid.
其制备方法可以为:Its preparation method can be:
以0.1~5mol的二苯甲酮、苊、并四苯、并五苯或芘中任一为溶质,溶解于1L的乙二醇二甲醚、二乙二醇二甲醚或四乙二醇二甲醚任一溶剂中,加入一定量的碱金属,静置,即得到所述液体正极材料。Use 0.1-5mol of any one of benzophenone, acenaphthene, tetracene, pentacene or pyrene as the solute, dissolved in 1L of ethylene glycol dimethyl ether, diglyme, or tetraethylene glycol A certain amount of alkali metal is added to any solvent of dimethyl ether, and the liquid positive electrode material is obtained by standing still.
比如在一个具体的例子中,以并四苯-DME-金属钠液体正极材料为例,其具体制备步骤为:For example, in a specific example, taking naphthacene-DME-metal sodium liquid cathode material as an example, the specific preparation steps are:
称取并四苯2.20g溶于10mL的DME溶剂,同时加入160mg的金属钠作为添加剂,搅拌至完全溶解即可得到所需的液体正极材料。Weigh 2.20 g of naphthacene and dissolve in 10 mL of DME solvent, add 160 mg of sodium metal as an additive at the same time, and stir until completely dissolved to obtain the required liquid cathode material.
实施例10Example 10
本实施例用以说明上述实施例1中正极材料的制备方法。This example is used to illustrate the preparation method of the positive electrode material in the above-mentioned Example 1.
所述正极材料为液体正极材料,具体为:The positive electrode material is a liquid positive electrode material, specifically:
以Na2Sx为溶质,以二甲基亚砜、二乙二醇二甲醚、四乙二醇二甲醚或水任一为溶剂构成的溶液。A solution composed of Na 2 S x as the solute and any of dimethyl sulfoxide, diethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether or water as the solvent.
其制备方法包括:Its preparation method includes:
按照Na2S/S=1/(x-1)的摩尔比将Na2S与S加入二甲基亚砜、二乙二醇二甲醚、四乙二醇二甲醚或水任一溶剂中,并加入一定量的支持电解质搅拌至完全溶解,即得到所述液体正极材料。According to the molar ratio of Na 2 S/S=1/(x-1), add Na 2 S and S to any solvent of dimethyl sulfoxide, diglyme, tetraethylene glycol dimethyl ether or water , and add a certain amount of supporting electrolyte and stir until completely dissolved, that is, the liquid positive electrode material is obtained.
比如在一个具体的例子中,以Na2Sx-DMSO液体正极材料为例,其具体制备步骤为:For example, in a specific example, taking Na 2 S x -DMSO liquid cathode material as an example, the specific preparation steps are:
按照Na2S/S=1/(x-1)的摩尔比称取适量的Na2S与S加入到二甲基亚砜(DMSO)溶液里,同时加入一定量的三氟甲基磺酸钠作为支持电解质搅拌至完全溶解即可得到所需的液体正极材料。该液体正极材料具有很好的溶解度,比如以此方法制备得到的Na2S8与Na2S4的溶解度均大于1mol/L。According to the molar ratio of Na 2 S/S=1/(x-1), weigh an appropriate amount of Na 2 S and S and add it to the dimethyl sulfoxide (DMSO) solution, and add a certain amount of trifluoromethanesulfonic acid at the same time Sodium is used as a supporting electrolyte and stirred until completely dissolved to obtain the desired liquid cathode material. The liquid positive electrode material has good solubility, for example, the solubility of Na 2 S 8 and Na 2 S 4 prepared by this method is greater than 1 mol/L.
实施例11Example 11
本实施例用以说明上述实施例1中正极材料的制备方法。This example is used to illustrate the preparation method of the positive electrode material in the above-mentioned Example 1.
所述正极材料为浆料正极材料,其制备方法包括:The positive electrode material is a slurry positive electrode material, and its preparation method comprises:
将Na0.44MnO2、NaTi2(PO4)3、Na3V2(PO4)3、Na0.8Li0.1Ni0.25Mn0.65O2、NaMg0.1Ni0.4Mn0.2Ti0.3O2、S、K3Fe(CN)6、Na4Fe(CN)6、FePO4等中的任一种或多种正极活性物质的固体粉末、碳粉按一定质量比混合均匀,加入一定量的支持电解质并进行搅拌,即得到所述液体正极材料。Na 0.44 MnO 2 , NaTi 2 (PO 4 ) 3 , Na 3 V 2 (PO 4 ) 3 , Na 0.8 Li 0.1 Ni 0.25 Mn 0.65 O 2 , NaMg 0.1 Ni 0.4 Mn 0.2 Ti 0.3 O 2 , S, K 3 Fe(CN) 6 , Na 4 Fe(CN) 6 , FePO 4 , etc., any one or more solid powders and carbon powders of positive electrode active materials are mixed uniformly according to a certain mass ratio, and a certain amount of supporting electrolyte is added and stirred , that is, the liquid cathode material is obtained.
实施例12Example 12
本实施例用以说明上述实施例1中正极材料的制备方法。This example is used to illustrate the preparation method of the positive electrode material in the above-mentioned Example 1.
所述正极材料为浆料正极材料,其制备方法包括:The positive electrode material is a slurry positive electrode material, and its preparation method comprises:
将上述实施例7或实施例8或实施例9提供的任一种液体正极材料、以及碳粉按一定质量比混合均匀,加入一定量的支持电解质并进行搅拌,即得到所述正极材料。Mix any one of the liquid positive electrode materials provided in Example 7, Example 8 or Example 9, and carbon powder uniformly in a certain mass ratio, add a certain amount of supporting electrolyte and stir to obtain the positive electrode material.
实施例13Example 13
本实施例以导电液态金属作为电极组成的对称电池为例,对本发明提供的导电液态金属材料的充放电性能进行说明。In this embodiment, taking a symmetrical battery composed of conductive liquid metal as an electrode as an example, the charging and discharging performance of the conductive liquid metal material provided by the present invention is described.
本实施例中,对称电池的构造为圆柱电池,固体电解质管内容置1毫升1mol/L导电液态金属,电解质管与电池壳体之间的空隙也容置1毫升1mol/L导电液态金属。进行恒流充放电,如图5所示充电电压平台接近0.2V,放电平台接近-0.2V,充放电之间的极化电压为0.4V。充放电性能的测试说明了本发明所采用的导电液态金属具有高度的电化学可逆性,可进行充放电循环。In this embodiment, the structure of the symmetrical battery is a cylindrical battery, 1 ml of 1 mol/L conductive liquid metal is placed in the solid electrolyte tube, and 1 ml of 1 mol/L conductive liquid metal is placed in the gap between the electrolyte tube and the battery case. Carry out constant current charging and discharging, as shown in Figure 5, the charging voltage platform is close to 0.2V, the discharging platform is close to -0.2V, and the polarization voltage between charging and discharging is 0.4V. The test of charge and discharge performance shows that the conductive liquid metal used in the present invention has high electrochemical reversibility and can carry out charge and discharge cycles.
实施例14Example 14
本实施例以导电液态金属和金属钠作为电极组成的对称电池为例,用以对金属钠在本发明实施例提供的导电液态金属中的溶解沉积过程进行说明。This embodiment takes a symmetrical battery composed of conductive liquid metal and metal sodium as an example to illustrate the dissolution and deposition process of metal sodium in the conductive liquid metal provided in the embodiment of the present invention.
本实施例中,对称电池的构造为圆柱电池,固体电解质管内容置金属钠并且在金属钠与固体电解质管之间的空隙填充导电液态金属,固体电解质管与电池壳体之间的空隙也容置金属钠以及导电液态金属,之后进行恒流充放电,限制容量3毫安时。如图6所示,金属钠在这种液体中能够可逆的溶解与沉积,其放电平台在-0.1V,充电平台为0.1V;充放电极化电压为0.2V,小于导电液态金属对称电池的极化(0.4V,如实施例13所示),极化较小的原因为置于导电液态金属中的固态金属钠能够补充导电液态金属中钠的减少保持液态金属较高的电导率;图7所示的电化学阻抗谱显示电池的电阻并没有随循环增加,这说明了在金属钠表面并没有生成固体电解质界面(solid electrolyte interface,SEI)膜以及并没有副反应发生;图8所示的拉曼光谱也说明了过量的金属钠浸泡在导电液态金属中并不会有副反应发生。正是基于此,才能够实现有本发明实施例1中,包括固态的金属钠或锂或钾、导电液态金属、固体电解质、正极材料和电池壳体构成的二次电池。In this embodiment, the structure of the symmetrical battery is a cylindrical battery. Metal sodium is placed in the solid electrolyte tube and the gap between the metal sodium and the solid electrolyte tube is filled with conductive liquid metal. The gap between the solid electrolyte tube and the battery casing also contains Put metal sodium and conductive liquid metal, and then perform constant current charge and discharge, with a limited capacity of 3 mA. As shown in Figure 6, metal sodium can be reversibly dissolved and deposited in this liquid, and its discharge platform is -0.1V, and its charging platform is 0.1V; the charging and discharging polarization voltage is 0.2V, which is lower than that of a conductive liquid metal symmetric battery. Polarization (0.4V, as shown in embodiment 13), the less reason of polarization is that the solid metal sodium placed in the conductive liquid metal can supplement the reduction of sodium in the conductive liquid metal and keep the higher conductivity of the liquid metal; Fig. The electrochemical impedance spectroscopy shown in 7 shows that the resistance of the battery does not increase with the cycle, which shows that no solid electrolyte interface (solid electrolyte interface, SEI) film is formed on the surface of metallic sodium and no side reactions occur; as shown in Figure 8 The Raman spectrum also shows that excessive sodium metal is soaked in conductive liquid metal and no side reactions will occur. It is based on this that in Embodiment 1 of the present invention, a secondary battery composed of solid metal sodium or lithium or potassium, conductive liquid metal, solid electrolyte, positive electrode material and battery case can be realized.
实施例15Example 15
本实施例用以对比说明:本发明实施例提供的固态金属钠、导电液态金属、固体电解质、正极材料和电池壳体构成的电池,与仅用导电液态金属、固体电解质、正极材料和电池壳体构成的电池放电容量的差别。This embodiment is used for comparison and description: the battery formed by the solid metal sodium, conductive liquid metal, solid electrolyte, positive electrode material and battery casing provided by the embodiment of the present invention is compared with the battery made of only conductive liquid metal, solid electrolyte, positive electrode material and battery casing The difference in the discharge capacity of the battery composed of the body.
本发明实施例中,电池1的构造为电解质管内容置金属钠,并且在金属钠与电解质管的空隙之间填充导电液态金属,电解质管与圆柱电池的电池壳体之间的空隙容置有过量的Na2S8液态正极材料,电池的放电容量取决于负极。进行恒流充放电。电池2的构造为电解质管内仅容置导电液态金属,电解质管与圆柱电池的电池壳体之间的空隙容置过量的Na2S8液态正极材料,电池的放电容量取决于负极。进行恒流充放电。图9为这两种电池的性能对比图。可以看到采用电池1所放出的电量为8mAh,远高于采用电池2所放出的电量4mAh。In the embodiment of the present invention, the structure of the battery 1 is that metal sodium is placed in the electrolyte tube, and the gap between the metal sodium and the electrolyte tube is filled with conductive liquid metal, and the gap between the electrolyte tube and the battery casing of the cylindrical battery accommodates Excessive Na 2 S 8 liquid cathode material, the discharge capacity of the battery depends on the negative electrode. Carry out constant current charge and discharge. The structure of battery 2 is that only conductive liquid metal is contained in the electrolyte tube, and excess Na 2 S 8 liquid positive electrode material is contained in the gap between the electrolyte tube and the battery casing of the cylindrical battery, and the discharge capacity of the battery depends on the negative electrode. Carry out constant current charge and discharge. Figure 9 is a performance comparison chart of the two batteries. It can be seen that the electricity released by battery 1 is 8mAh, which is much higher than the electricity released by battery 2 by 4mAh.
实施例16Example 16
本实施例用以说明固态金属钠、导电液态金属、固体电解质、四甲氧基哌啶氧化物(TEMPO)液态正极材料构成的电池充放电性能。This example is used to illustrate the charging and discharging performance of a battery composed of solid metal sodium, conductive liquid metal, solid electrolyte, and tetramethoxypiperidine oxide (TEMPO) liquid positive electrode material.
电池的构造为电解质管内容置金属钠,并且在金属钠与电解质管的空隙之间填充导电液态金属,电解质管与圆柱电池的电池壳体之间的空隙容置有1毫升1mol/L的四甲氧基哌啶氧化物(TEMPO)液态正极材料。将电池进行恒流充放电,电压范围为2.5到3.6V。图10为其充放电曲线,可以看到电池的放电平台为3.2V,充电平台为3.4V,平台容量为170mAh/g左右。The structure of the battery is that metal sodium is placed in the electrolyte tube, and the gap between the metal sodium and the electrolyte tube is filled with conductive liquid metal. Methoxy piperidine oxide (TEMPO) liquid cathode material. Charge and discharge the battery with constant current, the voltage range is 2.5 to 3.6V. Figure 10 shows its charge and discharge curve. It can be seen that the discharge platform of the battery is 3.2V, the charging platform is 3.4V, and the platform capacity is about 170mAh/g.
实施例17Example 17
本实施例用以说明70℃下固态金属钠、导电液态金属、固体电解质、Na2S8液态正极材料构成的电池充放电性能。This example is used to illustrate the charging and discharging performance of a battery composed of solid metallic sodium, conductive liquid metal, solid electrolyte, and Na 2 S 8 liquid positive electrode material at 70°C.
电池的构造为电解质管内容置金属钠,并且在金属钠与电解质管的空隙之间填充由金属钠、联苯以及四乙二醇二甲醚(TEGDME)构成的导电液态金属,电解质管与圆柱电池的电池壳体之间的空隙容置有1毫升1mol/L的Na2S8/DMSO液态正极材料。将电池置于70℃的烘箱中进行恒流充放电,电压范围为1.8到2.5V电流为5mA。图11为其第二周充放电曲线,可以看到电池的放电容量为350mAh/g,充电到2.5V容量为350mAh/g具有很高的库伦效率。另外本发明的电池并不限于70℃下工作,而是包括从室温到150℃的工作区间。The structure of the battery is that metal sodium is placed in the electrolyte tube, and the gap between the metal sodium and the electrolyte tube is filled with conductive liquid metal composed of metal sodium, biphenyl and tetraethylene glycol dimethyl ether (TEGDME). The electrolyte tube and the cylinder 1 milliliter of 1 mol/L Na 2 S 8 /DMSO liquid cathode material is contained in the gap between the battery casings of the battery. Place the battery in an oven at 70°C for constant current charge and discharge, with a voltage range of 1.8 to 2.5V and a current of 5mA. Figure 11 is the charge and discharge curve for the second week. It can be seen that the discharge capacity of the battery is 350mAh/g, and the capacity of 350mAh/g when charged to 2.5V has a high Coulombic efficiency. In addition, the battery of the present invention is not limited to work at 70°C, but includes a working range from room temperature to 150°C.
本发明实施例提供的二次电池将固态的金属钠或锂或钾置于导电液态金属负极中,极大的提高了导电液态金属电池的能量密度,具有高的安全性以及低廉的成本。能够应用于制备本发明二次电池的材料资源丰富,电池的比能量高,循环寿命长,可用于太阳能发电、风力发电、智能电网调峰、分布电站、后备电源或通信基站的大规模储能设备。The secondary battery provided by the embodiment of the present invention puts solid metal sodium, lithium or potassium in the conductive liquid metal negative electrode, which greatly improves the energy density of the conductive liquid metal battery, and has high safety and low cost. The material resource that can be applied to the preparation of the secondary battery of the present invention is abundant, the specific energy of the battery is high, and the cycle life is long, and it can be used for large-scale energy storage in solar power generation, wind power generation, smart grid peak regulation, distributed power station, backup power supply or communication base station equipment.
上述实施例中所述的温度、浓度、时间等参数,仅为具体实施例,并非对本发明的限定,本领域技术人员在不付出创造性劳动的情况下,均可对上述参数进行调整,以得到与本发明相同的效果,因此对各参数数值的调整均应包括在本发明的保护范围内。The temperature, concentration, time and other parameters described in the above-mentioned embodiments are only specific examples, and are not limitations of the present invention. Those skilled in the art can adjust the above-mentioned parameters without paying creative work to obtain It has the same effect as the present invention, so the adjustment of each parameter value should be included in the protection scope of the present invention.
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention and are not intended to limit the scope of the present invention. Protection scope, within the spirit and principles of the present invention, any modification, equivalent replacement, improvement, etc., shall be included in the protection scope of the present invention.
Claims (9)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410749445.XA CN105742727B (en) | 2014-12-09 | 2014-12-09 | A kind of preparation method of secondary cell, purposes and its cathode |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410749445.XA CN105742727B (en) | 2014-12-09 | 2014-12-09 | A kind of preparation method of secondary cell, purposes and its cathode |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN105742727A CN105742727A (en) | 2016-07-06 |
| CN105742727B true CN105742727B (en) | 2018-05-22 |
Family
ID=56239559
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201410749445.XA Active CN105742727B (en) | 2014-12-09 | 2014-12-09 | A kind of preparation method of secondary cell, purposes and its cathode |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN105742727B (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2021178716A1 (en) * | 2020-03-04 | 2021-09-10 | Field Upgrading Usa, Inc. | Rechargeable hybrid sodium metal-sulfur battery |
| US11486046B2 (en) | 2020-03-04 | 2022-11-01 | Enlighten Innovations Inc. | Production of sodium metal by dual temperature electrolysis processes |
Families Citing this family (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106182343B (en) * | 2016-08-17 | 2018-11-27 | 上海电气钠硫储能技术有限公司 | A kind of sodium-sulphur battery solid electrolyte ceramic pipe forming method |
| WO2018152754A1 (en) * | 2017-02-23 | 2018-08-30 | 深圳先进技术研究院 | Secondary battery and preparation method therefor |
| CN107565157B (en) * | 2017-07-26 | 2020-05-05 | 南京邮电大学 | Microporous nanocrystalline sodium ion solid electrolyte and preparation method thereof |
| CN108470895B (en) * | 2018-03-21 | 2021-09-03 | 同济大学 | Potassium ion battery positive electrode material, preparation method thereof and potassium-iodine battery |
| CN108649267B (en) * | 2018-05-11 | 2021-09-17 | 深圳市清新电源研究院 | Potassium ion conductor and preparation method and application thereof |
| CN109378510B (en) * | 2018-10-25 | 2021-03-02 | 中盐金坛盐化有限责任公司 | Water phase system organic flow battery system based on salt cavern |
| CN110380009B (en) * | 2019-07-03 | 2022-04-05 | 上海交通大学 | Lithium negative electrode hot melting filling device and method for all-solid-state lithium battery |
| US11404698B2 (en) * | 2019-10-30 | 2022-08-02 | GM Global Technology Operations LLC | Liquid metal interfacial layers for solid electrolytes and methods thereof |
| CN111540937B (en) * | 2020-04-28 | 2022-01-25 | 天目湖先进储能技术研究院有限公司 | Large-capacity secondary battery and application thereof |
| CN112151770B (en) * | 2020-09-16 | 2022-02-15 | 天目湖先进储能技术研究院有限公司 | Preparation method of iron disulfide cathode material with pre-embedded lithium and lithium secondary battery |
| CN112820935A (en) * | 2020-12-31 | 2021-05-18 | 长三角物理研究中心有限公司 | Novel battery based on sulfide solid electrolyte |
| CN115224239A (en) * | 2021-04-19 | 2022-10-21 | 华为技术有限公司 | Metal anodes, batteries and electronic devices |
| CN113675376A (en) * | 2021-08-23 | 2021-11-19 | 哈尔滨工业大学 | A dendrite-free alkali metal ion battery based on solid/liquid phase conversion on the anode surface |
| CN117185366A (en) * | 2023-09-08 | 2023-12-08 | 四川轻化工大学 | A kind of sodium ion single crystal cathode material and preparation method thereof |
| CN119400971A (en) * | 2025-01-03 | 2025-02-07 | 溧阳中科固能新能源科技有限公司 | A liquid lithium cylindrical battery |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101018893A (en) * | 2004-09-14 | 2007-08-15 | 巴斯福股份公司 | Electrolysis cell for producing alkali metal |
| CN101136496A (en) * | 2006-08-31 | 2008-03-05 | 精工爱普生株式会社 | Secondary battery and method for manufacturing the same |
| CN104078686A (en) * | 2013-03-26 | 2014-10-01 | Sk新技术株式会社 | Current collector for secondary battery and secondary battery comprising the same |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8501348B2 (en) * | 2009-12-07 | 2013-08-06 | Nanotek Instruments, Inc. | Submicron-scale and lower-micron graphitic fibrils as an anode active material for a lithium ion battery |
-
2014
- 2014-12-09 CN CN201410749445.XA patent/CN105742727B/en active Active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101018893A (en) * | 2004-09-14 | 2007-08-15 | 巴斯福股份公司 | Electrolysis cell for producing alkali metal |
| CN101136496A (en) * | 2006-08-31 | 2008-03-05 | 精工爱普生株式会社 | Secondary battery and method for manufacturing the same |
| CN104078686A (en) * | 2013-03-26 | 2014-10-01 | Sk新技术株式会社 | Current collector for secondary battery and secondary battery comprising the same |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2021178716A1 (en) * | 2020-03-04 | 2021-09-10 | Field Upgrading Usa, Inc. | Rechargeable hybrid sodium metal-sulfur battery |
| US11486046B2 (en) | 2020-03-04 | 2022-11-01 | Enlighten Innovations Inc. | Production of sodium metal by dual temperature electrolysis processes |
Also Published As
| Publication number | Publication date |
|---|---|
| CN105742727A (en) | 2016-07-06 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN105742727B (en) | A kind of preparation method of secondary cell, purposes and its cathode | |
| CN105098140B (en) | Liquid metal negative material and room temperature liquid metal battery, preparation method and purposes | |
| CN103137986B (en) | A kind of zinc bromine single flow battery | |
| CN106450247B (en) | Metal bismuth anodes and ether-based electrolytes for sodium/potassium ion secondary batteries | |
| CN101719545B (en) | Anode composite material of lithium sulfur battery and preparation method thereof | |
| CN103682414B (en) | Lithium-sulfur flow battery and positive electrode electrolyte for lithium-sulfur flow battery and its preparation | |
| CN109546134A (en) | The negative electrode material and sodium-ion battery a kind of sodium-ion battery cathode pre- sodium modification method and obtained | |
| CN104795564B (en) | A kind of positive electrode of Aqueous solution secondary battery, pole piece, secondary cell and purposes | |
| Li et al. | New electrochemical energy storage systems based on metallic lithium anode—the research status, problems and challenges of lithium-sulfur, lithium-oxygen and all solid state batteries | |
| US20140075745A1 (en) | High Capacity Alkali/Oxidant Battery | |
| CN108711636B (en) | Combined electrolyte type dual-ion rocking chair type secondary battery and preparation method thereof | |
| CN108767263A (en) | A kind of preparation method and application of modified metal cathode of lithium copper foil current collector | |
| CN103123981A (en) | Non-aqueous electrolyte used in sodium ion battery, sodium ion battery and application | |
| CN109301178A (en) | A kind of sodium Dual-ion cell of the novel carbon negative pole material preparation of doping phosphorus | |
| CN108199083A (en) | Electrolyte of sodium-ion battery and preparation method thereof, sodium-ion battery | |
| CN103618094A (en) | High-capacity lithium sulfur flow cell, and preparation method of electrode thereof | |
| CN104064824A (en) | Water system rechargeable battery | |
| CN109428138A (en) | The preparation method and lithium-air battery of lithium-air battery | |
| CN105006600A (en) | Magnesium alloy storage battery | |
| CN110224140A (en) | A kind of organic electrode materials and its application and respective battery device | |
| WO2014014989A2 (en) | High performance lead acid battery with advanced electrolyte system | |
| CN111446420A (en) | A liquid lithium-sulfur battery positive electrode and preparation method thereof, and lithium-sulfur battery | |
| CN104916883A (en) | Lithium-air battery and electrolyte thereof | |
| CN112939760B (en) | Application of Perylene Oxide in Organic Cathode Materials for Lithium-ion Batteries | |
| CN115995617A (en) | A kind of preparation method of low temperature resistant zinc battery composite electrolyte |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |