CN106157959B - voiceprint model updating method and system - Google Patents
voiceprint model updating method and system Download PDFInfo
- Publication number
- CN106157959B CN106157959B CN201510149390.3A CN201510149390A CN106157959B CN 106157959 B CN106157959 B CN 106157959B CN 201510149390 A CN201510149390 A CN 201510149390A CN 106157959 B CN106157959 B CN 106157959B
- Authority
- CN
- China
- Prior art keywords
- matching degree
- target speaker
- voiceprint
- voice data
- voiceprint model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 32
- 238000004364 calculation method Methods 0.000 claims description 11
- 238000005070 sampling Methods 0.000 claims description 7
- 230000002123 temporal effect Effects 0.000 claims description 4
- 238000001914 filtration Methods 0.000 claims description 3
- 238000010606 normalization Methods 0.000 claims description 2
- 238000012216 screening Methods 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 3
- 230000000750 progressive effect Effects 0.000 description 1
Landscapes
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Collating Specific Patterns (AREA)
Abstract
本发明公开了一种声纹模型更新方法及系统,该方法包括:获取目标说话人当前登录时间及目标说话人声纹模型上一次的更新时间;将目标说话人声纹模型上一次的更新时间至目标说话人当前登录时间的时间段划分为多个时间聚团;获取每个时间聚团内所述目标说话人声纹认证成功时的语音数据;从每个时间聚团内认证成功的语音数据中选择语音数据作为目标说话人声纹模型更新数据;利用所述目标说话人声纹模型更新数据及原声纹模型训练数据重新进行声纹模型训练,得到训练后的新声纹模型;利用所述新声纹模型更新所述目标说话人声纹模型。利用本发明,可以有效防止冒认者说话人在很短时间内持续更新目标说话人声纹模型,保证目标说话人声纹模型更新的正确性。
The invention discloses a method and system for updating a voiceprint model. The method includes: obtaining the current login time of a target speaker and the last update time of the target speaker's voiceprint model; and obtaining the last update time of the target speaker's voiceprint model The time period from the current login time of the target speaker is divided into multiple time clusters; the voice data of the target speaker’s voiceprint authentication in each time cluster is obtained; Select voice data in the data as the target speaker's voiceprint model update data; use the target speaker's voiceprint model update data and the original voiceprint model training data to perform voiceprint model training again, and obtain a new voiceprint model after training; The new voiceprint model is used to update the voiceprint model of the target speaker. The present invention can effectively prevent the impersonator speaker from continuously updating the voiceprint model of the target speaker in a short period of time, and ensure the correctness of updating the voiceprint model of the target speaker.
Description
技术领域technical field
本发明涉及声纹识别技术领域,具体涉及一种声纹模型更新方法及系统。The invention relates to the technical field of voiceprint recognition, in particular to a method and system for updating a voiceprint model.
背景技术Background technique
声纹特征是人体重要生物特征之一,不仅具有特定性,而且有相对稳定性的特点,常用于声纹识别、声纹认证等领域。The voiceprint feature is one of the important biological characteristics of the human body. It is not only specific, but also relatively stable. It is often used in voiceprint recognition, voiceprint authentication and other fields.
通过声纹特征进行身份认证的方法,通常为通过建立声纹模型来表征不同的个体,进而利用该声纹模型识别不同的个体。一般情况下,在声纹模型训练时,获取到的训练数据都非常少,训练得到的声纹模型准确度和适应性较差。因此,为了增加声纹模型的实用性,需要后期不断的更新声纹模型来增加其准确度和适应性。现有的声纹模型更新方法通常为直接将认证成功用户的新录制语音数据加入到原声纹模型的训练数据库中,重新进行声纹模型训练,以完成对声纹模型的更新。The method of identity authentication through voiceprint features is usually to represent different individuals by establishing a voiceprint model, and then use the voiceprint model to identify different individuals. In general, when training the voiceprint model, very little training data is obtained, and the accuracy and adaptability of the trained voiceprint model are poor. Therefore, in order to increase the practicability of the voiceprint model, it is necessary to continuously update the voiceprint model in the later stage to increase its accuracy and adaptability. The existing voiceprint model update method is usually to directly add the newly recorded voice data of the successfully authenticated user to the training database of the original voiceprint model, and re-train the voiceprint model to complete the update of the voiceprint model.
然而,当与目标说话人声纹特征相似的冒认说话人在很短时间内连续冒认时,会连续将大量语音数据录入到原声纹模型的训练数据库中,原声纹模型会被持续更新,从而导致更新后的声纹模型偏离目标说话人的实际声纹模型,最终导致目标说话人无法认证。However, when a false speaker with similar voiceprint characteristics to the target speaker continues to impersonate in a short period of time, a large amount of speech data will be continuously entered into the training database of the original voiceprint model, and the original voiceprint model will be continuously updated. As a result, the updated voiceprint model deviates from the actual voiceprint model of the target speaker, and ultimately the target speaker cannot be authenticated.
发明内容Contents of the invention
本发明实施例提供一种声纹模型更新方法及系统,以解决现有技术中与目标说话人声纹特征相似的冒认说话人在很短时间内连续冒认时,导致更新后的声纹模型偏离目标说话人的实际声纹模型的问题。Embodiments of the present invention provide a method and system for updating a voiceprint model to solve the problem of the updated voiceprint caused by false speakers whose voiceprint features are similar to the target speaker in the prior art. The problem of the model deviating from the actual voiceprint model of the target speaker.
为此,本发明实施例提供如下技术方案:For this reason, the embodiment of the present invention provides following technical scheme:
一种声纹模型更新方法,包括:A method for updating a voiceprint model, comprising:
获取目标说话人当前登录时间及目标说话人声纹模型上一次的更新时间;Obtain the current login time of the target speaker and the last update time of the voiceprint model of the target speaker;
将目标说话人声纹模型上一次的更新时间至目标说话人当前登录时间的时间段划分为多个时间聚团;Divide the time period from the last update time of the voiceprint model of the target speaker to the current login time of the target speaker into multiple time clusters;
获取每个时间聚团内所述目标说话人声纹认证成功时的语音数据;Obtain the voice data when the voiceprint authentication of the target speaker in each time cluster is successful;
从每个时间聚团内认证成功的语音数据中选择语音数据,并将选择的语音数据作为目标说话人声纹模型更新数据;Select voice data from the voice data successfully authenticated in each time cluster, and use the selected voice data as the voiceprint model update data of the target speaker;
利用所述目标说话人声纹模型更新数据及原声纹模型训练数据重新进行声纹模型训练,得到训练后的新声纹模型;Using the voiceprint model update data of the target speaker and the original voiceprint model training data to re-train the voiceprint model to obtain a new voiceprint model after training;
利用所述新声纹模型更新所述目标说话人声纹模型。Utilizing the new voiceprint model to update the voiceprint model of the target speaker.
优选地,所述从每个时间聚团内认证成功的语音数据中选择语音数据包括:Preferably, the selecting voice data from voice data successfully authenticated in each time cluster includes:
对于每个时间聚团,获取所述时间聚团内认证成功的语音数据相对目标说话人声纹模型的匹配度;For each time cluster, obtain the matching degree of the voice data of the successful authentication in the time cluster relative to the voiceprint model of the target speaker;
筛选出大于设定的第一阈值的匹配度对应的语音数据;或者Filter out the voice data corresponding to the matching degree greater than the set first threshold; or
按照匹配度由大到小的顺序对各条语音数据进行排序,筛选出设定条数的语音数据。The pieces of voice data are sorted in descending order of matching degree, and the voice data with a set number of pieces are screened out.
优选地,所述从每个时间聚团内认证成功的语音数据中选择语音数据还包括:Preferably, the selecting voice data from the voice data successfully authenticated in each time cluster further includes:
对每个时间聚团内筛选出的语音数据进行采样。The filtered speech data within each temporal cluster is sampled.
优选地,所述方法还包括:Preferably, the method also includes:
在对用户进行声纹认证时,获取当前用户的语音数据;When performing voiceprint authentication on a user, obtain the voice data of the current user;
计算所述当前用户的语音数据的声纹特征与目标说话人声纹模型的匹配度,将所述匹配度作为待规整匹配度;Calculate the matching degree between the voiceprint feature of the voice data of the current user and the target speaker's voiceprint model, and use the matching degree as the matching degree to be regularized;
对所述待规整匹配度进行零规整,得到规整后的匹配度;Carrying out zero regularization to the matching degree to be regularized to obtain the regularized matching degree;
如果规整后的匹配度大于设定的第二阈值,则确定当前用户为目标说话人。If the regularized matching degree is greater than the set second threshold, it is determined that the current user is the target speaker.
优选地,所述方法还包括:Preferably, the method also includes:
预先收集大量来自不同说话人的语音数据作为种子数据,放入种子集合中;Pre-collect a large amount of speech data from different speakers as seed data and put them into the seed collection;
计算所述种子集合中每条语音数据的声纹特征与所述目标说话人声纹模型的匹配度,得到匹配度集合;Calculate the matching degree of the voiceprint feature of each piece of voice data in the seed set and the target speaker's voiceprint model to obtain a matching degree set;
计算所述匹配度集合中所有匹配度的均值及标准差,并将计算得到的均值及标准差作为冒认者说话人语音数据的声纹特征与所述目标说话人声纹模型匹配度分布的均值及标准差;Calculate the mean value and standard deviation of all matching degrees in the matching degree set, and use the calculated mean value and standard deviation as the distribution of the matching degree distribution between the voiceprint feature of the voice data of the impostor speaker and the voiceprint model of the target speaker mean and standard deviation;
所述对所述待规整匹配度进行零规整,得到规整后的匹配度包括:The said matching degree to be adjusted is zero-adjusted, and the matching degree obtained after adjustment includes:
利用所述均值及标准差对所述待规整匹配度进行零规整,得到规整后的匹配度。Using the mean value and standard deviation to zero-adjust the matching degree to be adjusted to obtain the adjusted matching degree.
一种声纹模型更新系统,包括:A voiceprint model updating system, comprising:
更新时段获取模块,用于获取目标说话人当前登录时间及目标说话人声纹模型上一次的更新时间;The update period acquisition module is used to obtain the current login time of the target speaker and the last update time of the target speaker's voiceprint model;
划分模块,用于将目标说话人声纹模型上一次的更新时间至目标说话人当前登录时间的时间段划分为多个时间聚团;The division module is used to divide the time period from the last update time of the target speaker's voiceprint model to the current login time of the target speaker into multiple time clusters;
语音数据获取模块,用于获取每个时间聚团内所述目标说话人声纹认证成功时的语音数据;Voice data acquisition module, used to acquire the voice data when the target speaker's voiceprint authentication is successful in each time cluster;
模型更新数据获取模块,用于从每个时间聚团内认证成功的语音数据中选择语音数据,并将选择的语音数据作为目标说话人声纹模型更新数据;The model update data acquisition module is used to select voice data from the voice data successfully authenticated in each time cluster, and use the selected voice data as the voiceprint model update data of the target speaker;
训练模块,用于利用所述目标说话人声纹模型更新数据及原声纹模型训练数据重新进行声纹模型训练,得到训练后的新声纹模型;The training module is used to re-train the voiceprint model by using the update data of the voiceprint model of the target speaker and the training data of the original voiceprint model to obtain a new voiceprint model after training;
模型更新模块,用于利用所述新声纹模型更新所述目标说话人声纹模型。A model updating module, configured to update the voiceprint model of the target speaker by using the new voiceprint model.
优选地,所述模型更新数据获取模块包括:Preferably, the model update data acquisition module includes:
获取单元,用于对于每个时间聚团,获取所述时间聚团内认证成功的语音数据相对目标说话人声纹模型的匹配度;The obtaining unit is used to obtain, for each time cluster, the matching degree of the voice data successfully authenticated in the time cluster relative to the voiceprint model of the target speaker;
筛选单元,用于筛选出大于设定的第一阈值的匹配度对应的语音数据;或者按照匹配度由大到小的顺序对各条语音数据进行排序,筛选出设定条数的语音数据。The filtering unit is used to filter out voice data corresponding to a matching degree greater than a set first threshold; or sort each piece of voice data in descending order of matching degree, and filter out a set number of voice data.
优选地,所述模型更新数据获取模块还包括:Preferably, the model update data acquisition module also includes:
采样单元,用于对每个时间聚团内所述筛选单元筛选出的语音数据进行采样。A sampling unit, configured to sample the speech data screened out by the screening unit in each time cluster.
优选地,所述系统还包括:Preferably, the system also includes:
接收模块,用于在对用户进行声纹认证时,获取当前用户的语音数据;The receiving module is used to obtain the voice data of the current user when performing voiceprint authentication on the user;
匹配度计算模块,用于计算所述当前用户的语音数据的声纹特征与目标说话人声纹模型的匹配度,将所述匹配度作为待规整匹配度;A matching degree calculation module, configured to calculate the matching degree between the voiceprint feature of the voice data of the current user and the target speaker's voiceprint model, and use the matching degree as the matching degree to be regularized;
规整模块,用于对所述待规整匹配度进行零规整,得到规整后的匹配度;A regularizing module, configured to perform zero regularization on the matching degree to be regularized to obtain the regularized matching degree;
判断模块,用于根据所述规整后的匹配度确定当前用户是否为目标说话人,如果规整后的匹配度大于设定的第二阈值,则确定当前用户为目标说话人。A judging module, configured to determine whether the current user is the target speaker according to the adjusted matching degree, and determine that the current user is the target speaker if the adjusted matching degree is greater than a set second threshold.
优选地,所述系统还包括:Preferably, the system also includes:
种子数据获取模块,用于预先收集大量来自不同说话人的语音数据作为种子数据,放入种子集合中;The seed data acquisition module is used to pre-collect a large amount of speech data from different speakers as seed data and put them into the seed collection;
第一计算模块,用于计算所述种子集合中每条语音数据的声纹特征与所述目标说话人声纹模型的匹配度,得到匹配度集合;The first calculation module is used to calculate the matching degree between the voiceprint feature of each piece of speech data in the seed set and the voiceprint model of the target speaker, to obtain a matching degree set;
第二计算模块,用于计算所述匹配度集合中所有匹配度的均值及标准差,并将计算得到的均值及标准差作为冒认者说话人语音数据的声纹特征与所述目标说话人声纹模型匹配度分布的均值及标准差;The second calculation module is used to calculate the mean value and standard deviation of all matching degrees in the matching degree set, and use the calculated mean value and standard deviation as the voiceprint feature of the voice data of the impostor speaker and the target speaker The mean and standard deviation of the matching degree distribution of the voiceprint model;
所述规整模块,具体用于利用所述均值及标准差对所述待规整匹配度进行零规整,得到规整后的匹配度。The normalizing module is specifically configured to use the mean value and standard deviation to perform zero normalization on the matching degree to be normalized to obtain the normalized matching degree.
本发明实施例提供的声纹模型更新方法及系统,将目标说话人的当前登录时间及目标说话人声纹模型上一次的更新时间划分为多个时间聚团,并获取每个时间聚团内的目标说话人声纹认证成功时的语音数据,然后从不同时间聚团内认证成功的语音数据选择语音数据作为目标说话人声纹模型更新数据,然后利用这些目标说话人声纹模型更新数据及原声纹模型训练数据重新进行声纹模型训练,并利用获取的新声纹模型更新目标说话人声纹模型,可以有效防止冒认者说话人在很短时间内持续更新目标说话人声纹模型,保证目标说话人声纹模型更新的正确性。The method and system for updating the voiceprint model provided by the embodiments of the present invention divide the current login time of the target speaker and the last update time of the voiceprint model of the target speaker into multiple time clusters, and obtain the information in each time cluster. The voice data of the target speaker's voiceprint authentication is successful, and then select the voice data from the voice data of the successful authentication in the cluster at different times as the update data of the target speaker's voiceprint model, and then use these target speaker's voiceprint model to update the data and The original voiceprint model training data is re-trained for the voiceprint model, and the new voiceprint model is used to update the target speaker's voiceprint model, which can effectively prevent the impostor speaker from continuously updating the target speaker's voiceprint model in a short period of time. Ensure the correctness of the target speaker's voiceprint model update.
附图说明Description of drawings
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明中记载的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present application or the prior art, the following will briefly introduce the accompanying drawings that are required in the embodiments. Obviously, the accompanying drawings in the following description are only described in the present invention For some embodiments of the present invention, those skilled in the art can also obtain other drawings according to these drawings.
图1是本发明实施例声纹模型更新方法的一种流程图;FIG. 1 is a flowchart of a method for updating a voiceprint model according to an embodiment of the present invention;
图2是本发明实施例对用户认证的一种流程图;Fig. 2 is a kind of flowchart of user authentication in the embodiment of the present invention;
图3是本发明实施例声纹模型更新系统的一种结构示意图;3 is a schematic structural diagram of a voiceprint model updating system according to an embodiment of the present invention;
图4是本发明实施例声纹模型更新系统中对用户进行认证的部分结构示意图。Fig. 4 is a partial structural diagram of authenticating a user in the system for updating a voiceprint model according to an embodiment of the present invention.
具体实施方式Detailed ways
为了使本技术领域的人员更好地理解本发明实施例的方案,下面结合附图和实施方式对本发明实施例作进一步的详细说明。In order to enable those skilled in the art to better understand the solutions of the embodiments of the present invention, the embodiments of the present invention will be further described in detail below in conjunction with the drawings and implementations.
本发明不同于现有技术:将所有认证成功用户的语音数据加入到原声纹模型训练数据中作为模型更新数据,导致更新数据中可能包含有冒认者语音数据,在更新目标说话人声纹模型时,使其偏离目标说话人声纹特征的问题。本发明将目标说话人的当前登录时间及目标说话人声纹模型上一次的更新时间划分为多个时间聚团,通过选择各时间聚团内认证成功的语音数据作为目标说话人声纹模型更新数据,然后利用这些数据及原声纹模型训练数据进行目标说话人声纹模型更新,能有效解决与目标说话人声纹相似的冒认者说话人在很短时间内连续冒认导致不断更新目标说话人声纹模型,使其偏离目标说话人声纹特征的问题,保证目标说话人声纹模型更新的正确性,进而保证后续对用户认证的正确性。The present invention is different from the prior art: the voice data of all users who have successfully authenticated are added to the training data of the original voiceprint model as model update data, resulting in the voice data of the impostor being included in the update data, and the voiceprint model of the target speaker is updated. , making it deviate from the target speaker's voiceprint characteristics. The present invention divides the current login time of the target speaker and the last update time of the voiceprint model of the target speaker into multiple time clusters, and selects the successfully authenticated voice data in each time cluster as the update of the voiceprint model of the target speaker data, and then use these data and the original voiceprint model training data to update the voiceprint model of the target speaker, which can effectively solve the problem of continuous impersonation of speakers who are similar to the voiceprint of the target speaker, resulting in continuous updating of the target speaker. The voiceprint model makes it deviate from the target speaker's voiceprint characteristics, and ensures the correctness of the update of the target speaker's voiceprint model, thereby ensuring the correctness of subsequent user authentication.
如图1所示,是本发明实施例声纹模型更新方法的一种流程图,包括以下步骤:As shown in Figure 1, it is a flow chart of the method for updating the voiceprint model in the embodiment of the present invention, including the following steps:
步骤101,获取目标说话人当前登录时间及目标说话人声纹模型上一次的更新时间。Step 101, obtain the current login time of the target speaker and the last update time of the voiceprint model of the target speaker.
在本实施例中,通过获取目标说话人当前登录时间及目标说话人声纹模型上一次的更新时间,将所述时间范围作为采集声纹模型更新数据的时间范围。目标说话人声纹模型更新周期可以根据用户的习惯来设定,例如,如果用户在某一段时间内登录频繁,而平常登录较少,模型更新时间可以设置较长,如一个月更新一次等;如果用户一直登录频繁,模型更新时间可以设置较短,如一周更新一次等。再比如,可以设定用户登录一定次数后对目标说话人声纹模型进行更新。In this embodiment, by acquiring the current login time of the target speaker and the last update time of the target speaker's voiceprint model, the time range is used as the time range for collecting voiceprint model update data. The target speaker’s voiceprint model update cycle can be set according to the user’s habits. For example, if the user logs in frequently in a certain period of time, but usually logs in less often, the model update time can be set longer, such as updating once a month; If the user has been logging in frequently, the model update time can be set to be shorter, such as once a week. For another example, it can be set that the target speaker's voiceprint model will be updated after the user logs in for a certain number of times.
步骤102,将目标说话人声纹模型上一次的更新时间至目标说话人当前登录时间的时间段划分为多个时间聚团。Step 102: Divide the time period from the last update time of the voiceprint model of the target speaker to the current login time of the target speaker into multiple time clusters.
可以根据预先确定的聚团数N,计算各个时间聚团的大小。The size of agglomerates at each time can be calculated according to the predetermined number N of agglomerates.
假设目标说话人当前登录时间为T1,声纹模型上一次的更新时间为T2,第i个时间聚团大小为ti,具体如式(1)所示:Assume that the current login time of the target speaker is T 1 , the last update time of the voiceprint model is T 2 , and the cluster size at the i-th time is t i , as shown in formula (1):
其中,λi为影响因子,所述影响因子根据实际应用环境而定,具体取值可以人工设定,也可以通过大量数据训练得出。如实际应用环境在某段时间内网络安全性较差,黑客较多,此时需要相应增加影响因子λi,扩大时间聚团大小ti,防止冒认者说话人在较短时间内连续录入大量语音数据持续将目标说话人模型更新。当时,即为平均划分每个时间聚团大小。Among them, λ i is the impact factor, The impact factor depends on the actual application environment, and the specific value can be set manually or obtained through training with a large amount of data. If the actual application environment has poor network security and many hackers in a certain period of time, it is necessary to increase the influence factor λ i accordingly to expand the time cluster size t i to prevent the impostor speaker from continuously entering in a short period of time A large amount of speech data continuously updates the target speaker model. when , it is the average division of each time cluster size.
步骤103,获取每个时间聚团内所述目标说话人声纹认证成功时的语音数据。Step 103, acquiring voice data of the target speaker in each time cluster when the voiceprint authentication is successful.
在实际应用中,在对用户进行声纹认证时,对每次认证成功后,可以记录本次认证成功的目标说话人的语音数据,这样,在后续对声纹模型更新时,即可从这些记录中获取相应的语音数据。In practical applications, when voiceprint authentication is performed on a user, after each successful authentication, the voice data of the target speaker whose authentication is successful this time can be recorded, so that when the voiceprint model is updated in the future, these Get the corresponding voice data in the record.
步骤104,从每个时间聚团内认证成功的语音数据中选择语音数据,作为目标说话人声纹模型更新数据。Step 104, select speech data from the speech data successfully authenticated in each time cluster as the update data of the voiceprint model of the target speaker.
具体地,可以随机选择各时间聚团内认证成功的语音数据,而且,每个时间聚团内选出的语音数据的条数可以相同,也可以不同,对此本发明实施例不做限定。Specifically, the authenticated voice data in each time cluster can be randomly selected, and the number of pieces of voice data selected in each time cluster can be the same or different, which is not limited in this embodiment of the present invention.
另外,为了进一步提高选取出的更新数据的有效性,还可以根据匹配度对各时间聚团内的语音数据进行筛选,具体地,可以获取所述时间聚团内认证成功的各语音数据相对目标说话人声纹模型的匹配度,然后按照匹配度得分选择语音数据的方式进行筛选,比如:In addition, in order to further improve the effectiveness of the selected update data, the voice data in each time cluster can also be screened according to the matching degree, specifically, the relative target of each voice data successfully authenticated in the time cluster can be obtained The matching degree of the speaker's voiceprint model is then screened by selecting voice data according to the matching degree score, for example:
如果所述匹配度大于设定的第一阈值,则筛选出所述匹配度对应的语音数据;或者If the matching degree is greater than a set first threshold, then filter out the voice data corresponding to the matching degree; or
按照匹配度由大到小的顺序对各条语音数据进行排序,筛选出设定条数的语音数据。The pieces of voice data are sorted in descending order of matching degree, and the voice data with a set number of pieces are screened out.
所述第一阈值可以为实验结果或经验取值。The first threshold may be an experimental result or an empirical value.
同样,在对用户进行声纹认证时,对每次认证成功后,可以记录本次认证成功的语音数据相对目标说话人声纹模型的匹配度,这样,在后续对声纹模型更新时,即可从这些记录中获取相应的匹配度。Similarly, when performing voiceprint authentication on a user, after each successful authentication, it is possible to record the matching degree of the voice data of this successful authentication relative to the voiceprint model of the target speaker, so that when the voiceprint model is updated later, that is Corresponding matching degrees can be obtained from these records.
因为每个时间段内选择的数据越少,冒认者越不容易冒认。因此为了防止冒认者短时间内密集冒认,还可以对每个时间聚团内筛选出的语音数据进行采样,得到目标说话人声纹模型更新数据。如果一个时间聚团内筛选出的语音数据为0条,则不进行采样,如果为1条,则直接使用,如果大于1条,则可以从中选择1条或多条语音数据,具体采样方法可以为随机采样或其它采样方法。Because the less data selected in each time period, the less likely it is for an impostor to impersonate. Therefore, in order to prevent impersonators from intensively impersonating in a short period of time, the speech data screened out in each time cluster can also be sampled to obtain the update data of the voiceprint model of the target speaker. If the speech data screened out in a time cluster is 0, no sampling will be performed, if it is 1, it will be used directly, if it is more than 1, one or more speech data can be selected from it, the specific sampling method can be For random sampling or other sampling methods.
步骤105,利用所述目标说话人声纹模型更新数据及原声纹模型训练数据重新进行声纹模型训练,得到训练后的新声纹模型。Step 105, using the voiceprint model update data of the target speaker and the original voiceprint model training data to perform voiceprint model training again to obtain a new trained voiceprint model.
在本实施例中,根据得到的目标说话人声纹模型更新数据及原声纹模型训练数据重新训练声纹模型,得到新声纹模型。In this embodiment, the voiceprint model is retrained according to the obtained target speaker's voiceprint model update data and original voiceprint model training data to obtain a new voiceprint model.
步骤106,利用所述新声纹模型更新所述目标说话人声纹模型。Step 106, using the new voiceprint model to update the voiceprint model of the target speaker.
即利用步骤105得到的新声纹模型对所述目标说话人声纹模型进行更新。That is, the target speaker's voiceprint model is updated by using the new voiceprint model obtained in step 105 .
由于本发明方法将更新周期划分为多个时间聚团,然后从各个时间聚团内认证成功的语音数据中选择得到目标说话人声纹模型更新数据,避免了与目标说话人相似的冒认者说话人在很短时间内连续冒认时,最终导致目标说话人无法认证的问题,保证了目标说话人声纹模型更新的正确性,进而保证了后续对用户认证的正确性。Since the method of the present invention divides the update period into multiple time clusters, and then selects the update data of the voiceprint model of the target speaker from the voice data successfully authenticated in each time cluster, avoiding the impersonator who is similar to the target speaker When the speaker continues to impersonate in a short period of time, the target speaker cannot be authenticated, which ensures the correctness of the update of the target speaker's voiceprint model, thereby ensuring the correctness of subsequent user authentication.
需要说明的是,本发明实施例的声纹模型更新方法可以应用于各种声纹认证方案中,对此本发明不做限定。It should be noted that the method for updating the voiceprint model in the embodiment of the present invention can be applied to various voiceprint authentication schemes, which is not limited in the present invention.
由于不同用户使用频率不同,导致声纹模型更新程度不同,对于使用频率较高的用户模型匹配度往往偏高,而对于使用频率较低的用户,模型匹配度往往会偏低,即不同用户的模型匹配度分布不一致。Due to the different frequency of use by different users, the update degree of the voiceprint model is different. For users with high frequency of use, the model matching degree is often high, while for users with low frequency of use, the model matching degree is often low, that is, the model matching degree of different users The model fit distribution is inconsistent.
考虑到这种情况,在本发明方法另一实施例中,还可通过零规整方式对用户进行身份认证,以解决上述不同用户的声纹模型更新程度不同而导致的模型匹配度分布不一致的问题。该实施例中,对用户认证的流程如图2所示,包括以下步骤:Considering this situation, in another embodiment of the method of the present invention, the identity authentication of the user can also be performed in a zero-regular manner, so as to solve the above-mentioned problem of inconsistency in the distribution of the model matching degree caused by the different updating degrees of the voiceprint models of different users . In this embodiment, the flow process of user authentication is as shown in Figure 2, including the following steps:
步骤201,在对用户进行声纹认证时,获取当前用户的语音数据。Step 201, when voiceprint authentication is performed on a user, voice data of the current user is acquired.
步骤202,计算所述当前用户的语音数据的声纹特征与目标说话人声纹模型的匹配度,将所述匹配度作为待规整匹配度。Step 202, calculating the matching degree between the voiceprint feature of the current user's voice data and the target speaker's voiceprint model, and using the matching degree as the matching degree to be regularized.
匹配度的计算如式(2)所示规整:The calculation of the matching degree is regularized as shown in formula (2):
其中,P(X|SM)为声纹特征X相对说话人声纹模型SM(Speaker Model,SM)的似然度,P(X|UBM)为声纹特征X相对通用背景模型UBM(Universal Background Model,UBM)的似然度。所述声纹模型SM和通用背景模型UBM可以通过收集数据预先进行构建。Among them, P(X|SM) is the likelihood of the voiceprint feature X relative to the speaker's voiceprint model SM (Speaker Model, SM), P(X|UBM) is the voiceprint feature X relative to the universal background model UBM (Universal Background Model, UBM) likelihood. The voiceprint model SM and the universal background model UBM can be constructed in advance by collecting data.
步骤203,对所述待规整匹配度进行零规整,得到规整后的匹配度。Step 203, performing zero rounding on the matching degree to be regularized to obtain the matching degree after regularization.
在本发明实施例中,可以利用冒认者说话人在目标说话人模型上匹配度分布的均值μ及标准差σ对上述匹配度进行规整,得到规整后的匹配度S'。In the embodiment of the present invention, the above-mentioned matching degree can be regularized by using the mean μ and standard deviation σ of the matching degree distribution of the impostor speaker on the target speaker model to obtain the regularized matching degree S′.
规整后的匹配度分布大致可以被规整到均值为0,方差为1的标准正态分布上,具体如式(3)所示:The regularized matching degree distribution can roughly be regularized to a standard normal distribution with a mean of 0 and a variance of 1, as shown in formula (3):
其中,S为待规整匹配度。Among them, S is the matching degree to be regularized.
上述均值μ及标准差σ可以按以下方式来计算:The above mean value μ and standard deviation σ can be calculated as follows:
1.预先收集大量来自不同说话人的语音数据作为种子数据,放入种子集合中;1. Pre-collect a large amount of speech data from different speakers as seed data and put them into the seed collection;
2.计算所述种子集合中每条语音数据的声纹特征与所述目标说话人声纹模型的匹配度QS,得到匹配度集合,如下式(4)所示:2. Calculate the matching degree QS of the voiceprint feature of each piece of voice data in the seed collection and the target speaker's voiceprint model, obtain the matching degree set, as shown in the following formula (4):
其中,QSi表示第i条语音数据的声纹特征相对目标说话人模型匹配度,Ai表示第i条语音数据的声纹特征。Among them, QS i represents the matching degree of the voiceprint feature of the i-th voice data with respect to the target speaker model, and A i represents the voiceprint feature of the i-th voice data.
3.计算所述匹配度集合中所有匹配度的均值及标准差,并将计算得到的均值及标准差作为冒认者说话人语音数据的声纹特征与所述目标说话人声纹模型匹配度分布的均值及标准差。3. Calculate the mean and standard deviation of all matching degrees in the matching degree set, and use the calculated mean and standard deviation as the matching degree between the voiceprint feature of the voice data of the impostor speaker and the voiceprint model of the target speaker The mean and standard deviation of the distribution.
具体地,需要计算所述种子集合中每条语音特征相对目标发音人模型匹配度的均值及标准差,具体计算方法如式(5)和式(6)所示:Specifically, it is necessary to calculate the mean and standard deviation of the matching degree of each speech feature in the seed set relative to the target speaker model, and the specific calculation methods are shown in formula (5) and formula (6):
其中,N表示种子集合中语音条数。Among them, N represents the number of voice entries in the seed set.
步骤204,判断规整后的匹配度是否大于设定的第二阈值;如果是,则执行步骤205;否则,执行步骤206。Step 204, judging whether the matching degree after regularization is greater than the set second threshold; if yes, go to step 205; otherwise, go to step 206.
步骤205,认证成功,确定当前用户为目标说话人。Step 205, the authentication is successful, and the current user is determined as the target speaker.
步骤206,认证失败。Step 206, the authentication fails.
所述第二阈值一般可以根据实验结果或经验取值。Generally, the second threshold can be set according to experimental results or experience.
本发明实施例提供的声纹认证方法,通过计算当前用户的语音数据的声纹特征与目标说话人声纹模型的匹配度,将所述匹配度进行零规整以得到规整后的匹配度,将其与设定的第二阈值进行比较,判断当前用户是否为目标说话人,由于采用了大量非目标说话人语音数据与目标说话人声纹模型匹配度的均值及标准差,对当前用户语音数据匹配度进行零规整,进一步避免了不同用户的声纹模型更新程度不同导致的模型匹配度分布不一致的问题。The voiceprint authentication method provided by the embodiment of the present invention calculates the matching degree between the voiceprint feature of the current user's voice data and the voiceprint model of the target speaker, and zero-adjusts the matching degree to obtain the adjusted matching degree. It is compared with the set second threshold to determine whether the current user is the target speaker. Due to the use of a large number of non-target speaker voice data and the target speaker voiceprint model matching average and standard deviation, the current user voice data The matching degree is adjusted to zero, which further avoids the problem of inconsistent model matching degree distribution caused by different update degrees of voiceprint models of different users.
相应地,本发明实施例还提供一种声纹模型更新系统,如图3所示,是该系统的一种结构示意图。Correspondingly, an embodiment of the present invention also provides a system for updating a voiceprint model, as shown in FIG. 3 , which is a schematic structural diagram of the system.
在该实施例中,所述该系统包括:In this embodiment, the system includes:
更新时段获取模块300,用于获取目标说话人当前登录时间及目标说话人声纹模型上一次的更新时间;The update period acquisition module 300 is used to acquire the current login time of the target speaker and the last update time of the voiceprint model of the target speaker;
划分模块301,用于将目标说话人声纹模型上一次的更新时间至目标说话人当前登录时间的时间段划分为多个时间聚团;The division module 301 is used to divide the time period from the last update time of the target speaker's voiceprint model to the current login time of the target speaker into a plurality of time clusters;
语音数据获取模块302,用于获取每个时间聚团内所述目标说话人声纹认证成功时的语音数据;Voice data acquisition module 302, for acquiring the voice data when the voiceprint authentication of the target speaker in each time cluster is successful;
模型更新数据获取模块303,用于从每个时间聚团内认证成功的语音数据选择语音数据,作为目标说话人声纹模型更新数据;Model update data acquisition module 303, used to select voice data from the voice data of successful authentication in each time group, as the voiceprint model update data of the target speaker;
训练模块304,用于利用所述目标说话人声纹模型更新数据及原声纹模型训练数据重新进行声纹模型训练,得到训练后的新声纹模型;The training module 304 is used to re-train the voiceprint model by using the voiceprint model update data of the target speaker and the original voiceprint model training data to obtain a new voiceprint model after training;
模型更新模块305,用于利用所述新声纹模型更新所述目标说话人声纹模型。A model updating module 305, configured to use the new voiceprint model to update the voiceprint model of the target speaker.
上述模型更新数据获取模块303具体可以针对每个时间聚团内语音数据的条数确定该时间聚团内选择的语音数据的条数并随机选择该时间聚团内目标说话人声纹认证成功时的语音数据,不同时间聚团内选择的语音数据的条数可以相同,也可以不同,对此本发明实施例不做限定。The above-mentioned model update data acquisition module 303 can specifically determine the number of pieces of voice data selected in the time cluster according to the number of pieces of voice data in the time cluster and randomly select the voiceprint authentication of the target speaker in the time cluster. voice data, the number of pieces of voice data selected in clusters at different times may be the same or different, which is not limited in this embodiment of the present invention.
另外,为了进一步使选择的语音数据更有效,模型更新数据获取模块303还可以根据匹配度对每个时间聚团内的语音数据进行筛选。相应地,模型更新数据获取模块303的一种具体结构包括:In addition, in order to further make the selected speech data more effective, the model update data acquisition module 303 can also filter the speech data in each time cluster according to the matching degree. Correspondingly, a specific structure of the model update data acquisition module 303 includes:
获取单元,用于对于每个时间聚团,获取所述时间聚团内的各语音数据相对目标说话人声纹模型的匹配度。The acquisition unit is configured to, for each temporal cluster, acquire the matching degree of each voice data in the temporal cluster with respect to the target speaker's voiceprint model.
筛选单元,用于筛选出大于设定的第一阈值的匹配度对应的语音数据;或者按照匹配度由大到小的顺序对各条语音数据进行排序,筛选出设定条数的语音数据。The filtering unit is used to filter out voice data corresponding to a matching degree greater than a set first threshold; or sort each piece of voice data in descending order of matching degree, and filter out a set number of voice data.
为了进一步防止冒认者短时间内密集冒认,在模型更新数据获取模块303另一实施例中,还可包括:In order to further prevent impersonators from intensive impersonation in a short period of time, in another embodiment of the model update data acquisition module 303, it may also include:
采样单元,用于对每个时间聚团内筛选出的语音数据进行采样,得到目标说话人声纹模型更新数据。The sampling unit is configured to sample the speech data screened out in each time cluster to obtain update data of the target speaker's voiceprint model.
本发明实施例的声纹模型更新系统通过将声纹更新周期划分为多个时间聚团,然后从各时间聚团内认证成功的语音数据中选择得到目标说话人声纹模型更新数据,然后利用其和原声纹模型训练数据重新训练新的声纹模型,对原声纹模型进行更新,避免了与目标说话人声纹特征相近的冒认说话人在短时间内连续更新目标说话人声纹模型,使其偏离目标说话人声纹特征,导致目标说话人在后续声纹认证中不能认证成功的问题,保证了目标说话人声纹模型更新的正确性,进而保证了后续对用户认证的正确性。The voiceprint model update system in the embodiment of the present invention divides the voiceprint update period into multiple time clusters, and then selects the voiceprint model update data of the target speaker from the successfully authenticated voice data in each time cluster, and then uses It retrains a new voiceprint model with the training data of the original voiceprint model, and updates the original voiceprint model, which prevents the fake speaker who is similar to the voiceprint feature of the target speaker from continuously updating the voiceprint model of the target speaker in a short period of time. Making it deviate from the voiceprint characteristics of the target speaker leads to the problem that the target speaker cannot be successfully authenticated in the subsequent voiceprint authentication, which ensures the correctness of the update of the target speaker's voiceprint model, thereby ensuring the correctness of subsequent user authentication.
此外,在实际应用中,不同用户使用声纹认证的频率不同,通常使用频率较高的用户模型匹配度偏高,而使用频率较低的用户,则模型匹配度往往会偏低,即不同用户的模型匹配度分布不一致,因此,为了解决这一问题,如图4所示,所述系统还可进一步包括:In addition, in practical applications, different users use voiceprint authentication at different frequencies. Generally, users with higher frequency of use have a higher degree of model matching, while users with lower frequency of use often have a lower degree of model matching. That is, different users The model matching degree distribution of is not consistent, therefore, in order to solve this problem, as shown in Figure 4, the system can further include:
接收模块400,用于在对用户进行声纹认证时,获取当前用户的语音数据;The receiving module 400 is used to obtain the voice data of the current user when performing voiceprint authentication on the user;
匹配度计算模块401,用于计算所述当前用户的语音数据的声纹特征与目标说话人声纹模型的匹配度,将所述匹配度作为待规整匹配度;The matching degree calculation module 401 is used to calculate the matching degree between the voiceprint feature of the voice data of the current user and the target speaker's voiceprint model, and use the matching degree as the matching degree to be regularized;
规整模块402,用于对所述待规整匹配度进行零规整,得到规整后的匹配度;A regularizing module 402, configured to perform zero regularization on the matching degree to be regularized to obtain a regularized matching degree;
判断模块403,用于根据所述规整后的匹配度确定当前用户是否为目标说话人,如果规整后的匹配度大于设定的第二阈值,则确定当前用户为目标说话人。A judging module 403, configured to determine whether the current user is the target speaker according to the adjusted matching degree, and determine the current user as the target speaker if the adjusted matching degree is greater than a set second threshold.
当然,在实际应用中,该系统还可进一步包括:存储模块(未图示),用于保存认证成功的用户(即目标说话人)信息,比如:认证时间、认证成功的语音数据、认证成功的语音数据相对目标说话人声纹模型的匹配度等。这样,上述语音数据获取模块302就可以直接从该存储模块中获取每个时间聚团内所述目标说话人声纹认证成功时的语音数据。Of course, in practical applications, the system may further include: a storage module (not shown), which is used to save the information of the successfully authenticated user (ie, the target speaker), such as: authentication time, voice data of successful authentication, successful authentication The matching degree of the voice data of the target speaker with the voiceprint model of the target speaker, etc. In this way, the above-mentioned voice data acquisition module 302 can directly acquire the voice data when the voiceprint authentication of the target speaker in each time cluster is successful from the storage module.
其中,所述规整模块402可以利用大量不同说话人语音数据与目标说话人声纹模型匹配度的均值及标准差,对当前用户的匹配度进行零规整,以得到规整后的匹配度,利用所述规整后的匹配度进行声纹认证。Wherein, the regularization module 402 can use the mean value and standard deviation of the matching degree of a large number of different speaker voice data and the voiceprint model of the target speaker to carry out zero regularization on the matching degree of the current user to obtain the regularized matching degree. Perform voiceprint authentication based on the regularized matching degree.
所述大量不同说话人语音数据与目标说话人声纹模型匹配度的均值及标准差可以通过以下几个模块来获取:The mean value and standard deviation of the matching degree between the voice data of a large number of different speakers and the voiceprint model of the target speaker can be obtained through the following modules:
种子数据获取模块,用于预先收集大量来自不同说话人的语音数据作为种子数据,放入种子集合中;The seed data acquisition module is used to pre-collect a large amount of speech data from different speakers as seed data and put them into the seed collection;
第一计算模块,用于计算所述种子集合中每条语音数据的声纹特征与所述目标说话人声纹模型的匹配度,得到匹配度集合;The first calculation module is used to calculate the matching degree between the voiceprint feature of each piece of speech data in the seed set and the voiceprint model of the target speaker, to obtain a matching degree set;
第二计算模块,用于计算所述匹配度集合中所有匹配度的均值及标准差,并将计算得到的均值及标准差作为冒认者说话人语音数据的声纹特征与所述目标说话人声纹模型匹配度分布的均值及标准差。The second calculation module is used to calculate the mean value and standard deviation of all matching degrees in the matching degree set, and use the calculated mean value and standard deviation as the voiceprint feature of the voice data of the impostor speaker and the target speaker The mean and standard deviation of the matching degree distribution of the voiceprint model.
本发明实施例提供的声纹认证系统,通过计算当前用户的语音数据的声纹特征与目标说话人声纹模型的匹配度,将所述匹配度进行零规整以得到规整后的匹配度,将其与设定的第二阈值进行比较,判断当前用户是否为目标说话人,由于采用了大量非目标说话人语音数据与目标说话人声纹模型匹配度的均值及标准差,对当前用户语音数据匹配度进行零规整,进一步避免了不同用户的声纹模型更新程度不同导致的模型匹配度分布不一致的问题。The voiceprint authentication system provided by the embodiment of the present invention calculates the matching degree between the voiceprint feature of the current user's voice data and the target speaker's voiceprint model, and zero-adjusts the matching degree to obtain the adjusted matching degree. It is compared with the set second threshold to determine whether the current user is the target speaker. Since a large number of non-target speaker voice data and the target speaker's voiceprint model matching mean and standard deviation are used, the current user voice data The matching degree is adjusted to zero, which further avoids the problem of inconsistent model matching degree distribution caused by different update degrees of voiceprint models of different users.
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统实施例而言,由于其基本相似于方法实施例,所以描述得比较简单,相关之处参见方法实施例的部分说明即可。以上所描述的系统实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。Each embodiment in this specification is described in a progressive manner, the same and similar parts of each embodiment can be referred to each other, and each embodiment focuses on the differences from other embodiments. In particular, as for the system embodiment, since it is basically similar to the method embodiment, the description is relatively simple, and for related parts, please refer to part of the description of the method embodiment. The system embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network elements. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. It can be understood and implemented by those skilled in the art without creative effort.
以上对本发明实施例进行了详细介绍,本文中应用了具体实施方式对本发明进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及系统;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。The embodiments of the present invention have been introduced in detail above, and the present invention has been described by using specific implementation methods in this paper. The description of the above embodiments is only used to help understand the method and system of the present invention; at the same time, for those of ordinary skill in the art, According to the idea of the present invention, there will be changes in the specific implementation and scope of application. To sum up, the contents of this specification should not be construed as limiting the present invention.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201510149390.3A CN106157959B (en) | 2015-03-31 | 2015-03-31 | voiceprint model updating method and system |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201510149390.3A CN106157959B (en) | 2015-03-31 | 2015-03-31 | voiceprint model updating method and system |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN106157959A CN106157959A (en) | 2016-11-23 |
| CN106157959B true CN106157959B (en) | 2019-10-18 |
Family
ID=57337226
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201510149390.3A Active CN106157959B (en) | 2015-03-31 | 2015-03-31 | voiceprint model updating method and system |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN106157959B (en) |
Families Citing this family (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107424614A (en) * | 2017-07-17 | 2017-12-01 | 广东讯飞启明科技发展有限公司 | A kind of sound-groove model update method |
| CN109559759B (en) | 2017-09-27 | 2021-10-08 | 华硕电脑股份有限公司 | Electronic device with incremental registration unit and method thereof |
| CN107799120A (en) * | 2017-11-10 | 2018-03-13 | 北京康力优蓝机器人科技有限公司 | Service robot identifies awakening method and device |
| TWI654600B (en) * | 2017-11-29 | 2019-03-21 | 隆宸星股份有限公司 | Speech emotion recognition system and method and intelligent robot using same |
| CN108198574B (en) * | 2017-12-29 | 2020-12-08 | 科大讯飞股份有限公司 | Sound change detection method and device |
| CN108269575B (en) * | 2018-01-12 | 2021-11-02 | 平安科技(深圳)有限公司 | Voice recognition method for updating voiceprint data, terminal device and storage medium |
| CN108806695A (en) * | 2018-04-17 | 2018-11-13 | 平安科技(深圳)有限公司 | Anti- fraud method, apparatus, computer equipment and the storage medium of self refresh |
| CN108806696B (en) * | 2018-05-08 | 2020-06-05 | 平安科技(深圳)有限公司 | Method, apparatus, computer equipment and storage medium for establishing voiceprint model |
| CN108831484A (en) * | 2018-05-29 | 2018-11-16 | 广东声将军科技有限公司 | A kind of offline and unrelated with category of language method for recognizing sound-groove and device |
| CN108985035B (en) * | 2018-06-22 | 2020-07-07 | Oppo广东移动通信有限公司 | Control method, device, storage medium and electronic device for user operation authority |
| CN109378003B (en) * | 2018-11-02 | 2021-10-01 | 科大讯飞股份有限公司 | A method and system for training a voiceprint model |
| CN110110790B (en) * | 2019-05-08 | 2021-07-06 | 中国科学技术大学 | Speaker Confirmation Method Using Unsupervised Clustering Score Regularization |
| CN110660398B (en) * | 2019-09-19 | 2020-11-20 | 北京三快在线科技有限公司 | Voiceprint feature updating method and device, computer equipment and storage medium |
| CN110827834B (en) * | 2019-11-11 | 2022-07-12 | 广州国音智能科技有限公司 | Voiceprint registration method, system and computer readable storage medium |
| CN114464195B (en) * | 2021-12-23 | 2025-04-22 | 厦门快商通科技股份有限公司 | A self-supervised learning voiceprint recognition model training method, device and readable medium |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101636784A (en) * | 2007-03-20 | 2010-01-27 | 富士通株式会社 | Speech recognition system, speech recognition program and speech recognition method |
| CN102760434A (en) * | 2012-07-09 | 2012-10-31 | 华为终端有限公司 | Method for updating voiceprint feature model and terminal |
| CN104143327A (en) * | 2013-07-10 | 2014-11-12 | 腾讯科技(深圳)有限公司 | An acoustic model training method and device |
| CN104183238A (en) * | 2014-09-09 | 2014-12-03 | 深圳市和音达科技有限公司 | Old people voiceprint recognition method based on questioning and answering |
| GB2516208A (en) * | 2012-10-25 | 2015-01-21 | Azenby Ltd | Noise reduction in voice communications |
| JP2015022112A (en) * | 2013-07-18 | 2015-02-02 | 独立行政法人産業技術総合研究所 | Voice section detection apparatus and method |
| CN104392718A (en) * | 2014-11-26 | 2015-03-04 | 河海大学 | Robust voice recognition method based on acoustic model array |
| CN104424943A (en) * | 2013-08-23 | 2015-03-18 | 株式会社东芝 | Speech processing system and method |
-
2015
- 2015-03-31 CN CN201510149390.3A patent/CN106157959B/en active Active
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101636784A (en) * | 2007-03-20 | 2010-01-27 | 富士通株式会社 | Speech recognition system, speech recognition program and speech recognition method |
| CN102760434A (en) * | 2012-07-09 | 2012-10-31 | 华为终端有限公司 | Method for updating voiceprint feature model and terminal |
| GB2516208A (en) * | 2012-10-25 | 2015-01-21 | Azenby Ltd | Noise reduction in voice communications |
| CN104143327A (en) * | 2013-07-10 | 2014-11-12 | 腾讯科技(深圳)有限公司 | An acoustic model training method and device |
| JP2015022112A (en) * | 2013-07-18 | 2015-02-02 | 独立行政法人産業技術総合研究所 | Voice section detection apparatus and method |
| CN104424943A (en) * | 2013-08-23 | 2015-03-18 | 株式会社东芝 | Speech processing system and method |
| CN104183238A (en) * | 2014-09-09 | 2014-12-03 | 深圳市和音达科技有限公司 | Old people voiceprint recognition method based on questioning and answering |
| CN104392718A (en) * | 2014-11-26 | 2015-03-04 | 河海大学 | Robust voice recognition method based on acoustic model array |
Non-Patent Citations (1)
| Title |
|---|
| 基于GMM模型的声纹识别模式匹配研究;于娴 等;《通信技术》;20150131;第97-101页 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN106157959A (en) | 2016-11-23 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN106157959B (en) | voiceprint model updating method and system | |
| CN110164452B (en) | A voiceprint recognition method, model training method and server | |
| JP6429945B2 (en) | Method and apparatus for processing audio data | |
| CN107527620B (en) | Electronic device, the method for authentication and computer readable storage medium | |
| CN108417217B (en) | Speaker recognition network model training method, speaker recognition method and system | |
| TWI641965B (en) | Method and system of authentication based on voiceprint recognition | |
| CN109147807B (en) | A method, device and system for sound field balance based on deep learning | |
| WO2021051608A1 (en) | Voiceprint recognition method and device employing deep learning, and apparatus | |
| WO2019100606A1 (en) | Electronic device, voiceprint-based identity verification method and system, and storage medium | |
| WO2020181824A1 (en) | Voiceprint recognition method, apparatus and device, and computer-readable storage medium | |
| US10188351B2 (en) | Electrocardiogram (ECG) signal based authentication apparatus and method | |
| CN103562993B (en) | Speaker recognition method and device | |
| WO2017215558A1 (en) | Voiceprint recognition method and device | |
| CN107886943A (en) | Voiceprint recognition method and device | |
| CN107886957A (en) | Voice wake-up method and device combined with voiceprint recognition | |
| Al-Naffakh et al. | Unobtrusive gait recognition using smartwatches | |
| CN107424614A (en) | A kind of sound-groove model update method | |
| CN113988314A (en) | Cluster federal learning method and system for selecting client | |
| CN113593579B (en) | Voiceprint recognition method and device and electronic equipment | |
| CN108256449A (en) | A kind of Human bodys' response method based on subspace grader | |
| CN114464193A (en) | Voiceprint clustering method and device, storage medium and electronic device | |
| CN112491677B (en) | CAN bus identification method and device based on physical layer feature fingerprint | |
| CN106039711A (en) | User identity authentication method and device | |
| WO2019136811A1 (en) | Audio comparison method, and terminal and computer-readable storage medium | |
| CN117975969A (en) | Voice unlocking method, device and system of NAS equipment |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |