[go: up one dir, main page]

CN106089569A - A kind of Miniature Wind Turbine Blades aerofoil profile being applicable to low reynolds number flow - Google Patents

A kind of Miniature Wind Turbine Blades aerofoil profile being applicable to low reynolds number flow Download PDF

Info

Publication number
CN106089569A
CN106089569A CN201610574455.3A CN201610574455A CN106089569A CN 106089569 A CN106089569 A CN 106089569A CN 201610574455 A CN201610574455 A CN 201610574455A CN 106089569 A CN106089569 A CN 106089569A
Authority
CN
China
Prior art keywords
airfoil
wind turbine
chord length
reynolds number
sequence number
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610574455.3A
Other languages
Chinese (zh)
Inventor
唐新姿
黄轩晴
彭锐涛
孙松峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiangtan University
Original Assignee
Xiangtan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiangtan University filed Critical Xiangtan University
Priority to CN201610574455.3A priority Critical patent/CN106089569A/en
Publication of CN106089569A publication Critical patent/CN106089569A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/0608Rotors characterised by their aerodynamic shape
    • F03D1/0633Rotors characterised by their aerodynamic shape of the blades
    • F03D1/0641Rotors characterised by their aerodynamic shape of the blades of the section profile of the blades, i.e. aerofoil profile
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

本发明公开了一种适用于低雷诺数流动的小型风力机叶片翼型,属于风力机叶片翼型设计领域。该风力机叶片翼型的最大厚度为弦长的12%~15%,最大厚度位置与前缘的距离为弦长的35.9%~40.7%,最大弯度为弦长的3.1%~4.3%,最大弯度位置与前缘的距离为弦长的36.0%~44.3%,所述小型风力机的功率≤10KW。本发明的小型风力机叶片翼型在低雷诺数流动下具有更高的升力系数和更大的升阻比,可以提高小型风力机风能利用效率,更适合我国低风速区域小型风力机应用。

The invention discloses a small wind turbine blade airfoil suitable for low Reynolds number flow, and belongs to the field of wind turbine blade airfoil design. The maximum thickness of the wind turbine blade airfoil is 12% to 15% of the chord length, the distance between the maximum thickness position and the leading edge is 35.9% to 40.7% of the chord length, and the maximum camber is 3.1% to 4.3% of the chord length. The distance between the camber position and the leading edge is 36.0%-44.3% of the chord length, and the power of the small wind turbine is ≤10KW. The blade airfoil of the small wind turbine of the present invention has a higher lift coefficient and a larger lift-to-drag ratio under low Reynolds number flow, can improve the wind energy utilization efficiency of the small wind turbine, and is more suitable for the application of small wind turbines in low wind speed areas in my country.

Description

一种适用于低雷诺数流动的小型风力机叶片翼型A small wind turbine blade airfoil suitable for low Reynolds number flow

技术领域technical field

本发明属于风力机叶片翼型设计领域,具体涉及一种适用于雷诺数<106流动的小型风力机叶片翼型,该小型风力机的功率≤10KW。The invention belongs to the field of airfoil design of wind turbine blades, and in particular relates to a small wind turbine blade airfoil suitable for flow with Reynolds number < 10 6 , and the power of the small wind turbine is ≤10KW.

背景技术Background technique

随着国际能源问题日益突出以及世界范围内环保意识的增强,风电技术行业迅速发展,特别是大型风力设备和海洋风力行业已经具备相当大的发展规模。而小型风力机发展相对缓慢,这主要是因为叶片气动设计环节相对薄弱。With the increasingly prominent international energy issues and the increasing awareness of environmental protection worldwide, the wind power technology industry has developed rapidly, especially the large-scale wind power equipment and marine wind power industries have already achieved a considerable scale of development. The development of small wind turbines is relatively slow, mainly because the aerodynamic design of the blades is relatively weak.

目前,我国小型风力机叶片研究尚处于起步阶段,部分厂家生产的小型风力机叶片主要依靠仿制成形,很少有小型风力机的自主叶片设计技术。由于小型风力机所处地域的工作风速范围、叶片尺寸远远不及大型风力机或海洋超大型风力机,叶片气流雷诺数不同于大型风力机,采用仿制叶片或缩比模型叶片的方式将使叶片的气动性能将急剧恶化,导致风能利用效率低和适用性受限等问题。小型风力机叶片翼型气动设计已经成为我国小型风电行业发展亟待解决问题。At present, the research on small wind turbine blades in my country is still in its infancy. The small wind turbine blades produced by some manufacturers mainly rely on imitation molding, and there are few independent blade design technologies for small wind turbines. Since the working wind speed range and blade size of small wind turbines are far less than those of large wind turbines or ocean super-large wind turbines, the Reynolds number of blade airflow is different from that of large wind turbines. Using imitation blades or scale model blades will make the blade The aerodynamic performance will deteriorate sharply, leading to problems such as low wind energy utilization efficiency and limited applicability. The aerodynamic design of small wind turbine blade airfoil has become an urgent problem to be solved in the development of small wind power industry in my country.

发明内容Contents of the invention

本发明旨在提供一种适用于雷诺数<106流动的小型风力机叶片翼型,使其在低雷诺数流动下具有更高的升力系数和更大的升阻比,改善小型风力机风能利用效率低等问题。The purpose of the present invention is to provide a small wind turbine blade airfoil suitable for the flow of Reynolds number<10 6 , so that it has a higher lift coefficient and a larger lift-to-drag ratio under low Reynolds number flow, and improves the wind energy of the small wind turbine. Problems such as low utilization efficiency.

为实现上述目的,本发明的技术方案如下:To achieve the above object, the technical scheme of the present invention is as follows:

一种适用于低雷诺数流动的小型风力机叶片翼型,由上翼面、下翼面、前缘和尾缘组成,所述翼型的最大厚度为弦长的12%~15%,最大厚度位置与前缘的距离为弦长的35.9%~40.7%,最大弯度为弦长的3.1%~4.3%,最大弯度位置与前缘的距离为弦长的36.0%~44.3%;所述小型风力机的功率≤10KW。A small wind turbine blade airfoil suitable for low Reynolds number flow, composed of upper airfoil, lower airfoil, leading edge and trailing edge, the maximum thickness of the airfoil is 12% to 15% of the chord length, the maximum The distance between the thickness position and the leading edge is 35.9% to 40.7% of the chord length, the maximum camber is 3.1% to 4.3% of the chord length, and the distance between the maximum camber position and the leading edge is 36.0% to 44.3% of the chord length; the small The power of the wind turbine is ≤10KW.

所述的小型风力机叶片翼型在雷诺数<106流动中的应用。The application of the small wind turbine blade airfoil in the flow with Reynolds number < 10 6 .

本发明的有益效果在于:The beneficial effects of the present invention are:

本发明的适用于雷诺数<106流动的小型风力机叶片翼型与标准翼型相比,具有更高的升力(与标准翼型相比提高了21%以上)和更大的升阻比(与标准翼型相比提高了41%以上)。本发明的小型风力机叶片翼型可以明显改善小型风力机风能利用效率低等问题。Compared with the standard airfoil, the small-sized wind turbine blade airfoil suitable for the Reynolds number<10 6 flow of the present invention has higher lift (compared with the standard airfoil increased by more than 21%) and a larger lift-to-drag ratio (compared with the standard airfoil improved more than 41%). The airfoil of the blade of the small wind power machine of the invention can obviously improve the problems of low utilization efficiency of wind energy of the small wind power machine and the like.

附图说明Description of drawings

图1为本发明的适用于低雷诺数流动的小型风力机叶片翼型的轮廓示意图。Fig. 1 is a schematic outline of a small wind turbine blade airfoil suitable for low Reynolds number flow according to the present invention.

图2为本发明的第一翼型(最大厚度为弦长12%)与标准翼型在低雷诺数Re=5×105、攻角为-2~13°时升力系数曲线对比图。Fig. 2 is a graph comparing the lift coefficient curves of the first airfoil of the present invention (the maximum thickness is 12% of the chord length) and the standard airfoil at a low Reynolds number Re=5×10 5 and an angle of attack of -2° to 13°.

图3为本发明的第一翼型(最大厚度为弦长12%)与标准翼型在低雷诺数Re=5×105、攻角为-2~13°时升阻比曲线对比图。Fig. 3 is a graph comparing the lift-to-drag ratio curves of the first airfoil of the present invention (the maximum thickness is 12% of the chord length) and the standard airfoil at a low Reynolds number Re=5×10 5 and an angle of attack of -2° to 13°.

图4为本发明的第二翼型(最大厚度为弦长13%)与标准翼型在低雷诺数Re=5×105、攻角为-2~13°时升力系数曲线对比图。Fig. 4 is a graph comparing the lift coefficient curves of the second airfoil of the present invention (the maximum thickness is 13% of the chord length) and the standard airfoil at a low Reynolds number Re=5×10 5 and an angle of attack of -2° to 13°.

图5为本发明的风力机第二翼型(最大厚度为弦长13%)与标准翼型在低雷诺数Re=5×105、攻角为-2~13°时升阻比曲线对比图。Fig. 5 is a comparison of lift-drag ratio curves between the second airfoil of the present invention (the maximum thickness is 13% of the chord length) and the standard airfoil at a low Reynolds number Re=5×10 5 and an angle of attack of -2 to 13° picture.

图6为本发明的第三翼型(最大厚度为弦长15%)与标准翼型在低雷诺数Re=5×105、攻角为-2~13°时升力系数曲线对比图。Fig. 6 is a comparison chart of lift coefficient curves between the third airfoil of the present invention (the maximum thickness is 15% of the chord length) and the standard airfoil at a low Reynolds number Re=5×10 5 and an angle of attack of -2° to 13°.

图7为本发明的第三翼型(最大厚度为弦长15%)与标准翼型在低雷诺数Re=5×105、攻角为-2~13°时升阻比曲线对比图。Fig. 7 is a graph comparing lift-drag ratio curves of the third airfoil of the present invention (the maximum thickness is 15% of the chord length) and the standard airfoil at a low Reynolds number Re=5×10 5 and an angle of attack of -2° to 13°.

具体实施方式detailed description

下面结合附图,对本发明的具体实施方式作进一步详细描述。The specific implementation manners of the present invention will be further described in detail below in conjunction with the accompanying drawings.

如图1所示,本发明的适用于雷诺数<106流动的小型风力机叶片翼型由上翼面、下翼面、前缘和尾缘组成,该翼型的最大厚度为弦长的12%~15%,最大厚度处与前缘的距离为弦长的35.9%~40.7%,最大弯度为弦长的3.1%~4.3%,最大弯度处与前缘的距离为弦长的36.0%~44.3%。As shown in Figure 1, the airfoil of a small wind turbine blade suitable for the flow of Reynolds number <10 6 of the present invention is composed of an upper airfoil, a lower airfoil, a leading edge and a trailing edge, and the maximum thickness of the airfoil is chord length 12% to 15%, the distance between the maximum thickness and the leading edge is 35.9% to 40.7% of the chord length, the maximum camber is 3.1% to 4.3% of the chord length, and the distance between the maximum camber and the leading edge is 36.0% of the chord length ~44.3%.

实施例1Example 1

本发明的第一翼型最大厚度为弦长的12%,最大厚度处与前缘的距离为弦长的35.9%,最大弯度为弦长的3.1%,最大弯度处与前缘的距离为弦长的36.0%。The maximum thickness of the first airfoil of the present invention is 12% of the chord length, the distance between the maximum thickness point and the leading edge is 35.9% of the chord length, the maximum camber is 3.1% of the chord length, and the distance between the maximum camber point and the leading edge is chord length 36.0% longer.

本发明的第一翼型的上翼面和下翼面的无量纲二维坐标分别如表1a和表1b所示。The dimensionless two-dimensional coordinates of the upper airfoil and the lower airfoil of the first airfoil of the present invention are respectively shown in Table 1a and Table 1b.

表1a第一翼型的上翼面Table 1a Upper airfoil of the first airfoil

其中,x/c值表示翼型曲面上某点在弦线方向上相对于前缘的位置,y/c值表示从弦线到翼型曲线上某点的高度。Among them, the x/c value indicates the position of a point on the airfoil surface relative to the leading edge in the direction of the chord line, and the y/c value indicates the height from the chord line to a certain point on the airfoil curve.

表1b第一翼型的下翼面Table 1b Lower airfoil of the first airfoil

序号serial number x/cx/c y/cy/c 序号serial number x/cx/c y/cy/c 序号serial number x/cx/c y/cy/c 11 00 00 21twenty one 0.165010.16501 -0.02554-0.02554 4141 0.850330.85033 -0.01077-0.01077 22 0.000090.00009 -0.0008-0.0008 22twenty two 0.197360.19736 -0.02701-0.02701 4242 0.886730.88673 -0.00843-0.00843 33 0.000230.00023 -0.00109-0.00109 23twenty three 0.229580.22958 -0.02797-0.02797 4343 0.919170.91917 -0.00626-0.00626 44 0.000420.00042 -0.00149-0.00149 24twenty four 0.261860.26186 -0.02869-0.02869 4444 0.942340.94234 -0.00469-0.00469 55 0.000670.00067 -0.00187-0.00187 2525 0.294140.29414 -0.02928-0.02928 4545 0.958890.95889 -0.00357-0.00357 66 0.001030.00103 -0.00234-0.00234 2626 0.326420.32642 -0.02942-0.02942 4646 0.970710.97071 -0.00256-0.00256 77 0.001540.00154 -0.00278-0.00278 2727 0.358710.35871 -0.02927-0.02927 4747 0.979160.97916 -0.00184-0.00184 88 0.002250.00225 -0.00339-0.00339 2828 0.390990.39099 -0.02888-0.02888 4848 0.985190.98519 -0.00132-0.00132 99 0.003250.00325 -0.00413-0.00413 2929 0.423270.42327 -0.02832-0.02832 4949 0.98950.9895 -0.00094-0.00094 1010 0.004640.00464 -0.0049-0.0049 3030 0.455560.45556 -0.02763-0.02763 5050 0.992570.99257 -0.00066-0.00066 1111 0.006580.00658 -0.00587-0.00587 3131 0.487840.48784 -0.02682-0.02682 5151 0.994770.99477 -0.00048-0.00048 1212 0.009310.00931 -0.00696-0.00696 3232 0.522690.52269 -0.02592-0.02592 5252 0.996340.99634 -0.00033-0.00033 1313 0.013130.01313 -0.00821-0.00821 3333 0.55910.5591 -0.02489-0.02489 5353 0.997470.99747 -0.00023-0.00023 1414 0.018480.01848 -0.00967-0.00967 3434 0.59550.5955 -0.02362-0.02362 5454 0.998270.99827 -0.00016-0.00016 1515 0.025970.02597 -0.01131-0.01131 3535 0.63190.6319 -0.02224-0.02224 5555 0.998830.99883 -0.0001-0.0001 1616 0.036450.03645 -0.01341-0.01341 3636 0.668310.66831 -0.02073-0.02073 5656 0.999240.99924 -0.00007-0.00007 1717 0.051130.05113 -0.01569-0.01569 3737 0.704710.70471 -0.01898-0.01898 5757 0.999530.99953 -0.00005-0.00005 1818 0.071680.07168 -0.01822-0.01822 3838 0.741120.74112 -0.01715-0.01715 5858 0.999740.99974 -0.00002-0.00002 1919 0.100440.10044 -0.02112-0.02112 3939 0.777520.77752 -0.01513-0.01513 5959 0.999890.99989 -0.00001-0.00001 2020 0.132730.13273 -0.0236-0.0236 4040 0.813930.81393 -0.01299-0.01299 6060 11 00

如图2所示,在低雷诺数Re=5×105时,本发明的第一翼型在12°攻角处拥有最大升力系数1.15,比标准翼型最大升力系数提高了约21%。As shown in Figure 2, when the low Reynolds number Re=5×10 5 , the first airfoil of the present invention has a maximum lift coefficient of 1.15 at an angle of attack of 12°, which is about 21% higher than that of the standard airfoil.

如图3所示,在低雷诺数Re=5×105时,本发明的第一翼型在7°攻角处拥有最大升阻比111.39,比标准翼型最大升阻比提高了41%左右。As shown in Figure 3, when the low Reynolds number Re=5×10 5 , the first airfoil of the present invention has a maximum lift-to-drag ratio of 111.39 at an angle of attack of 7°, which is 41% higher than the maximum lift-to-drag ratio of the standard airfoil about.

实施例2Example 2

本发明的第二翼型最大厚度为弦长的13%,最大厚度处与前缘的距离为弦长的38.0%,最大弯度为弦长的3.6%,最大弯度处与前缘的距离为弦长的41.4%。The maximum thickness of the second airfoil of the present invention is 13% of the chord length, the distance between the maximum thickness point and the leading edge is 38.0% of the chord length, the maximum camber is 3.6% of the chord length, and the distance between the maximum camber point and the leading edge is chord length 41.4% longer.

本发明的第二翼型的上翼面和下翼面的无量纲二维坐标分别如表2a和表2b所示。The dimensionless two-dimensional coordinates of the upper airfoil and the lower airfoil of the second airfoil of the present invention are respectively shown in Table 2a and Table 2b.

表2a第二翼型的上翼面Table 2a Upper airfoil of the second airfoil

序号serial number x/cx/c y/cy/c 序号serial number x/cx/c y/cy/c 序号serial number x/cx/c y/cy/c 11 00 00 21twenty one 0.174910.17491 0.078590.07859 4141 0.859310.85931 0.028180.02818 22 0.00010.0001 0.000550.00055 22twenty two 0.20920.2092 0.085050.08505 4242 0.893530.89353 0.021730.02173 33 0.000240.00024 0.001310.00131 23twenty three 0.243350.24335 0.090160.09016 4343 0.924020.92402 0.015570.01557 44 0.000440.00044 0.002380.00238 24twenty four 0.277570.27757 0.094250.09425 4444 0.94580.9458 0.010890.01089 55 0.000710.00071 0.003870.00387 2525 0.311790.31179 0.097410.09741 4545 0.961360.96136 0.007460.00746 66 0.001090.00109 0.004580.00458 2626 0.346010.34601 0.099680.09968 4646 0.972470.97247 0.005080.00508 77 0.001630.00163 0.005580.00558 2727 0.380230.38023 0.101010.10101 4747 0.980410.98041 0.003450.00345 88 0.002390.00239 0.0070.007 2828 0.414450.41445 0.101190.10119 4848 0.986080.98608 0.00230.0023 99 0.003440.00344 0.008790.00879 2929 0.448670.44867 0.10020.1002 4949 0.990130.99013 0.001560.00156 1010 0.004920.00492 0.010630.01063 3030 0.482890.48289 0.09740.0974 5050 0.993020.99302 0.001070.00107 1111 0.006980.00698 0.012910.01291 3131 0.517110.51711 0.092810.09281 5151 0.995080.99508 0.000720.00072 1212 0.009870.00987 0.015830.01583 3232 0.551330.55133 0.086760.08676 5252 0.996560.99656 0.00050.0005 1313 0.013920.01392 0.019380.01938 3333 0.585550.58555 0.08010.0801 5353 0.997620.99762 0.000340.00034 1414 0.019590.01959 0.023680.02368 3434 0.619770.61977 0.073340.07334 5454 0.998370.99837 0.000230.00023 1515 0.027530.02753 0.02890.0289 3535 0.653990.65399 0.066620.06662 5555 0.99890.9989 0.000160.00016 1616 0.038640.03864 0.035150.03515 3636 0.688210.68821 0.059980.05998 5656 0.999290.99929 0.00010.0001 1717 0.05420.0542 0.042550.04255 3737 0.722430.72243 0.053420.05342 5757 0.999560.99956 0.000060.00006 1818 0.075980.07598 0.051420.05142 3838 0.756650.75665 0.0470.047 5858 0.999760.99976 0.000040.00004 1919 0.106470.10647 0.061540.06154 3939 0.790870.79087 0.040680.04068 5959 0.99990.9999 0.000010.00001 2020 0.140690.14069 0.070850.07085 4040 0.825090.82509 0.034430.03443 6060 11 00

表2b第二翼型的下翼面Table 2b The lower airfoil of the second airfoil

如图4所示,在低雷诺数Re=5×105时,本发明的第二翼型在8°攻角处拥有最大升力系数1.16,比标准翼型最大升力系数提高了约23%。As shown in Figure 4, when the low Reynolds number Re=5×10 5 , the second airfoil of the present invention has a maximum lift coefficient of 1.16 at an angle of attack of 8°, which is about 23% higher than that of the standard airfoil.

如图5所示,在低雷诺数Re=5×105时,本发明的第二翼型在7°攻角处拥有最大升阻比121.69,比标准翼型最大升阻比提高了54%左右。As shown in Figure 5, when the low Reynolds number Re= 5 ×105, the second airfoil of the present invention has a maximum lift-to-drag ratio of 121.69 at an angle of attack of 7°, which is 54% higher than the maximum lift-to-drag ratio of the standard airfoil about.

实施例3Example 3

本发明的第三翼型的横截面翼型最大厚度为弦长的15%,最大厚度处与前缘的距离为弦长的40.7%,最大弯度为弦长的4.3%,最大弯度处与前缘的距离为弦长的44.3%。The cross-section airfoil maximum thickness of the third airfoil of the present invention is 15% of the chord length, the distance between the maximum thickness and the leading edge is 40.7% of the chord length, the maximum camber is 4.3% of the chord length, and the maximum camber and the front edge are 40.7% of the chord length. The edge distance is 44.3% of the chord length.

本发明的第三翼型的上翼面和下翼面的无量纲二维坐标分别如表3a和表3b所示。The dimensionless two-dimensional coordinates of the upper airfoil and the lower airfoil of the third airfoil of the present invention are respectively shown in Table 3a and Table 3b.

表3a第三翼型的上翼面Table 3a Upper airfoil of the third airfoil

表3b第三翼型的下翼面Table 3b The lower airfoil of the third airfoil

序号serial number x/cx/c y/cy/c 序号serial number x/cx/c y/cy/c 序号serial number x/cx/c y/cy/c 11 00 00 21twenty one 0.187110.18711 -0.02685-0.02685 4141 0.866710.86671 -0.01055-0.01055 22 0.000110.00011 -0.0011-0.0011 22twenty two 0.22380.2238 -0.02847-0.02847 4242 0.899130.89913 -0.00837-0.00837 33 0.000260.00026 -0.00162-0.00162 23twenty three 0.260330.26033 -0.02991-0.02991 4343 0.928020.92802 -0.00626-0.00626 44 0.000470.00047 -0.00234-0.00234 24twenty four 0.296940.29694 -0.03101-0.03101 4444 0.948650.94865 -0.00468-0.00468 55 0.000760.00076 -0.00314-0.00314 2525 0.333540.33354 -0.03195-0.03195 4545 0.963390.96339 -0.00354-0.00354 66 0.001170.00117 -0.00383-0.00383 2626 0.370150.37015 -0.03234-0.03234 4646 0.973920.97392 -0.00248-0.00248 77 0.001740.00174 -0.00453-0.00453 2727 0.406760.40676 -0.03239-0.03239 4747 0.981440.98144 -0.00174-0.00174 88 0.002560.00256 -0.0055-0.0055 2828 0.443370.44337 -0.03211-0.03211 4848 0.986810.98681 -0.00122-0.00122 99 0.003680.00368 -0.00668-0.00668 2929 0.477690.47769 -0.03158-0.03158 4949 0.990650.99065 -0.00086-0.00086 1010 0.005260.00526 -0.00782-0.00782 3030 0.510110.51011 -0.03067-0.03067 5050 0.993390.99339 -0.0006-0.0006 1111 0.007470.00747 -0.00922-0.00922 3131 0.542530.54253 -0.02938-0.02938 5151 0.995340.99534 -0.00042-0.00042 1212 0.010560.01056 -0.01079-0.01079 3232 0.574940.57494 -0.0278-0.0278 5252 0.996740.99674 -0.00029-0.00029 1313 0.014890.01489 -0.0125-0.0125 3333 0.607360.60736 -0.02607-0.02607 5353 0.997750.99775 -0.0002-0.0002 1414 0.020960.02096 -0.01438-0.01438 3434 0.639780.63978 -0.0242-0.0242 5454 0.998460.99846 -0.00014-0.00014 1515 0.029450.02945 -0.01632-0.01632 3535 0.67220.6722 -0.02236-0.02236 5555 0.998960.99896 -0.00009-0.00009 1616 0.041340.04134 -0.01856-0.01856 3636 0.704620.70462 -0.02053-0.02053 5656 0.999330.99933 -0.00006-0.00006 1717 0.057980.05798 -0.02062-0.02062 3737 0.737040.73704 -0.01856-0.01856 5757 0.999580.99958 -0.00004-0.00004 1818 0.081280.08128 -0.02248-0.02248 3838 0.769460.76946 -0.01665-0.01665 5858 0.999770.99977 -0.00002-0.00002 1919 0.11390.1139 -0.02421-0.02421 3939 0.801880.80188 -0.01464-0.01464 5959 0.999910.99991 -0.00001-0.00001 2020 0.150510.15051 -0.02551-0.02551 4040 0.83430.8343 -0.01261-0.01261 6060 11 00

如图6所示,在低雷诺数Re=5×105时,本发明的第三翼型在10°攻角处拥有最大升力系数1.22,比标准翼型最大升力系数提高了约29%。As shown in Figure 6, when the low Reynolds number Re=5×10 5 , the third airfoil of the present invention has a maximum lift coefficient of 1.22 at an angle of attack of 10°, which is about 29% higher than that of the standard airfoil.

如图7所示,在低雷诺数Re=5×105时,本发明的第三翼型在7°攻角处拥有最大升阻比116.57,比标准翼型最大升阻比提高了48%左右。As shown in Figure 7, when the low Reynolds number Re=5×10 5 , the third airfoil of the present invention has a maximum lift-to-drag ratio of 116.57 at an angle of attack of 7°, which is 48% higher than the maximum lift-to-drag ratio of the standard airfoil about.

综上所述,本发明的翼型与标准翼型相比,具有如下特点,在低雷诺数(一般雷诺数<106)流动下具有更高的升力系数和更大的升阻比,弥补了现有标准翼型在低雷诺数工况下风力机气动性能方面的不足。本发明的翼型可以明显提高小型风力机风能利用效率,更适合我国低风速区域小型风力机应用。To sum up, compared with the standard airfoil, the airfoil of the present invention has the following characteristics. It has a higher lift coefficient and a larger lift-to-drag ratio under low Reynolds number (general Reynolds number<10 6 ) flow, making up for The deficiencies of the existing standard airfoils in the aerodynamic performance of wind turbines under low Reynolds number conditions are overcome. The airfoil of the invention can obviously improve the wind energy utilization efficiency of the small wind turbine, and is more suitable for the application of the small wind turbine in the low wind speed area of our country.

Claims (5)

1. it is applicable to a Miniature Wind Turbine Blades aerofoil profile for low reynolds number flow, by top airfoil, lower aerofoil, leading edge and trailing edge group Become, it is characterised in that:
The maximum gauge of described aerofoil profile is the 12%~15% of chord length, and maximum gauge position is chord length with the distance of leading edge 35.9%~40.7%, maximum camber is the 3.1%~4.3% of chord length, and maximum camber position is chord length with the distance of leading edge 36.0%~44.3%;
Power≤the 10KW of described small wind turbine.
Miniature Wind Turbine Blades aerofoil profile the most according to claim 1, it is characterised in that:
Coordinate corresponding to the top airfoil of described aerofoil profile and lower aerofoil is:
Top airfoil:
Sequence Number x/c y/c Sequence number x/c y/c Sequence number x/c y/c 1 0 0 21 0.16501 0.07286 41 0.85033 0.02427 2 0.00009 0.00055 22 0.19736 0.07838 42 0.88673 0.01874 3 0.00023 0.0013 23 0.22958 0.08265 43 0.91917 0.01342 4 0.00042 0.00236 24 0.26186 0.08601 44 0.94234 0.00935 5 0.00067 0.00385 25 0.29414 0.08855 45 0.95889 0.00636 6 0.00103 0.00454 26 0.32642 0.09033 46 0.97071 0.00429 7 0.00154 0.00552 27 0.35871 0.09131 47 0.97916 0.00289 8 0.00225 0.00692 28 0.39099 0.09127 48 0.98519 0.0019 9 0.00325 0.00867 29 0.42327 0.0902 49 0.9895 0.00128 10 0.00464 0.01046 30 0.45556 0.08744 50 0.99257 0.00087 11 0.00658 0.01267 31 0.48784 0.08299 51 0.99477 0.00058 12 0.00931 0.01549 32 0.52269 0.07718 52 0.99634 0.0004 13 0.01313 0.01889 33 0.5591 0.07084 53 0.99747 0.00027 14 0.01848 0.023 34 0.5955 0.06449 54 0.99827 0.00018 15 0.02597 0.02794 35 0.6319 0.05827 55 0.99883 0.00013 16 0.03645 0.03381 36 0.66831 0.05221 56 0.99924 0.00008 17 0.05113 0.04067 37 0.70471 0.0463 57 0.99953 0.00005 18 0.07168 0.0488 38 0.74112 0.0406 58 0.99974 0.00003 19 0.10044 0.05791 39 0.77752 0.03506 59 0.99989 0.00001 20 0.13273 0.06613 40 0.81393 0.02964 60 1 0
Lower aerofoil:
Miniature Wind Turbine Blades aerofoil profile the most according to claim 1, it is characterised in that:
Coordinate corresponding to the top airfoil of described aerofoil profile and lower aerofoil is:
Top airfoil:
Sequence Number x/c y/c Sequence number x/c y/c Sequence number x/c y/c 1 0 0 21 0.17491 0.07859 41 0.85931 0.02818 2 0.0001 0.00055 22 0.2092 0.08505 42 0.89353 0.02173 3 0.00024 0.00131 23 0.24335 0.09016 43 0.92402 0.01557 4 0.00044 0.00238 24 0.27757 0.09425 44 0.9458 0.01089 5 0.00071 0.00387 25 0.31179 0.09741 45 0.96136 0.00746 6 0.00109 0.00458 26 0.34601 0.09968 46 0.97247 0.00508 7 0.00163 0.00558 27 0.38023 0.10101 47 0.98041 0.00345 8 0.00239 0.007 28 0.41445 0.10119 48 0.98608 0.0023 9 0.00344 0.00879 29 0.44867 0.1002 49 0.99013 0.00156 10 0.00492 0.01063 30 0.48289 0.0974 50 0.99302 0.00107 11 0.00698 0.01291 31 0.51711 0.09281 51 0.99508 0.00072 12 0.00987 0.01583 32 0.55133 0.08676 52 0.99656 0.0005 13 0.01392 0.01938 33 0.58555 0.0801 53 0.99762 0.00034 14 0.01959 0.02368 34 0.61977 0.07334 54 0.99837 0.00023 15 0.02753 0.0289 35 0.65399 0.06662 55 0.9989 0.00016 16 0.03864 0.03515 36 0.68821 0.05998 56 0.99929 0.0001 17 0.0542 0.04255 37 0.72243 0.05342 57 0.99956 0.00006 18 0.07598 0.05142 38 0.75665 0.047 58 0.99976 0.00004 19 0.10647 0.06154 39 0.79087 0.04068 59 0.9999 0.00001 20 0.14069 0.07085 40 0.82509 0.03443 60 1 0
Lower aerofoil:
Miniature Wind Turbine Blades aerofoil profile the most according to claim 1, it is characterised in that:
Coordinate corresponding to the top airfoil of described aerofoil profile and lower aerofoil is:
Top airfoil:
Sequence Number x/c y/c Sequence number x/c y/c Sequence number x/c y/c 1 0 0 21 0.18711 0.09549 41 0.86671 0.03301 2 0.00011 0.00056 22 0.2238 0.10255 42 0.89913 0.02541 3 0.00026 0.00134 23 0.26033 0.10762 43 0.92802 0.0182 4 0.00047 0.00244 24 0.29694 0.11159 44 0.94865 0.01277 5 0.00076 0.00396 25 0.33354 0.11455 45 0.96339 0.0088 6 0.00117 0.00472 26 0.37015 0.11654 46 0.97392 0.00604 7 0.00174 0.00579 27 0.40676 0.11752 47 0.98144 0.00413 8 0.00256 0.00731 28 0.44337 0.11726 48 0.98681 0.00278 9 0.00368 0.00924 29 0.47769 0.11577 49 0.99065 0.0019 10 0.00526 0.01127 30 0.51011 0.11239 50 0.99339 0.00131 11 0.00747 0.01382 31 0.54253 0.10715 51 0.99534 0.00089 12 0.01056 0.01712 32 0.57494 0.10038 52 0.99674 0.00062 13 0.01489 0.0212 33 0.60736 0.09294 53 0.99775 0.00042 14 0.02096 0.02624 34 0.63978 0.08535 54 0.99846 0.00029 15 0.02945 0.03248 35 0.6722 0.07773 55 0.99896 0.0002 16 0.04134 0.04014 36 0.70462 0.07015 56 0.99933 0.00012 17 0.05798 0.04945 37 0.73704 0.0626 57 0.99958 0.00008 18 0.08128 0.06084 38 0.76946 0.05514 58 0.99977 0.00005 19 0.1139 0.07405 39 0.80188 0.04775 59 0.99991 0.00001 20 0.15051 0.08605 40 0.8343 0.04039 60 1 0
Lower aerofoil:
Sequence Number x/c y/c Sequence number x/c y/c Sequence number x/c y/c 1 0 0 21 0.18711 -0.02685 41 0.86671 -0.01055 2 0.00011 -0.0011 22 0.2238 -0.02847 42 0.89913 -0.00837 3 0.00026 -0.00162 23 0.26033 -0.02991 43 0.92802 -0.00626 4 0.00047 -0.00234 24 0.29694 -0.03101 44 0.94865 -0.00468 5 0.00076 -0.00314 25 0.33354 -0.03195 45 0.96339 -0.00354 6 0.00117 -0.00383 26 0.37015 -0.03234 46 0.97392 -0.00248 7 0.00174 -0.00453 27 0.40676 -0.03239 47 0.98144 -0.00174 8 0.00256 -0.0055 28 0.44337 -0.03211 48 0.98681 -0.00122 9 0.00368 -0.00668 29 0.47769 -0.03158 49 0.99065 -0.00086 10 0.00526 -0.00782 30 0.51011 -0.03067 50 0.99339 -0.0006 11 0.00747 -0.00922 31 0.54253 -0.02938 51 0.99534 -0.00042 12 0.01056 -0.01079 32 0.57494 -0.0278 52 0.99674 -0.00029 13 0.01489 -0.0125 33 0.60736 -0.02607 53 0.99775 -0.0002 14 0.02096 -0.01438 34 0.63978 -0.0242 54 0.99846 -0.00014 15 0.02945 -0.01632 35 0.6722 -0.02236 55 0.99896 -0.00009 16 0.04134 -0.01856 36 0.70462 -0.02053 56 0.99933 -0.00006 17 0.05798 -0.02062 37 0.73704 -0.01856 57 0.99958 -0.00004 18 0.08128 -0.02248 38 0.76946 -0.01665 58 0.99977 -0.00002 19 0.1139 -0.02421 39 0.80188 -0.01464 59 0.99991 -0.00001 20 0.15051 -0.02551 40 0.8343 -0.01261 60 1 0
5. according to the Miniature Wind Turbine Blades aerofoil profile described in any one of claim 1-4 at Reynolds number < 106Application in flowing.
CN201610574455.3A 2016-07-20 2016-07-20 A kind of Miniature Wind Turbine Blades aerofoil profile being applicable to low reynolds number flow Pending CN106089569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610574455.3A CN106089569A (en) 2016-07-20 2016-07-20 A kind of Miniature Wind Turbine Blades aerofoil profile being applicable to low reynolds number flow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610574455.3A CN106089569A (en) 2016-07-20 2016-07-20 A kind of Miniature Wind Turbine Blades aerofoil profile being applicable to low reynolds number flow

Publications (1)

Publication Number Publication Date
CN106089569A true CN106089569A (en) 2016-11-09

Family

ID=57221069

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610574455.3A Pending CN106089569A (en) 2016-07-20 2016-07-20 A kind of Miniature Wind Turbine Blades aerofoil profile being applicable to low reynolds number flow

Country Status (1)

Country Link
CN (1) CN106089569A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107757871A (en) * 2017-09-20 2018-03-06 中国水利水电科学研究院 A kind of small-sized fixed-wing unmanned plane aerofoil profile
CN108468620A (en) * 2018-06-01 2018-08-31 天津超算科技有限公司 Vane airfoil profile and wind-driven generator
CN109204777A (en) * 2018-10-31 2019-01-15 中国空气动力研究与发展中心低速空气动力研究所 One kind going straight up to airfoil type
CN110298093A (en) * 2019-06-19 2019-10-01 上海交通大学 A kind of floating blower scale model performance similar vanes design method
CN110985285A (en) * 2019-11-21 2020-04-10 广东海洋大学 Vertical axis wind turbine blades, vertical axis wind turbines and vertical axis wind turbines
CN111237254A (en) * 2018-11-29 2020-06-05 湖南科技大学 Aviation compressor blade with noise reduction function under high Reynolds number condition
CN118182900B (en) * 2024-04-16 2025-10-17 中国人民解放军国防科技大学 Medium Reynolds number single-section airfoil suitable for general aircraft and unmanned aerial vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010046000A2 (en) * 2008-10-23 2010-04-29 Repower Systems Ag Profile of a rotor blade and rotor blade of a wind power plant
WO2010057627A1 (en) * 2008-11-24 2010-05-27 Rolls-Royce Plc Method for optimising the shape of an aerofoil and corresponding aerofoil
CN102444540A (en) * 2011-11-10 2012-05-09 深圳市艾飞盛风能科技有限公司 Wind turbine blade aerofoil of horizontal axis wind turbine
CN103133272A (en) * 2013-03-26 2013-06-05 国电联合动力技术有限公司 Thin airfoil type blade of large-scale fan

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010046000A2 (en) * 2008-10-23 2010-04-29 Repower Systems Ag Profile of a rotor blade and rotor blade of a wind power plant
WO2010057627A1 (en) * 2008-11-24 2010-05-27 Rolls-Royce Plc Method for optimising the shape of an aerofoil and corresponding aerofoil
CN102444540A (en) * 2011-11-10 2012-05-09 深圳市艾飞盛风能科技有限公司 Wind turbine blade aerofoil of horizontal axis wind turbine
CN103133272A (en) * 2013-03-26 2013-06-05 国电联合动力技术有限公司 Thin airfoil type blade of large-scale fan

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
钱杰: "低风速小型永磁风力发电机叶片及支承的研究与设计", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107757871A (en) * 2017-09-20 2018-03-06 中国水利水电科学研究院 A kind of small-sized fixed-wing unmanned plane aerofoil profile
CN107757871B (en) * 2017-09-20 2023-11-28 中国水利水电科学研究院 Airfoil profile for light and small fixed wing unmanned aerial vehicle
CN108468620A (en) * 2018-06-01 2018-08-31 天津超算科技有限公司 Vane airfoil profile and wind-driven generator
CN109204777A (en) * 2018-10-31 2019-01-15 中国空气动力研究与发展中心低速空气动力研究所 One kind going straight up to airfoil type
CN109204777B (en) * 2018-10-31 2023-12-15 中国空气动力研究与发展中心低速空气动力研究所 Helicopter airfoil
CN111237254A (en) * 2018-11-29 2020-06-05 湖南科技大学 Aviation compressor blade with noise reduction function under high Reynolds number condition
CN110298093A (en) * 2019-06-19 2019-10-01 上海交通大学 A kind of floating blower scale model performance similar vanes design method
CN110298093B (en) * 2019-06-19 2022-12-20 上海交通大学 Design method for performance similar blades of floating fan scaling model
CN110985285A (en) * 2019-11-21 2020-04-10 广东海洋大学 Vertical axis wind turbine blades, vertical axis wind turbines and vertical axis wind turbines
CN110985285B (en) * 2019-11-21 2024-05-31 广东海洋大学 Vertical axis wind turbine blade, vertical axis wind wheel and vertical axis wind turbine
CN118182900B (en) * 2024-04-16 2025-10-17 中国人民解放军国防科技大学 Medium Reynolds number single-section airfoil suitable for general aircraft and unmanned aerial vehicle

Similar Documents

Publication Publication Date Title
CN106089569A (en) A kind of Miniature Wind Turbine Blades aerofoil profile being applicable to low reynolds number flow
CN101813070B (en) Vane airfoil profile of low power wind driven generator
CN103277245B (en) Large-thickness blunt-trailing-edge wind-power airfoil profiles and a design method thereof
CN104408260B (en) A kind of tidal current energy water turbine vane airfoil profile method for designing
CN101876291B (en) Wind turbine blade airfoil family
CN102003332B (en) Blade airfoil family of wind turbine
CN102094769B (en) Wind machine blade airfoil profile capable of controlling flow stalling through standing vortex
CN104405596B (en) Wind turbine generator system low-wind-speed airfoil section family
CN203374428U (en) Family of wind-power airfoil profiles with large thickness and blunt trailing edges
CN104819106A (en) Wind turbine blade wing section group
CN102094767A (en) Airfoil group for megawatt-class wind turbine blade
CN102062044A (en) Wind machine blade airfoil family
CN103306907B (en) A kind of heavy thickness aerofoil with blunt tail edge blade of large fan
CN108953074A (en) A kind of wind electricity blade vortex generator
CN104018998B (en) 21%-thickness main airfoil for megawatt wind turbine blade
CN105781904B (en) 30% thickness aerofoil suitable for megawatt-grade wind turbine blade
CN103883483B (en) A kind of 100W blade of wind-driven generator
CN103410657B (en) Ribbed and grooved type wind turbine blade
CN203515955U (en) Thickened high-aerodynamic-performance wind turbine blade
CN202348553U (en) Wind wheel vane wing profile of horizontal axis wind turbine
CN204126820U (en) A kind of small-sized wind power generator blade
CN204663775U (en) A kind of wind turbine blade airfoil family
CN112922774B (en) High-lift wind power wing type
CN203770019U (en) 100-W wind turbine blade
CN203321756U (en) Medium-thickness airfoil blade for large turbines

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20161109

RJ01 Rejection of invention patent application after publication