CN105773620A - Track planning and control method of free curve of industrial robot based on double quaternions - Google Patents
Track planning and control method of free curve of industrial robot based on double quaternions Download PDFInfo
- Publication number
- CN105773620A CN105773620A CN201610266117.3A CN201610266117A CN105773620A CN 105773620 A CN105773620 A CN 105773620A CN 201610266117 A CN201610266117 A CN 201610266117A CN 105773620 A CN105773620 A CN 105773620A
- Authority
- CN
- China
- Prior art keywords
- quaternion
- robot
- vector
- space
- formula
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 37
- 239000012636 effector Substances 0.000 claims description 31
- 239000011159 matrix material Substances 0.000 claims description 24
- 238000013178 mathematical model Methods 0.000 claims description 18
- 238000013519 translation Methods 0.000 claims description 14
- 238000006243 chemical reaction Methods 0.000 claims description 10
- 230000009466 transformation Effects 0.000 claims description 10
- 230000008569 process Effects 0.000 claims description 9
- 238000012545 processing Methods 0.000 claims description 5
- 230000003044 adaptive effect Effects 0.000 claims description 3
- 238000012937 correction Methods 0.000 claims description 2
- 230000004069 differentiation Effects 0.000 claims description 2
- 238000004364 calculation method Methods 0.000 abstract description 9
- 230000001133 acceleration Effects 0.000 abstract 1
- 238000000280 densification Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012994 industrial processing Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1656—Programme controls characterised by programming, planning systems for manipulators
- B25J9/1664—Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Manipulator (AREA)
- Numerical Control (AREA)
Abstract
本发明公开了一种基于倍四元数的工业机器人自由曲线的轨迹规划控制方法,采用笛卡尔空间的控制点数据对空间自由曲线轮廓进行描述,同时采用阿当姆斯微分方程进行NURBS插补密化计算,并以最大轮廓误差、最大加速度为约束条件自适应调整插补速度,继而将插补所得短直线段采用倍四元数将笛卡尔空间中的机器人位置与姿态转换至四维空间,用超球面旋转对机器人的运动轨迹进行球面线性插补,最终实现工业机器人NURBS自由曲线轨迹规划。
The invention discloses a trajectory planning control method for free curves of industrial robots based on double quaternions, which uses control point data in Cartesian space to describe the contours of free curves in space, and uses Adams differential equations to perform NURBS interpolation Densify the calculation, and adjust the interpolation speed adaptively with the maximum contour error and maximum acceleration as constraints, and then use the double quaternion to transform the position and attitude of the robot in Cartesian space to the four-dimensional space by using the short line segment obtained by interpolation. Spherical linear interpolation is performed on the trajectory of the robot with hyperspherical rotation, and finally the NURBS free curve trajectory planning of industrial robots is realized.
Description
技术领域 technical field
本发明涉及一种基于倍四元数的工业机器人自由曲线的轨迹规划控制方法,属于机器人轨迹规划技术领域。 The invention relates to a trajectory planning control method of an industrial robot free curve based on a double quaternion, and belongs to the technical field of robot trajectory planning.
背景技术 Background technique
现代制造业对机器人性能的要求也越来越高,而机器人在任务空间的轨迹规划算法在机器人控制系统中占有重要地位,直接影响着机器人末端运动性能和效率。且机器人运动控制中,基本的直线、圆弧轨迹曲线已不能满足工业加工的应用需求,而常用的B样条曲线、Bézier曲线、Clothoid曲线,均不能用一种精确统一的表示方法描述标准解析曲线和自由曲线。 Modern manufacturing has higher and higher requirements for robot performance, and the trajectory planning algorithm of the robot in the task space occupies an important position in the robot control system, which directly affects the performance and efficiency of the robot's end motion. Moreover, in robot motion control, the basic straight line and arc trajectory curves can no longer meet the application requirements of industrial processing, and the commonly used B-spline curves, Bézier curves, and Clothoid curves cannot be described with an accurate and unified representation method. curves and free curves.
通常情况下,机器人的期望轨迹是事先给定一系列笛卡尔或者关节空间的点,且给定通过该点的速度或两点间的时间,另外还会限制机器人运动允许的最大速度,继而分别实现机器人末端执行器的位置轨迹规划和姿态轨迹规划,而工业机器人姿态轨迹规划通常采用欧拉角法、等效轴法对姿态进行插补,但欧拉角存在万向死锁的缺陷,等效轴法在旋转量为0时存在无法确定旋转轴的问题。虽然使用四元数法可解决机器人姿态轨迹插补的上述问题,但轨迹的位置插补则需使用其它的插补算法,运算量大,影响控制系统对轨迹规划的实时性要求。 Usually, the expected trajectory of the robot is given a series of Cartesian or joint space points in advance, and the speed passing through the point or the time between two points is given, and the maximum speed allowed by the robot movement is also limited, and then respectively Realize the position trajectory planning and attitude trajectory planning of the robot end effector, while the attitude trajectory planning of industrial robots usually uses the Euler angle method and the equivalent axis method to interpolate the attitude, but the Euler angle has the defect of universal deadlock, etc. The effective axis method has the problem that the rotation axis cannot be determined when the rotation amount is 0. Although using the quaternion method can solve the above-mentioned problems of robot attitude trajectory interpolation, other interpolation algorithms need to be used for trajectory position interpolation, which has a large amount of calculation and affects the real-time requirements of the control system for trajectory planning.
发明内容 Contents of the invention
本发明所要解决的技术问题是克服现有技术的缺陷,提供一种基于倍四元数的工业机器人NURBS曲线轨迹规划控制方法,能够为工业机器人实现自由曲线轨迹规划提供一种高效、高精度的控制方法。 The technical problem to be solved by the present invention is to overcome the defects of the prior art, to provide a control method for NURBS curve trajectory planning of industrial robots based on double quaternion, which can provide an efficient and high-precision control method for industrial robots to realize free curve trajectory planning. Control Method.
为解决上述技术问题,本发明采用的技术方案如下: In order to solve the problems of the technologies described above, the technical scheme adopted in the present invention is as follows:
基于倍四元数的工业机器人自由曲线的轨迹规划控制方法,包括以下步骤: The trajectory planning control method of the industrial robot free curve based on the double quaternion comprises the following steps:
1)建立基于倍四元数的机器人末端执行器空间位姿的数学模型与机器人末端执行器在任务空间NURBS描述的自由曲线数学模型; 1) Establish the mathematical model of the space pose of the robot end effector based on the double quaternion and the free curve mathematical model described by the robot end effector in the task space NURBS;
2)给定机器人末端执行器在任务空间NURBS描述的自由曲线的控制点序列D,以及控制点对应姿态R; 2) Given the control point sequence D of the free curve described by the end effector of the robot in the task space NURBS, and the corresponding attitude R of the control points;
所述控制点序列D表示为:D={d0,d1,…,dn},n为控制点个数; The control point sequence D is expressed as: D={d 0 , d 1 ,...,d n }, n is the number of control points;
所述控制点对应姿态采用姿态旋转矩阵R3×3表示; The attitude corresponding to the control point is represented by an attitude rotation matrix R 3×3 ;
3)依据哈特利-贾德法求解所述步骤2)的控制点序列中控制点对应的节点矢量U,具体过程如下: 3) According to the Hartley-Judd method, the node vector U corresponding to the control point in the control point sequence of the step 2) is solved, and the specific process is as follows:
为给定的控制点di,i=0,1,…,n,预定义一条k次非均匀有理B样条曲线,同时确定它的节点矢量U=[u0,u1,…,un+k+1]中的具体的节点值,节点值的求解如下: For a given control point d i , i=0,1,…,n, predefine a non-uniform rational B-spline curve of degree k, and determine its node vector U=[u 0 ,u 1 ,…,u The specific node value in n+k+1 ], the solution of the node value is as follows:
将两端节点的重复度取为k+1,将曲线的定义域取成规范参数域,即u∈[uk,un+1]=[0,1],于是u0=u1=…=uk=0,un+1=un+2=…=un+k+1=1,其余节点值需计算求解,如下: Take the repetition degree of nodes at both ends as k+1, and take the definition domain of the curve as the normative parameter domain, that is, u∈[u k ,u n+1 ]=[0,1], so u 0 =u 1 = ...=u k =0, u n+1 =u n+2 =...=u n+k+1 =1, other node values need to be calculated and solved, as follows:
计算公式如下: Calculated as follows:
式中,lj为控制多边形的各边长,lj=|dj-dj-1|, In the formula, l j is the length of each side of the control polygon, l j = |d j -d j-1 |,
由式(4)可得: From formula (4) can get:
继而可得所有的节点值; Then all node values are available;
其中,u为节点矢量U相邻两个节点间的密化节点值,ui,i=0,1,……,n+k+1,表示节点矢量U中具体的某个节点值; Among them, u is the densified node value between two adjacent nodes of the node vector U, u i , i=0,1,...,n+k+1, represents a specific node value in the node vector U;
4)依据Adams微分方程理论算法对节点矢量U进行密化处理,具体过程如下: 4) Densify the node vector U according to the theoretical algorithm of Adams differential equation, the specific process is as follows:
采用三步四阶Adams微分方程的隐格式表示为: The implicit form of the three-step fourth-order Adams differential equation is expressed as:
其中,T为插补周期,分别为ui-2、ui-1、ui、ui+1的一阶导数; Among them, T is the interpolation period, are the first derivatives of u i-2 , u i-1 , u i , u i+1 respectively;
将代入上式,可得: Will Substituting into the above formula, we can get:
ΔLi表示控制点di的进给步长; ΔL i represents the feed step size of the control point d i ;
采用前、后向差分结合代替微分的方法进行简化: Simplify by combining forward and backward differences instead of differentiation:
后向差分,前向差分, backward differencing, forward difference,
前向差分,前向差分 forward difference, forward difference
将上式代入式(7),得到: Substituting the above formula into formula (7), we get:
进而得到简化后的Adams微分方程插补算法迭代公式: Then the simplified iterative formula of Adams differential equation interpolation algorithm is obtained:
继而可得密化后节点矢量,其中,表示ui+1的预估值; Then the densified node vector can be obtained, where, Indicates the estimated value of u i+1 ;
5)根据步骤1)中的机器人末端执行器空间位姿的数学模型,并采用自适应速度控制算法对密化后的节点矢量进行修正处理,最终获得最优的密化节点矢量,修正处理过程如下: 5) According to the mathematical model of the space pose of the robot end effector in step 1), and using the adaptive speed control algorithm to correct the densified node vector, and finally obtain the optimal densified node vector, the correction process as follows:
将参数作为参数插补的预估值代入NURBS方程,得到相对应的预估插补点: will parameter As the estimated value of parameter interpolation, it is substituted into the NURBS equation to obtain the corresponding estimated interpolation point:
表示预估值的预估插补点, Indicates estimated value The estimated interpolation point of ,
从而得到对应的预估进给步长为: Thus, the corresponding estimated feed step size is obtained as:
预估进给步长和进给步长ΔLi之间存在的偏差,用相对误差δi来表示: Estimated Feed Step The deviation between and the feed step ΔL i is expressed by the relative error δ i :
当相对误差δi在允许范围内时,则为所求p(ui+1),否则按下式进行修正,直至达到δi允许范围内: When the relative error δ i is within the allowable range, then is the desired p(u i+1 ), otherwise it is corrected according to the formula until it reaches the allowable range of δ i :
最终获得最优的密化节点矢量; Finally, the optimal densified node vector is obtained;
6)利用步骤5)的最优的密化节点矢量,并根据步骤1)中机器人末端执行器在任务空间NURBS描述的自由曲线数学模型,最终获得曲线上的插补点位置; 6) Utilize the optimal densified node vector in step 5), and according to the free curve mathematical model described by the robot end effector in the task space NURBS in step 1), finally obtain the position of the interpolation point on the curve;
7)根据相邻空间曲线的插补点位置与姿态数据,进行倍四元数转换,具体步骤如下: 7) According to the interpolation point position and attitude data of adjacent space curves, perform double quaternion conversion, the specific steps are as follows:
7-1)对于每一个机器人末端位姿齐次变换矩阵BTE,如下所示: 7-1) For each robot terminal pose homogeneous transformation matrix B T E , as follows:
首先将姿态旋转矩阵R3×3,经旋转矩阵与四元数的转换关系,得到姿态旋转矩阵对应的旋转四元数Q,同时获得平移向量P=[px(u),py(u),pz(u)]T; Firstly, the attitude rotation matrix R 3×3 is transformed through the transformation relationship between the rotation matrix and the quaternion to obtain the rotation quaternion Q corresponding to the attitude rotation matrix, and at the same time obtain the translation vector P=[p x (u), p y (u ), p z (u)] T ;
7-2)将三维空间的平移向量P转换成四维空间的四元数,转换公式如下: 7-2) Convert the translation vector P of the three-dimensional space into a quaternion of the four-dimensional space, and the conversion formula is as follows:
Dp=cos(ψ/2)+sin(ψ/2)v(16) D p =cos(ψ/2)+sin(ψ/2)v(16)
式中,Rl为四维空间的大球半径,ψ=|P|/Rl,v是平移向量上的单位矢量,v=P/|P|;当|P|=0时,v为零矢量; In the formula, R l is the radius of the large sphere in the four-dimensional space, ψ=|P|/R l , v is the unit vector on the translation vector, v=P/|P|; when |P|=0, v is zero vector;
7-3)通过以下公式,计算得到机器人末端位姿转换至四维空间的倍四元数空间位姿的G部和H部; 7-3) Through the following formula, calculate the double quaternion space pose of the end pose of the robot converted to the four-dimensional space Parts G and H of the
G=DpQ, G = D p Q,
式中,为四元数Dp的共轭; In the formula, is the conjugate of the quaternion D p ;
7-4)倍四元数的双旋转轨迹进行离散化得到一系列插值倍四元数点,需要将其转换成旋转四元数和平移向量,转换算法如下: 7-4) Discretize the double rotation trajectory of the double quaternion to obtain a series of interpolation double quaternion points, which need to be converted into a rotation quaternion and a translation vector. The conversion algorithm is as follows:
Q=(G+H)/(2cosψ)(17) Q=(G+H)/(2cosψ)(17)
式中, In the formula,
8)对插补所得机器人末端执行器位姿进行逆运动学处理,获得关节角度,并驱动关节运动。 8) Perform inverse kinematics processing on the pose of the robot end effector obtained by interpolation to obtain the joint angle and drive the joint motion.
前述的步骤1)中, In the aforementioned step 1),
基于倍四元数的机器人末端执行器空间位姿的数学模型为: The mathematical model of the space pose of the robot end effector based on the double quaternion is:
其中,表示机器人末端执行器倍四元数空间位姿,ξ和η满足ξ2=ξ,η2=η,ξ+η=1,ξη=0,G和H均为单位四元数; in, Indicates the multiplied quaternion space pose of the robot end effector, ξ and η satisfy ξ 2 = ξ, η 2 = η, ξ+η = 1, ξη = 0, G and H are unit quaternions;
机器人末端执行器在任务空间NURBS描述的自由曲线数学模型为:任意一条k次NURBS曲线均表示为一分段有理多项式矢函数: The free curve mathematical model described by the end effector of the robot in the task space NURBS is: any NURBS curve of degree k can be expressed as a piecewise rational polynomial vector function:
其中,p(u)表示机器人末端执行器在任务空间NURBS描述的自由曲线的位置矢量,ωi称为权因子;di为自由曲线控制点;n为控制点个数;Ni,k(u)是由节点矢量U=[u0,u1,…,un+k+1]决定的B样条基函数,由德布尔-考克斯递推定义公式表示: Among them, p(u) represents the position vector of the free curve described by the end effector of the robot in the task space NURBS, ω i is called the weight factor; d i is the control point of the free curve; n is the number of control points; N i, k ( u) is a B-spline basis function determined by the node vector U=[u 0 ,u 1 ,…,u n+k+1 ], which is expressed by the Deboer-Cox recursive definition formula:
式中,规定u为节点矢量U相邻两个节点间的密化节点值,ui,i=0,1,……,n+k+1,表示节点矢量U中具体的某个节点值。 In the formula, stipulate u is the densified node value between two adjacent nodes of the node vector U, u i , i=0,1,...,n+k+1, represents a specific node value in the node vector U.
本发明所达到的有益效果: The beneficial effect that the present invention reaches:
本发明能够为实现工业机器人在笛卡尔空间的NURBS自由曲线的轨迹规划,提供一种有效提高工业机器人的工作效率和工作质量、能够减小速度波动、改善机器人的工作环境的控制方法。 The invention can realize the trajectory planning of the NURBS free curve of the industrial robot in the Cartesian space, and provides a control method for effectively improving the working efficiency and the working quality of the industrial robot, reducing the speed fluctuation and improving the working environment of the robot.
附图说明 Description of drawings
图1为本发明基于倍四元数的工业机器人自由曲线的轨迹规划控制方法流程示意图; Fig. 1 is the schematic flow chart of the trajectory planning control method of the industrial robot free curve based on the double quaternion of the present invention;
图2为本发明基于倍四元数的工业机器人自由曲线的轨迹规划控制方法的倍四元数表述空间直线段位置的示意图; Fig. 2 is the schematic diagram of the position of the straight line segment in the space expressed by the double quaternion of the trajectory planning control method of the industrial robot free curve based on the double quaternion of the present invention;
图3为本发明基于倍四元数的工业机器人自由曲线的轨迹规划控制方法的倍四元数表述空间直线段姿态的示意图,图中箭头方向为姿态用四元数表示的旋转矢量轴。 Fig. 3 is the schematic diagram of the trajectory planning control method of the industrial robot free curve based on the quaternion of the present invention. The quaternion expresses the schematic diagram of the attitude of the straight line segment in the space. The direction of the arrow in the figure is the rotation vector axis represented by the quaternion.
具体实施方式 detailed description
下面结合附图对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。 The present invention will be further described below in conjunction with the accompanying drawings. The following examples are only used to illustrate the technical solution of the present invention more clearly, but not to limit the protection scope of the present invention.
自由曲线概念的提出就是为了描述比较复杂的几何形状,以提高工业机器人的加工效率和精度。而非均匀有理B样条(NURBS,Non-UniformRationalB-Spline)曲线,可以准确的透视出曲线造型的控制点分布特征,并可以有效的解决型值点不能均匀分布的缺点。 The concept of free curve is proposed to describe more complex geometric shapes in order to improve the processing efficiency and precision of industrial robots. The Non-Uniform Rational B-Spline (NURBS, Non-Uniform Rational B-Spline) curve can accurately see the distribution characteristics of the control points of the curve shape, and can effectively solve the shortcoming that the value points cannot be evenly distributed.
倍四元数是基于Clifford代数的一种新的数学建模工具,是在四元数的基础上发展而来。采用倍四元数能够对笛卡尔空间中的位置与姿态转换至四维空间中,既能够分别得表示空间中的位置和姿态,也能将空间中的位置和姿态用一种统一的方式进行表示,从而对四维空间中起止点的位姿用超球面旋转对机器人的运动轨迹进行球面线性插补。 Quaternion is a new mathematical modeling tool based on Clifford algebra, which is developed on the basis of quaternion. The position and attitude in Cartesian space can be converted to four-dimensional space by using double quaternion, which can not only express the position and attitude in space separately, but also express the position and attitude in space in a unified way , so that the hyperspherical rotation is used to perform spherical linear interpolation on the trajectory of the robot for the pose of the start and end points in the four-dimensional space.
如图1所示,本发明的基于倍四元数的工业机器人自由曲线的轨迹规划控制方法的包括以下步骤: As shown in Figure 1, the trajectory planning control method of the industrial robot free curve based on the double quaternion of the present invention comprises the following steps:
步骤一、建立基于倍四元数的机器人末端执行器空间位姿的数学模型与机器人末端执行器在任务空间NURBS描述的自由曲线数学模型; Step 1. Establish the mathematical model of the space pose of the robot end effector based on the double quaternion and the free curve mathematical model described by the robot end effector in the task space NURBS;
基于倍四元数的机器人末端执行器空间位姿的数学模型为: The mathematical model of the space pose of the robot end effector based on the double quaternion is:
式中,表示机器人末端执行器倍四元数空间位姿,ξ和η满足ξ2=ξ,η2=η,ξ+η=1,ξη=0,G和H均为单位四元数。 In the formula, Indicates the multiplied quaternion space pose of the robot end effector, ξ and η satisfy ξ 2 =ξ, η 2 =η, ξ+η=1, ξη=0, G and H are unit quaternions.
机器人末端执行器在任务空间NURBS描述的自由曲线数学模型为:任意一条k次NURBS曲线可表示为一分段有理多项式矢函数: The free curve mathematical model described by the end effector of the robot in the task space NURBS is: any NURBS curve of degree k can be expressed as a piecewise rational polynomial vector function:
式中,p(u)表示机器人末端执行器在任务空间NURBS描述的自由曲线的位置矢量,即p(u)=[px(u),py(u),pz(u)]T;di为自由曲线控制点,即di=[xi,yi,zi],则控制点序列D={d0,d1,…,dn}(i=0,1,…,n),n为控制点个数;ωi称为权因子,ωi分别与控制点di(i=0,1,…,n)相联系,当ωi=1(i=0,1,…,n)时,一条k次NURBS曲线退化为一条k次B样条曲线; In the formula, p(u) represents the position vector of the free curve described by the robot end effector in the task space NURBS, that is, p(u)=[p x (u), p y (u), p z (u)] T ;d i is the control point of the free curve, that is, d i =[ xi ,y i , zi ], then the control point sequence D={d 0 ,d 1 ,…,d n }(i=0,1,… ,n), n is the number of control points; ω i is called the weight factor, and ω i is respectively associated with control points d i (i=0,1,…,n), when ω i =1 (i=0, 1,...,n), a NURBS curve of degree k degenerates into a B-spline curve of degree k;
Ni,k(u)是由节点矢量U=[u0,u1,…,un+k+1]决定的B样条基函数,由广泛使用的德布尔-考克斯(DeBoor-Cox)递推定义公式表示: N i,k (u) is a B-spline basis function determined by the node vector U=[u 0 ,u 1 ,…,u n+k+1 ], which is determined by the widely used DeBoer-Cox (DeBoor- Cox) recursive definition formula expresses:
式中,规定u为节点矢量U相邻两个节点间的密化节点值,ui,i=0,1,……,n+k+1,表示节点矢量U中具体的某个节点值。 In the formula, stipulate u is the densified node value between two adjacent nodes of the node vector U, u i , i=0,1,...,n+k+1, represents a specific node value in the node vector U.
则NURBS自由曲线的三维坐标形式为: Then the three-dimensional coordinate form of the NURBS free curve is:
步骤二、给定机器人末端执行器在任务空间NURBS描述的自由曲线的控制点序列D,以及自由曲线空间控制点对应姿态R; Step 2. Given the control point sequence D of the free curve described by the end effector of the robot in the task space NURBS, and the corresponding posture R of the control point in the free curve space;
给定机器人任务空间自由曲线的控制点序列D为:D={d0,d1,…,dn}(i=0,1,…,n),n为控制点个数; The control point sequence D of the given robot task space free curve is: D={d 0 , d 1 ,...,d n }(i=0,1,...,n), n is the number of control points;
对应姿态采用姿态旋转矩阵R3×3的表示方式; The corresponding posture adopts the representation of the posture rotation matrix R 3×3 ;
步骤三、依据哈特利-贾德法求解任务空间NURBS描述的自由曲线控制点对应的节点矢量U; Step 3. Solve the node vector U corresponding to the free curve control point described by the task space NURBS according to the Hartley-Judd method;
本步骤中为给定NURBS描述的自由曲线的控制点di,i=0,1,…,n,预定义一条k次非均匀有理B样条(NURBS)曲线,同时必须确定它的节点矢量U=[u0,u1,…,un+k+1]中的具体的节点值。 In this step, for the control point d i of the free curve described by the given NURBS, i=0,1,...,n, a k-degree non-uniform rational B-spline (NURBS) curve is predefined, and its node vector must be determined at the same time A specific node value in U=[u 0 ,u 1 ,...,u n+k+1 ].
为便于对曲线在曲线端点的行为有较好的控制,本发明在两端节点的重复度取为k+1,通常将曲线的定义域取成规范参数域,即u∈[uk,un+1]=[0,1],于是u0=u1=…=uk=0,un+1=un+2=…=un+k+1=1,其余内节点需计算求解,方法如下: In order to better control the behavior of the curve at the end points of the curve, the repetition degree of the nodes at both ends of the present invention is taken as k+1, and the definition domain of the curve is usually taken as the normative parameter domain, that is, u∈[u k ,u n+1 ]=[0,1], so u 0 =u 1 =…=u k =0, u n+1 =u n+2 =…=u n+k+1 =1, and the remaining internal nodes need Calculate and solve, the method is as follows:
本步骤所采用的哈特利—贾德法与曲线次数的奇偶性无关,采用统一的计算公式,计算方法更具合理性,其计算公式如下: The Hartley-Judd method used in this step has nothing to do with the parity of the order of the curve. A unified calculation formula is adopted, and the calculation method is more reasonable. The calculation formula is as follows:
式中,lj为控制多边形的各边长,即lj=|dj-dj-1|。由式(4)可得: In the formula, l j is the length of each side of the control polygon, that is, l j = |d j -d j-1 |. From formula (4) can get:
继而可得控制点对应的节点矢量中的所有节点值。 Then all node values in the node vector corresponding to the control point can be obtained.
步骤四、依据Adams微分方程理论算法对节点矢量U进行密化处理; Step 4. Densify the node vector U according to the Adams differential equation theory algorithm;
参数密化是指由三维轨迹空间到一维参变量空间的映射,在参数化插补方式下,数据的密化即表现为参数的密化过程,即由轨迹空间的进给步长ΔL映射到参变量空间以求取参变量增量Δu以及下一参数坐标:ui+1=ui+Δui。 Parameter densification refers to the mapping from the three-dimensional trajectory space to the one-dimensional parameter space. In the parametric interpolation mode, the densification of the data is the densification process of the parameters, which is mapped by the feed step ΔL of the trajectory space. Go to the parameter space to obtain the parameter increment Δu and the next parameter coordinate: u i+1 =u i +Δu i .
本步骤所采用得阿当姆斯(Adams)微分方程对参变数进行密化,计算公式如下: The Adams differential equation adopted in this step densifies the parameters, and the calculation formula is as follows:
采用三步四阶阿当姆斯微分方程的隐格式表示为: The implicit form using the three-step fourth-order Adams differential equation is expressed as:
式中,T为插补周期,分别为ui-2、ui-1、ui、ui+1的一阶导数; In the formula, T is the interpolation cycle, are the first derivatives of u i-2 , u i-1 , u i , u i+1 respectively;
将代入上式,可得: Will Substituting into the above formula, we can get:
ΔLi表示控制点di的进给步长。 ΔL i represents the feed step size of the control point d i .
为保证高速NURBS曲线直接插补的要求,保证实时插补的计算速度,采用前、后向差分(如下式所示)结合代替微分的方法对该算法进行简化: In order to meet the requirements of direct interpolation of high-speed NURBS curves and the calculation speed of real-time interpolation, the algorithm is simplified by combining forward and backward differential (as shown in the following formula) instead of differential:
(后向差分),(前向差分), (backward difference), (forward difference),
(前向差分),(前向差分) (forward difference), (forward difference)
将上式代入式(7),得到: Substituting the above formula into formula (7), we get:
进而可得到简化后的阿当姆斯微分方程插补算法迭代公式: Then the simplified Adams differential equation interpolation algorithm iterative formula can be obtained:
继而可得密化后节点矢量,其中,表示ui+1的预估值。 Then the densified node vector can be obtained, where, Indicates the estimated value of u i+1 .
步骤五、根据步骤一中机器人末端执行器在任务空间NURBS描述的自由曲线数学模型,采用自适应速度控制算法对密化后的节点矢量进行修正处理,最终获得最优的密化节点矢量; Step 5. According to the free curve mathematical model described by the robot end effector in the task space NURBS in step 1, the adaptive speed control algorithm is used to correct the densified node vector, and finally obtain the optimal densified node vector;
将参数作为参数插补的预估值代入NURBS方程,得到相对应的预估插补点: will parameter As the estimated value of parameter interpolation, it is substituted into the NURBS equation to obtain the corresponding estimated interpolation point:
是预估插补点, is the estimated interpolation point,
从而得到对应的预估进给步长为: So as to get the corresponding estimated feed step size for:
采用预估法得到的预估进给步长和进给步长ΔL之间存在的偏差,可用相对误差进行评定: Estimated Feed Step Size Using Estimated Method The deviation between ΔL and the feed step size can be evaluated by relative error:
δi表示控制点di处的相对误差。 δ i represents the relative error at the control point d i .
当相对误差δi在允许范围内时,则可认为为所求p(ui+1),否则按下式进行修正,直至达到δi允许范围内: When the relative error δ i is within the allowable range, it can be considered is the desired p(u i+1 ), otherwise it is corrected according to the formula until it reaches the allowable range of δ i :
最终获得优化后的密化节点矢量。 Finally, the optimized densified node vector is obtained.
步骤六、利用优化的密化节点矢量,并根据步骤一中机器人末端执行器在任务空间NURBS描述的自由曲线数学模型,最终获得曲线上的插补点位置。 Step 6. Using the optimized densified node vector and according to the free curve mathematical model described by the end effector of the robot in the task space NURBS in step 1, finally obtain the position of the interpolation point on the curve.
步骤七、根据相邻空间曲线的插补点位置与姿态数据,进行倍四元数转换; Step 7, according to the position of the interpolation point of the adjacent space curve and the attitude data, perform the double quaternion conversion;
将位姿齐次变换矩阵转换为倍四元数,在给定三维空间中位姿矩阵的计算精度δm和机器人工作空间的最大边界L时,可通过公式: To convert the pose homogeneous transformation matrix into a double quaternion, when the calculation accuracy δ m of the pose matrix in the given three-dimensional space and the maximum boundary L of the robot workspace can be obtained by the formula:
得到四维空间的大球即超大球的半径Rl。 Obtain the radius R l of the big sphere in the four-dimensional space, that is, the super-large sphere.
将位姿齐次变换矩阵转换为倍四元数,其转换算法如下: To convert the pose homogeneous transformation matrix into a double quaternion, the conversion algorithm is as follows:
7-1)对于每一个机器人末端位姿齐次变换矩阵BTE,即机器人末端法兰盘中心坐标系E相对于基坐标系B的齐次变换矩阵,如下所示: 7-1) For each robot end pose homogeneous transformation matrix B T E , that is, the homogeneous transformation matrix of the robot end flange center coordinate system E relative to the base coordinate system B, as follows:
首先将姿态旋转矩阵R3×3,经旋转矩阵与四元数的转换关系,得到姿态旋转矩阵对应的旋转四元数Q,同时获得平移向量P=[px(u),py(u),pz(u)]T; Firstly, the attitude rotation matrix R 3×3 is transformed through the transformation relationship between the rotation matrix and the quaternion to obtain the rotation quaternion Q corresponding to the attitude rotation matrix, and at the same time obtain the translation vector P=[p x (u), p y (u ), p z (u)] T ;
7-2)近似的将三维空间的平移向量P转换成四维空间的四元数,转换公式如下: 7-2) Approximately convert the translation vector P in the three-dimensional space into a quaternion in the four-dimensional space, and the conversion formula is as follows:
Dp=cos(ψ/2)+sin(ψ/2)v(16) D p =cos(ψ/2)+sin(ψ/2)v(16)
式中,ψ=|P|/Rl,v是平移向量上的单位矢量,v=P/|P|;当|P|=0时,v为零矢量; In the formula, ψ=|P|/R l , v is the unit vector on the translation vector, v=P/|P|; when |P|=0, v is the zero vector;
7-3)通过以下公式,计算得到机器人末端位姿转换至四维空间的倍四元数空间位姿的G部和H部; 7-3) Through the following formula, calculate the double quaternion space pose of the end pose of the robot converted to the four-dimensional space Parts G and H of the
G=DpQ, G = D p Q,
式中,为四元数Dp的共轭; In the formula, is the conjugate of the quaternion D p ;
7-4)倍四元数的双旋转轨迹进行离散化得到一系列插值倍四元数点,需要将其转换成旋转四元数和平移向量,转换算法如下: 7-4) Discretize the double rotation trajectory of the double quaternion to obtain a series of interpolation double quaternion points, which need to be converted into a rotation quaternion and a translation vector. The conversion algorithm is as follows:
Q=(G+H)/(2cosψ)(17) Q=(G+H)/(2cosψ)(17)
式中, In the formula,
步骤八、对插补所得机器人末端执行器位姿进行逆运动学处理,获得关节角度,并驱动关节运动。 Step 8: Perform inverse kinematics processing on the pose of the robot end effector obtained by interpolation to obtain joint angles and drive the joints to move.
具体方法为:将机器人任务空间中相邻插补点视为起止点,则可将起止点姿态旋转矩阵Rs与对应的平移向量Ps、姿态旋转矩阵Re与对应的平移向量Pe数据,分别转换成倍四元数空间位姿: The specific method is: consider the adjacent interpolation points in the robot task space as the start and end points, then the attitude rotation matrix R s of the start and end points and the corresponding translation vector P s , the attitude rotation matrix R e and the corresponding translation vector P e data , which are converted into multiple quaternion space poses respectively:
和 and
其中,为姿态旋转矩阵Rs对应的倍四元数空间位姿,Gs和Hs为对应的单位四元数,为姿态旋转矩阵Re对应的倍四元数空间位姿,Ge和He为对应的单位四元数。 in, is the double quaternion space pose corresponding to the attitude rotation matrix R s , G s and H s are The corresponding unit quaternion, is the double quaternion space pose corresponding to the attitude rotation matrix Re , and Ge and He are The corresponding unit quaternion.
分别对起止点倍四元数空间位姿的G部和H部进行球面线性插值,可得: Spherical linear interpolation is performed on the G and H parts of the starting and ending points times the quaternion space pose respectively, and it can be obtained:
式中,G(t)表示起止点倍四元数空间位姿的G部的球面线性插值,H(t)表示起止点倍四元数空间位姿的H部的球面线性插值,α=arccos(Gs·Ge),β=arccos(Hs·He)(Gs·Ge、Hs·He分别为Gs与Ge、Hs与He两四元数的点积),l(t)∈[0,1]可通过归一化插补周期获得。 In the formula, G(t) represents the spherical linear interpolation of the G part of the starting and ending point times the quaternion space pose, H(t) represents the spherical linear interpolation of the H part of the starting and ending point times the quaternion space pose, α=arccos (G s ·G e ), β=arccos(H s ·H e )(G s ·G e , H s ·He e are the dot product of the two quaternions of G s and Ge , H s and He e respectively ), l(t)∈[0,1] can be obtained by normalizing the interpolation period.
根据上式,倍四元数空间位姿的球面线性插值可表示为: According to the above formula, the spherical linear interpolation of the double quaternion space pose can be expressed as:
该式是倍四元数球面线性插值的一种表示方法,在实际的插值计算过程中包含倍四元数的G部与H部两个部分的球面线性插值,分别通过G部与H部的单位四元数的球面线性插值完成倍四元数的球面线性插值,获得插补中间点的倍四元数,倍四元数球面线性插补空间直线段的位置与姿态分别如图2和3所示,继而通过步骤七的逆过程将倍四元数转化为插补中间点的位姿齐次变换矩阵T。最后通过机器人模型的逆运动学处理,获得实时关节角度,并驱动各关节运动。 This formula is a representation method of double quaternion spherical linear interpolation. In the actual interpolation calculation process, the spherical linear interpolation of the two parts of the G part and the H part of the double quaternion is included, respectively through the G part and the H part. The spherical linear interpolation of the unit quaternion completes the spherical linear interpolation of the double quaternion, and obtains the double quaternion of the interpolation intermediate point, and the position and attitude of the double quaternion spherical linear interpolation space line segment are shown in Figures 2 and 3 respectively As shown, the double quaternion is transformed into a pose homogeneous transformation matrix T of the interpolated intermediate point through the inverse process of step 7. Finally, through the inverse kinematics processing of the robot model, the real-time joint angles are obtained and the joints are driven to move.
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。 The above is only a preferred embodiment of the present invention, it should be pointed out that for those of ordinary skill in the art, without departing from the technical principle of the present invention, some improvements and modifications can also be made. It should also be regarded as the protection scope of the present invention.
Claims (2)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610266117.3A CN105773620B (en) | 2016-04-26 | 2016-04-26 | The trajectory planning control method of industrial robot free curve based on Double quaternions |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610266117.3A CN105773620B (en) | 2016-04-26 | 2016-04-26 | The trajectory planning control method of industrial robot free curve based on Double quaternions |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN105773620A true CN105773620A (en) | 2016-07-20 |
| CN105773620B CN105773620B (en) | 2017-09-12 |
Family
ID=56399369
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201610266117.3A Expired - Fee Related CN105773620B (en) | 2016-04-26 | 2016-04-26 | The trajectory planning control method of industrial robot free curve based on Double quaternions |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN105773620B (en) |
Cited By (25)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107263472A (en) * | 2017-06-16 | 2017-10-20 | 广东工业大学 | A kind of robot motion's curve processing method and system |
| CN107807612A (en) * | 2017-12-12 | 2018-03-16 | 科德数控股份有限公司 | Digit Control Machine Tool sphere processing method based on quaternary number helix sphere interpolation |
| CN108614569A (en) * | 2018-06-22 | 2018-10-02 | 北京敏捷动力科技有限公司 | A method of being used for tracing control controlled motion object |
| CN108646667A (en) * | 2018-03-05 | 2018-10-12 | 北京华航唯实机器人科技股份有限公司 | Orbit generation method and device, terminal |
| WO2018188276A1 (en) * | 2017-04-09 | 2018-10-18 | 北京工业大学 | Error modeling method for tail-end space curve trajectory of six-degree-of-freedom robot |
| CN109531573A (en) * | 2018-12-25 | 2019-03-29 | 珞石(山东)智能科技有限公司 | One kind being based on line transect robot pose smooth path generation method |
| CN109664303A (en) * | 2019-02-28 | 2019-04-23 | 武汉工程大学 | A kind of four smooth orbit generation methods of shaft industrial robot B-spline transition type that error is controllable |
| CN110757454A (en) * | 2019-10-12 | 2020-02-07 | 广州中国科学院先进技术研究所 | Path planning method and device for co-rotating dual robots |
| WO2020034403A1 (en) * | 2018-08-16 | 2020-02-20 | 居鹤华 | Axis invariant-based multi-axis robot forward kinematics calculation method |
| CN111897216A (en) * | 2020-07-16 | 2020-11-06 | 华中科技大学 | A Multi-segment Velocity Planning and Interpolation Method |
| CN111913441A (en) * | 2020-08-06 | 2020-11-10 | 南京工程学院 | Corner smooth transition method based on track mode |
| CN112269356A (en) * | 2020-10-27 | 2021-01-26 | 南京溧航仿生产业研究院有限公司 | NURBS track interpolation method for robot |
| CN112419415A (en) * | 2020-12-08 | 2021-02-26 | 浙江德尚韵兴医疗科技有限公司 | Ultrasonic scanning method for realizing pose planning based on CRS curve fitting |
| CN112698623A (en) * | 2020-12-29 | 2021-04-23 | 南京埃斯顿自动化股份有限公司 | Multi-axis contour control method for multi-axis contour application occasion |
| CN113103241A (en) * | 2021-04-29 | 2021-07-13 | 哈尔滨工业大学 | Method, device and system for realizing G2 continuous robot double NURBS trajectory interpolation |
| CN113103240A (en) * | 2021-04-29 | 2021-07-13 | 哈尔滨工业大学 | Robot trajectory planning method, device and system for realizing C2 continuity |
| CN113103239A (en) * | 2021-04-29 | 2021-07-13 | 哈尔滨工业大学 | A method, device and storage medium for generating an attitude trajectory of a robot |
| CN113146631A (en) * | 2020-10-16 | 2021-07-23 | 西安工程大学 | Special-shaped prefabricated body robot needling forming path planning method |
| CN113211433A (en) * | 2021-04-21 | 2021-08-06 | 山东科技大学 | Separated visual servo control method based on composite characteristics |
| CN113733099A (en) * | 2021-09-28 | 2021-12-03 | 广州大学 | Robot smooth track planning method, computer and storage medium |
| CN113997157A (en) * | 2021-11-11 | 2022-02-01 | 吉林大学 | Multi-surface common-body optical curved surface polishing machine tool and method based on macro-micro composite driving |
| CN114728418A (en) * | 2019-11-19 | 2022-07-08 | 株式会社日立制作所 | Orbit plan generation device, orbit plan generation method, and orbit plan generation program |
| CN114952852A (en) * | 2022-06-13 | 2022-08-30 | 天津大学 | NURBS curve speed planning method and equipment for robot and storage medium |
| CN115741695A (en) * | 2022-11-21 | 2023-03-07 | 江南大学 | Attitude track transition planning method for six-axis series industrial robot tail end |
| CN116197917A (en) * | 2023-04-28 | 2023-06-02 | 苏州艾利特机器人有限公司 | Self-adaptive maximum acceleration calculation method and device, storage medium and electronic equipment |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS60262213A (en) * | 1984-06-06 | 1985-12-25 | Nippei Toyama Corp | Movement control method of industrial robot |
| JPH05185386A (en) * | 1992-01-16 | 1993-07-27 | Fujitsu Ltd | Robot hand linear motion control system |
| CN102825602A (en) * | 2012-08-21 | 2012-12-19 | 华北电力大学(保定) | PSD (Position Sensitive Detector)-based industrial robot self-calibration method and device |
| CN103568012A (en) * | 2013-10-24 | 2014-02-12 | 安徽埃夫特智能装备有限公司 | Method for planning biplanar swing arc track of arc welding robot |
| CN104379308A (en) * | 2012-06-29 | 2015-02-25 | 三菱电机株式会社 | Robot control device and robot control method |
| CN104635762A (en) * | 2015-01-13 | 2015-05-20 | 北京航空航天大学 | Self-motion angle calculating method facing SRS anthropomorphic arm |
| CN104965517A (en) * | 2015-07-07 | 2015-10-07 | 张耀伦 | Robot cartesian space trajectory planning method |
| CN105269565A (en) * | 2015-10-30 | 2016-01-27 | 福建长江工业有限公司 | Offline programming and modifying method of six-axis grinding and polishing industrial robot |
-
2016
- 2016-04-26 CN CN201610266117.3A patent/CN105773620B/en not_active Expired - Fee Related
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS60262213A (en) * | 1984-06-06 | 1985-12-25 | Nippei Toyama Corp | Movement control method of industrial robot |
| JPH05185386A (en) * | 1992-01-16 | 1993-07-27 | Fujitsu Ltd | Robot hand linear motion control system |
| CN104379308A (en) * | 2012-06-29 | 2015-02-25 | 三菱电机株式会社 | Robot control device and robot control method |
| CN102825602A (en) * | 2012-08-21 | 2012-12-19 | 华北电力大学(保定) | PSD (Position Sensitive Detector)-based industrial robot self-calibration method and device |
| CN103568012A (en) * | 2013-10-24 | 2014-02-12 | 安徽埃夫特智能装备有限公司 | Method for planning biplanar swing arc track of arc welding robot |
| CN104635762A (en) * | 2015-01-13 | 2015-05-20 | 北京航空航天大学 | Self-motion angle calculating method facing SRS anthropomorphic arm |
| CN104965517A (en) * | 2015-07-07 | 2015-10-07 | 张耀伦 | Robot cartesian space trajectory planning method |
| CN105269565A (en) * | 2015-10-30 | 2016-01-27 | 福建长江工业有限公司 | Offline programming and modifying method of six-axis grinding and polishing industrial robot |
Non-Patent Citations (1)
| Title |
|---|
| 季彦伟: "NURBS曲线插补算法的研究与应用", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑 》 * |
Cited By (41)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2018188276A1 (en) * | 2017-04-09 | 2018-10-18 | 北京工业大学 | Error modeling method for tail-end space curve trajectory of six-degree-of-freedom robot |
| CN107263472A (en) * | 2017-06-16 | 2017-10-20 | 广东工业大学 | A kind of robot motion's curve processing method and system |
| CN107807612A (en) * | 2017-12-12 | 2018-03-16 | 科德数控股份有限公司 | Digit Control Machine Tool sphere processing method based on quaternary number helix sphere interpolation |
| CN107807612B (en) * | 2017-12-12 | 2020-09-22 | 科德数控股份有限公司 | Numerical control machine tool spherical surface machining method based on quaternion spiral spherical surface interpolation method |
| CN108646667A (en) * | 2018-03-05 | 2018-10-12 | 北京华航唯实机器人科技股份有限公司 | Orbit generation method and device, terminal |
| CN108646667B (en) * | 2018-03-05 | 2019-11-05 | 北京华航唯实机器人科技股份有限公司 | Orbit generation method and device, terminal |
| CN108614569B (en) * | 2018-06-22 | 2021-01-15 | 北京敏捷动力科技有限公司 | Method for tracking and controlling controlled moving object |
| CN108614569A (en) * | 2018-06-22 | 2018-10-02 | 北京敏捷动力科技有限公司 | A method of being used for tracing control controlled motion object |
| WO2020034403A1 (en) * | 2018-08-16 | 2020-02-20 | 居鹤华 | Axis invariant-based multi-axis robot forward kinematics calculation method |
| CN109531573A (en) * | 2018-12-25 | 2019-03-29 | 珞石(山东)智能科技有限公司 | One kind being based on line transect robot pose smooth path generation method |
| CN109664303A (en) * | 2019-02-28 | 2019-04-23 | 武汉工程大学 | A kind of four smooth orbit generation methods of shaft industrial robot B-spline transition type that error is controllable |
| CN109664303B (en) * | 2019-02-28 | 2021-10-12 | 武汉工程大学 | Error-controllable B-spline transition type smooth trajectory generation method for four-axis industrial robot |
| CN110757454B (en) * | 2019-10-12 | 2022-08-16 | 广州中国科学院先进技术研究所 | Path planning method and device for cooperative rotation of double robots |
| CN110757454A (en) * | 2019-10-12 | 2020-02-07 | 广州中国科学院先进技术研究所 | Path planning method and device for co-rotating dual robots |
| CN114728418B (en) * | 2019-11-19 | 2023-09-12 | 株式会社日立制作所 | Track plan generation device, track plan generation method, and recording medium |
| CN114728418A (en) * | 2019-11-19 | 2022-07-08 | 株式会社日立制作所 | Orbit plan generation device, orbit plan generation method, and orbit plan generation program |
| CN111897216A (en) * | 2020-07-16 | 2020-11-06 | 华中科技大学 | A Multi-segment Velocity Planning and Interpolation Method |
| CN111913441A (en) * | 2020-08-06 | 2020-11-10 | 南京工程学院 | Corner smooth transition method based on track mode |
| CN111913441B (en) * | 2020-08-06 | 2021-11-09 | 南京工程学院 | Corner smooth transition method based on track mode |
| CN113146631A (en) * | 2020-10-16 | 2021-07-23 | 西安工程大学 | Special-shaped prefabricated body robot needling forming path planning method |
| CN112269356B (en) * | 2020-10-27 | 2022-03-18 | 南京溧航仿生产业研究院有限公司 | NURBS track interpolation method for robot |
| CN112269356A (en) * | 2020-10-27 | 2021-01-26 | 南京溧航仿生产业研究院有限公司 | NURBS track interpolation method for robot |
| CN112419415B (en) * | 2020-12-08 | 2022-06-17 | 浙江德尚韵兴医疗科技有限公司 | Ultrasonic scanning method for realizing pose planning based on CRS curve fitting |
| CN112419415A (en) * | 2020-12-08 | 2021-02-26 | 浙江德尚韵兴医疗科技有限公司 | Ultrasonic scanning method for realizing pose planning based on CRS curve fitting |
| CN112698623B (en) * | 2020-12-29 | 2021-11-05 | 南京埃斯顿自动化股份有限公司 | Multi-axis contour control method for multi-axis contour application occasion |
| CN112698623A (en) * | 2020-12-29 | 2021-04-23 | 南京埃斯顿自动化股份有限公司 | Multi-axis contour control method for multi-axis contour application occasion |
| CN113211433B (en) * | 2021-04-21 | 2022-09-20 | 山东科技大学 | Separated visual servo control method based on composite characteristics |
| CN113211433A (en) * | 2021-04-21 | 2021-08-06 | 山东科技大学 | Separated visual servo control method based on composite characteristics |
| CN113103240A (en) * | 2021-04-29 | 2021-07-13 | 哈尔滨工业大学 | Robot trajectory planning method, device and system for realizing C2 continuity |
| CN113103241A (en) * | 2021-04-29 | 2021-07-13 | 哈尔滨工业大学 | Method, device and system for realizing G2 continuous robot double NURBS trajectory interpolation |
| CN113103241B (en) * | 2021-04-29 | 2022-08-23 | 哈尔滨工业大学 | Method, device and system for realizing G2 continuous robot double-NURBS track interpolation |
| CN113103240B (en) * | 2021-04-29 | 2022-08-23 | 哈尔滨工业大学 | Method, device and system for realizing C2 continuous robot trajectory planning |
| CN113103239A (en) * | 2021-04-29 | 2021-07-13 | 哈尔滨工业大学 | A method, device and storage medium for generating an attitude trajectory of a robot |
| CN113733099A (en) * | 2021-09-28 | 2021-12-03 | 广州大学 | Robot smooth track planning method, computer and storage medium |
| CN113997157A (en) * | 2021-11-11 | 2022-02-01 | 吉林大学 | Multi-surface common-body optical curved surface polishing machine tool and method based on macro-micro composite driving |
| CN114952852A (en) * | 2022-06-13 | 2022-08-30 | 天津大学 | NURBS curve speed planning method and equipment for robot and storage medium |
| CN114952852B (en) * | 2022-06-13 | 2024-09-20 | 天津大学 | Robot NURBS curve speed planning method, equipment and storage medium |
| CN115741695A (en) * | 2022-11-21 | 2023-03-07 | 江南大学 | Attitude track transition planning method for six-axis series industrial robot tail end |
| CN115741695B (en) * | 2022-11-21 | 2025-07-11 | 江南大学 | A posture trajectory transition planning method for the end of a six-axis serial industrial robot |
| CN116197917A (en) * | 2023-04-28 | 2023-06-02 | 苏州艾利特机器人有限公司 | Self-adaptive maximum acceleration calculation method and device, storage medium and electronic equipment |
| CN116197917B (en) * | 2023-04-28 | 2023-08-01 | 苏州艾利特机器人有限公司 | Self-adaptive maximum acceleration calculation method and device, storage medium and electronic equipment |
Also Published As
| Publication number | Publication date |
|---|---|
| CN105773620B (en) | 2017-09-12 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN105773620B (en) | The trajectory planning control method of industrial robot free curve based on Double quaternions | |
| CN106647282B (en) | Six-degree-of-freedom robot trajectory planning method considering tail end motion error | |
| CN108000501B (en) | Novel trajectory planning method for series robot | |
| CN106393106B (en) | The robot nurbs curve of parameter adaptive densification moves interpolating method | |
| CN105500354B (en) | Transition track planning method applied to industrial robot | |
| JP6766186B2 (en) | How to plan the trajectory of point-to-point movement in robot joint space | |
| CN107053176B (en) | A kind of error modeling method of six-DOF robot end spaces curvilinear path | |
| CN108673509B (en) | Motion control method of six-degree-of-freedom wrist offset type serial mechanical arm | |
| CN106826829A (en) | A kind of industrial robot fairing trace generator method of Controllable Error | |
| CN107584474B (en) | A Coordinated Motion Method of Spherical Joint Dual-arm Robot Based on Geometric Projection | |
| CN103235513B (en) | A kind of mobile mechanical arm trajectory planning optimization method based on genetic algorithm | |
| CN103901898B (en) | A kind of inverse kinematics general method for solving of multi-freedom robot | |
| CN107685330A (en) | A kind of Inverse Kinematics Solution method for solving of six degree of freedom wrist bias series robot | |
| CN101612734A (en) | Pipeline spraying robot and operation track planning method thereof | |
| CN106313047A (en) | Robot real-time corner transition method based on Bezier spline | |
| CN108319224B (en) | A kind of multiaxis NC maching spiral path generation method based on diametral curve interpolation | |
| CN107962566A (en) | A kind of mobile mechanical arm repetitive motion planning method | |
| CN102646148A (en) | Trajectory Planning Method for Avoiding Collision of Manipulator of Humanoid Robot | |
| CN105527927A (en) | A tool axis vector interpolation method for five-axis machining based on divide-and-conquer optimization of the angular acceleration of each rotation axis of the machine tool | |
| CN109623810A (en) | A kind of method for the time optimal trajectory planning that robot is smooth | |
| CN110802600A (en) | A Singularity Handling Method for 6-DOF Articulated Robot | |
| CN107169152A (en) | A kind of complex-curved automatic spraying profile optimization method | |
| CN111152224A (en) | Dual-optimization robot motion trajectory optimization method | |
| CN105183009A (en) | Trajectory control method for redundant mechanical arm | |
| CN105856231A (en) | Movement control method for six-shaft industrial robot of specific structure |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170912 |
|
| CF01 | Termination of patent right due to non-payment of annual fee |