CN106129255B - Organic solar batteries and preparation method based on extra small period silver nanometer column array - Google Patents
Organic solar batteries and preparation method based on extra small period silver nanometer column array Download PDFInfo
- Publication number
- CN106129255B CN106129255B CN201610715831.6A CN201610715831A CN106129255B CN 106129255 B CN106129255 B CN 106129255B CN 201610715831 A CN201610715831 A CN 201610715831A CN 106129255 B CN106129255 B CN 106129255B
- Authority
- CN
- China
- Prior art keywords
- silver
- column array
- array
- active layer
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/30—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/80—Constructional details
- H10K30/81—Electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/621—Providing a shape to conductive layers, e.g. patterning or selective deposition
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Photovoltaic Devices (AREA)
Abstract
本发明涉及太阳能电池领域,特别是涉及有机太阳能电池领域。一种基于超小周期银纳米柱阵列的有机太阳能电池,活性层上具有与银纳米柱阵列对应的凹槽阵列,每个凹槽中插入一根银纳米柱,银纳米柱阵列的最小化单元为正三角形,银纳米柱阵列的最小化单元中纳米柱的直径为12 nm,高度为35 nm,相邻的银纳米柱之间的距离均为12 nm。本发明利用超小周期的银纳米圆柱阵列极大地增强了有机太阳能电池中超薄活性层在350 nm‑850 nm波长范围内的光吸收能力,同时获得了广角度的高效光吸收特性。
The invention relates to the field of solar cells, in particular to the field of organic solar cells. An organic solar cell based on an ultra-small period silver nanocolumn array, the active layer has a groove array corresponding to the silver nanocolumn array, and a silver nanocolumn is inserted in each groove, the smallest unit of the silver nanocolumn array It is an equilateral triangle, the diameter of the nanopillars in the minimum unit of the silver nanopillar array is 12 nm, the height is 35 nm, and the distance between adjacent silver nanopillars is 12 nm. The invention greatly enhances the light absorption capacity of the ultra-thin active layer in the organic solar cell in the wavelength range of 350 nm-850 nm by using the silver nano-cylindrical array with an ultra-small period, and simultaneously obtains the high-efficiency light absorption characteristics of a wide angle.
Description
技术领域technical field
本发明涉及太阳能电池领域,特别是涉及有机太阳能电池领域。The invention relates to the field of solar cells, in particular to the field of organic solar cells.
背景技术Background technique
有机太阳能电池(OSCs)的研发对大规模利用太阳能提供廉价电能具有十分重要的意义。目前,OSCs存在的最大问题是光电转换效率偏低,不满足商业化应用的需求。提高有机太阳能电池光电转换效率一个非常直接的解决方案就是提高电池的光吸收效率。采用足够厚的活性层可以保证电池的光吸收,但这又不利于载流子的传输和有效收集。利用光捕获结构,如纳米图案化的金属电极可以解决这一矛盾,即利用金属纳米结构激发的表面等离子体激元共振提高超薄活性层的光吸收,满足有机太阳能电池对活性层光学厚、电学薄的要求,从而实现高效的有机太阳能电池。例如,2010年,Sefunc等人设计了周期为130nm的一维银光栅作为正置型太阳能电池的背阴极,使活性层的光吸收效率提高了21%【Optics Express, 2011, 19(15) 14203】;2012年,Li等人采用了周期为750 nm的一维银光栅作为倒置型太阳能电池的阳极,使电池的光电流提高了8.27%【J. Phys. Chem. C2012, 116, 7200】;原理上,一维银纳米光栅由于其结构的不对称性使电池的光吸收依赖于光的入射角和光的偏振性,因此限制了其在太阳能电池领域的应用【Advancedmaterials, 2013, 25(17), 2385】。采用二维金属纳米阵列结构可以克服一维金属纳米光栅存在的这些不足,进而取得更优良的光捕获效果,2014年,Le等人在银衬底上设计了周期为400 nm的四方形排列的银纳米圆柱阵列结构,嵌入超薄的有机聚合物薄膜中,当入射光直接垂直入射到有机聚合物薄膜上时,在AM1.5太阳光照射下其光吸收效率提高了40%【IEEE Journal of Photovoltaics IEEE, 2014, 4( 6), 1566】;2013年,Li等人利用周期为350 nm 的四方形排列的银纳米圆柱阵列作为倒置型太阳能电池的阳极,使电池的光电流提高了18.1%【Applied Physics Letters, 2013, 102, 153304】;Ln等人设计了周期为230 nm的四方排列的椭球形银纳米阵列作为正置型太阳能电池的背阴极,使具有超薄活性层太阳能电池的光电流提高了近30%【ACS Photonics 2015, 2, 78−85】。虽然这些具有亚波长尺度的二维周期性金属纳米阵列使超薄有机太阳能电池的光捕获能力得到了显著的提高,但提高的幅度还远远不能满足商业化应用对有机太阳能电池光电转化效率的要求,因此非常有必要探索更优良的二维纳米图案化金属电极结构,促进有机太阳能电池光吸收效率在宽谱、广角范围内更大幅度的提高。The research and development of organic solar cells (OSCs) is of great significance for the large-scale utilization of solar energy to provide cheap electricity. At present, the biggest problem of OSCs is the low photoelectric conversion efficiency, which does not meet the needs of commercial applications. A very direct solution to improve the photoelectric conversion efficiency of organic solar cells is to improve the light absorption efficiency of the cells. Using a sufficiently thick active layer can ensure the light absorption of the cell, but this is not conducive to the transport and effective collection of carriers. The use of light-harvesting structures, such as nano-patterned metal electrodes, can solve this contradiction, that is, the surface plasmon resonance excited by metal nanostructures can be used to improve the light absorption of the ultra-thin active layer, which meets the optical thickness of the active layer in organic solar cells. Electrically thin requirements to realize high-efficiency organic solar cells. For example, in 2010, Sefunc et al. designed a one-dimensional silver grating with a period of 130nm as the back cathode of a positive solar cell, which increased the light absorption efficiency of the active layer by 21%【Optics Express, 2011, 19(15) 14203】 ; In 2012, Li et al. used a one-dimensional silver grating with a period of 750 nm as the anode of an inverted solar cell, which increased the photocurrent of the cell by 8.27% [J. Phys. Chem. C2012, 116, 7200]; principle However, due to the asymmetry of its structure, the light absorption of the cell depends on the incident angle of light and the polarization of light, which limits its application in the field of solar cells [Advancedmaterials, 2013, 25(17), 2385]. The two-dimensional metal nano-array structure can overcome these shortcomings of the one-dimensional metal nano-grating, and then achieve a better light-harvesting effect. In 2014, Le et al. designed a square array with a period of 400 nm on a silver substrate. The silver nanocylindrical array structure is embedded in an ultra-thin organic polymer film. When the incident light is directly incident on the organic polymer film, its light absorption efficiency increases by 40% under AM1.5 sunlight [IEEE Journal of Photovoltaics IEEE, 2014, 4( 6), 1566]; In 2013, Li et al. used a square-arranged silver nanocylindrical array with a period of 350 nm as the anode of an inverted solar cell, which increased the photocurrent of the cell by 18.1%. [Applied Physics Letters, 2013, 102, 153304]; Ln et al. designed a square-arranged elliptical silver nanoarray with a period of 230 nm as the back cathode of a positive solar cell, making the photocurrent of a solar cell with an ultra-thin active layer An increase of nearly 30% [ACS Photonics 2015, 2, 78−85]. Although these two-dimensional periodic metal nanoarrays with sub-wavelength scale have significantly improved the light harvesting ability of ultra-thin organic solar cells, the improvement is far from meeting the photoelectric conversion efficiency of organic solar cells for commercial applications. Therefore, it is very necessary to explore a better two-dimensional nano-patterned metal electrode structure to promote a greater improvement in the light absorption efficiency of organic solar cells in a wide-spectrum and wide-angle range.
发明内容Contents of the invention
本发明所要解决的技术问题是:如何更好地提高超薄有机太阳能电池的光捕获能力,并实现广角度高效光吸收性能。The technical problem to be solved by the invention is: how to better improve the light-harvesting ability of the ultra-thin organic solar cell and realize the wide-angle and high-efficiency light-absorbing performance.
本发明所采用的技术方案是:The technical scheme adopted in the present invention is:
一种基于超小周期银纳米柱阵列的有机太阳能电池,由顺序排列的厚度为100nm的铟锡氧化物层作为电池的阳极、厚度为20 nm-30 nm的聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸薄膜作为阳极缓冲层、厚度为40 nm- 90 nm的导电聚合物给体材料与富勒烯衍生物受体材料均匀混合物薄膜作为活性层、厚度为235nm的银纳米柱阵列层作为电池的阴极,银纳米柱阵列层由厚度为200 nm的银膜和与银膜成一体化结构高度为35 nm的银纳米柱阵列组成,银纳米柱阵列的最小化单元为正三角形,银纳米柱阵列的最小化单元中纳米柱的直径为12 nm,高度为35 nm,相邻的银纳米柱之间的距离均为12 nm,活性层上具有与银纳米柱阵列对应的凹槽阵列,每个凹槽中插入一根银纳米柱。An organic solar cell based on an ultra-small-period silver nanocolumn array, which consists of sequentially arranged indium tin oxide layers with a thickness of 100 nm as the anode of the cell, and poly(3,4-ethylenedioxide) with a thickness of 20 nm-30 nm. Thiophene)-polystyrene sulfonic acid film as the anode buffer layer, a uniform mixture film of conductive polymer donor material and fullerene derivative acceptor material with a thickness of 40 nm-90 nm as the active layer, and a silver nanometer film with a thickness of 235 nm The pillar array layer is used as the cathode of the battery. The silver nanopillar array layer is composed of a silver film with a thickness of 200 nm and a silver nanopillar array with a height of 35 nm integrated with the silver film. The minimum unit of the silver nanopillar array is positive Triangular, the diameter of the nanocolumn in the minimized unit of the silver nanocolumn array is 12 nm, the height is 35 nm, the distance between adjacent silver nanocolumns is 12 nm, and the active layer has a silver nanocolumn corresponding to the silver nanocolumn array. An array of grooves, with a silver nanopillar inserted into each groove.
作为一种优选方式:铟锡氧化物采用磁控溅射的方法制备。As a preferred method: the indium tin oxide is prepared by magnetron sputtering.
作为一种优选方式:导电聚合物给体材料为聚[9-(1-辛基壬基)-9H-咔唑-2,7-二基]-2,5-噻吩二基-2,1,3-苯并噻二唑-4,7-二基-2,5-噻吩二基、聚[2,7-(5,5-二-(3,7-二甲基辛基)-5H-二噻吩并3, 2-b:2′, 3′-d]吡喃)-4,7-(5, 6-二氟-2,1,3-苯并噻二唑)、聚(4, 4'-二(2-乙基己基)二噻吩并(3, 2-b; 2', 3'-d)硅杂环戊二烯)-2, 6-二基-(2,1,3-苯并噻二唑)-4, 7-二基中的任意一种,富勒烯衍生物受体材料是[6,6]-苯基C71-丁酸甲酯。As a preferred method: the conductive polymer donor material is poly[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3 -Benzothiadiazole-4,7-diyl-2,5-thiophenediyl, poly[2,7-(5,5-di-(3,7-dimethyloctyl)-5H-di Thieno3,2-b:2′,3′-d]pyran)-4,7-(5,6-difluoro-2,1,3-benzothiadiazole), poly(4,4 '-bis(2-ethylhexyl)dithieno(3,2-b;2',3'-d)silacyclopentadiene)-2,6-diyl-(2,1,3- benzothiadiazole)-4, 7-diyl, and the acceptor material of the fullerene derivative is [6,6]-phenyl C 71 -butyric acid methyl ester.
制备基于超小周期银纳米柱阵列的有机太阳能电池的方法,按照如下的步骤进行:The method for preparing an organic solar cell based on an ultra-small period silver nanocolumn array is carried out according to the following steps:
步骤一、在玻璃衬底上,通过磁控溅射的方法沉积一层厚度为100nm的均匀的铟锡氧化物薄膜作为电池的阳极;Step 1. On the glass substrate, a uniform indium tin oxide film with a thickness of 100 nm is deposited as the anode of the battery by magnetron sputtering;
步骤二、在铟锡氧化物薄膜上通过溶液旋涂法沉积一层厚度为20 nm-30 nm的聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸薄膜作为阳极缓冲层;Step 2, depositing a layer of poly(3,4-ethylenedioxythiophene)-polystyrenesulfonic acid film with a thickness of 20 nm-30 nm on the indium tin oxide film by solution spin coating as an anode buffer layer;
步骤三、在聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸薄膜上通过溶液旋涂法沉积一层厚度为40 nm- 90 nm的导电聚合物给体材料与富勒烯衍生物受体材料均匀混合物薄膜作为活性层,导电聚合物给体材料与富勒烯衍生物受体材料的质量比为1:1.5;Step 3. On the poly(3,4-ethylenedioxythiophene)-polystyrenesulfonic acid film, deposit a layer of conductive polymer donor material and fullerene-derived The homogeneous mixture film of the acceptor material is used as the active layer, and the mass ratio of the conductive polymer donor material to the fullerene derivative acceptor material is 1:1.5;
步骤四、制备纳米柱阵列型印章,纳米柱阵列型印章的最小化单元为正三角形,最小化单元中纳米柱的直径为12 nm,高度为35 nm,相邻的纳米柱之间的距离均为12 nm,然后使用纳米柱阵列型印章对步骤三制备的活性层进行压印,在活性层上形成凹槽阵列;Step 4. Prepare the nanopillar array stamp. The minimum unit of the nanopillar array stamp is an equilateral triangle, the diameter of the nanopillar in the minimum unit is 12 nm, the height is 35 nm, and the distance between adjacent nanopillars is equal to 12 nm, and then use the nano-column array stamp to imprint the active layer prepared in step 3 to form a groove array on the active layer;
步骤五、在经过步骤四压印的活性层上,采用真空镀膜技术镀银膜,使银填充满凹槽后的银膜厚度为200纳米。Step 5. On the active layer embossed in step 4, a silver film is plated by vacuum coating technology, so that the thickness of the silver film after filling the grooves with silver is 200 nanometers.
超小周期银纳米柱阵列中超小周期是指银纳米柱阵列的最小化单元在任意一个平面上的投影在任意一个方向的长度都小于100nm。In the ultra-small period silver nanocolumn array, the ultrasmall period means that the length of the projection of the smallest unit of the silver nanocolumn array on any plane in any direction is less than 100 nm.
本发明的有益效果是:本发明利用超小周期的银纳米圆柱阵列极大地增强了有机太阳能电池中超薄活性层在350 nm-850 nm波长范围内的光吸收能力,同时获得了广角度的高效光吸收特性。当银纳米圆柱阵列采用三角形排列方式,活性层厚度为40nm,银纳米圆柱的直径为12nm,高为35nm,占空比为0.5(即周期为24nm)时,在太阳光谱AM1.5G下,光垂直入射时,在350nm~850nm波长范围内总吸收效率达到66.8%,与具有等体积活性层的、无银纳米柱的平板器件相比光吸收效率提高了88%,相当于无银纳米柱的平板电池中厚度为62 nm活性层的光吸收效率,明显节约了活性层材料,降低了电池的制作成本,同时从理论上讲,超薄的活性层设计有利于载流子的传输和收集,降低载流子的复合几率,也有利于提高电池的内量子效率。当光入射角从0度提高到70度,光吸收效率仍可以保持在62.4%的水平上。总之,本发明提出的银纳米柱结构极大增强了超薄活性层的光吸收效率,并实现了广角度高光吸收性能,从性能上优于现有技术。The beneficial effects of the present invention are: the present invention greatly enhances the light absorption capacity of the ultra-thin active layer in the organic solar cell in the wavelength range of 350 nm-850 nm by using the ultra-small periodic silver nano-cylindrical array, and simultaneously obtains a wide-angle Efficient light absorption properties. When the silver nanocylindrical array adopts a triangular arrangement, the thickness of the active layer is 40nm, the diameter of the silver nanocylindrical is 12nm, the height is 35nm, and the duty ratio is 0.5 (that is, the period is 24nm), under the solar spectrum AM1.5G, the light At normal incidence, the total absorption efficiency reaches 66.8% in the wavelength range of 350nm~850nm, which is 88% higher than that of flat-panel devices with equal volume active layers and no silver nanopillars. The light absorption efficiency of the active layer with a thickness of 62 nm in the flat cell significantly saves the material of the active layer and reduces the production cost of the cell. Reducing the recombination probability of carriers is also conducive to improving the internal quantum efficiency of the battery. When the light incident angle increases from 0° to 70°, the light absorption efficiency can still be maintained at the level of 62.4%. In a word, the silver nanocolumn structure proposed by the present invention greatly enhances the light absorption efficiency of the ultra-thin active layer, and realizes wide-angle high light absorption performance, which is superior to the prior art in terms of performance.
附图说明Description of drawings
图1是一种平板有机太阳能电池结构截面示意图,作为参比电池结构,代码101-104顺序代表阳极、阳极缓冲层、活性层、阴极。Figure 1 is a schematic cross-sectional view of a flat organic solar cell structure. As a reference cell structure, codes 101-104 represent anode, anode buffer layer, active layer, and cathode in sequence.
图2是本发明的提出的基于超小周期银纳米柱阵列的超薄有机太阳能电池三维立体示意图,代码201-205顺序代表ITO阳极、阳极缓冲层,活性层、银纳米柱、银膜。Figure 2 is a three-dimensional schematic diagram of an ultra-thin organic solar cell based on an ultra-small periodic silver nanocolumn array proposed by the present invention. The codes 201-205 represent ITO anode, anode buffer layer, active layer, silver nanocolumn, and silver film in sequence.
图3是本发明的提出的具有三角形排布的银纳米圆柱阵列示意图,代码301-304分别代表银纳米圆柱的直径、相邻银纳米柱的间距、银纳米柱在水平方向上的周期、银纳米柱在垂直方向上的周期。Fig. 3 is the schematic diagram of the silver nano-column array with triangular arrangement proposed by the present invention, codes 301-304 respectively represent the diameter of the silver nano-column, the distance between adjacent silver nano-columns, the period of the silver nano-column in the horizontal direction, the silver nano-column The period of the nanopillars in the vertical direction.
图4是活性层的吸收效率与三角形排布的银纳米圆柱阵列参数银柱高度及占空比的关系图谱,横坐标表示银纳米柱的高度,用h表示,纵坐标表示银纳米柱占空比,用f表示,吸收效率的高低用颜色的深浅表示,定量见图右上角的颜色条,优化的银纳米圆柱的参数为:银纳米圆柱高为h=35nm,占空比f=0.5时,直径为D = 12nm,对应点用代码401表示。Fig. 4 is the graph of the relationship between the absorption efficiency of the active layer and the silver nanocolumn array parameter silver column height and the duty ratio of the triangular arrangement, the abscissa indicates the height of the silver nanocolumn, denoted by h, and the ordinate indicates the duty cycle of the silver nanocolumn Ratio, expressed by f, the absorption efficiency is expressed by the depth of the color, quantitatively see the color bar in the upper right corner of the figure, the parameters of the optimized silver nano cylinder are: the height of the silver nano cylinder is h=35nm, and the duty cycle f=0.5 , the diameter is D = 12nm, and the corresponding point is represented by code 401.
图5是本发明提出的具有优化的三角形排布的银纳米圆柱超薄有机太阳能电池(活性层厚度为40nm)与具有等体积活性层的等效平板结构太阳能电池中活性层光吸收谱的对比图,分别对应代码501和502横坐标是入射光的波长,用λ0表示,单位是nm,纵坐标表示吸收效率,用ƞ表示。Figure 5 is a comparison of the light absorption spectrum of the active layer in the silver nanocylindrical ultra-thin organic solar cell with an optimized triangular arrangement proposed by the present invention (the thickness of the active layer is 40nm) and the equivalent flat structure solar cell with an equal-volume active layer In the figure, corresponding to codes 501 and 502 respectively, the abscissa is the wavelength of the incident light, represented by λ 0 , and the unit is nm, and the ordinate represents the absorption efficiency, represented by ƞ.
图6是本发明的提出的具有优化的三角形排布的银纳米圆柱超薄有机太阳能电池与具有等体积活性层的等效平板结构活性层相比光吸收效率的提高谱图,由代码601曲线表示。横坐标是入射光的波长,用λ0表示,单位是nm,纵坐标是光吸收效率提高因子,用Δƞ表示。Fig. 6 is the improved spectrogram of light absorption efficiency compared with the equivalent flat plate structure active layer of the silver nanocylindrical ultra-thin organic solar cell with optimized triangular arrangement proposed by the present invention, by code 601 curve express. The abscissa is the wavelength of the incident light, represented by λ0 , and the unit is nm, and the ordinate is the light absorption efficiency improvement factor, represented by Δƞ.
图7是本发明提出的具有三角形排布的银纳米圆柱有机太阳能电池及与之等效的平板结构电池的总光吸收效率随活性层厚度变化曲线的对比,分别用代码701和702表示。横坐标是具有三角形排布的银纳米圆柱有机太阳能电池活性层的厚度,用t表示,单位是nm,纵坐标是总光吸收效率(即在350 nm-850 nm波长范围内光吸收效率的积分),用ƞA表示。指出当活性层的厚度在40 nm-120 nm范围内变化,具有三角形排布的银纳米圆柱有机太阳能电池总是优于与之等效的平板结构电池的总光吸收效率。(这里银纳米圆柱的参数保持不变:银纳米圆柱高为35nm,占空比为0.5时,直径为12nm。)Fig. 7 is a comparison of the total light absorption efficiency of the triangular-arranged silver nanocylindrical organic solar cells proposed by the present invention and the equivalent planar structure cell with the change curve of the active layer thickness, represented by codes 701 and 702 respectively. The abscissa is the thickness of the active layer of the silver nanocylindrical organic solar cell with a triangular arrangement, represented by t, and the unit is nm, and the ordinate is the total light absorption efficiency (that is, the integral of the light absorption efficiency in the wavelength range of 350 nm-850 nm ), denoted by ƞ A. It is pointed out that when the thickness of the active layer varies in the range of 40 nm-120 nm, the total light absorption efficiency of the silver nanocylindrical organic solar cells with triangular arrangement is always better than that of the equivalent planar structure cells. (Here the parameters of the silver nanocolumns remain unchanged: the height of the silver nanocolumns is 35nm, and the diameter is 12nm when the duty cycle is 0.5.)
图8是本发明的具有三角形排布的银纳米圆柱超薄有机太阳能电池活性层总的光吸收效率随光入射角度变化曲线图,横坐标是入射角,用θ表示,单位是度(deg),纵坐标是总光吸收效率,用ƞA表示。(这里电池中银纳米圆柱的参数为:银纳米圆柱高为35nm,占空比为0.5时,直径为12nm;活性层厚度为40nm)。Fig. 8 is a curve diagram of the total light absorption efficiency of the active layer of the silver nano-cylindrical ultra-thin organic solar cell with triangular arrangement of the present invention as a function of the incident angle of light. , and the ordinate is the total light absorption efficiency, represented by ƞ A. (The parameters of the silver nano cylinder in the battery here are: the height of the silver nano cylinder is 35nm, the diameter is 12nm when the duty ratio is 0.5, and the thickness of the active layer is 40nm).
图9是本发明的具有三角形排布的银纳米圆柱超薄有机太阳能电池与具有四方形排布的银纳米圆柱超薄有机太阳能电池活性层的吸收光谱的对比图,横坐标是入射光的波长,用λ0表示,单位是nm,纵坐标表示吸收效率,用ƞ表示。901代表具有三角形排布的银纳米圆柱超薄有机太阳能电池活性层的吸收光谱,902代表具有四方形排布的银纳米圆柱超薄有机太阳能电池活性层的吸收光谱。Fig. 9 is a comparison diagram of the absorption spectrum of the active layer of the silver nano-cylindrical ultra-thin organic solar cell with a triangular arrangement and the active layer of the silver nano-cylindrical ultra-thin organic solar cell with a square arrangement, and the abscissa is the wavelength of the incident light , represented by λ 0 , the unit is nm, and the ordinate represents the absorption efficiency, represented by ƞ. 901 represents the absorption spectrum of the active layer of the ultra-thin organic solar cell with silver nano cylinders arranged in a triangle, and 902 represents the absorption spectrum of the active layer of the ultra-thin organic solar cell with silver nano cylinders arranged in a square.
具体实施方式Detailed ways
实施例1Example 1
步骤一、在玻璃衬底上,通过磁控溅射的方法沉积一层厚度为100nm的均匀的铟锡氧化物(ITO)薄膜作为电池的阳极;Step 1. On the glass substrate, a uniform indium tin oxide (ITO) film with a thickness of 100nm is deposited by magnetron sputtering as the anode of the battery;
步骤二、在铟锡氧化物薄膜上通过溶液旋涂法沉积一层厚度为20 nm的聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸(PEDOT:PSS)薄膜作为阳极缓冲层;制备条件:旋涂速率 3000rpm,旋涂时间45 s,然后在 120 ℃下在空气下退火10 min。Step 2. Deposit a layer of poly(3,4-ethylenedioxythiophene)-polystyrenesulfonic acid (PEDOT:PSS) film with a thickness of 20 nm on the indium tin oxide film by solution spin coating as an anode buffer layer ; Preparation conditions: spin coating rate 3000 rpm, spin coating time 45 s, and then annealed at 120 °C for 10 min in air.
步骤三、在聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸薄膜上通过溶液旋涂法沉积一层厚度为40 nm的导电聚合物给体材料(PSBTBT)与富勒烯衍生物受体材料(PC71BM)均匀混合物薄膜作为活性层,导电聚合物给体材料与富勒烯衍生物受体材料的质量比为1:1.5;PSBTBT是聚(4, 4'-二(2-乙基己基)二噻吩并(3, 2-b; 2', 3'-d)硅杂环戊二烯)-2, 6-二基-(2,1,3-苯并噻二唑)-4, 7-二基,PC71BM是 [6,6]-苯基C71-丁酸甲酯。将PSBTBT和PC71BM溶解在氯苯溶液中,浓度为20 mg/mL(PSBTBT和PC71BM之和浓度),然后在1000 rpm的旋涂速率下旋涂60 s, 制得一层厚度均匀的PSBTBT:PC71BM薄膜Step 3. On the poly(3,4-ethylenedioxythiophene)-polystyrenesulfonic acid film, a layer of conductive polymer donor material (PSBTBT) and fullerene derivatives was deposited with a thickness of 40 nm by solution spin coating. The homogeneous mixture film of the material acceptor material (PC 71 BM) is used as the active layer, and the mass ratio of the conductive polymer donor material to the fullerene derivative acceptor material is 1:1.5; PSBTBT is poly(4, 4'-bis( 2-Ethylhexyl)dithieno(3,2-b; 2',3'-d)silacyclopentadiene)-2,6-diyl-(2,1,3-benzothienodi azole)-4,7-diyl, PC 71 BM is [6,6]-phenyl C 71 -butyric acid methyl ester. Dissolve PSBTBT and PC 71 BM in chlorobenzene solution at a concentration of 20 mg/mL (the sum concentration of PSBTBT and PC 71 BM), and then spin-coat at a spin-coating rate of 1000 rpm for 60 s to obtain a uniform layer thickness PSBTBT:PC 71 BM film
步骤四、制备纳米柱阵列型印章,纳米柱阵列型印章的最小化单元为正三角形,最小化单元中纳米柱的直径为12 nm,高度为35 nm,相邻的纳米柱之间的距离均为12 nm,然后使用纳米柱阵列型印章对步骤三制备的活性层进行压印,在活性层上形成凹槽阵列;纳米柱阵列型印章可根据文献【物理学报,2006,55(4),2033-05;J. Vac. Sci. Technol. B22(4), 2004】,采用等离子增强化学气相沉积、选择性腐蚀、电子束刻蚀相结合技术制备,首先利用等离子增强化学气相沉积、选择性腐蚀技术制备一维周期性条/槽结构,然后利用电子束刻蚀技术进一步在一维周期性条/槽结构的模板上进一步构建三角形排列的纳米柱阵列。与单一采用电子束刻蚀技术相比,可以节约成本,而且根据文献【物理学报,2006,55(4)】,利用等离子增强化学气相沉积与选择性腐蚀技术制得的一维周期性条/槽结构品质优于电子束刻蚀技术制备的模板。Step 4. Prepare the nanopillar array stamp. The minimum unit of the nanopillar array stamp is an equilateral triangle, the diameter of the nanopillar in the minimum unit is 12 nm, the height is 35 nm, and the distance between adjacent nanopillars is equal to 12 nm, and then use the nano-column array stamp to imprint the active layer prepared in step 3 to form a groove array on the active layer; 2033-05; J. Vac. Sci. Technol. B22(4), 2004], prepared by combining plasma-enhanced chemical vapor deposition, selective etching, and electron beam etching. Firstly, plasma-enhanced chemical vapor deposition, selective The one-dimensional periodic strip/groove structure is prepared by etching technology, and then the nano-column array arranged in a triangle is further constructed on the template of the one-dimensional periodic strip/groove structure by electron beam etching technology. Compared with the single use of electron beam etching technology, it can save costs, and according to the literature [Acta Physica Sinica, 2006, 55 (4)], the one-dimensional periodic strip/ The quality of the groove structure is better than that of the template prepared by electron beam etching technology.
步骤五、在经过步骤四压印的活性层上,采用真空镀膜技术镀银膜,使银填充满凹槽后的银膜厚度为200 nm。真空度维持在10-4-10-5Pa,沉积速率维持在0.5 nm / s。Step 5. On the active layer embossed in step 4, a silver film is plated by vacuum coating technology, so that the thickness of the silver film after filling the groove with silver is 200 nm. The vacuum degree is maintained at 10 -4 -10 -5Pa , and the deposition rate is maintained at 0.5 nm/s.
实施例2Example 2
步骤一、在玻璃衬底上,通过磁控溅射的方法沉积一层厚度为100nm的均匀的铟锡氧化物(ITO)薄膜作为电池的阳极;Step 1. On the glass substrate, a uniform indium tin oxide (ITO) film with a thickness of 100nm is deposited by magnetron sputtering as the anode of the battery;
步骤二、在铟锡氧化物薄膜上通过溶液旋涂法沉积一层厚度为20 nm的聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸(PEDOT:PSS)薄膜作为阳极缓冲层;制备条件:旋涂速率 3000rpm,旋涂时间45 s,然后在 120 ℃下在空气下退火10 min,为了更好地提高光电转化效率,在聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸(PEDOT:PSS)溶液中加入发泡剂碳酸氢钠,使碳酸氢钠的质量百分比浓度为0.5-1%,在退火过程中生成气泡,增强光吸收效率。Step 2. Deposit a layer of poly(3,4-ethylenedioxythiophene)-polystyrenesulfonic acid (PEDOT:PSS) film with a thickness of 20 nm on the indium tin oxide film by solution spin coating as an anode buffer layer ; Preparation conditions: spin-coating rate 3000rpm, spin-coating time 45 s, and then annealed at 120 ℃ for 10 min in air. In order to better improve the photoelectric conversion efficiency, poly(3,4-ethylenedioxythiophene) The foaming agent sodium bicarbonate is added to the styrene sulfonic acid (PEDOT:PSS) solution, so that the mass percent concentration of sodium bicarbonate is 0.5-1%, and bubbles are generated during the annealing process to enhance the light absorption efficiency.
步骤三、在聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸薄膜上通过溶液旋涂法沉积一层厚度为40 nm的导电聚合物给体材料(PSBTBT)与富勒烯衍生物受体材料(PC71BM)均匀混合物薄膜作为活性层,导电聚合物给体材料与富勒烯衍生物受体材料的质量比为1:1.5;PSBTBT是PSBTBT是聚(4, 4'-二(2-乙基己基)二噻吩并(3, 2-b; 2', 3'-d)硅杂环戊二烯)-2, 6-二基-(2,1,3-苯并噻二唑)-4, 7-二基,PC71BM是 [6,6]-苯基C71-丁酸甲酯。将PSBTBT和PC71BM溶解在氯苯溶液中,浓度为20 mg/mL(PSBTBT和PC71BM之和浓度),然后在1000 rpm 的旋涂速率下旋涂60 s, 制得一层厚度均匀的PSBTBT:PC71BM薄膜;Step 3. On the poly(3,4-ethylenedioxythiophene)-polystyrenesulfonic acid film, a layer of conductive polymer donor material (PSBTBT) and fullerene derivatives was deposited with a thickness of 40 nm by solution spin coating. The homogeneous mixture film of material acceptor material (PC 71 BM) is used as the active layer, and the mass ratio of conductive polymer donor material to fullerene derivative acceptor material is 1:1.5; PSBTBT is PSBTBT is poly(4, 4'- Bis(2-ethylhexyl)dithieno(3,2-b; 2',3'-d)silacyclopentadiene)-2,6-diyl-(2,1,3-benzo Thiadiazole)-4,7-diyl, PC 71 BM is [6,6]-phenyl C 71 -butyric acid methyl ester. Dissolve PSBTBT and PC 71 BM in chlorobenzene solution at a concentration of 20 mg/mL (the sum concentration of PSBTBT and PC 71 BM), and then spin-coat at a spin-coating rate of 1000 rpm for 60 s to obtain a layer with uniform thickness PSBTBT: PC 71 BM film;
步骤四、制备纳米柱阵列型印章,纳米柱阵列型印章的最小化单元为正三角形,最小化单元中纳米柱的直径为12 nm,高度为35 nm,相邻的纳米柱之间的距离均为12 nm,然后使用纳米柱阵列型印章对步骤三制备的活性层进行压印,在活性层上形成凹槽阵列;纳米柱阵列型印章可根据文献【物理学报,2006,55(4),2033-05;J. Vac. Sci. Technol. B22(4), 2004】,采用等离子增强化学气相沉积、选择性腐蚀、电子束刻蚀相结合技术制备,首先利用等离子增强化学气相沉积、选择性腐蚀技术制备一维周期性条/槽结构,然后利用电子束刻蚀技术进一步在一维周期性条/槽结构的模板上进一步构建三角形排列的纳米柱阵列。与单一采用电子束刻蚀技术相比,可以节约成本,而且根据文献【物理学报,2006,55(4)】,利用等离子增强化学气相沉积与选择性腐蚀技术制得的一维周期性条/槽结构品质优于电子束刻蚀技术制备的模板。Step 4. Prepare the nanopillar array stamp. The minimum unit of the nanopillar array stamp is an equilateral triangle, the diameter of the nanopillar in the minimum unit is 12 nm, the height is 35 nm, and the distance between adjacent nanopillars is equal to 12 nm, and then use the nano-column array stamp to imprint the active layer prepared in step 3 to form a groove array on the active layer; 2033-05; J. Vac. Sci. Technol. B22(4), 2004], prepared by combining plasma-enhanced chemical vapor deposition, selective etching, and electron beam etching. Firstly, plasma-enhanced chemical vapor deposition, selective The one-dimensional periodic strip/groove structure is prepared by etching technology, and then the nano-column array arranged in a triangle is further constructed on the template of the one-dimensional periodic strip/groove structure by electron beam etching technology. Compared with the single use of electron beam etching technology, it can save costs, and according to the literature [Acta Physica Sinica, 2006, 55 (4)], the one-dimensional periodic strip/ The quality of the groove structure is better than that of the template prepared by electron beam etching technology.
步骤五、在经过步骤四压印的活性层上,采用真空镀膜技术镀银膜,使银填充满凹槽后的银膜厚度为200 nm。真空度维持在10-4-10-5Pa,沉积速率维持在0.5 nm / s。Step 5. On the active layer embossed in step 4, a silver film is plated by vacuum coating technology, so that the thickness of the silver film after filling the groove with silver is 200 nm. The vacuum degree is maintained at 10 -4 -10 -5Pa , and the deposition rate is maintained at 0.5 nm/s.
Claims (5)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610715831.6A CN106129255B (en) | 2016-08-25 | 2016-08-25 | Organic solar batteries and preparation method based on extra small period silver nanometer column array |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610715831.6A CN106129255B (en) | 2016-08-25 | 2016-08-25 | Organic solar batteries and preparation method based on extra small period silver nanometer column array |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN106129255A CN106129255A (en) | 2016-11-16 |
| CN106129255B true CN106129255B (en) | 2018-08-17 |
Family
ID=57273952
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201610715831.6A Expired - Fee Related CN106129255B (en) | 2016-08-25 | 2016-08-25 | Organic solar batteries and preparation method based on extra small period silver nanometer column array |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN106129255B (en) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107452880A (en) * | 2017-09-19 | 2017-12-08 | 安徽大学 | Organic solar cell structure based on small period |
| CN109037454B (en) * | 2018-07-26 | 2023-02-17 | 太原理工大学 | Organic photomultiplier detector based on surface plasmon polariton |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103794729A (en) * | 2014-01-20 | 2014-05-14 | 中国科学院长春应用化学研究所 | Large-area polymer solar cell and method for preparing active layer of large-area polymer solar cell |
| CN103811589A (en) * | 2014-02-17 | 2014-05-21 | 中国科学院半导体研究所 | Manufacturing method of light trapping structures on front and back faces of semiconductor film solar cell |
| CN104201228A (en) * | 2014-07-21 | 2014-12-10 | 同济大学 | Light trapping structure of broad-spectrum wide-angle elliptical nanowire array thin-film solar cell |
| CN105556680A (en) * | 2013-05-22 | 2016-05-04 | 王士原 | Microstructure-enhanced absorption photosensitive device |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20090266418A1 (en) * | 2008-02-18 | 2009-10-29 | Board Of Regents, The University Of Texas System | Photovoltaic devices based on nanostructured polymer films molded from porous template |
-
2016
- 2016-08-25 CN CN201610715831.6A patent/CN106129255B/en not_active Expired - Fee Related
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105556680A (en) * | 2013-05-22 | 2016-05-04 | 王士原 | Microstructure-enhanced absorption photosensitive device |
| CN103794729A (en) * | 2014-01-20 | 2014-05-14 | 中国科学院长春应用化学研究所 | Large-area polymer solar cell and method for preparing active layer of large-area polymer solar cell |
| CN103811589A (en) * | 2014-02-17 | 2014-05-21 | 中国科学院半导体研究所 | Manufacturing method of light trapping structures on front and back faces of semiconductor film solar cell |
| CN104201228A (en) * | 2014-07-21 | 2014-12-10 | 同济大学 | Light trapping structure of broad-spectrum wide-angle elliptical nanowire array thin-film solar cell |
Non-Patent Citations (3)
| Title |
|---|
| Efficient Inverted Polymer Solar Cells with Directly Patterned Active Layer and Silver Back Grating;XH Li等;《Journal of Physical Chemistry C》;20120331;第116卷(第12期);全文 * |
| Plasmonic electrodes for bulk-heterojunction organic photovoltaics: a review;CE Petoukhoff等;《Journal of Photonics for Energy》;20150228;第5卷(第1期);全文 * |
| Polarization-independent efficiency enhancement of organic solar cells by using 3-dimensional plasmonic electrode;X Li等;《Applied Physics Letters》;20130430;第102卷(第15期);全文 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN106129255A (en) | 2016-11-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Sharma et al. | Dye sensitized solar cells: From genesis to recent drifts | |
| Song et al. | Silicon nanowires for photovoltaic applications: The progress and challenge | |
| CN102110736B (en) | Colloid quantum dot-based infrared photoelectric detector and manufacturing method thereof | |
| CN102117889B (en) | Method for preparing polymer solar cell with embedded grating structure | |
| He et al. | Si nanowires organic semiconductor hybrid heterojunction solar cells toward 10% efficiency | |
| CN103022357B (en) | Based on the three-system organic photovoltaic devices and preparation method thereof of graphene quantum dot | |
| Yang et al. | One-pot large-scale synthesis of carbon quantum dots: efficient cathode interlayers for polymer solar cells | |
| Hanmandlu et al. | Top illuminated hysteresis-free perovskite solar cells incorporating microcavity structures on metal electrodes: a combined experimental and theoretical approach | |
| CN103296211B (en) | Heterojunction solar battery device of organic-two dimensional crystal-inorganic hybridization and preparation method thereof | |
| CN103904224B (en) | A kind of organic photovoltaic battery based on inorganic-quantum-dot and preparation method | |
| Roy et al. | Realization of poly (methyl methacrylate)-encapsulated solution-processed carbon-based solar cells: an emerging candidate for buildings’ comfort | |
| Qiao et al. | Organic/inorganic polymer solar cells using a buffer layer from all-water-solution processing | |
| Liu et al. | Boosted electron transport and enlarged built-in potential by eliminating the interface barrier in organic solar cells | |
| CN102983277A (en) | Inverted polymer solar cell of Ag nano particle compounded cavity transmission layer and fabrication method | |
| Xu et al. | ZnO/Ag/ZnO multilayer transparent electrode for highly-efficient ITO-Free polymer solar cells | |
| Li et al. | Room-temperature sputtered aluminum-doped zinc oxide for semitransparent perovskite solar cells | |
| CN102522506A (en) | Organic solar cell of suede light trapping electrode and manufacturing method thereof | |
| CN105070833B (en) | A kind of organic solar batteries device and preparation method thereof | |
| CN106410037A (en) | Small organic molecule donor material based double-junction solar cell device and preparation method thereof | |
| CN102064281A (en) | Organic photovoltaic battery with cesium acetate as cathode modification layer and preparation method thereof | |
| Chiang et al. | Bifacial transparent solid-state dye-sensitized solar cell with sputtered indium-tin-oxide counter electrode | |
| CN102347383B (en) | Solar energy cell and preparation method thereof | |
| CN106129255B (en) | Organic solar batteries and preparation method based on extra small period silver nanometer column array | |
| Qiu et al. | Nanobowl optical concentrator for efficient light trapping and high-performance organic photovoltaics | |
| CN104733616A (en) | Solar cell and preparation method thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180817 |
|
| CF01 | Termination of patent right due to non-payment of annual fee |