CN106128954A - A kind of method promoting perovskite crystalline - Google Patents
A kind of method promoting perovskite crystalline Download PDFInfo
- Publication number
- CN106128954A CN106128954A CN201610575139.8A CN201610575139A CN106128954A CN 106128954 A CN106128954 A CN 106128954A CN 201610575139 A CN201610575139 A CN 201610575139A CN 106128954 A CN106128954 A CN 106128954A
- Authority
- CN
- China
- Prior art keywords
- perovskite
- annealing
- film
- atmosphere
- dimethyl sulfoxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/324—Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
技术领域technical field
本发明涉及以有机-无机杂化钙钛矿材料为基础的太阳能电池,具体涉及一种提升钙钛矿结晶性的退火方法。The invention relates to a solar cell based on an organic-inorganic hybrid perovskite material, in particular to an annealing method for improving the crystallinity of the perovskite.
背景技术Background technique
太阳能光伏技术是绿色能源的重要组成部分,在当前各个种类的太阳能电池中,钙钛矿型太阳能电池以其高吸光度、高载流子迁移率、成本低廉、工艺简单等优异特点,受到众多科研人员的关注,并被认为是极具发展前景的新型光伏电池。目前钙钛矿型光伏电池的转换效率已达20%以上,已经达到商业硅电池同等水平。Solar photovoltaic technology is an important part of green energy. Among the current types of solar cells, perovskite solar cells have attracted many scientific researches due to their high absorbency, high carrier mobility, low cost, and simple process. The concern of personnel, and is considered to be a new type of photovoltaic cell with great development prospects. At present, the conversion efficiency of perovskite photovoltaic cells has reached more than 20%, which has reached the same level as commercial silicon cells.
目前钙钛矿型材料主要采用一步旋涂法、两步法、共蒸法来进行制备。然而这些制备方法均难以制备高结晶性的钙钛矿薄膜。为制得高效率钙钛矿太阳能电池器件,钙钛矿光吸收层应当具有良好的覆盖性,优异的平整度以及充分的结晶性。钙钛矿薄膜的结晶性良好有助于降低其缺陷态密度、减少载流子的复合。经常采用退火处理来获得较好的结晶性。At present, perovskite materials are mainly prepared by one-step spin coating method, two-step method, and co-evaporation method. However, these preparation methods are difficult to prepare highly crystalline perovskite thin films. In order to produce high-efficiency perovskite solar cell devices, the perovskite light absorbing layer should have good coverage, excellent flatness and sufficient crystallinity. The good crystallinity of the perovskite film helps to reduce its defect state density and reduce the recombination of carriers. Annealing treatment is often used to obtain better crystallinity.
钙钛矿常规退火方法是在氮气气氛下(热退火),使用100摄氏度温度加热结晶。这个结晶过程中,甲基碘化铵(MAI)会和碘化铅(PbI2)相互反应,生成钙钛矿晶体。氮气在这里起到保护气体的作用,防止钙钛矿遇水、氧分解。溶剂退火法可以显著提升钙钛矿薄膜的结晶性能,经常采用的溶剂气氛有水气、二甲基甲酰胺等。虽然钙钛矿成分在水气氛下会分解,形成多余的碘化铅和甲基碘化铵,但是它可以溶解晶粒,并在一定程度上促进钙钛矿薄膜的结晶性能。二甲基甲酰胺作为钙钛矿前躯体的溶剂,可以起到不错的增强结晶性能,但是它的挥发性较高、沸点较低,这些特性阻碍了其在溶剂退火中的应用。本发明提出的在二甲基亚砜气氛下的退火可以显著增强钙钛矿薄膜的结晶性能。将该方法应用于钙钛矿光伏电池中可以显著提升器件的能量转换效率。The conventional annealing method of perovskite is to crystallize by heating at 100 degrees Celsius under a nitrogen atmosphere (thermal annealing). During this crystallization process, methylammonium iodide (MAI) interacts with lead iodide (PbI 2 ) to form perovskite crystals. Nitrogen plays the role of a protective gas here to prevent the perovskite from decomposing when it encounters water and oxygen. The solvent annealing method can significantly improve the crystallization properties of perovskite thin films, and the solvent atmospheres often used include water vapor, dimethylformamide, etc. Although the perovskite component will decompose under the water atmosphere to form excess lead iodide and methylammonium iodide, it can dissolve the grains and promote the crystallization properties of the perovskite film to a certain extent. As a solvent for perovskite precursors, dimethylformamide can enhance the crystallization performance, but its high volatility and low boiling point hinder its application in solvent annealing. The annealing under the dimethyl sulfoxide atmosphere proposed by the present invention can significantly enhance the crystallization properties of the perovskite film. Applying this method to perovskite photovoltaic cells can significantly improve the energy conversion efficiency of the device.
发明内容Contents of the invention
为了解决背景技术钙钛矿薄膜结晶性能不够理想的问题,本发明的目的是提供一种能提升钙钛矿结晶性的退火方法:二甲基亚砜气氛下的溶剂退火。In order to solve the problem of unsatisfactory crystallization properties of perovskite thin films in the background technology, the object of the present invention is to provide an annealing method that can improve the crystallinity of perovskite: solvent annealing under dimethyl sulfoxide atmosphere.
本发明采用的技术方案是一种提升钙钛矿结晶性的方法:该方法首先在基底上沉积钙钛矿薄膜,然后将该薄膜置于温度为100℃的二甲基亚砜气氛中退火结晶2分钟~2小时。The technical solution adopted in the present invention is a method for improving the crystallinity of perovskite: firstly, a perovskite film is deposited on a substrate, and then the film is annealed and crystallized in a dimethyl sulfoxide atmosphere at a temperature of 100°C 2 minutes to 2 hours.
上述方案中采用溶液旋涂或者气相沉积法制备厚度范围为50~600nm的钙钛矿薄膜。In the above solution, a perovskite film with a thickness ranging from 50 to 600 nm is prepared by solution spin coating or vapor deposition.
上述方案中所述的退火方法得到的钙钛矿结晶薄膜应用于电池结构中的:透明导电膜、空穴传输层、钙钛矿薄膜、电子传输层、金属电极。The perovskite crystalline film obtained by the annealing method described in the above scheme is applied in the battery structure: transparent conductive film, hole transport layer, perovskite film, electron transport layer, metal electrode.
本发明采用溶剂退火方法,将钙钛矿薄膜置于二甲基亚砜气氛下退火结晶。整个反应过程耗能低、制备工艺简单。制得的钙钛矿结晶薄膜的结晶性有明显增强,晶粒尺寸扩大并降低了结晶薄膜的缺陷态密度。通过该方法制备的钙钛矿结晶薄膜应用于太阳能电池中可以明显降低载流子缺陷态密度,具有广泛的工业应用前景。The invention adopts a solvent annealing method, and the perovskite film is annealed and crystallized under the atmosphere of dimethyl sulfoxide. The whole reaction process has low energy consumption and simple preparation process. The crystallinity of the prepared perovskite crystalline film is obviously enhanced, the grain size is enlarged and the defect state density of the crystalline film is reduced. The perovskite crystalline thin film prepared by the method can obviously reduce the carrier defect state density when applied in a solar cell, and has broad industrial application prospects.
本发明的优点:Advantages of the present invention:
1、反应条件温和、能耗低。钙钛矿在100℃下即可退火结晶。1. Mild reaction conditions and low energy consumption. Perovskite can be annealed and crystallized at 100 °C.
2、能够显著提升薄膜的结晶性能,并提升器件的能量转换效率。2. It can significantly improve the crystallization performance of the thin film and improve the energy conversion efficiency of the device.
3、二甲基亚砜气氛下的退火具有高重复性,能稳定应用于工业生产。3. Annealing under dimethyl sulfoxide atmosphere has high repeatability and can be stably applied to industrial production.
附图说明Description of drawings
图1是本发明的工艺流程图;Fig. 1 is a process flow diagram of the present invention;
图2是本发明的原理图;Fig. 2 is a schematic diagram of the present invention;
图3是本发明中热退火与二甲基亚砜退火的电镜形貌比较;Fig. 3 is the electron microscope morphology comparison of thermal annealing and dimethyl sulfoxide annealing in the present invention;
图4是本发明中二甲基亚砜退火的钙钛矿电池性能。Fig. 4 is the perovskite battery performance of DMSO annealing in the present invention.
图5是本发明中钙钛矿薄膜在不同气氛下退火的表面形貌(上排)与截面形貌(下排)照片。从左向右依次为热退火(氮气环境N2、水气退火H2O、γ-羟基丁酸内酯气氛退火GBL、二甲基甲酰胺气氛退火DMF和二甲基亚砜气氛退火DMSO。Fig. 5 is a photo of the surface morphology (upper row) and cross-sectional morphology (lower row) of the perovskite thin film annealed under different atmospheres in the present invention. From left to right, thermal annealing (nitrogen atmosphere N 2 , water vapor annealing H 2 O, γ-hydroxybutyrolactone atmosphere annealing GBL, dimethylformamide atmosphere annealing DMF and dimethyl sulfoxide atmosphere annealing DMSO.
具体实施方式detailed description
下面结合附图和实例对本发明作进一步说明。The present invention will be further described below in conjunction with accompanying drawing and example.
将覆盖有ITO的玻璃基底依次用洗涤剂、丙酮、乙醇超声洗涤30分钟,用氮气枪吹干。采用旋涂法制备厚度为300nm的CH3NH3PbI3-xClx钙钛矿光吸收层。100摄氏度下加热5分钟。将预退火完毕的样品转移至100℃的加热台上。加热台上放置一个直径1cm的坩埚,用移液枪抽取10μl二甲基亚砜滴入坩埚,然后迅速用玻璃盖覆盖样品和坩埚。坩埚被加热,里面的溶剂变为蒸汽蒸发出来,在盖子里形成了二甲基亚砜溶剂气氛。溶剂退火时间为30min。如图1所示。The glass substrate covered with ITO was ultrasonically washed with detergent, acetone, and ethanol for 30 minutes, and dried with a nitrogen gun. A CH3NH3PbI 3-x Cl x perovskite light-absorbing layer with a thickness of 300nm was prepared by spin coating. Heat at 100°C for 5 minutes. The pre-annealed samples were transferred to a heating stage at 100°C. Place a crucible with a diameter of 1 cm on the heating stage, use a pipette gun to draw 10 μl of dimethyl sulfoxide into the crucible, and then quickly cover the sample and the crucible with a glass cover. The crucible is heated, and the solvent inside turns into steam and evaporates, forming a dimethyl sulfoxide solvent atmosphere in the lid. The solvent annealing time was 30min. As shown in Figure 1.
二甲基亚砜溶剂气氛下的退火原理如图2所示。钙钛矿薄膜放置在一个密闭的空间内,溶剂分子能够凝结在薄膜表面并溶解薄膜成分,同时高温基底又会让这些凝结的溶剂重新蒸发,盖子内部发生的凝结-蒸发是一个动态的热平衡过程。热平板上的薄膜与有限的溶剂蒸汽压共同作用,蒸发的溶剂分子并不会导致薄膜的大范围溶解,而是导致表面和孔洞区域形成液态或半液态相。这种液相可以起类似于胶水的粘合作用,粘合两个晶粒之间的毗邻区域。钙钛矿原子进入液相粘合剂中并在液-固界面重结晶。这种重结晶过程会导致薄膜中晶粒的聚合,生长出更大的晶粒。The principle of annealing under DMSO solvent atmosphere is shown in Figure 2. The perovskite film is placed in a closed space. Solvent molecules can condense on the surface of the film and dissolve the film components. At the same time, the high-temperature substrate will re-evaporate the condensed solvent. The condensation-evaporation inside the cover is a dynamic heat balance process. . The thin film on the hot plate works with a limited solvent vapor pressure, and the evaporated solvent molecules do not cause extensive dissolution of the thin film, but instead lead to the formation of a liquid or semi-liquid phase on the surface and in the pore region. This liquid phase can act like glue, bonding adjoining areas between two grains. Perovskite atoms enter the liquid-phase binder and recrystallize at the liquid-solid interface. This recrystallization process causes the grains in the film to coalesce, growing larger grains.
图3给出了在不同气氛下退火得到的钙钛矿晶粒大小。上排为钙钛矿薄膜表面形貌,下排为对应的截面形貌。从左向右依次为热退火(氮气环境)、水气退火、γ-羟基丁酸内酯气氛退火、二甲基甲酰胺气氛退火和二甲基亚砜气氛退火。从图上可以看出,常规的氮气热退火所制得的晶粒尺寸在300nm左右,放大后如图4所示。水蒸汽气氛下的退火并没有明显改善薄膜的结晶性能,与热退火类似。γ-羟基丁酸内酯气氛退火和二甲基甲酰胺气氛退火可显著提高晶粒大小,此时约为500nm,但同二甲基亚砜气氛相比,所带来的结晶性能提升有限。钙钛矿薄膜在二甲基亚砜溶剂气氛下退火之后晶粒尺寸可达1000nm。Figure 3 shows the perovskite grain size obtained by annealing under different atmospheres. The upper row is the surface morphology of the perovskite film, and the lower row is the corresponding cross-sectional morphology. From left to right are thermal annealing (nitrogen atmosphere), water vapor annealing, γ-hydroxybutyrolactone atmosphere annealing, dimethylformamide atmosphere annealing and dimethyl sulfoxide atmosphere annealing. It can be seen from the figure that the grain size produced by conventional nitrogen thermal annealing is about 300nm, as shown in Figure 4 after enlargement. Annealing in water vapor atmosphere did not significantly improve the crystallization properties of the films, similar to thermal annealing. γ-hydroxybutyrolactone atmosphere annealing and dimethylformamide atmosphere annealing can significantly increase the grain size, which is about 500nm at this time, but compared with dimethyl sulfoxide atmosphere, the improvement of crystallization performance is limited. The grain size of perovskite film can reach 1000nm after annealing in DMSO solvent atmosphere.
为验证不同溶剂气氛下形成的钙钛矿薄膜的性能,我们将上述几种钙钛矿薄膜做成太阳能电池。本实施例中采用的电池结构为:铟锡氧化物半导体透明导电膜/3,4-乙撑二氧噻吩单体聚合物:聚苯乙烯磺酸盐/钙钛矿/富勒烯衍生物/银电极。其中,3,4-乙撑二氧噻吩单体聚合物:聚苯乙烯磺酸盐是空穴传输材料,富勒烯衍生物是常见的电子传输材料。其制作是在透明导电膜上依次旋涂空穴传输层、钙钛矿、电子传输层,最后采用蒸镀法沉积一层厚度约100nm的银电极。In order to verify the performance of perovskite films formed under different solvent atmospheres, we made the above-mentioned perovskite films into solar cells. The battery structure adopted in this embodiment is: indium tin oxide semiconductor transparent conductive film/3,4-ethylenedioxythiophene monomer polymer: polystyrene sulfonate/perovskite/fullerene derivative/ silver electrodes. Among them, 3,4-ethylenedioxythiophene monomer polymer: polystyrene sulfonate is a hole-transporting material, and fullerene derivatives are common electron-transporting materials. Its production is to spin-coat the hole transport layer, perovskite, and electron transport layer sequentially on the transparent conductive film, and finally deposit a layer of silver electrode with a thickness of about 100nm by evaporation method.
图5所示为不同溶剂气氛下退火对应的钙钛矿太阳能电池光电特性曲线。氮气气氛退火下对应器件其开路电压为0.93V,短路电流密度为16.9mA/cm2,填充因子为0.53,能量转换效率为8.34%。水气氛退火下对应器件其开路电压为0.95V,短路电流密度为18.7mA/cm2,填充因子为0.51,能量转换效率为8.99%。γ-羟基丁酸内酯气氛退火对应器件其开路电压为0.92V,短路电流密度为20.9mA/cm2,填充因子为0.64,能量转换效率为12.29%。二甲基甲酰胺气氛退火对应器件其开路电压为0.91V,短路电流密度为20.2mA/cm2,填充因子为0.62,能量转换效率为11.29%。二甲基亚砜退火对应器件其开路电压为0.93V,短路电流密度为20.9 mA/cm2,填充因子为0.68,能量转换效率为13.21%。Figure 5 shows the photoelectric characteristic curves of perovskite solar cells corresponding to annealing under different solvent atmospheres. The open-circuit voltage of the corresponding device under nitrogen atmosphere annealing is 0.93V, the short-circuit current density is 16.9mA/cm 2 , the fill factor is 0.53, and the energy conversion efficiency is 8.34%. The open-circuit voltage of the corresponding device under water atmosphere annealing is 0.95V, the short-circuit current density is 18.7mA/cm 2 , the fill factor is 0.51, and the energy conversion efficiency is 8.99%. The corresponding device annealed in γ-hydroxybutyrolactone atmosphere has an open-circuit voltage of 0.92V, a short-circuit current density of 20.9mA/cm 2 , a fill factor of 0.64, and an energy conversion efficiency of 12.29%. The corresponding device annealed in dimethylformamide atmosphere has an open-circuit voltage of 0.91V, a short-circuit current density of 20.2mA/cm 2 , a fill factor of 0.62, and an energy conversion efficiency of 11.29%. The device corresponding to DMSO annealing has an open circuit voltage of 0.93V, a short circuit current density of 20.9 mA/cm 2 , a fill factor of 0.68, and an energy conversion efficiency of 13.21%.
由此看到,采用二甲基亚砜退火后,电池性能得到大幅提高,说明了由二甲基亚砜退火形成的钙钛矿薄膜性能优越。It can be seen that after annealing with DMSO, the performance of the battery is greatly improved, which shows that the performance of the perovskite film formed by annealing with DMSO is superior.
Claims (3)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610575139.8A CN106128954B (en) | 2016-07-21 | 2016-07-21 | A method to enhance the crystallinity of perovskite |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610575139.8A CN106128954B (en) | 2016-07-21 | 2016-07-21 | A method to enhance the crystallinity of perovskite |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN106128954A true CN106128954A (en) | 2016-11-16 |
| CN106128954B CN106128954B (en) | 2019-02-15 |
Family
ID=57290776
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201610575139.8A Expired - Fee Related CN106128954B (en) | 2016-07-21 | 2016-07-21 | A method to enhance the crystallinity of perovskite |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN106128954B (en) |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107068875A (en) * | 2017-03-10 | 2017-08-18 | 武汉大学 | A kind of method for optimizing perovskite crystal film morphology |
| CN108987577A (en) * | 2017-06-02 | 2018-12-11 | 杭州纤纳光电科技有限公司 | A kind of perovskite thin film equipment for after-treatment and application method and application |
| CN109904319A (en) * | 2019-01-29 | 2019-06-18 | 安徽大学 | Large-size perovskite flat crystal, perovskite layer preparation method and solar cell |
| CN110311038A (en) * | 2019-06-21 | 2019-10-08 | 南京邮电大学 | A method for increasing the grain size of perovskite film layers in perovskite solar cells |
| CN111403610A (en) * | 2020-03-19 | 2020-07-10 | 武汉理工大学 | High-performance organic-inorganic hybrid perovskite optoelectronic material, preparation method and application thereof |
| CN113594396A (en) * | 2021-07-08 | 2021-11-02 | 浙江大学 | Solvent atmosphere controlled perovskite in-situ film forming method and product and application thereof |
| CN115360306A (en) * | 2022-08-26 | 2022-11-18 | 徐州恒立新能源科技有限公司 | A kind of preparation method of perovskite solar cell module |
| CN118317666A (en) * | 2024-04-10 | 2024-07-09 | 天津大学 | A perovskite microcrystalline film and its preparation method and application |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109860403B (en) * | 2019-04-10 | 2022-07-19 | 西南石油大学 | Post-processing methods for obtaining large-grained high-quality perovskite thin films and their applications |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104934304A (en) * | 2015-06-04 | 2015-09-23 | 苏州大学 | Method for obtaining black cubic crystal system perovskite film through inductive regulation and control of mixed solvent at normal temperature |
| CN105098080A (en) * | 2015-08-17 | 2015-11-25 | 电子科技大学 | Method for manufacturing organic and inorganic perovskite crystal film |
| CN105609635A (en) * | 2016-03-17 | 2016-05-25 | 东华大学 | Method for preparing high-crystallinity perovskite thin film |
-
2016
- 2016-07-21 CN CN201610575139.8A patent/CN106128954B/en not_active Expired - Fee Related
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104934304A (en) * | 2015-06-04 | 2015-09-23 | 苏州大学 | Method for obtaining black cubic crystal system perovskite film through inductive regulation and control of mixed solvent at normal temperature |
| CN105098080A (en) * | 2015-08-17 | 2015-11-25 | 电子科技大学 | Method for manufacturing organic and inorganic perovskite crystal film |
| CN105609635A (en) * | 2016-03-17 | 2016-05-25 | 东华大学 | Method for preparing high-crystallinity perovskite thin film |
Cited By (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107068875A (en) * | 2017-03-10 | 2017-08-18 | 武汉大学 | A kind of method for optimizing perovskite crystal film morphology |
| CN107068875B (en) * | 2017-03-10 | 2019-06-25 | 武汉大学 | A method of optimization perovskite crystal film morphology |
| CN108987577A (en) * | 2017-06-02 | 2018-12-11 | 杭州纤纳光电科技有限公司 | A kind of perovskite thin film equipment for after-treatment and application method and application |
| CN108987577B (en) * | 2017-06-02 | 2024-02-02 | 杭州纤纳光电科技有限公司 | Perovskite film post-treatment equipment, use method and application |
| CN109904319B (en) * | 2019-01-29 | 2022-11-18 | 安徽大学 | Large-size perovskite flat crystal, preparation method of perovskite layer and solar cell |
| CN109904319A (en) * | 2019-01-29 | 2019-06-18 | 安徽大学 | Large-size perovskite flat crystal, perovskite layer preparation method and solar cell |
| CN110311038B (en) * | 2019-06-21 | 2022-08-26 | 南京邮电大学 | Method for increasing crystal grain size of perovskite film layer of perovskite solar cell |
| CN110311038A (en) * | 2019-06-21 | 2019-10-08 | 南京邮电大学 | A method for increasing the grain size of perovskite film layers in perovskite solar cells |
| CN111403610A (en) * | 2020-03-19 | 2020-07-10 | 武汉理工大学 | High-performance organic-inorganic hybrid perovskite optoelectronic material, preparation method and application thereof |
| CN113594396A (en) * | 2021-07-08 | 2021-11-02 | 浙江大学 | Solvent atmosphere controlled perovskite in-situ film forming method and product and application thereof |
| CN113594396B (en) * | 2021-07-08 | 2022-08-05 | 浙江大学 | Solvent atmosphere controlled perovskite in-situ film forming method and product and application thereof |
| CN115360306A (en) * | 2022-08-26 | 2022-11-18 | 徐州恒立新能源科技有限公司 | A kind of preparation method of perovskite solar cell module |
| CN118317666A (en) * | 2024-04-10 | 2024-07-09 | 天津大学 | A perovskite microcrystalline film and its preparation method and application |
Also Published As
| Publication number | Publication date |
|---|---|
| CN106128954B (en) | 2019-02-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN106128954A (en) | A kind of method promoting perovskite crystalline | |
| Liu et al. | Soft template‐controlled growth of high‐quality CsPbI3 films for efficient and stable solar cells | |
| Liu et al. | Ultra-thin MoOx as cathode buffer layer for the improvement of all-inorganic CsPbIBr2 perovskite solar cells | |
| CN107210367B (en) | Method of forming photoactive layer of optoelectronic device | |
| Liu et al. | Perovskite films grown with green mixed anti-solvent for highly efficient solar cells with enhanced stability | |
| Park et al. | Fabrication processes for all‐inorganic CsPbBr3 perovskite solar cells | |
| CN109004048A (en) | A kind of preparation method of the inorganic perovskite quantum dot film of caesium lead bromine and photovoltaic device based on it | |
| CN107564978A (en) | A kind of preparation method of inorganic perovskite thin film of caesium lead bromine and the photovoltaic device based on it | |
| CN105609641A (en) | Perovskite solar cell and preparation method thereof | |
| CN103700768A (en) | Perovskite structural solar battery and preparation method thereof | |
| Chouhan et al. | Large grained and high charge carrier lifetime CH3NH3PbI3 thin-films: implications for perovskite solar cells | |
| CN107068875A (en) | A kind of method for optimizing perovskite crystal film morphology | |
| Li et al. | Boosting efficiency of planar heterojunction perovskite solar cells to 21.2% by a facile two-step deposition strategy | |
| CN107887510A (en) | A kind of two-dimensional layer perovskite thin film, solar cell and preparation method thereof | |
| CN107134531A (en) | One kind increase perovskite CH3NH3PbI3Crystal grain is to improve the method for thin film crystallization quality | |
| Ye et al. | Crack-free perovskite layers for high performance and reproducible devices via improved control of ambient conditions during fabrication | |
| CN106783541A (en) | A kind of selenizing germanous polycrystal film and the solar cell containing the film and preparation method thereof | |
| CN105428535A (en) | Manufacturing method for thin film crystal silicon perovskite heterojunction solar cell | |
| CN108011046A (en) | A kind of method of perovskite surface in situ method growth perovskite nano wire and a kind of perovskite solar cell | |
| JP2017054912A (en) | Photoelectric conversion element | |
| Zhang et al. | Optimizing the efficiency of perovskite solar cells by a sub-nanometer compact titanium oxide electron transport layer | |
| KR102080748B1 (en) | A method for manufacturing a high-quality perovskite photoactive layer thin film and a perovskite solar cell | |
| CN108110068A (en) | A kind of unleaded perovskite solar cell and preparation method thereof | |
| CN107170894A (en) | A kind of perovskite solar cell and preparation method thereof | |
| Ye et al. | Large area, high efficiency and stable perovskite solar cells enabled by fine control of intermediate phase |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20190215 Termination date: 20210721 |
|
| CF01 | Termination of patent right due to non-payment of annual fee |