CN106100613B - Current Controlled Oscillators and Ring Oscillators - Google Patents
Current Controlled Oscillators and Ring Oscillators Download PDFInfo
- Publication number
- CN106100613B CN106100613B CN201610396851.1A CN201610396851A CN106100613B CN 106100613 B CN106100613 B CN 106100613B CN 201610396851 A CN201610396851 A CN 201610396851A CN 106100613 B CN106100613 B CN 106100613B
- Authority
- CN
- China
- Prior art keywords
- group
- signal output
- delay module
- signal input
- coupled
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000010355 oscillation Effects 0.000 claims abstract description 43
- 239000003990 capacitor Substances 0.000 claims description 8
- 230000000087 stabilizing effect Effects 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 16
- 230000009977 dual effect Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K3/00—Circuits for generating electric pulses; Monostable, bistable or multistable circuits
- H03K3/02—Generators characterised by the type of circuit or by the means used for producing pulses
- H03K3/027—Generators characterised by the type of circuit or by the means used for producing pulses by the use of logic circuits, with internal or external positive feedback
- H03K3/03—Astable circuits
- H03K3/0315—Ring oscillators
- H03K3/0322—Ring oscillators with differential cells
Landscapes
- Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
- Pulse Circuits (AREA)
Abstract
Description
技术领域technical field
本发明涉及电流控制环形振荡器,特别是涉及使用双延迟路径的电流控制环形振荡器。The present invention relates to current controlled ring oscillators, and more particularly to current controlled ring oscillators using dual delay paths.
背景技术Background technique
环形振荡器是应用在射频电路的时钟与数据回复器中的关键性元件。环形振荡器的振荡频率往往取决于环形振荡器中串接的延迟模块的总级数和每一延迟模块的延迟时间。例如,延迟模块的总级数增加时,环形振荡器的振荡频率随之降低。目前环形振荡器则大多为电压控制的环形振荡器,亦即输出控制电压至环形振荡器的每一延迟模块。有鉴于此,本发明从另一观点提出一种电流控制环形振荡器,以增加振荡频率的调节范围。Ring oscillators are key components in clock and data restorers used in radio frequency circuits. The oscillation frequency of the ring oscillator often depends on the total number of stages of delay modules connected in series in the ring oscillator and the delay time of each delay module. For example, as the total number of stages of delay modules increases, the oscillation frequency of the ring oscillator decreases. At present, ring oscillators are mostly voltage-controlled ring oscillators, that is, each delay module that outputs a control voltage to the ring oscillator. In view of this, the present invention proposes a current-controlled ring oscillator from another viewpoint to increase the adjustment range of the oscillation frequency.
发明内容SUMMARY OF THE INVENTION
本发明的一示范性实施例提供一种电流控制振荡器。该电流控制振荡器包括一环形振荡器和一振荡频率控制电路。该环形振荡器具有一第一相位连接配置和一第二相位连接配置。该环形振荡器包括至少四级延迟模块、一输入端和一组振荡频率信号输出端。每一该延迟模块具有一控制信号输入端、一接地端、一第一组信号输入端、一第二组信号输入端和一第一组信号输出端。该环形振荡器的输入端耦接至每一该延迟模块的该控制信号输入端。该组振荡频率信号输出端耦接至该环形振荡器的最后一级延迟模块的该第一组信号输出端,用以输出该电流控制振荡器的一组振荡频率信号,其中当该环形振荡器被配置为该第一相位连接配置时,每一该延迟模块的该第一组信号输出端耦接至下一级延迟模块的该第一组信号输入端,且最后一级延迟模块的该第一组信号输出端耦接至第一级延迟模块的该第一组信号输出端;其中若该环形振荡器由该第一相位连接配置改变配置成该第二相位连接配置,则每一该延迟模块的该第一组信号输出端还耦接至下下一级延迟模块的该第二组信号输入端;以及其中若该环形振荡器由该第一相位连接配置改变配置成该第二相位连接配置,则倒数第二级延迟模块的该第一组信号输出端还耦接至第一级延迟模块的该第二组信号输入端,且最后一级延迟模块的该第一组信号输出端还耦接至第二级延迟模块的该第二组信号输入端。该振荡频率控制电路耦接至该环形振荡器,其中该振荡频率控制电路接收外部的一偏置电流输入、一数字控制信号和一控制电压输入,并依据该偏置电流输入、该数字控制信号和该控制电压输入产生一驱动电流信号;以及其中该振荡频率控制电路输出该驱动电流信号至该环形振荡器的每一该延迟模块的该控制信号输入端,以调节该环形振荡器的该组振荡频率信号的一振荡频率。An exemplary embodiment of the present invention provides a current controlled oscillator. The current controlled oscillator includes a ring oscillator and an oscillation frequency control circuit. The ring oscillator has a first phase connection configuration and a second phase connection configuration. The ring oscillator includes at least four stages of delay modules, an input end and a group of oscillating frequency signal output ends. Each of the delay modules has a control signal input terminal, a ground terminal, a first group of signal input terminals, a second group of signal input terminals and a first group of signal output terminals. The input terminal of the ring oscillator is coupled to the control signal input terminal of each delay module. The set of oscillating frequency signal output terminals is coupled to the first set of signal output terminals of the last stage delay module of the ring oscillator for outputting a set of oscillating frequency signals of the current controlled oscillator, wherein when the ring oscillator When configured in the first phase connection configuration, the first set of signal output terminals of each delay module is coupled to the first set of signal input terminals of the next stage delay module, and the first set of signal input terminals of the last stage delay module A group of signal output terminals are coupled to the first group of signal output terminals of the first stage delay module; wherein if the ring oscillator is changed from the first phase connection configuration to the second phase connection configuration, each delay The first group of signal output terminals of the module is also coupled to the second group of signal input terminals of the next stage delay module; and wherein if the ring oscillator is changed from the first phase connection configuration to the second phase connection configuration configuration, the first group of signal output terminals of the penultimate stage delay module is further coupled to the second group of signal input terminals of the first stage delay module, and the first group of signal output terminals of the last stage delay module is also is coupled to the second group of signal input terminals of the second stage delay module. The oscillation frequency control circuit is coupled to the ring oscillator, wherein the oscillation frequency control circuit receives an external bias current input, a digital control signal and a control voltage input, and according to the bias current input, the digital control signal and the control voltage input to generate a drive current signal; and wherein the oscillation frequency control circuit outputs the drive current signal to the control signal input end of each of the delay modules of the ring oscillator to adjust the set of ring oscillators An oscillation frequency of the oscillation frequency signal.
本发明的一示范性实施例提供一种环形振荡器。该环形振荡器具有一第一相位连接配置和一第二相位连接配置。该环形振荡器包括至少四级延迟模块、一输入端和一组振荡频率信号输出端。每一该延迟模块具有一控制信号输入端、一接地端、一第一组信号输入端、一第二组信号输入端和一第一组信号输出端。该环形振荡器的输入端耦接至每一该延迟模块的该控制信号输入端。该组振荡频率信号输出端耦接至该环形振荡器的最后一级延迟模块的该第一组信号输出端,用以输出该电流控制振荡器的一组振荡频率信号,其中该第一组信号输入端包括一第一极性信号输入端和一第二极性信号输入端,该第二组信号输入端包括一第一极性信号输入端和一第二极性信号输入端,且该第一组信号输出端包括一第一极性信号输出端和一第二极性信号输出端;其中当该环形振荡器被配置为该第一相位连接配置时,每一该延迟模块的该第一组信号输出端的该第一极性信号输出端耦接至下一级延迟模块的该第一组信号输入端的该第一极性信号输入端,且每一该延迟模块的该第一组信号输出端的该第二极性信号输出端耦接至下一级延迟模块的该第一组信号输入端的该第二极性信号输入端;其中当该环形振荡器被配置为该第一相位连接配置时,最后一级延迟模块的该第一组信号输出端的该第一极性信号输出端耦接至第一级延迟模块的该第一组信号输出端的该第二极性信号输入端,且最后一级延迟模块的该第一组信号输出端的该第二极性信号输出端耦接至第一级延迟模块的该第一组信号输出端的该第一极性信号输入端;其中若该环形振荡器由该第一相位连接配置改变配置成该第二相位连接配置,则每一该延迟模块的该第一组信号输出端还耦接至下下一级延迟模块的该第二组信号输入端;以及其中若该环形振荡器由该第一相位连接配置改变配置成该第二相位连接配置,则倒数第二级延迟模块的该第一组信号输出端还耦接至第一级延迟模块的该第二组信号输入端,且最后一级延迟模块的该第一组信号输出端还耦接至第二级延迟模块的该第二组信号输入端。An exemplary embodiment of the present invention provides a ring oscillator. The ring oscillator has a first phase connection configuration and a second phase connection configuration. The ring oscillator includes at least four stages of delay modules, an input end and a group of oscillating frequency signal output ends. Each of the delay modules has a control signal input terminal, a ground terminal, a first group of signal input terminals, a second group of signal input terminals and a first group of signal output terminals. The input terminal of the ring oscillator is coupled to the control signal input terminal of each delay module. The set of oscillating frequency signal output terminals is coupled to the first set of signal output terminals of the last stage delay module of the ring oscillator for outputting a set of oscillating frequency signals of the current controlled oscillator, wherein the first set of signals The input end includes a first polarity signal input end and a second polarity signal input end, the second group of signal input ends includes a first polarity signal input end and a second polarity signal input end, and the first polarity signal input end A set of signal output terminals includes a first polarity signal output terminal and a second polarity signal output terminal; wherein when the ring oscillator is configured in the first phase connection configuration, the first phase connection of each delay module The first polarity signal output terminal of the group signal output terminal is coupled to the first polarity signal input terminal of the first group signal input terminal of the next stage delay module, and the first group signal output terminal of each delay module The second polarity signal output end of the terminal is coupled to the second polarity signal input end of the first group of signal input ends of the next stage delay module; wherein when the ring oscillator is configured as the first phase connection configuration , the first polarity signal output terminal of the first group of signal output terminals of the last stage delay module is coupled to the second polarity signal input terminal of the first set of signal output terminals of the first stage delay module, and the last The second polarity signal output terminal of the first group of signal output terminals of the stage delay module is coupled to the first polarity signal input terminal of the first group of signal output terminals of the first stage delay module; wherein if the ring oscillator When the configuration is changed from the first phase connection configuration to the second phase connection configuration, the first group of signal output terminals of each delay module is also coupled to the second group of signal input terminals of the next-stage delay module; and wherein if the ring oscillator is changed from the first phase connection configuration to the second phase connection configuration, the first group of signal output ends of the penultimate stage delay module is further coupled to the first stage delay module The second group of signal input terminals, and the first group of signal output terminals of the last stage delay module is also coupled to the second group of signal input terminals of the second stage delay module.
附图说明Description of drawings
图1依据本发明的一实施例实现一电流控制振荡器1的区块图。FIG. 1 is a block diagram of implementing a current controlled oscillator 1 according to an embodiment of the present invention.
图2A依据本发明的一实施例举例说明环形振荡器2以第一相位连接配置进行配置的一示意图。FIG. 2A illustrates a schematic diagram of ring oscillator 2 configured in a first phase connection configuration according to an embodiment of the present invention.
图2B依据本发明的一实施例举例说明环形振荡器2以第二相位连接配置进行配置的一示意图。FIG. 2B illustrates a schematic diagram illustrating the configuration of the ring oscillator 2 in the second phase connection configuration according to an embodiment of the present invention.
图2C依据本发明的一实施例举例说明环形振荡器2以第一相位连接配置进行配置的一示意图。FIG. 2C illustrates a schematic diagram of ring oscillator 2 configured in a first phase connection configuration according to an embodiment of the present invention.
图2D依据本发明的一实施例举例说明环形振荡器2以第二相位连接配置进行配置的一示意图。2D illustrates a schematic diagram illustrating the configuration of the ring oscillator 2 in the second phase connection configuration according to an embodiment of the present invention.
图2E依据本发明的一实施例举例说明环形振荡器2以第三相位连接配置进行配置的一示意图。FIG. 2E illustrates a schematic diagram of ring oscillator 2 configured in a third phase connection configuration according to an embodiment of the present invention.
图3依据本发明的一实施例实现环形振荡器2的延迟模块21的一电路图。FIG. 3 is a circuit diagram of implementing the delay module 21 of the ring oscillator 2 according to an embodiment of the present invention.
图4依据本发明的一实施例实现振荡频率控制电路3的一电路图。FIG. 4 is a circuit diagram of realizing the oscillation frequency control circuit 3 according to an embodiment of the present invention.
具体实施方式Detailed ways
本发明所附图示的实施例或例子将如以下说明。本发明的范畴并非以此为限。本领域技术人员应能知悉在不脱离本发明的精神和架构的前提下,当可作些许更动、替换和置换。在本发明的实施例中,元件符号可能被重复地使用,本发明的数种实施例可能共用相同的元件符号,但为一实施例所使用的特征元件不必然为另一实施例所使用。The illustrated embodiments or examples of the present invention will be described below. The scope of the present invention is not limited thereto. Those skilled in the art should be aware that some changes, substitutions and substitutions can be made without departing from the spirit and structure of the present invention. In the embodiments of the present invention, reference numerals may be used repeatedly, and several embodiments of the present invention may share the same reference numerals, but characteristic elements used in one embodiment are not necessarily used in another embodiment.
图1依据本发明的一实施例实现一电流控制振荡器1的区块图。在图1的该实施例中,电流控制振荡器1包括一环形振荡器2和一振荡频率控制电路3。环形振荡器2耦接至振荡频率控制电路3,并具有至少一第一相位连接配置和一第二相位连接配置。环形振荡器2接收来自振荡频率控制电路3的一驱动电流信号Sci,并依据驱动电流信号Sci输出的一组振荡频率信号Sf。振荡频率控制电路3接收外部的一偏置电流输入Ib1、一数字控制信号d<M:0>和一控制电压输入Vcn,并据此输出驱动电流信号Sci。FIG. 1 is a block diagram of implementing a current controlled oscillator 1 according to an embodiment of the present invention. In the embodiment of FIG. 1 , the current controlled oscillator 1 includes a ring oscillator 2 and an oscillation frequency control circuit 3 . The ring oscillator 2 is coupled to the oscillation frequency control circuit 3 and has at least a first phase connection configuration and a second phase connection configuration. The ring oscillator 2 receives a driving current signal Sci from the oscillation frequency control circuit 3, and outputs a group of oscillation frequency signals Sf according to the driving current signal Sci. The oscillation frequency control circuit 3 receives an external bias current input Ib1, a digital control signal d<M:0> and a control voltage input Vcn, and outputs the driving current signal Sci accordingly.
在图1的该实施例中,振荡频率控制电路3包括一频率调节电路31和一振荡器驱动电路32。频率调节电路31接收外部的一偏置电流输入Ib1和一数字控制信号d<M:0>,再依据数字控制信号d<M:0>产生一第一控制电流信号Ic1。振荡器驱动电路32接收外部的一控制电压输入Vcn,再依据控制电压输入Vcn产生一第二控制电流信号Ic2。频率调节电路31的一输出端与该振荡器驱动电路32的一输出端皆耦接至振荡频率控制电路3的一输出端,使第一控制电流信号Ic1加总第二控制电流信号Ic2形成驱动电流信号Sci。在图1的该实施例中,通过输入不同的数字控制信号d<M:0>,电流控制振荡器1输出的该组振荡频率信号Sf的一振荡频率fc具有多档频率范围。此外,亦能够过改变控制电压输入Vcn调节振荡频率fc。In the embodiment of FIG. 1 , the oscillation frequency control circuit 3 includes a frequency adjustment circuit 31 and an oscillator drive circuit 32 . The frequency adjustment circuit 31 receives an external bias current input Ib1 and a digital control signal d<M:0>, and then generates a first control current signal Ic1 according to the digital control signal d<M:0>. The oscillator driving circuit 32 receives an external control voltage input Vcn, and then generates a second control current signal Ic2 according to the control voltage input Vcn. An output end of the frequency adjustment circuit 31 and an output end of the oscillator driving circuit 32 are both coupled to an output end of the oscillation frequency control circuit 3, so that the first control current signal Ic1 is added to the second control current signal Ic2 to form a drive Current signal Sci. In the embodiment of FIG. 1 , by inputting different digital control signals d<M:0>, an oscillation frequency fc of the group of oscillation frequency signals Sf output by the current controlled oscillator 1 has multiple frequency ranges. In addition, the oscillation frequency fc can also be adjusted by changing the control voltage input Vcn.
图2A依据本发明的一实施例举例说明环形振荡器2以第一相位连接配置进行配置的一示意图。本发明的一实施例中,环形振荡器2包括一输入端201、一组振荡频率信号输出端202和203、以及四级串接的延迟模块21、延迟模块22、延迟模块23和延迟模块24。每一该延迟模块21-24皆为相同的延迟模块。每一该延迟模块21-24具有一控制信号输入端T1、一接地端T2、一第一组信号输入端(vin+、vin-)、一第二组信号输入端(vip+、vip-)、以及一第一组信号输出端(vo+、vo-)。环形振荡器2的输入端201用以接收来自振荡频率控制电路3的一驱动电流信号Sci,而环形振荡器2的振荡频率信号输出端202和203用以输出该组振荡频率信号Sf。每一该延迟模块21-24的控制信号输入端T1皆耦接至输入端201,每一该延迟模块21-24的接地端T2则皆电性连接至一接地电位。FIG. 2A illustrates a schematic diagram of ring oscillator 2 configured in a first phase connection configuration according to an embodiment of the present invention. In an embodiment of the present invention, the ring oscillator 2 includes an input terminal 201 , a set of oscillating frequency signal output terminals 202 and 203 , and a four-stage series-connected delay module 21 , delay module 22 , delay module 23 and delay module 24 . Each of the delay modules 21-24 is the same delay module. Each of the delay modules 21-24 has a control signal input terminal T1, a ground terminal T2, a first group of signal input terminals (vin+, vin-), a second group of signal input terminals (vip+, vip-), and A first group of signal output terminals (vo+, vo-). The input terminal 201 of the ring oscillator 2 is used for receiving a driving current signal Sci from the oscillation frequency control circuit 3, and the oscillation frequency signal output terminals 202 and 203 of the ring oscillator 2 are used for outputting the group of oscillation frequency signals Sf. The control signal input terminal T1 of each delay module 21-24 is coupled to the input terminal 201, and the ground terminal T2 of each delay module 21-24 is electrically connected to a ground potential.
在图2A的该实施例中,该第一组信号输入端包括一第一极性信号输入端vin+和一第二极性信号输入端vin-。该第二组信号输入端包括一第一极性信号输入端vip+和一第二极性信号输入端vip-。该第一组信号输出端包括一第一极性信号输出端vo+和一第二极性信号输出端vo-。In the embodiment of FIG. 2A, the first group of signal input terminals includes a first polarity signal input terminal vin+ and a second polarity signal input terminal vin-. The second group of signal input terminals includes a first polarity signal input terminal vip+ and a second polarity signal input terminal vip-. The first group of signal output terminals includes a first polarity signal output terminal vo+ and a second polarity signal output terminal vo-.
在图2A的该实施例中,环形振荡器2被配置为该第一相位连接配置,其中该第一相位连接配置是一种正常相位的连接方式。此时,每一该延迟模块21-24的该第一组信号输出端耦接至下一级延迟模块的该第一组信号输入端,且最后一级延迟模块(亦即延迟模块24)的该第一组信号输出端耦接至第一级延迟模块(亦即延迟模块21)的该第一组信号输出端。In the embodiment of FIG. 2A , the ring oscillator 2 is configured in the first phase connection configuration, wherein the first phase connection configuration is a normal phase connection. At this time, the first group of signal output terminals of each delay module 21-24 is coupled to the first group of signal input terminals of the next stage delay module, and the last stage delay module (ie delay module 24) The first group of signal output terminals is coupled to the first group of signal output terminals of the first stage delay module (ie, the delay module 21 ).
更详细地说,当环形振荡器2被配置为该第一相位连接配置时,每一该延迟模块21-23的该第一组信号输出端的第一极性信号输出端vo+耦接至下一级延迟模块22-24的该第一组信号输入端的该第一极性信号输入端vin+,且每一该延迟模块21-23的该第一组信号输出端的该第二极性信号输出端vo-耦接至下一级延迟模块22-24的该第一组信号输入端的该第二极性信号输入端vin-。In more detail, when the ring oscillator 2 is configured in the first phase connection configuration, the first polarity signal output terminal vo+ of the first group of signal output terminals of each of the delay modules 21-23 is coupled to the next The first polarity signal input terminal vin+ of the first set of signal input terminals of the stage delay modules 22-24, and the second polarity signal output terminal vo of the first set of signal output terminals of each of the delay modules 21-23 - coupled to the second polarity signal input terminal vin- of the first group of signal input terminals of the next stage delay modules 22-24.
更详细地说,当环形振荡器2被配置为该第一相位连接配置时,最后一级延迟模块24的该第一组信号输出端的该第一极性信号输出端vo+耦接至第一级延迟模块21的该第一组信号输出端的该第二极性信号输入端vin-,且最后一级延迟模块24的该第一组信号输出端的该第二极性信号输出端vo-耦接至第一级延迟模块21的该第一组信号输出端的该第一极性信号输入端vin+。In more detail, when the ring oscillator 2 is configured in the first phase connection configuration, the first polarity signal output terminal vo+ of the first group of signal output terminals of the last stage delay module 24 is coupled to the first stage The second polarity signal input terminal vin- of the first set of signal output terminals of the delay module 21, and the second polarity signal output terminal vo- of the first set of signal output terminals of the last stage delay module 24 is coupled to The first polarity signal input terminal vin+ of the first group of signal output terminals of the first stage delay module 21 .
图2B依据本发明的一实施例举例说明环形振荡器2以第二相位连接配置进行配置的一示意图。在图2B的该实施例中,环形振荡器2被配置为该第二相位连接配置,其中该第二相位连接配置是一超前相位连接方式。当环形振荡器2以超前相位连接方式进行配置时,每一该延迟模块21-24的该第一组信号输出端除了耦接至下一级延迟模块的该第一组信号输入端之外,还被耦接至下一级以后的延迟模块的第二组信号输入端(vip+、vip-)。FIG. 2B illustrates a schematic diagram illustrating the configuration of the ring oscillator 2 in the second phase connection configuration according to an embodiment of the present invention. In the embodiment of FIG. 2B , the ring oscillator 2 is configured in the second phase connection configuration, wherein the second phase connection configuration is a leading phase connection. When the ring oscillator 2 is configured in an advanced phase connection, the first group of signal output terminals of each of the delay modules 21-24 are coupled to the first group of signal input terminals of the next stage delay module, It is also coupled to the second group of signal input terminals (vip+, vip-) of the delay module after the next stage.
以图2B所示第二相位连接配置所配置的该第二相位连接组为例,每一该延迟模块21-24的该第一组信号输出端同样耦接至下一级延迟模块的该第一组信号输入端,且最后一级延迟模块(亦即延迟模块24)的该第一组信号输出端同样耦接至第一级延迟模块(亦即延迟模块21)的该第一组信号输出端。不同于图2A所示第一相位连接配置的是,每一该延迟模块21-22的该第一组信号输出端还耦接至下下一级延迟模块23-24的该第二组信号输入端,倒数第二级延迟模块(亦即延迟模块23)的该第一组信号输出端还耦接至第一级延迟模块(亦即延迟模块21)的该第二组信号输出端,且最后一级延迟模块(亦即延迟模块24)的该第一组信号输出端还耦接至第二级延迟模块(亦即延迟模块22)的该第二组信号输出端。Taking the second phase connection group configured in the second phase connection configuration shown in FIG. 2B as an example, the first group of signal output terminals of each delay module 21-24 is also coupled to the first group of the delay module of the next stage. A set of signal input terminals, and the first set of signal output terminals of the last stage delay module (ie delay module 24 ) are also coupled to the first set of signal outputs of the first stage delay module (ie delay module 21 ) end. Different from the first phase connection configuration shown in FIG. 2A, the first group of signal outputs of each delay module 21-22 is also coupled to the second group of signal inputs of the next-stage delay module 23-24 terminal, the first set of signal output terminals of the penultimate stage delay module (ie delay module 23 ) is also coupled to the second set of signal output terminals of the first stage delay module (ie delay module 21 ), and finally The first group of signal output terminals of the first stage delay module (ie delay module 24 ) is also coupled to the second group of signal output terminals of the second stage delay module (ie delay module 22 ).
更详细地说,当由该第一相位连接配置改变配置成该第二相位连接配置时,每一该延迟模块21-22的该第一组信号输出端的第一极性信号输出端vo+还耦接至下下一级延迟模块23-24的该第二组信号输入端的该第一极性信号输入端vip+,且每一该延迟模块21-22的该第一组信号输出端的该第二极性信号输出端vo-还耦接至下一级延迟模块23-24的该第一组信号输入端的该第二极性信号输入端vip-。In more detail, when the configuration is changed from the first phase connection configuration to the second phase connection configuration, the first polarity signal output terminal vo+ of the first group of signal output terminals of each of the delay modules 21-22 is further coupled to connected to the first polarity signal input terminal vip+ of the second group of signal input terminals of the next stage delay module 23-24, and the second polarity of the first group of signal output terminals of each delay module 21-22 The polarity signal output terminal vo- is also coupled to the second polarity signal input terminal vip- of the first group of signal input terminals of the next stage delay modules 23-24.
更详细地说,当由该第一相位连接配置改变配置成该第二相位连接配置时,最后一级延迟模块(亦即延迟模块24)的该第一组信号输出端的第一极性信号输出端vo+还耦接至第二级延迟模块22的该第二组信号输入端的该第一极性信号输入端vip-,且最后一级延迟模块(亦即延迟模块24)的该第一组信号输出端的第二极性信号输出端vo-还耦接至第二级延迟模块22的该第二组信号输入端的该第一极性信号输入端vip+。In more detail, when the configuration is changed from the first phase connection configuration to the second phase connection configuration, the first polarity signal output of the first group of signal output terminals of the last stage delay module (ie delay module 24 ) The terminal vo+ is also coupled to the first polarity signal input terminal vip- of the second set of signal input terminals of the second stage delay module 22, and the first set of signals of the last stage delay module (ie, the delay module 24) The second-polarity signal output terminal vo- of the output terminal is further coupled to the first-polarity signal input terminal vip+ of the second group of signal input terminals of the second-stage delay module 22 .
更详细地说,当由该第一相位连接配置改变配置成该第二相位连接配置时,倒数第二级延迟模块(亦即延迟模块23)的该第一组信号输出端的该第一极性信号输出端vo+还耦接至第一级延迟模块21的该第一组信号输入端的该第二极性信号输入端vip-,且倒数第二级延迟模块(亦即延迟模块23)的该第一组信号输出端的该第二极性信号输出端vo-还耦接至第一级延迟模块21的该第一组信号输入端的该第一极性信号输入端vip+。In more detail, when the configuration is changed from the first phase connection configuration to the second phase connection configuration, the first polarity of the first group of signal output terminals of the penultimate stage delay module (ie delay module 23 ) The signal output terminal vo+ is also coupled to the second polarity signal input terminal vip- of the first group of signal input terminals of the first stage delay module 21 , and the second polarity signal input terminal vip- of the penultimate stage delay module (ie the delay module 23 ) The second polarity signal output terminal vo- of a group of signal output terminals is also coupled to the first polarity signal input terminal vip+ of the first group of signal input terminals of the first stage delay module 21 .
相较图2A所示第一相位连接配置,图2B所示第二相位连接配置提供在每一该延迟模块21-24的第二组信号输入端(vip+、vip-)的输入快于原先提供在第一组信号输入端(vin+、vin-)的输入。另一方面,图2B所示第二相位连接配置提供每一延迟模块21-24由第二组信号输入端(vip+、vip-)至第一组信号输出端(vo+、vo-)的一新的延迟路径,使每一延迟模块21-24具有双延迟路径。藉此减少信号在单一延迟模块的延迟时间。因此,以第二相位连接配置进行配置的环形振荡器2输出的该组振荡频率信号Sf可具有较高振荡频率fc。Compared with the first phase connection configuration shown in FIG. 2A , the second phase connection configuration shown in FIG. 2B provides the input of the second group of signal input terminals (vip+, vip-) of each of the delay modules 21 to 24 faster than the original one. Inputs at the first set of signal input terminals (vin+, vin-). On the other hand, the second phase connection configuration shown in FIG. 2B provides each delay module 21-24 with a new connection from the second group of signal input terminals (vip+, vip-) to the first group of signal output terminals (vo+, vo-). , so that each delay module 21-24 has a dual delay path. Thereby, the delay time of the signal in a single delay module is reduced. Therefore, the set of oscillation frequency signals Sf output by the ring oscillator 2 configured in the second phase connection configuration can have a higher oscillation frequency fc.
值得注意的是,本发明所示环形振荡器2并不限定于四级的延迟模块21-24。环形振荡器2亦可为包括N级的延迟模块21、延迟模块22、…、延迟模块2(N-1)至延迟模块2N,其中N是大于3的任意正整数。It should be noted that the ring oscillator 2 shown in the present invention is not limited to the four-stage delay modules 21-24. The ring oscillator 2 may also include N stages of delay modules 21 , delay modules 22 , . . . , delay modules 2 (N−1) to delay modules 2N, where N is any positive integer greater than 3.
值得注意的是,本发明所示环形振荡器2并不限定第二相位连接配置的超前相位连接方式。在本发明的另一实施例中,当环形振荡器2以超前相位连接方式进行配置时,每一该延迟模块21-2N的该第一组信号输出端除了耦接至下一级延迟模块的该第一组信号输入端之外,还被耦接至P级以后的延迟模块的第二组信号输入端(vip+、vip-),其中P是小于(N/2)的任意正整数。例如,当N为7时,P可以为1、2、3;当N为4时,P可以为1;当N为6时,P可以为1、2;当N为12时,P可以为1、2、3、4、5;当N为20时,P可以小于10的正整数。It should be noted that the ring oscillator 2 shown in the present invention does not limit the leading phase connection manner of the second phase connection configuration. In another embodiment of the present invention, when the ring oscillator 2 is configured in an advanced phase connection manner, the first group of signal output terminals of each delay module 21 - 2N are coupled to the signal output terminals of the next stage delay module in addition to In addition to the first group of signal input terminals, it is also coupled to the second group of signal input terminals (vip+, vip-) of the delay modules after stage P, where P is any positive integer less than (N/2). For example, when N is 7, P can be 1, 2, 3; when N is 4, P can be 1; when N is 6, P can be 1, 2; when N is 12, P can be 1, 2, 3, 4, 5; when N is 20, P can be a positive integer less than 10.
更详细地说,当环形振荡器2具有七级的延迟模块21-27时,环形振荡器2除了具有前述第一相位连接配置和前述第二相位连接配置之外,还具有一第三相位连接配置以及一第四相位连接配置。In more detail, when the ring oscillator 2 has seven stages of delay modules 21-27, the ring oscillator 2 has a third phase connection in addition to the aforementioned first phase connection configuration and the aforementioned second phase connection configuration configuration and a fourth phase connection configuration.
图2C-2E图即依据本发明的一实施例举例说明具有七级的延迟模块21-27的环形振荡器2的不同相位连接配置。2C-2E illustrate different phase connection configurations of a ring oscillator 2 having seven stages of delay modules 21-27 according to an embodiment of the present invention.
图2C依据本发明的一实施例举例说明环形振荡器2以第一相位连接配置进行配置的一示意图。在图2C的该实施例中,环形振荡器2被配置为该第一相位连接配置,亦即被配置为正常相位的连接方式。此时,延迟模块21-27的连接方式相同于图2A所示延迟模块21-24的连接方式,其差别仅在于延迟模块的总级数N不同。FIG. 2C illustrates a schematic diagram of ring oscillator 2 configured in a first phase connection configuration according to an embodiment of the present invention. In the embodiment of FIG. 2C , the ring oscillator 2 is configured in the first phase connection configuration, ie in the normal phase connection. At this time, the connection mode of the delay modules 21-27 is the same as the connection mode of the delay modules 21-24 shown in FIG. 2A, and the difference is only that the total number of stages N of the delay modules is different.
图2D依据本发明的一实施例举例说明环形振荡器2以第二相位连接配置进行配置的一示意图。在图2D的该实施例中,环形振荡器2被配置为该第二相位连接配置。此时,延迟模块21-27的连接方式相同于图2B所示延迟模块21-24的连接方式,其差别仅在于延迟模块的总级数N不同。换句话说,每一该延迟模块21-25的该第一组信号输出端除了耦接至下一级延迟模块的该第一组信号输入端(vin+、vin-)之外,还被耦接至1级以后的延迟模块的第二组信号输入端(vip+、vip-)。例如,延迟模块23的该第一组信号输出端被耦接至延迟模块24的该第一组信号输入端(vin+、vin-)和延迟模块25的该第二组信号输入端(vip+、vip-)。延迟模块26的该第一组信号输出端除了耦接至下一级延迟模块27的该第一组信号输入端(vin+、vin-)之外,还被耦接至第一级延迟模块21的第二组信号输入端(vip+、vip-)。延迟模块27的该第一组信号输出端除了耦接至第一级延迟模块21的该第一组信号输入端(vin+、vin-)之外,还被耦接至第二级延迟模块22的第二组信号输入端(vip+、vip-)。2D illustrates a schematic diagram illustrating the configuration of the ring oscillator 2 in the second phase connection configuration according to an embodiment of the present invention. In the embodiment of Figure 2D, the ring oscillator 2 is configured in this second phase connection configuration. At this time, the connection mode of the delay modules 21-27 is the same as the connection mode of the delay modules 21-24 shown in FIG. 2B , and the difference is only in that the total number of stages N of the delay modules is different. In other words, the first group of signal output terminals of each of the delay modules 21-25 are coupled to the first group of signal input terminals (vin+, vin-) of the next stage delay module, and are also coupled to To the second group of signal input terminals (vip+, vip-) of the delay module after the first stage. For example, the first group of signal output terminals of the delay module 23 are coupled to the first group of signal input terminals (vin+, vin-) of the delay module 24 and the second group of signal input terminals (vip+, vip) of the delay module 25 -). The first group of signal output terminals of the delay module 26 are not only coupled to the first group of signal input terminals (vin+, vin-) of the next stage delay module 27, but also coupled to the first stage delay module 21. The second group of signal input terminals (vip+, vip-). The first group of signal output terminals of the delay module 27 are not only coupled to the first group of signal input terminals (vin+, vin-) of the first stage delay module 21 , but also coupled to the second stage delay module 22 . The second group of signal input terminals (vip+, vip-).
图2E依据本发明的一实施例举例说明环形振荡器2以第三相位连接配置进行配置的一示意图。在图2E的该实施例中,环形振荡器2被配置为该第三相位连接配置。此时,每一该延迟模块21-24的第一组信号输出端(vo+、vo-)除了耦接至下一级延迟模块的第一组信号输入端(vin+、vin-)之外,还被耦接至2级以后的延迟模块的第二组信号输入端(vip+、vip-)。例如,延迟模块23的该第一组信号输出端被耦接至延迟模块24的该第一组信号输入端(vin+、vin-)和延迟模块26的该第二组信号输入端(vip+、vip-)。FIG. 2E illustrates a schematic diagram of ring oscillator 2 configured in a third phase connection configuration according to an embodiment of the present invention. In the embodiment of Figure 2E, the ring oscillator 2 is configured in this third phase connection configuration. At this time, the first group of signal output terminals (vo+, vo-) of each of the delay modules 21-24 are not only coupled to the first group of signal input terminals (vin+, vin-) of the next stage delay module, but also It is coupled to the second group of signal input terminals (vip+, vip-) of the delay modules after the second stage. For example, the first group of signal output terminals of the delay module 23 are coupled to the first group of signal input terminals (vin+, vin-) of the delay module 24 and the second group of signal input terminals (vip+, vip) of the delay module 26 -).
在图2E的该实施例中,延迟模块25的该第一组信号输出端(vo+、vo-)除了耦接至下一级延迟模块26的该第一组信号输入端(vin+、vin-)之外,还被耦接至第一级延迟模块21的第二组信号输入端(vip+、vip-)。延迟模块26的该第一组信号输出端(vo+、vo-)除了耦接至下一级延迟模块27的该第一组信号输入端(vin+、vin-)之外,还被耦接至第二级延迟模块22的第二组信号输入端(vip+、vip-)。延迟模块27的该第一组信号输出端(vo+、vo-)除了耦接至第一级延迟模块21的该第一组信号输入端(vin+、vin-)之外,还被耦接至第三级延迟模块23的第二组信号输入端(vip+、vip-)。In the embodiment shown in FIG. 2E , the first group of signal output terminals (vo+, vo-) of the delay module 25 are not coupled to the first group of signal input terminals (vin+, vin-) of the next stage delay module 26 In addition, it is also coupled to the second group of signal input terminals (vip+, vip-) of the first stage delay module 21 . The first group of signal output terminals (vo+, vo-) of the delay module 26 are not only coupled to the first group of signal input terminals (vin+, vin-) of the next stage delay module 27, but also coupled to the first group of signal input terminals (vin+, vin-). The second group of signal input terminals (vip+, vip-) of the second-level delay module 22 . The first group of signal output terminals (vo+, vo-) of the delay module 27 are not only coupled to the first group of signal input terminals (vin+, vin-) of the first stage delay module 21, but also coupled to the first group of signal input terminals (vin+, vin-). The second group of signal input terminals (vip+, vip-) of the three-stage delay module 23 .
值得注意的是,延迟模块25-27的该第一组信号输出端(vo+、vo-)分别反相耦接至延迟模块21-23的第二组信号输入端(vip+、vip-)。更详细地说,延迟模块25的第一组信号输出端的第一极性信号输出端vo+耦接至延迟模块21的第二组信号输入端的第二极性信号输入端vip-,而延迟模块25的第一组信号输出端的第二极性信号输出端vo-耦接至延迟模块21的第二组信号输入端的第一极性信号输入端vip+;同理,延迟模块26的第一组信号输出端的第一极性信号输出端vo+耦接至延迟模块22的第二组信号输入端的第二极性信号输入端vip-,而延迟模块26的第一组信号输出端的第二极性信号输出端vo-耦接至延迟模块22的第二组信号输入端的第一极性信号输入端vip+;同理,延迟模块27的第一组信号输出端的第一极性信号输出端vo+耦接至延迟模块23的第二组信号输入端的第二极性信号输入端vip-,而延迟模块27的第一组信号输出端的第二极性信号输出端vo-耦接至延迟模块23的第二组信号输入端的第一极性信号输入端vip+。It is worth noting that the first group of signal output terminals (vo+, vo-) of the delay modules 25-27 are respectively coupled to the second group of signal input terminals (vip+, vip-) of the delay modules 21-23 in opposite phases. In more detail, the first-polarity signal output terminal vo+ of the first group of signal output terminals of the delay module 25 is coupled to the second-polarity signal input terminal vip- of the second group of signal input terminals of the delay module 21 , and the delay module 25 The second polarity signal output terminal vo- of the first group of signal output terminals of the The first polarity signal output terminal vo+ of the delay module 22 is coupled to the second polarity signal input terminal vip- of the second group of signal input terminals of the delay module 22 , and the second polarity signal output terminal of the first group of signal output terminals of the delay module 26 vo- is coupled to the first polarity signal input terminal vip+ of the second group of signal input terminals of the delay module 22; similarly, the first polarity signal output terminal vo+ of the first group of signal output terminals of the delay module 27 is coupled to the delay module The second polarity signal input terminal vip- of the second group of signal input terminals of 23, and the second polarity signal output terminal vo- of the first group of signal output terminals of the delay module 27 is coupled to the second group of signal inputs of the delay module 23 The first polarity signal input terminal vip+ of the terminal.
因此,本发明的环形振荡器2藉由第2C-2E图所示三种不同相位连接配置得到不同振荡频率fc的该组振荡频率信号Sf。Therefore, the ring oscillator 2 of the present invention obtains the set of oscillating frequency signals Sf with different oscillating frequencies fc through three different phase connection configurations shown in Figs. 2C-2E.
图3依据本发明的一实施例实现环形振荡器2的延迟模块21的一电路图。由于环形振荡器2的每一延迟模块皆具有相同的电路架构,以下仅以延迟模块21作为说明。在图3的该实施例中,延迟模块21包括一第一延迟晶体管对(Md1、Md2)、一负载晶体管对(Md3、Md4)、一第二延迟晶体管对(Md5、Md6)、一第三延迟晶体管对(Md7、Md8)以及偏压晶体管Md9-Md16。FIG. 3 is a circuit diagram of implementing the delay module 21 of the ring oscillator 2 according to an embodiment of the present invention. Since each delay module of the ring oscillator 2 has the same circuit structure, only the delay module 21 is used as an illustration below. In the embodiment of FIG. 3, the delay module 21 includes a first delay transistor pair (Md1, Md2), a load transistor pair (Md3, Md4), a second delay transistor pair (Md5, Md6), a third delay transistor pair (Md5, Md6) Delay transistor pair (Md7, Md8) and bias transistors Md9-Md16.
在图3的该实施例中,第一延迟晶体管对(Md1、Md2)分别耦接至该第一组信号输入端(vin+、vin-)和第一组信号输出端(vo+、vo-),并包括一第一晶体管Md1和一第二晶体管Md2。第一晶体管Md1的一栅极和第二晶体管Md2的一栅极分别耦接至第一组信号输入端的第一极性信号输入端vin+和第二极性信号输入端vin-。第一晶体管Md的一源极和第二晶体管Md的一源极分别耦接至第一组信号输出端的第一极性信号输出端vo+和第二极性信号输出端vo-。In the embodiment of FIG. 3 , the first delay transistor pair (Md1, Md2) is respectively coupled to the first group of signal input terminals (vin+, vin-) and the first group of signal output terminals (vo+, vo-), and includes a first transistor Md1 and a second transistor Md2. A gate of the first transistor Md1 and a gate of the second transistor Md2 are respectively coupled to the first-polarity signal input terminal vin+ and the second-polarity signal input terminal vin- of the first group of signal input terminals. A source of the first transistor Md and a source of the second transistor Md are respectively coupled to the first-polarity signal output terminal vo+ and the second-polarity signal output terminal vo- of the first group of signal output terminals.
在图3的该实施例中,第二延迟晶体管对(Md5、Md6)包括一第五晶体管Md5和一第六晶体管Md6。第五晶体管的一栅极Md5和第六晶体管Md6的一栅极耦接至第二组信号输入端的第一极性信号输入端vip+,且第一晶体管的一漏极、第五晶体管的一漏极和第六晶体管的一漏极皆耦接至第一组信号输出端的第二极性信号输出端vo-。第三延迟晶体管对(Md7、Md8)包括一第七晶体管Md7和一第八晶体管Md8。第七晶体管的一栅极和第八晶体管的一栅极耦接至第二组信号输入端的第二极性信号输入端vip-,且第二晶体管的一漏极、第七晶体管的一漏极和第八晶体管的一漏极皆耦接至第一组信号输出端的第一极性信号输出端vo+。In the embodiment of FIG. 3, the second delay transistor pair (Md5, Md6) includes a fifth transistor Md5 and a sixth transistor Md6. A gate Md5 of the fifth transistor and a gate of the sixth transistor Md6 are coupled to the first polarity signal input terminal vip+ of the second group of signal input terminals, and a drain of the first transistor and a drain of the fifth transistor Both the pole and a drain of the sixth transistor are coupled to the second polarity signal output terminal vo- of the first group of signal output terminals. The third delay transistor pair (Md7, Md8) includes a seventh transistor Md7 and an eighth transistor Md8. A gate of the seventh transistor and a gate of the eighth transistor are coupled to the second polarity signal input terminal vip- of the second group of signal input terminals, and a drain of the second transistor and a drain of the seventh transistor and a drain of the eighth transistor are both coupled to the first polarity signal output terminal vo+ of the first group of signal output terminals.
在图3的该实施例中,负载晶体管对(Md3、Md4)耦接至该第一组信号输出端(vo+、vo-),并包括以交叉正反馈方式进行耦接的一第三晶体管Md3和一第四晶体管Md4。第一晶体管Md1的一源极、第二晶体管Md2的一源极、第五晶体管Md5的一源极以及第七晶体管Md7的一源极皆耦接至控制信号输入端T1。第三晶体管Md3的一源极、第四晶体管Md4的一源极、第六晶体管Md6的一源极以及第八晶体管Md8的一源极皆耦接至接地端T2。偏压晶体管Md9-Md16用以提供延迟模块21的直流偏压,其中偏压晶体管Md9-Md12是NMOS,而偏压晶体管Md13-Md16则是PMOS,但本发明并不限定于此。第一晶体管Md1、第二晶体管Md2、第五晶体管Md5和第七晶体管Md7皆为PMOS,第三晶体管Md3、第四晶体管Md4、第六晶体管Md6和第八晶体管Md8皆为NMOS,但本发明并不限定于此。In the embodiment of FIG. 3 , the pair of load transistors (Md3, Md4) are coupled to the first group of signal output terminals (vo+, vo-), and include a third transistor Md3 coupled in a cross-feedback manner and a fourth transistor Md4. A source of the first transistor Md1, a source of the second transistor Md2, a source of the fifth transistor Md5, and a source of the seventh transistor Md7 are all coupled to the control signal input terminal T1. A source of the third transistor Md3, a source of the fourth transistor Md4, a source of the sixth transistor Md6, and a source of the eighth transistor Md8 are all coupled to the ground terminal T2. The bias transistors Md9-Md16 are used to provide the DC bias voltage of the delay module 21, wherein the bias transistors Md9-Md12 are NMOS, and the bias transistors Md13-Md16 are PMOS, but the invention is not limited thereto. The first transistor Md1, the second transistor Md2, the fifth transistor Md5 and the seventh transistor Md7 are all PMOS, the third transistor Md3, the fourth transistor Md4, the sixth transistor Md6 and the eighth transistor Md8 are all NMOS, but the present invention does not It is not limited to this.
值得注意的是,负载晶体管对(Md3、Md4)具有负电阻的特性,且其阻抗值与驱动电流信号Sci给予的电流值有关。因此,振荡频率控制电路3可藉由改变输出至控制信号输入端T1的驱动电流信号Sci,以调节负载晶体管对(Md3、Md4)的阻抗大小,并进而调节延迟模块21的延迟时间。It is worth noting that the load transistor pair ( Md3 , Md4 ) has the characteristic of negative resistance, and the resistance value thereof is related to the current value given by the driving current signal Sci. Therefore, the oscillation frequency control circuit 3 can adjust the impedance of the load transistor pair ( Md3 , Md4 ) by changing the driving current signal Sci output to the control signal input terminal T1 , thereby adjusting the delay time of the delay module 21 .
图4依据本发明的一实施例实现振荡频率控制电路3的一电路图。在图4的该实施例中,频率调节电路31包括一输入级电路311和一电流切换模块312。输入级电路311包括一NMOS晶体管Mc1、一NMOS晶体管Mc2、电阻器R1-R3、和一电容器C1。FIG. 4 is a circuit diagram of realizing the oscillation frequency control circuit 3 according to an embodiment of the present invention. In the embodiment shown in FIG. 4 , the frequency adjustment circuit 31 includes an input stage circuit 311 and a current switching module 312 . The input stage circuit 311 includes an NMOS transistor Mc1, an NMOS transistor Mc2, resistors R1-R3, and a capacitor C1.
在图4的该实施例中,输入级电路311的NMOS晶体管Mc1用以接收偏置电流输入Ib1。输入级电路311的电阻器R1-R2和电容器C1形成一低通滤波器,该低通滤波器用以滤除频率调节电路31的低频噪声。电阻器R3串接在晶体管Mc2的一源极和接地端之间。电阻器R3具有晶体管Mc2的噪声的作用。晶体管Mc1和晶体管Mc2形成一电流镜电路,使流经晶体管Mc1的偏置电流输入Ib1对应产生流经晶体管Mc2的一偏置电流Ib2。In the embodiment of FIG. 4, the NMOS transistor Mc1 of the input stage circuit 311 is used to receive the bias current input Ib1. The resistors R1 - R2 of the input stage circuit 311 and the capacitor C1 form a low-pass filter, and the low-pass filter is used to filter out the low-frequency noise of the frequency adjustment circuit 31 . The resistor R3 is connected in series between a source terminal of the transistor Mc2 and the ground terminal. The resistor R3 has the effect of the noise of the transistor Mc2. The transistor Mc1 and the transistor Mc2 form a current mirror circuit, so that the bias current input Ib1 flowing through the transistor Mc1 corresponds to a bias current Ib2 flowing through the transistor Mc2.
在图4的该实施例中,电流切换模块312包括一PMOS晶体管Mc3、开关SW1-SWk、开关晶体管Ms1-Msk和一电容器C2。电流切换模块312接收数字控制信号d<M:0>,并以数字控制信号d<M:0>控制开关SW1-SWk导通与否。数字控制信号d<M:0>的比特长度M取决于开关SW1-SWk的总数目,例如,使用3比特的数字控制信号d<3:0>控制八个开关SW1-SW8。晶体管Mc3和晶体管Ms1-Msk之中有导通者形成一电流镜电路。因此,晶体管Ms1-Msk之中有导通者可视为PMOS电流源。在本发明实施例中,每一开关SW1-SWk可以晶体管实现,但并不限定于此实施方式。In the embodiment of FIG. 4, the current switching module 312 includes a PMOS transistor Mc3, switches SW1-SWk, switching transistors Ms1-Msk, and a capacitor C2. The current switching module 312 receives the digital control signal d<M:0>, and uses the digital control signal d<M:0> to control whether the switches SW1 - SWk are turned on or off. The bit length M of the digital control signal d<M:0> depends on the total number of switches SW1-SWk, for example, eight switches SW1-SW8 are controlled using a 3-bit digital control signal d<3:0>. One of the transistors Mc3 and the transistors Ms1-Msk is conductive to form a current mirror circuit. Therefore, any one of the transistors Ms1-Msk that is turned on can be regarded as a PMOS current source. In the embodiment of the present invention, each of the switches SW1-SWk may be implemented by a transistor, but is not limited to this embodiment.
藉由该电流镜电路,流经晶体管Mc3的偏置电流Ib2对应产生电流切换模块312输出的第一控制电流信号Ic1。第一控制电流信号Ic1的电流值取决于导通的开关晶体管Ms1-Msk的晶体管尺寸(例如,晶体管宽长比)。导通的开关晶体管Ms1-Msk的数目越多,第一控制电流信号Ic1的电流值越大。导通的开关晶体管Ms1-Msk的晶体管宽长比越大,第一控制电流信号Ic1的电流值越大。开关晶体管Ms1-Msk以PMOS实现,但本发明并不限定于此。因此,在图4的该实施例中,频率调节电路31即可通过不同的数字控制信号d<M:0>产生不同电流值的第一控制电流信号Ic1。With the current mirror circuit, the bias current Ib2 flowing through the transistor Mc3 corresponds to the first control current signal Ic1 output by the current switching module 312 . The current value of the first control current signal Ic1 depends on the transistor size (eg, transistor aspect ratio) of the turned-on switching transistors Ms1-Msk. The greater the number of the turned-on switching transistors Ms1-Msk, the greater the current value of the first control current signal Ic1. The larger the transistor aspect ratio of the turned-on switching transistors Ms1-Msk, the larger the current value of the first control current signal Ic1. The switching transistors Ms1-Msk are realized by PMOS, but the present invention is not limited to this. Therefore, in the embodiment shown in FIG. 4 , the frequency adjustment circuit 31 can generate the first control current signal Ic1 with different current values through different digital control signals d<M:0>.
在图4的该实施例中,振荡器驱动电路32包括晶体管Mc4-Mc6、电阻器R4和电容器C3。电阻器R4是NMOS晶体管Mc5的一源极电阻。电容器C3电性连接至频率调节电路31的输出端的一稳压电容。电容器C3用以减少PMOS电流源(亦即晶体管Ms1-Msk之中有导通者和PMOS晶体管Mc6)产生的噪声,并能够提高频率调节电路31的电源抑制比。In the embodiment of FIG. 4, oscillator drive circuit 32 includes transistors Mc4-Mc6, resistor R4 and capacitor C3. Resistor R4 is a source resistance of NMOS transistor Mc5. The capacitor C3 is electrically connected to a voltage-stabilizing capacitor at the output end of the frequency adjusting circuit 31 . The capacitor C3 is used to reduce the noise generated by the PMOS current source (that is, the transistors Ms1-Msk are conductive and the PMOS transistor Mc6), and can improve the power supply rejection ratio of the frequency adjustment circuit 31 .
在图4的该实施例中,NMOS晶体管Mc5的一栅极用以接收控制电压输入Vcn,并对应产生流经PMOS晶体管Mc4和NMOS晶体管Mc5的一电流Icn。PMOS晶体管Mc4和PMOS晶体管Mc6形成一电流镜电路。藉由该电流镜电路,流经晶体管Mc4的电流Icn对应产生振荡器驱动电路32输出的第二控制电流信号Ic2。因此,在图4的该实施例中,振荡器驱动电路32即可通过改变控制电压输入Vcn产生不同电流值的第二控制电流信号Ic2。In the embodiment of FIG. 4 , a gate of the NMOS transistor Mc5 is used for receiving the control voltage input Vcn, and correspondingly generates a current Icn flowing through the PMOS transistor Mc4 and the NMOS transistor Mc5. The PMOS transistor Mc4 and the PMOS transistor Mc6 form a current mirror circuit. With the current mirror circuit, the current Icn flowing through the transistor Mc4 correspondingly generates the second control current signal Ic2 output by the oscillator driving circuit 32 . Therefore, in the embodiment shown in FIG. 4 , the oscillator driving circuit 32 can generate the second control current signal Ic2 with different current values by changing the control voltage input Vcn.
本发明虽以较佳实施例揭露如上,使得本领域技术人员能够更清楚地理解本发明的内容。然而,本领域技术人员应理解到他们可轻易地以本发明做为基础,设计或修改流程以及使用电流控制振荡器进行相同的目的和/或达到这里介绍的实施例的相同优点。因此本发明的保护范围当视上述权利要求书所界定者为准。Although the present invention is disclosed above with preferred embodiments, those skilled in the art can more clearly understand the content of the present invention. However, those skilled in the art will appreciate that they can readily use the present invention as a basis to design or modify processes and use a current controlled oscillator for the same purposes and/or to achieve the same advantages of the embodiments presented herein. Therefore, the protection scope of the present invention should be determined by the above-mentioned claims.
Claims (14)
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610396851.1A CN106100613B (en) | 2016-06-07 | 2016-06-07 | Current Controlled Oscillators and Ring Oscillators |
| TW105121330A TWI584595B (en) | 2016-06-07 | 2016-07-06 | Current-contrlloed oscillator and ring oscillator |
| TW106109498A TWI627829B (en) | 2016-06-07 | 2016-07-06 | Current-contrlloed oscillator and ring oscillator |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610396851.1A CN106100613B (en) | 2016-06-07 | 2016-06-07 | Current Controlled Oscillators and Ring Oscillators |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN106100613A CN106100613A (en) | 2016-11-09 |
| CN106100613B true CN106100613B (en) | 2019-07-26 |
Family
ID=57448479
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201610396851.1A Active CN106100613B (en) | 2016-06-07 | 2016-06-07 | Current Controlled Oscillators and Ring Oscillators |
Country Status (2)
| Country | Link |
|---|---|
| CN (1) | CN106100613B (en) |
| TW (2) | TWI584595B (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN113630089A (en) * | 2020-05-06 | 2021-11-09 | 珠海零边界集成电路有限公司 | Ring oscillator |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1681196A (en) * | 2005-01-03 | 2005-10-12 | 威盛电子股份有限公司 | Ring Voltage Controlled Oscillator |
| CN101729022A (en) * | 2008-10-31 | 2010-06-09 | 北京芯技佳易微电子科技有限公司 | Variable frequency oscillator under digital control |
Family Cites Families (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR692323A (en) * | 1930-02-12 | 1930-11-04 | Gorner Jeune O | Method for attaching stockings to garters |
| USRE38482E1 (en) | 1992-05-28 | 2004-03-30 | Rambus Inc. | Delay stage circuitry for a ring oscillator |
| US7321269B2 (en) * | 2005-07-19 | 2008-01-22 | International Business Machines Corporation | High frequency ring oscillator with feed-forward paths |
| JP4991193B2 (en) * | 2006-07-04 | 2012-08-01 | 株式会社日立製作所 | Variable frequency oscillator |
| US8081038B2 (en) * | 2008-12-22 | 2011-12-20 | Electronics And Telecommunications Research Institute | Ring oscillator having wide frequency range |
| US7924102B2 (en) * | 2009-02-23 | 2011-04-12 | Qualcomm Incorporated | Symmetric load delay cell oscillator |
| TW201042921A (en) * | 2009-05-27 | 2010-12-01 | Realtek Semiconductor Corp | Current controlled ring oscillator and controlling method of the same |
| KR101085652B1 (en) * | 2010-06-17 | 2011-11-22 | 삼성전기주식회사 | Delay Circuits for Low Power Ring Oscillators |
| JP6311488B2 (en) * | 2014-06-30 | 2018-04-18 | 富士通株式会社 | Oscillator circuit |
-
2016
- 2016-06-07 CN CN201610396851.1A patent/CN106100613B/en active Active
- 2016-07-06 TW TW105121330A patent/TWI584595B/en active
- 2016-07-06 TW TW106109498A patent/TWI627829B/en active
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1681196A (en) * | 2005-01-03 | 2005-10-12 | 威盛电子股份有限公司 | Ring Voltage Controlled Oscillator |
| CN101729022A (en) * | 2008-10-31 | 2010-06-09 | 北京芯技佳易微电子科技有限公司 | Variable frequency oscillator under digital control |
Also Published As
| Publication number | Publication date |
|---|---|
| TW201743557A (en) | 2017-12-16 |
| TW201810944A (en) | 2018-03-16 |
| TWI627829B (en) | 2018-06-21 |
| CN106100613A (en) | 2016-11-09 |
| TWI584595B (en) | 2017-05-21 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9876489B1 (en) | Method of implementing a differential integrating phase interpolator | |
| US8154352B2 (en) | Oscillating circuit | |
| CN101557213B (en) | Delay unit, annular oscillator and PLL circuit | |
| US12081178B2 (en) | Amplifier with VCO-based ADC | |
| CN114204919A (en) | Delay circuit and delay structure | |
| CN102843131B (en) | Annular voltage-controlled oscillator | |
| CN108781070B (en) | Variable frequency RC oscillator | |
| JP2015139206A (en) | Duty ratio correction circuit and phase synchronization circuit | |
| CN106100613B (en) | Current Controlled Oscillators and Ring Oscillators | |
| JP2017526208A (en) | Improving the linearity of the phase interpolator by combining current coding and size coding | |
| JP2017523659A (en) | Using a capacitive element to improve the linearity of the phase interpolator | |
| JP2007027836A (en) | Voltage-controlled oscillation circuit and pll circuit | |
| CN117879542A (en) | Clock duty cycle calibration circuit and method | |
| JPH1098356A (en) | Voltage controlled oscillator | |
| TW202329614A (en) | Transmitter | |
| CN115208357A (en) | Replica circuit and oscillator including the same | |
| JP2007325028A (en) | Charge pump circuit and phase-locked loop circuit | |
| US20050116758A1 (en) | Wide frequency range voltage-controlled oscillators (vco) | |
| JP2012142814A (en) | Pll circuit | |
| CN101286731B (en) | High-speed differential to single-ended signal conversion circuit | |
| JP5117426B2 (en) | Oscillator circuit | |
| JP2018121224A (en) | Variable delay circuit | |
| JP2009177297A (en) | Digitally controlled oscillator | |
| WO2012131795A1 (en) | Current mode logic (cml) clock division circuit | |
| CN120691878A (en) | Loop oscillator and electronic device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| CP03 | Change of name, title or address | ||
| CP03 | Change of name, title or address |
Address after: Room 301, 2537 Jinke Road, Zhangjiang High Tech Park, Pudong New Area, Shanghai 201203 Patentee after: Shanghai Zhaoxin Semiconductor Co.,Ltd. Address before: Room 301, 2537 Jinke Road, Zhangjiang hi tech park, Shanghai 201203 Patentee before: VIA ALLIANCE SEMICONDUCTOR Co.,Ltd. |