CN106158610B - Floating gate structure, method for fabricating the same, and flash memory including the same - Google Patents
Floating gate structure, method for fabricating the same, and flash memory including the same Download PDFInfo
- Publication number
- CN106158610B CN106158610B CN201510161268.8A CN201510161268A CN106158610B CN 106158610 B CN106158610 B CN 106158610B CN 201510161268 A CN201510161268 A CN 201510161268A CN 106158610 B CN106158610 B CN 106158610B
- Authority
- CN
- China
- Prior art keywords
- layer
- floating gate
- polysilicon
- gate structure
- liner
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000007667 floating Methods 0.000 title claims abstract description 47
- 238000000034 method Methods 0.000 title claims description 52
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 84
- 229920005591 polysilicon Polymers 0.000 claims abstract description 84
- 239000000463 material Substances 0.000 claims abstract description 68
- 239000000758 substrate Substances 0.000 claims abstract description 61
- 238000004519 manufacturing process Methods 0.000 claims abstract description 25
- 238000002955 isolation Methods 0.000 claims description 102
- 150000002500 ions Chemical class 0.000 claims description 55
- 238000005530 etching Methods 0.000 claims description 45
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 18
- 229910052796 boron Inorganic materials 0.000 claims description 15
- 239000007789 gas Substances 0.000 claims description 15
- 239000000126 substance Substances 0.000 claims description 15
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 14
- 238000000151 deposition Methods 0.000 claims description 12
- 238000000137 annealing Methods 0.000 claims description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 11
- 239000001301 oxygen Substances 0.000 claims description 11
- 229910052760 oxygen Inorganic materials 0.000 claims description 11
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims description 10
- -1 boron ions Chemical class 0.000 claims description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 8
- 230000008021 deposition Effects 0.000 claims description 8
- 239000012535 impurity Substances 0.000 claims description 8
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 7
- 238000011065 in-situ storage Methods 0.000 claims description 7
- 229910015900 BF3 Inorganic materials 0.000 claims description 6
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 claims description 6
- CZDYPVPMEAXLPK-UHFFFAOYSA-N tetramethylsilane Chemical compound C[Si](C)(C)C CZDYPVPMEAXLPK-UHFFFAOYSA-N 0.000 claims description 6
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 5
- 238000005429 filling process Methods 0.000 claims description 5
- 235000012239 silicon dioxide Nutrition 0.000 claims description 4
- 239000000377 silicon dioxide Substances 0.000 claims description 4
- 239000011810 insulating material Substances 0.000 claims description 3
- 239000002253 acid Substances 0.000 claims 1
- 239000000203 mixture Substances 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 6
- 125000006850 spacer group Chemical group 0.000 abstract description 5
- 238000013500 data storage Methods 0.000 abstract description 4
- 238000009792 diffusion process Methods 0.000 description 23
- 238000010586 diagram Methods 0.000 description 18
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 13
- 229910052710 silicon Inorganic materials 0.000 description 13
- 239000010703 silicon Substances 0.000 description 13
- 229910052581 Si3N4 Inorganic materials 0.000 description 11
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 11
- 239000004065 semiconductor Substances 0.000 description 9
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- XPDWGBQVDMORPB-UHFFFAOYSA-N Fluoroform Chemical compound FC(F)F XPDWGBQVDMORPB-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 238000005468 ion implantation Methods 0.000 description 3
- 229920002120 photoresistant polymer Polymers 0.000 description 3
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910021419 crystalline silicon Inorganic materials 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 238000009616 inductively coupled plasma Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000005036 potential barrier Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- UHCBBWUQDAVSMS-UHFFFAOYSA-N fluoroethane Chemical compound CCF UHCBBWUQDAVSMS-UHFFFAOYSA-N 0.000 description 1
- 229940104869 fluorosilicate Drugs 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- VTGARNNDLOTBET-UHFFFAOYSA-N gallium antimonide Chemical compound [Sb]#[Ga] VTGARNNDLOTBET-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- WMIYKQLTONQJES-UHFFFAOYSA-N hexafluoroethane Chemical compound FC(F)(F)C(F)(F)F WMIYKQLTONQJES-UHFFFAOYSA-N 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 1
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 239000005368 silicate glass Substances 0.000 description 1
- OCGWQDWYSQAFTO-UHFFFAOYSA-N tellanylidenelead Chemical compound [Pb]=[Te] OCGWQDWYSQAFTO-UHFFFAOYSA-N 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/76224—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/76224—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
- H01L21/76237—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials introducing impurities in trench side or bottom walls, e.g. for forming channel stoppers or alter isolation behavior
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B41/00—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
- H10B41/30—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/01—Manufacture or treatment
- H10D64/031—Manufacture or treatment of data-storage electrodes
- H10D64/035—Manufacture or treatment of data-storage electrodes comprising conductor-insulator-conductor-insulator-semiconductor structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/60—Electrodes characterised by their materials
- H10D64/66—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
- H10D64/661—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes the conductor comprising a layer of silicon contacting the insulator, e.g. polysilicon having vertical doping variation
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/60—Electrodes characterised by their materials
- H10D64/66—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
- H10D64/671—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes the conductor having lateral variation in doping or structure
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Semiconductor Memories (AREA)
- Non-Volatile Memory (AREA)
Abstract
Description
技术领域technical field
本申请涉及半导体制造技术领域,具体而言,涉及一种浮栅结构、其制作方法及包括其的闪存。The present application relates to the technical field of semiconductor manufacturing, and in particular, to a floating gate structure, a method for fabricating the same, and a flash memory including the same.
背景技术Background technique
闪存中浮栅和浅沟槽隔离结构的制作方法一般包括先进行浅沟槽隔离结构制作后沉积多晶硅的工艺和先沉积多晶硅后进行浅沟槽隔离结构制作的工艺。其中,图1示出了现有技术中闪存的制作方法流程示意图。首先,在硅衬底100’上进行离子注入,在硅衬底100’上形成图2所示的P阱区101’;然后在所形成的P阱区101’的表面上生长图3所示的隧穿氧化层102’、并在隧穿氧化层102’上依次形成图3所示的第一多晶硅层103’和氮化硅层104’;对图3所示的氮化硅层104’、第一多晶硅层103’和硅衬底100’进行刻蚀,得到图4所示的沟槽200’;在图4所示的沟槽200’的侧壁和底面、氮化硅层104’上沉积掺碳的氮化硅,形成图5所示的衬垫层105’;在图5所示的衬垫层105’上沉积形成隔离材料填充沟槽200’,并对隔离材料进行退火处理和平坦化处理形成图6所示的隔离材料层106’;然后去除氮化硅层104’以上的衬垫层105’和隔离材料层106’,得到图7所示的浅沟槽隔离结构300’;形成浅沟槽隔离结构300’之后,减薄图7所示的浅沟槽隔离结构300’,并去除氮化硅层104’,得到具有图8所示剖面结构的器件;然后在图8所示的第一多晶硅层103’和裸露的浅沟槽隔离结构300’上形成图9所示的ONO层107’和第二多晶硅层108’;对图9所示的第二多晶硅层108’、ONO层107’、第一多晶硅层103’和隧穿氧化层102’进行刻蚀,形成图10所示的栅极结构400’,其中,第一多晶硅层103’作为浮栅,第二多晶硅层108’作为控制栅。A method for fabricating a floating gate and a shallow trench isolation structure in a flash memory generally includes a process of firstly fabricating a shallow trench isolation structure and then depositing polysilicon, and a process of first depositing polysilicon and then fabricating the shallow trench isolation structure. Among them, FIG. 1 shows a schematic flowchart of a method for manufacturing a flash memory in the prior art. First, ion implantation is performed on the silicon substrate 100', and the P-well region 101' shown in FIG. 2 is formed on the silicon substrate 100'; then, the surface of the formed P-well region 101' is grown as shown in FIG. 3 . The tunnel oxide layer 102' is formed, and the first polysilicon layer 103' and the silicon nitride layer 104' shown in FIG. 3 are sequentially formed on the tunnel oxide layer 102'; 104', the first polysilicon layer 103' and the silicon substrate 100' are etched to obtain the trench 200' shown in FIG. 4; Carbon-doped silicon nitride is deposited on the silicon layer 104' to form a liner layer 105' shown in FIG. 5; an isolation material is deposited on the liner layer 105' shown in FIG. 5 to fill the trench 200', and the isolation The material is annealed and planarized to form the isolation material layer 106 ′ shown in FIG. 6 ; then the liner layer 105 ′ and the isolation material layer 106 ′ above the silicon nitride layer 104 ′ are removed to obtain the shallow trench shown in FIG. 7 trench isolation structure 300 ′; after forming the shallow trench isolation structure 300 ′, the shallow trench isolation structure 300 ′ shown in FIG. 7 is thinned, and the silicon nitride layer 104 ′ is removed to obtain the device with the cross-sectional structure shown in FIG. 8 ; Then the ONO layer 107' and the second polysilicon layer 108' shown in Figure 9 are formed on the first polysilicon layer 103' and the exposed shallow trench isolation structure 300' shown in Figure 8; The second polysilicon layer 108', the ONO layer 107', the first polysilicon layer 103' and the tunnel oxide layer 102' are etched to form the gate structure 400' shown in FIG. 10, wherein, The first polysilicon layer 103' serves as a floating gate, and the second polysilicon layer 108' serves as a control gate.
在对隔离材料进行扩散退火的过程中,P阱区101’中注入的离子如硼离子的原子半径很小,极易形成间隙扩散进入浅沟槽隔离结构300’中,扩散降低了P阱中掺杂离子的浓度,进而影响半导体器件的开启电压。虽然现有技术中设置了衬垫层105’以避免硼向浅沟槽隔离结构300’中扩散,但是对扩散的控制能力有限,在半导体器件尺寸不断下降的条件下,扩散现象仍然难以控制。而由于扩散难于控制,导致集成电路中多个半导体器件的开启电压各不相同,导致开始时间不同,工作不稳定,进而影响集成电路的良率和稳定性。In the process of diffusion annealing the isolation material, the atomic radius of the ions implanted in the P well region 101 ′, such as boron ions, is very small, and it is easy to form a gap to diffuse into the shallow trench isolation structure 300 ′, and the diffusion reduces in the P well region. The concentration of dopant ions, which in turn affects the turn-on voltage of semiconductor devices. Although the liner layer 105' is provided in the prior art to prevent boron from diffusing into the shallow trench isolation structure 300', the ability to control the diffusion is limited, and the diffusion phenomenon is still difficult to control under the condition that the size of semiconductor devices continues to decrease. However, since the diffusion is difficult to control, the turn-on voltages of multiple semiconductor devices in the integrated circuit are different, resulting in different start times and unstable operation, thereby affecting the yield and stability of the integrated circuit.
发明内容SUMMARY OF THE INVENTION
本申请旨在提供一种浮栅结构、其制作方法及包括其的闪存,以解决现有技术中P阱中杂质离子向浅沟槽隔离结构扩散导致集成电路开启电压不稳定的问题。The present application aims to provide a floating gate structure, a method for fabricating the same, and a flash memory including the same, so as to solve the problem of unstable turn-on voltage of integrated circuits caused by the diffusion of impurity ions in the P-well to the shallow trench isolation structure in the prior art.
为了实现上述目的,根据本申请的一个方面,提供了一种浮栅结构的制作方法,该制作方法包括:提供衬底,衬底具有P阱区;在衬底的设置有P阱区的表面上设置依次远离衬底的隧穿氧化层、第一多晶硅层和掩膜层;依次刻蚀掩膜层、第一多晶硅层、隧穿氧化层和衬底形成浅沟槽;在浅沟槽的侧壁和底面上、掩膜层上设置衬垫层,衬垫层中掺杂有P型离子;在衬垫层上设置隔离材料层;对衬垫层和隔离材料层进行退火,第一多晶硅层与衬垫层相邻的端部形成掺杂有P型离子的掺杂多晶硅区,且第一多晶硅层和掺杂多晶硅区构成浮栅;以及去除掩膜层以上的衬垫层和隔离材料层,形成浅沟槽隔离结构。In order to achieve the above object, according to an aspect of the present application, a method for fabricating a floating gate structure is provided, the fabrication method comprising: providing a substrate, the substrate having a P-well region; and on a surface of the substrate provided with the P-well region A tunnel oxide layer, a first polysilicon layer and a mask layer are arranged on the substrate in sequence; the mask layer, the first polysilicon layer, the tunnel oxide layer and the substrate are sequentially etched to form shallow trenches; A liner layer is arranged on the sidewall and bottom surface of the shallow trench and on the mask layer, and the liner layer is doped with P-type ions; an isolation material layer is arranged on the liner layer; the liner layer and the isolation material layer are annealed , a doped polysilicon region doped with P-type ions is formed at the adjacent end of the first polysilicon layer and the liner layer, and the first polysilicon layer and the doped polysilicon region constitute a floating gate; and the mask layer is removed The above liner layer and isolation material layer form a shallow trench isolation structure.
进一步地,P阱区的杂质离子为硼,衬垫层中的P型离子为硼离子。Further, the impurity ions in the P-well region are boron, and the P-type ions in the liner layer are boron ions.
进一步地,衬垫层中P型离子的摩尔浓度为1E12~1E14atoms/cm3。Further, the molar concentration of P-type ions in the liner layer is 1E12˜1E14 atoms/cm 3 .
进一步地,衬垫层的厚度为20~200nm。Further, the thickness of the backing layer is 20-200 nm.
进一步地,衬垫层采用原位蒸汽生成工艺形成,原位蒸汽生成工艺中,以四甲基硅烷、氧气和氟化硼为反应气体,其中四甲基硅烷的流量为2000~4000sccm,氧气的流量为4000~6000sccm,氟化硼的流量为3000~4000sccm,沉积温度为600~800℃。Further, the liner layer is formed by an in-situ steam generation process. In the in-situ steam generation process, tetramethylsilane, oxygen and boron fluoride are used as reaction gases, wherein the flow rate of tetramethylsilane is 2000-4000 sccm, and the oxygen The flow rate is 4000-6000 sccm, the flow rate of boron fluoride is 3000-4000 sccm, and the deposition temperature is 600-800 ℃.
进一步地,退火的退火温度为700~900℃。Furthermore, the annealing temperature of annealing is 700-900 degreeC.
进一步地,在衬垫层上设置隔离材料层采用高深宽比填充工艺实施。Further, disposing the isolation material layer on the liner layer is performed using a high aspect ratio filling process.
进一步地,隔离材料层为二氧化硅层,高深宽比填充工艺实施过程中,淀积温度为300~500℃,淀积气体包括TEOS、O2和O3,且TEOS和O2体积比为1:3~1:25,TEOS和O3体积比为1:1~1:30。Further, the isolation material layer is a silicon dioxide layer, and during the implementation of the high aspect ratio filling process, the deposition temperature is 300-500° C., the deposition gas includes TEOS, O 2 and O 3 , and the volume ratio of TEOS and O 2 is 1:3~1:25, the volume ratio of TEOS and O 3 is 1:1~1:30.
进一步地,去除掩膜层以上的衬垫层和隔离材料层的过程包括:对衬垫层以上的隔离材料层进行化学机械平坦化;刻蚀去除掩膜层以上的衬垫层;刻蚀去除掩膜层以上的隔离材料层。Further, the process of removing the liner layer and the isolation material layer above the mask layer includes: chemical mechanical planarization of the isolation material layer above the liner layer; etching to remove the liner layer above the mask layer; etching to remove A layer of isolation material above the mask layer.
进一步地,利用包括磷酸的刻蚀物质刻蚀去除掩膜层以上的衬垫层。Further, the liner layer above the mask layer is removed by etching using an etching substance including phosphoric acid.
进一步地,利用包括氢氟酸的刻蚀物质刻蚀去除掩膜层以上的隔离材料层。Further, the isolation material layer above the mask layer is removed by etching using an etching substance including hydrofluoric acid.
进一步地,制作方法在去除掩膜层以上的衬垫层和隔离材料层之后还包括:减薄隔离材料层和衬垫层;去除掩膜层,形成浅沟槽隔离结构。Further, after removing the liner layer and the isolation material layer above the mask layer, the manufacturing method further includes: thinning the isolation material layer and the liner layer; removing the mask layer to form a shallow trench isolation structure.
进一步地,减薄隔离材料层和衬垫层的刻蚀物质包括氢氟酸和磷酸的混合液,其中氢氟酸的体积分数为20%~45%,且刻蚀温度为25~60℃,刻蚀时间为1~3min。Further, the etching substance for thinning the isolation material layer and the liner layer includes a mixed solution of hydrofluoric acid and phosphoric acid, wherein the volume fraction of hydrofluoric acid is 20% to 45%, and the etching temperature is 25 to 60° C. The etching time is 1 to 3 minutes.
本申请还提供了一种浮栅结构,该浮栅结构包括衬底和设置于衬底中P阱区,且P阱区中设置有浅沟槽隔离结构,相邻浅沟槽隔离结构之间的衬底表面上依次设置有隧穿氧化层和浮栅,且浅沟槽隔离结构包括衬垫层和隔离材料层,且衬垫层内掺杂有P型离子;浮栅包括第一多晶硅层和掺杂有P型离子的掺杂多晶硅区,且掺杂多晶硅区设置于第一多晶硅层和衬垫层之间。The present application also provides a floating gate structure, the floating gate structure includes a substrate and a P well region disposed in the substrate, and a shallow trench isolation structure is provided in the P well region, and between adjacent shallow trench isolation structures A tunnel oxide layer and a floating gate are sequentially arranged on the surface of the substrate, and the shallow trench isolation structure includes a liner layer and an isolation material layer, and the liner layer is doped with P-type ions; the floating gate includes a first polycrystalline The silicon layer and the doped polysilicon region doped with P-type ions are disposed between the first polysilicon layer and the pad layer.
进一步地,P型离子为硼离子。Further, the P-type ions are boron ions.
本申请还提供了一种闪存,其特征在于,闪存包括上述的浮栅结构,以及设置于浮栅结构中的浮栅上的隔离氧化层和控制栅。The present application also provides a flash memory, characterized in that the flash memory includes the above floating gate structure, an isolation oxide layer and a control gate disposed on the floating gate in the floating gate structure.
应用本申请的技术方案,在浅沟槽隔离结构的衬垫层中掺杂P型离子,进而在对衬垫层和隔离材料层进行退火时,该P型离子会向衬底和第一多晶硅层中扩散,一方面弥补了衬底的P阱区中由于杂质离子扩散造成的损失,避免了扩散造成的开启电压的损失;另一方面扩散进入第一多晶硅层的P型离子会在第一多晶硅层宽度方向的两端形成P型区域,使得第一多晶硅层在宽度方向上形成P-N-P结构,由于第一多晶硅层中的N区存在电子,而P区的存在会降低电子移动的势垒,进而能够实现较高的编程速度、较低的开启电压以及可靠的数据存储效果。By applying the technical solution of the present application, P-type ions are doped in the liner layer of the shallow trench isolation structure, and then when the liner layer and the isolation material layer are annealed, the P-type ions will be directed to the substrate and the first multi-layered ions. Diffusion in the crystalline silicon layer, on the one hand, makes up for the loss caused by the diffusion of impurity ions in the P-well region of the substrate, and avoids the loss of turn-on voltage caused by diffusion; on the other hand, the P-type ions diffused into the first polysilicon layer P-type regions will be formed at both ends of the width direction of the first polysilicon layer, so that the first polysilicon layer will form a P-N-P structure in the width direction. The presence of ions reduces the barrier for electron movement, which in turn enables higher programming speeds, lower turn-on voltages, and reliable data storage.
附图说明Description of drawings
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:The accompanying drawings that form a part of the present application are used to provide further understanding of the present application, and the schematic embodiments and descriptions of the present application are used to explain the present application and do not constitute improper limitations on the present application. In the attached image:
图1示出了现有技术中闪存的制作工艺流程图;Fig. 1 shows the manufacturing process flow chart of flash memory in the prior art;
图2至图10示出执行图1中各流程后的器件剖面结构示意图,其中,FIG. 2 to FIG. 10 are schematic diagrams showing the cross-sectional structure of the device after each process in FIG. 1 is executed, wherein,
图2示出了在硅衬底上进行离子注入形成P阱区后的剖面结构示意图;FIG. 2 shows a schematic cross-sectional structure diagram after ion implantation is performed on a silicon substrate to form a P well region;
图3示出了在图2所示的P阱区的表面上生长隧穿氧化层、并在隧穿氧化层上依次形成第一多晶硅层和氮化硅层后的剖面结构示意图;3 shows a schematic cross-sectional structure diagram of growing a tunnel oxide layer on the surface of the P-well region shown in FIG. 2 and sequentially forming a first polysilicon layer and a silicon nitride layer on the tunnel oxide layer;
图4示出了对图3所示的氮化硅层、第一多晶硅层和硅衬底进行刻蚀得到沟槽后的剖面结构示意图;FIG. 4 shows a schematic cross-sectional structure diagram after etching the silicon nitride layer, the first polysilicon layer and the silicon substrate shown in FIG. 3 to obtain a trench;
图5示出了在图4所示的沟槽的侧壁和底面、氮化硅层上沉积掺碳的氮化硅形成衬垫层后的剖面结构示意图;FIG. 5 shows a schematic cross-sectional structure of the sidewall and bottom surface of the trench shown in FIG. 4 and the silicon nitride layer after depositing carbon-doped silicon nitride to form a liner layer;
图6示出了在图5所示的衬垫层上沉积形成隔离材料填充沟槽,并对隔离材料进行退火处理和平坦化处理形成隔离材料层后的剖面结构示意图;6 shows a schematic cross-sectional structure diagram of depositing an isolation material on the liner layer shown in FIG. 5 to fill the trenches, and performing annealing and planarization processing on the isolation material to form an isolation material layer;
图7示出了去除图6所示的氮化硅层以上的衬垫层和隔离材料层,得到浅沟槽隔离结构后的剖面结构示意图;FIG. 7 shows a schematic cross-sectional structure diagram after removing the liner layer and the isolation material layer above the silicon nitride layer shown in FIG. 6 to obtain a shallow trench isolation structure;
图8示出了减薄图7所示的浅沟槽隔离结构并去除氮化硅层后的剖面结构示意图;FIG. 8 shows a schematic cross-sectional structure diagram of the shallow trench isolation structure shown in FIG. 7 after thinning and removing the silicon nitride layer;
图9示出了在图8所示的第一多晶硅层和裸露的浅沟槽隔离结构上形成ONO层和第二多晶硅层后的剖面结构示意图;9 shows a schematic cross-sectional structure diagram of forming an ONO layer and a second polysilicon layer on the first polysilicon layer and the exposed shallow trench isolation structure shown in FIG. 8;
图10示出了对图9所示的第二多晶硅层、ONO层、第一多晶硅层和隧穿氧化层进行刻蚀形成栅极结构后的剖面结构示意图;FIG. 10 shows a schematic cross-sectional structure diagram after etching the second polysilicon layer, the ONO layer, the first polysilicon layer and the tunnel oxide layer shown in FIG. 9 to form a gate structure;
图11示出了本申请一种优选实施方式提供的浮栅结构的制作方法的流程示意图;FIG. 11 shows a schematic flowchart of a method for fabricating a floating gate structure provided by a preferred embodiment of the present application;
图12至图20示出实施图11所示的制作方法的各流程后的器件剖面结构示意图,其中,FIG. 12 to FIG. 20 show schematic cross-sectional structures of the device after each process of the manufacturing method shown in FIG. 11 is implemented, wherein,
图12示出了所提供的衬底的剖面结构示意图,该衬底具有P阱区;Figure 12 shows a schematic cross-sectional structure of the provided substrate, the substrate having a P-well region;
图13示出了在图12所示的衬底的设置有P阱区的表面上设置依次远离衬底的隧穿氧化层、第一多晶硅层和掩膜层后的剖面结构示意图;FIG. 13 shows a schematic cross-sectional structure diagram of a tunnel oxide layer, a first polysilicon layer, and a mask layer that are arranged in sequence away from the substrate on the surface of the substrate shown in FIG. 12 on which the P-well region is provided;
图14示出了依次刻蚀图13所示的掩膜层、第一多晶硅层、隧穿氧化层和衬底形成浅沟槽后的剖面结构示意图;FIG. 14 is a schematic cross-sectional structure diagram of forming a shallow trench by sequentially etching the mask layer, the first polysilicon layer, the tunnel oxide layer and the substrate shown in FIG. 13;
图15示出了在图14所示的浅沟槽的侧壁和底面上、掩膜层上设置衬垫层后的剖面结构示意图,其中该衬垫层中掺杂有P型离子;FIG. 15 shows a schematic cross-sectional structure diagram of the sidewall and bottom surface of the shallow trench shown in FIG. 14 and the mask layer after a liner layer is arranged, wherein the liner layer is doped with P-type ions;
图16示出了在图15所示的衬垫层上设置隔离材料层后的剖面结构示意图;Fig. 16 shows a schematic cross-sectional structure diagram after disposing an isolation material layer on the liner layer shown in Fig. 15;
图17示出了对图16所示的衬垫层和隔离材料层进行退火处理,形成掺杂多晶硅区后的剖面结构示意图;FIG. 17 shows a schematic cross-sectional structure diagram of annealing the liner layer and the isolation material layer shown in FIG. 16 to form a doped polysilicon region;
图18示出了对图17所示的衬垫层以上的隔离材料层进行化学机械平坦化后的剖面结构示意图;FIG. 18 shows a schematic cross-sectional structure diagram of the isolation material layer above the liner layer shown in FIG. 17 after chemical mechanical planarization is performed;
图19示出了刻蚀去除图18所示的掩膜层以上的衬垫层和隔离材料层后的剖面结构示意图;以及FIG. 19 shows a schematic cross-sectional structure diagram after etching and removing the liner layer and the isolation material layer above the mask layer shown in FIG. 18; and
图20示出了减薄图19所示的隔离材料层和衬垫层后的剖面结构示意图。FIG. 20 shows a schematic cross-sectional structure diagram of the isolation material layer and the liner layer shown in FIG. 19 after thinning.
具体实施方式Detailed ways
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。It should be noted that the following detailed description is exemplary and intended to provide further explanation of the application. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this application belongs.
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。It should be noted that the terminology used herein is for the purpose of describing specific embodiments only, and is not intended to limit the exemplary embodiments according to the present application. As used herein, unless the context clearly dictates otherwise, the singular is intended to include the plural as well, furthermore, it is to be understood that when the terms "comprising" and/or "including" are used in this specification, it indicates that There are features, steps, operations, devices, components and/or combinations thereof.
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位,并且对这里所使用的空间相对描述作出相应解释。For ease of description, spatially relative terms, such as "on", "over", "on the surface", "above", etc., may be used herein to describe what is shown in the figures. The spatial positional relationship of one device or feature shown to other devices or features. It should be understood that spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as "above" or "over" other devices or features would then be oriented "below" or "over" the other devices or features under other devices or constructions". Thus, the exemplary term "above" can encompass both an orientation of "above" and "below." The device may also be positioned in other different ways, and the spatially relative descriptions used herein interpreted accordingly.
正如背景技术所介绍的,现有技术的P阱区中硼离子的原子半径很小,极易形成间隙扩散进入浅沟槽隔离结构中,扩散降低了P阱中掺杂离子的浓度,进而影响半导体器件的开启电压,而且目前设置的衬垫层对扩散的控制能力有限,扩散现象仍然难以控制,导致集成电路中多个半导体器件的开启电压不同,进一步导致开始时间不同,工作不稳定,影响集成电路的良率和稳定性。为了解决如上由于扩散导致的问题,本申请提出了一种浅沟槽隔离结构、其制作方法及包括其的闪存。As described in the background art, the atomic radius of boron ions in the P-well region of the prior art is very small, and it is easy to form gaps and diffuse into the shallow trench isolation structure. The diffusion reduces the concentration of dopant ions in the P-well, thereby affecting the The turn-on voltage of semiconductor devices, and the currently set liner layer has limited ability to control diffusion, and the diffusion phenomenon is still difficult to control, resulting in different turn-on voltages of multiple semiconductor devices in the integrated circuit, which further leads to different start times, unstable operation, affecting Yield and stability of integrated circuits. In order to solve the above problems caused by diffusion, the present application proposes a shallow trench isolation structure, a method for fabricating the same, and a flash memory including the same.
在本申请一种优选的实施方式中,提供了一种闪存结构的制作方法,其中图11示出了上述制作方法的流程。该制作方法包括:提供衬底100,衬底100具有P阱区101;在衬底100的设置有P阱区101的表面上设置依次远离衬底100的隧穿氧化层102、第一多晶硅层103和掩膜层104;依次刻蚀掩膜层104、第一多晶硅层103、隧穿氧化层102和衬底100形成浅沟槽200;在浅沟槽200的侧壁和底面上、掩膜层104上设置衬垫层105,衬垫层105中掺杂有P型离子;在衬垫层105上设置隔离材料层106;对衬垫层105和隔离材料层106进行退火,第一多晶硅层103的与衬垫层105相邻的端部形成掺杂有P型离子的掺杂多晶硅区131,且第一多晶硅层103和掺杂多晶硅区131构成浮栅;以及去除掩膜层104以上的衬垫层105和隔离材料层106,形成浅沟槽隔离结构300。In a preferred embodiment of the present application, a method for fabricating a flash memory structure is provided, wherein FIG. 11 shows the flow of the aforementioned fabrication method. The fabrication method includes: providing a substrate 100, the substrate 100 having a P-well region 101; disposing a tunnel oxide layer 102, a first polycrystalline layer 102 far away from the substrate 100 on the surface of the substrate 100 provided with the P-well region 101 in sequence Silicon layer 103 and mask layer 104; etching mask layer 104, first polysilicon layer 103, tunnel oxide layer 102 and substrate 100 in sequence to form shallow trench 200; on the sidewall and bottom surface of shallow trench 200 A liner layer 105 is arranged on the top and the mask layer 104, and the liner layer 105 is doped with P-type ions; an isolation material layer 106 is arranged on the liner layer 105; the liner layer 105 and the isolation material layer 106 are annealed, An end portion of the first polysilicon layer 103 adjacent to the liner layer 105 forms a doped polysilicon region 131 doped with P-type ions, and the first polysilicon layer 103 and the doped polysilicon region 131 form a floating gate; and removing the liner layer 105 and the isolation material layer 106 above the mask layer 104 to form a shallow trench isolation structure 300 .
上述制作方法在浅沟槽隔离结构的衬垫层105中掺杂P型离子,进而在对衬垫层105和隔离材料层106进行退火时,该P型离子会向衬底100和第一多晶硅层103中扩散,一方面弥补了衬底100的P阱区101中由于杂质离子扩散造成的损失,避免了扩散造成的开启电压的损失;另一方面扩散进入第一多晶硅层103的P型离子会在第一多晶硅层103宽度方向的端部形成P型区域,使得第一多晶硅层103在宽度方向上形成P-N-P结构,由于第一多晶硅层103中的N区存在电子,而P区的存在会降低电子移动的势垒,进而能够实现较高的编程速度、较低的开启电压以及可靠的数据存储效果。在此需要说明的时,本申请所指的宽度方向与本领域技术人员通常理解的宽度方向相同,均是指沿衬底表面浅沟槽隔离结构排列的方向。The above manufacturing method doped the liner layer 105 of the shallow trench isolation structure with P-type ions, and then when the liner layer 105 and the isolation material layer 106 are annealed, the P-type ions will be directed to the substrate 100 and the first multi-layered ions. Diffusion in the crystalline silicon layer 103, on the one hand, makes up for the loss caused by the diffusion of impurity ions in the P-well region 101 of the substrate 100, and avoids the loss of the turn-on voltage caused by the diffusion; on the other hand, the diffusion into the first polysilicon layer 103 The P-type ions will form a P-type region at the end of the first polysilicon layer 103 in the width direction, so that the first polysilicon layer 103 forms a P-N-P structure in the width direction. There are electrons in the P region, and the existence of the P region will reduce the potential barrier for electron movement, thereby enabling higher programming speed, lower turn-on voltage and reliable data storage effect. It should be noted here that the width direction referred to in this application is the same as the width direction generally understood by those skilled in the art, and both refer to the direction along which the shallow trench isolation structures are arranged on the surface of the substrate.
本领域技术人员应该清楚的P型离子是指能够提供空穴的离子,比如硼、铝、镓、铟,本申请优选硼离子,因此本申请优选P阱区101的杂质离子为硼离子,衬垫层105中的P型离子为硼离子。It should be clear to those skilled in the art that P-type ions refer to ions that can provide holes, such as boron, aluminum, gallium, and indium. In this application, boron ions are preferred. Therefore, in this application, the impurity ions in the P-well region 101 are preferably boron ions. The P-type ions in the pad layer 105 are boron ions.
现在,将参照附图更详细地描述根据本申请的示例性实施方式。然而,这些示例性实施方式可以由多种不同的形式来实施,并且不应当被解释为只限于这里所阐述的实施方式。应当理解的是,提供这些实施方式是为了使得本申请的公开彻底且完整,并且将这些示例性实施方式的构思充分传达给本领域普通技术人员,在附图中,为了清楚起见,扩大了层和区域的厚度,并且使用相同的附图标记表示相同的器件,因而将省略对它们的描述。Now, exemplary embodiments according to the present application will be described in more detail with reference to the accompanying drawings. These exemplary embodiments may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. It should be understood that these embodiments are provided so that this disclosure will be thorough and complete and will fully convey the concept of these exemplary embodiments to those of ordinary skill in the art. In the accompanying drawings, layers are exaggerated for clarity and the thicknesses of the regions, and the same reference numerals are used to denote the same devices, and thus their descriptions will be omitted.
首先,提供如图12所示的衬底100,该衬底100具有P阱区101,其中,P阱区101可以采用本领域常用的离子注入法将硼注入到衬底100中形成,衬底100可以是单晶、多晶或非晶结构的硅、或硅锗(SiGe),也可以是绝缘体上硅(SOI),或者还可以包括其它的材料,例如锑化铟、碲化铅、砷化铟、磷化铟、砷化镓或锑化镓。虽然在此描述了可以形成衬底100的材料的几个示例,但是可以作为半导体衬底的任何材料均落入本发明的精神和范围。First, a substrate 100 as shown in FIG. 12 is provided. The substrate 100 has a P-well region 101, wherein the P-well region 101 can be formed by implanting boron into the substrate 100 by using an ion implantation method commonly used in the art. 100 can be silicon of single crystal, polycrystalline or amorphous structure, or silicon germanium (SiGe), can also be silicon on insulator (SOI), or can also include other materials, such as indium antimonide, lead telluride, arsenic Indium, Indium Phosphide, Gallium Arsenide or Gallium Antimonide. Although a few examples of materials from which substrate 100 can be formed are described herein, any material that can be a semiconductor substrate falls within the spirit and scope of the present invention.
然后,在图12所示的衬底100上设置图13所示的依次远离衬底100的隧穿氧化层102、第一多晶硅层103和掩膜层104。Then, on the substrate 100 shown in FIG. 12 , the tunnel oxide layer 102 , the first polysilicon layer 103 and the mask layer 104 shown in FIG. 13 , which are separated from the substrate 100 in sequence, are provided.
其中,采用热氧化形成隧穿氧化层102,形成隧穿氧化层102的工艺气体中包括含硅气体和氧气,上述含硅气体为SiH2Cl2或SiH2,受真空条件的限制,工艺气体中还包括N2。所形成的隧穿氧化层102的厚度可以在如果隧穿氧化层110的厚度太大,会增大第一多晶硅层103(后续经过刻蚀形成浮栅)与衬底100之间的距离,从而减小第一多晶硅层103与衬底100之间的电容,降低闪速存储器的读、写入以及擦除的效率。在优选的实施方式中还可以对所形成的隧穿氧化层102进行退火处理。上述第一多晶硅层103和掩膜层104的形成工艺可以为化学气相沉积工艺、物理气相沉积工艺、等离子体沉积工艺,优选采用化学气相沉积工艺,第一多晶硅层120的厚度可以为优选上述掩膜层104优选为氮化硅层,该掩膜层104一方面用于在刻蚀形成浅沟槽200的过程中保护第一多晶硅层103受到损伤,另一方面可以作为后续去除衬底层105和隔离材料层106的停止层。The tunnel oxide layer 102 is formed by thermal oxidation, and the process gas for forming the tunnel oxide layer 102 includes silicon-containing gas and oxygen. The above-mentioned silicon-containing gas is SiH 2 Cl 2 or SiH 2 , which is limited by vacuum conditions. Also includes N 2 . The thickness of the formed tunnel oxide layer 102 can be If the thickness of the tunnel oxide layer 110 is too large, the distance between the first polysilicon layer 103 (which is subsequently etched to form the floating gate) and the substrate 100 will increase, thereby reducing the distance between the first polysilicon layer 103 and the substrate 100 . The capacitance between the substrates 100 reduces the efficiency of reading, writing and erasing the flash memory. In a preferred embodiment, the formed tunnel oxide layer 102 can also be annealed. The above-mentioned formation process of the first polysilicon layer 103 and the mask layer 104 can be a chemical vapor deposition process, a physical vapor deposition process, or a plasma deposition process, preferably a chemical vapor deposition process, and the thickness of the first polysilicon layer 120 can be for preferred The above-mentioned mask layer 104 is preferably a silicon nitride layer. On the one hand, the mask layer 104 is used to protect the first polysilicon layer 103 from damage during the process of etching to form the shallow trench 200, and on the other hand, it can be used as a follow-up removal. Stop layer for substrate layer 105 and isolation material layer 106 .
在形成掩膜层104之后,依次刻蚀图13所示的掩膜层104、第一多晶硅层103、隧穿氧化层102和衬底100,形成图14所示的浅沟槽200。上述刻蚀过程可以采用本领域常用的刻蚀过程,比如首先在掩膜层104的表面设置光刻胶,然后对光刻胶进行图形化处理,形成含有开口的光刻胶掩膜,其中开口的位置与宽度与后续形成的浅沟槽的位置与宽度相对应;然后沿开口依次刻蚀掩膜层104、第一多晶硅层103、隧穿氧化层102、衬底100,直至在衬底100内形成预定深度的浅沟槽200。After the mask layer 104 is formed, the mask layer 104 shown in FIG. 13 , the first polysilicon layer 103 , the tunnel oxide layer 102 and the substrate 100 are sequentially etched to form the shallow trench 200 shown in FIG. 14 . The above-mentioned etching process can adopt the etching process commonly used in the art, for example, firstly, a photoresist is arranged on the surface of the mask layer 104, and then the photoresist is patterned to form a photoresist mask containing openings, wherein the openings are formed. The position and width of the trench correspond to the position and width of the subsequently formed shallow trench; then the mask layer 104, the first polysilicon layer 103, the tunnel oxide layer 102, and the substrate 100 are etched along the opening in sequence until the lining A shallow trench 200 with a predetermined depth is formed in the bottom 100 .
上述刻蚀可以利用本领域技术人员熟知的方法进行刻蚀,例如化学湿法刻蚀和干法刻蚀,优选采用等离子干法刻蚀,其中采用包括氩气Ar以及四氟甲烷CF4、六氟乙烷C2F6和三氟甲烷CHF3等含氟气体的混合气体作为刻蚀气体,其中氩气Ar起到稀释刻蚀气体的作用,其流量为100~300sccm;起刻蚀作用的四氟甲烷CF4的流量为50~100sccm、六氟乙烷C2F6的流量为100~400sccm、三氟甲烷CHF3的流量为10~100sccm,设定气体电离为等离子体的射频功率源的输出功率为50~1000W;射频偏置功率源的输出功率为50~250W;反应室内的压力设置为50~200mTorr,衬底温度控制在20~90℃之间。上述等离子刻蚀的过程是一种各向异性的刻蚀,刻蚀工艺可以采用电感耦合等离子体型刻蚀设备、电容耦合等离子体型刻蚀设备、感应耦合等离子刻蚀设备实施。The above-mentioned etching can be etched by methods well known to those skilled in the art, such as chemical wet etching and dry etching, preferably plasma dry etching, wherein the use of argon gas Ar and tetrafluoromethane CF 4 , hexafluoromethane is used. A mixed gas of fluorine-containing gas such as fluoroethane C 2 F 6 and trifluoromethane CHF 3 is used as the etching gas, in which argon Ar plays the role of diluting the etching gas, and its flow rate is 100-300sccm; The flow rate of tetrafluoromethane CF 4 is 50-100 sccm, the flow rate of hexafluoroethane C 2 F 6 is 100-400 sccm, and the flow rate of trifluoromethane CHF 3 is 10-100 sccm, and the gas ionization is set as the radio frequency power source of the plasma The output power is 50-1000W; the output power of the radio frequency bias power source is 50-250W; the pressure in the reaction chamber is set at 50-200mTorr, and the substrate temperature is controlled between 20-90°C. The above-mentioned plasma etching process is anisotropic etching, and the etching process can be implemented by inductively coupled plasma type etching equipment, capacitively coupled plasma type etching equipment, and inductively coupled plasma etching equipment.
在形成浅沟槽200之后,在图14所示的浅沟槽200的侧壁和底面上、掩膜层104上设置图15所示的衬垫层105,其中该衬垫层105中掺杂有P型离子。本申请的衬垫层105满足目前常规技术的衬垫层的要求,并且P型离子的掺杂不会对其性能造成影响,因此优选该衬垫层105的厚度为20~200nm;其中P型离子的浓度为1E12~1E14atoms/cm3。After the shallow trench 200 is formed, the liner layer 105 shown in FIG. 15 is provided on the sidewall and bottom surface of the shallow trench 200 shown in FIG. 14 and on the mask layer 104, wherein the liner layer 105 is doped There are P-type ions. The pad layer 105 of the present application meets the requirements of the pad layer of the current conventional technology, and the doping of P-type ions will not affect its performance, so the thickness of the pad layer 105 is preferably 20-200 nm; The concentration of ions is 1E12 to 1E14 atoms/cm 3 .
上述设置衬垫层105的工艺包括但不限于化学气相沉积法、热氧化法、湿氧氧化法,本申请优选低压化学气相沉积法或原位蒸汽生成工艺。采用原位蒸汽生成工艺时,优选地,以四甲基硅烷、氧气和氟化硼为反应气体,其中四甲基硅烷的流量为2000~4000sccm,氧气的流量为4000~6000sccm,氟化硼的流量为3000~4000sccm,沉积温度为600~800℃。原位蒸汽生成工艺为湿氧氧化工艺,氧化速度快、反应时间很短,在10s内即可完成,所以反应气体中的氧气在第一多晶硅层103与隧穿氧化层102之间、以及隧穿氧化层102与衬底100之间扩散的量很少,从而避免了因为反应气体中的氧气与浅沟槽200两侧的衬底100、第一多晶硅层103发生反应生成氧化物。The above-mentioned processes for disposing the liner layer 105 include, but are not limited to, chemical vapor deposition, thermal oxidation, and wet oxygen oxidation. In the present application, low-pressure chemical vapor deposition or in-situ steam generation is preferred. When the in-situ steam generation process is adopted, preferably, tetramethylsilane, oxygen and boron fluoride are used as reaction gases, wherein the flow rate of tetramethylsilane is 2000-4000 sccm, the flow rate of oxygen is 4000-6000 sccm, and the flow rate of boron fluoride is 2000-4000 sccm. The flow rate is 3000~4000sccm, and the deposition temperature is 600~800℃. The in-situ steam generation process is a wet oxygen oxidation process, the oxidation speed is fast, the reaction time is very short, and can be completed within 10s, so the oxygen in the reaction gas is between the first polysilicon layer 103 and the tunnel oxide layer 102 And the amount of diffusion between the tunnel oxide layer 102 and the substrate 100 is very small, so as to avoid the formation of oxidation due to the reaction between the oxygen in the reactive gas and the substrate 100 and the first polysilicon layer 103 on both sides of the shallow trench 200 thing.
形成衬垫层105之后,在图15所示的衬垫层105上设置图16所示的隔离材料层106。本申请形成上述隔离材料层106的隔离材料可以为二氧化硅、氟硅玻璃、未掺杂的硅酸盐玻璃(USG)或正硅酸四乙酯中的一种或多种,为了提高隔离材料层106的填充效果,优选在衬垫层105上设置隔离材料层106采用高深宽比填充工艺实施,优选隔离材料层106为二氧化硅层,淀积温度为300~500℃,淀积气体包括TEOS、O2和O3,且TEOS和O2体积比为1:3~1:25,TEOS和O3体积比为1:1~1:30。After the spacer layer 105 is formed, the insulating material layer 106 shown in FIG. 16 is provided on the spacer layer 105 shown in FIG. 15 . The isolation material used to form the isolation material layer 106 in the present application may be one or more of silicon dioxide, fluorosilicate glass, undoped silicate glass (USG) or tetraethyl orthosilicate. In order to improve isolation The filling effect of the material layer 106 is preferably implemented by setting the isolation material layer 106 on the liner layer 105 by a high aspect ratio filling process. Preferably, the isolation material layer 106 is a silicon dioxide layer, and the deposition temperature is 300-500° C. It includes TEOS, O 2 and O 3 , and the volume ratio of TEOS and O 2 is 1:3-1:25, and the volume ratio of TEOS and O 3 is 1:1-1:30.
在完成上述隔离材料层106的设置之后,对图16所示的衬垫层105和隔离材料层106进行退火处理,形成图17所示的掺杂多晶硅区131。优选上述退火的退火温度为800~900℃。在退火过程中,衬垫层105中所掺杂的P型离子会向第一多晶硅层103和衬底100中扩散,P阱区101中的杂质离子也会向衬垫层105中扩散,因此衬垫层105与P阱区101中离子之间的扩散相互平衡使得P阱区101中的离子没有因为扩散而减少;而由衬垫层105中扩散到第一多晶硅层103中的P型离子会在第一多晶硅层103中形成掺杂有P型离子的掺杂多晶硅区131,如前所描述的,所形成的掺杂多晶硅区131与第一多晶硅层103的主体部分形成P-N-P结构。After the above-mentioned setting of the isolation material layer 106 is completed, the liner layer 105 and the isolation material layer 106 shown in FIG. 16 are annealed to form the doped polysilicon region 131 shown in FIG. 17 . The annealing temperature of the above-mentioned annealing is preferably 800 to 900°C. During the annealing process, the P-type ions doped in the liner layer 105 will diffuse into the first polysilicon layer 103 and the substrate 100 , and the impurity ions in the P-well region 101 will also diffuse into the liner layer 105 , so the diffusion between the ions in the liner layer 105 and the P-well region 101 balances each other, so that the ions in the P-well region 101 are not reduced due to diffusion; instead, they diffuse into the first polysilicon layer 103 from the liner layer 105 The P-type ions formed in the first polysilicon layer 103 form a doped polysilicon region 131 doped with P-type ions. As described above, the formed doped polysilicon region 131 and the first polysilicon layer 103 The main part of the formed P-N-P structure.
在完成上述退火过程后,去除图17所示的掩膜层104以上的衬垫层105和隔离材料层106,形成图19所示的浅沟槽隔离结构300。在本申请一种优选的实施过程中,优选上述去除衬垫层105和隔离材料层106的过程包括:对图17所示的衬垫层105以上的隔离材料层106进行化学机械平坦化,得到具有图18所示剖面结构的器件;刻蚀去除图18所示的掩膜层104以上的衬垫层105;刻蚀去除图18所示的掩膜层104以上的隔离材料层106,形成图19所示的浅沟槽隔离结构300。After the above annealing process is completed, the liner layer 105 and the isolation material layer 106 above the mask layer 104 shown in FIG. 17 are removed to form the shallow trench isolation structure 300 shown in FIG. 19 . In a preferred implementation process of the present application, preferably the above-mentioned process of removing the liner layer 105 and the isolation material layer 106 includes: chemical mechanical planarization of the isolation material layer 106 above the liner layer 105 shown in FIG. 17 to obtain The device with the cross-sectional structure shown in FIG. 18; the liner layer 105 above the mask layer 104 shown in FIG. 18 is removed by etching; the isolation material layer 106 above the mask layer 104 shown in FIG. 18 is removed by etching to form a diagram of Shallow trench isolation structure 300 shown at 19.
上述化学机械平坦化过程采用掩膜层102作为其停止层;在去除掩膜层104以上的衬垫层105时,优选利用包括磷酸的刻蚀物质对衬垫层104进行刻蚀;去除掩膜层104以上的隔离材料层106,优选利用包括氢氟酸的刻蚀物质对隔离材料层106进行刻蚀;利用不同的刻蚀物质对衬垫层105和隔离材料层106进行分别刻蚀,提高了对各种刻蚀目的物的选择性,优化了刻蚀效果。The above chemical mechanical planarization process uses the mask layer 102 as its stop layer; when removing the liner layer 105 above the mask layer 104, it is preferable to use an etching substance including phosphoric acid to etch the liner layer 104; remove the mask The isolation material layer 106 above the layer 104 is preferably etched with an etching substance including hydrofluoric acid; The selectivity to various etching objects is optimized, and the etching effect is optimized.
在半导体器件的制作中,在完成上述过程之后需要对某些衬垫层105和隔离材料层106进行减薄,因此,本申请优选为了满足特定半导体器件对浅沟槽隔离结构300的要求,优选在去除掩膜层104以上的衬垫层105和隔离材料层106之后上述制作方法还包括减薄图19所示的隔离材料层106和衬垫层105,形成具有图20所示剖面结构的器件;去除图20所示的掩膜层104,形成浅沟槽隔离结构300。In the fabrication of semiconductor devices, some liner layers 105 and isolation material layers 106 need to be thinned after the above process is completed. Therefore, in order to meet the requirements of specific semiconductor devices for the shallow trench isolation structure 300, the preferred After removing the liner layer 105 and the isolation material layer 106 above the mask layer 104, the above manufacturing method further includes thinning the isolation material layer 106 and the liner layer 105 shown in FIG. 19 to form a device with the cross-sectional structure shown in FIG. 20 . ; Remove the mask layer 104 shown in FIG. 20 to form a shallow trench isolation structure 300 .
上述减薄隔离材料层106和衬垫层105的过程采用包括磷酸和氢氟酸的刻蚀液去除,其中,优选地,氢氟酸的体积分数为20%~45%,且刻蚀温度为25~60℃,刻蚀时间为1~3min。上述去除掩膜层104时,优选利用包括磷酸的刻蚀物质对掩膜层104进行刻蚀。The above process of thinning the isolation material layer 106 and the liner layer 105 is removed by using an etching solution including phosphoric acid and hydrofluoric acid, wherein, preferably, the volume fraction of hydrofluoric acid is 20% to 45%, and the etching temperature is 25~60℃, the etching time is 1~3min. When removing the mask layer 104, the mask layer 104 is preferably etched using an etching substance including phosphoric acid.
本申请还提供了一种浮栅结构,如图20所示,该浮栅结构包括衬底100和设置于衬底100中P阱区101,且P阱区101中设置有浅沟槽隔离结构,相邻浅沟槽隔离结构之间的衬底100表面上依次设置有隧穿氧化层102和浮栅,且浅沟槽隔离结构包括衬垫层105和隔离材料层106,且衬垫层105内掺杂有P型离子;浮栅包括设置在隧穿氧化层102上的第一多晶硅层103和掺杂有P型离子的掺杂多晶硅区131,且掺杂多晶硅区131设置于第一多晶硅层103和衬垫层105之间。The present application also provides a floating gate structure, as shown in FIG. 20 , the floating gate structure includes a substrate 100 and a P-well region 101 disposed in the substrate 100 , and a shallow trench isolation structure is disposed in the P-well region 101 , a tunnel oxide layer 102 and a floating gate are sequentially disposed on the surface of the substrate 100 between adjacent shallow trench isolation structures, and the shallow trench isolation structure includes a liner layer 105 and an isolation material layer 106, and the liner layer 105 P-type ions are doped inside; the floating gate includes a first polysilicon layer 103 disposed on the tunnel oxide layer 102 and a doped polysilicon region 131 doped with P-type ions, and the doped polysilicon region 131 is disposed on the first polysilicon layer 103 . Between a polysilicon layer 103 and the pad layer 105 .
进一步地,P型离子为硼离子。Further, the P-type ions are boron ions.
本申请还提供了一种闪存,其特征在于,闪存包括上述的浮栅结构,以及设置于浮栅结构中的浮栅上的隔离氧化层和控制栅。The present application also provides a flash memory, characterized in that the flash memory includes the above floating gate structure, an isolation oxide layer and a control gate disposed on the floating gate in the floating gate structure.
从以上的描述中,可以看出,本申请上述的实施方式实现了如下技术效果:From the above description, it can be seen that the above-mentioned embodiments of the present application achieve the following technical effects:
1)、上述制作方法在浅沟槽隔离结构的衬垫层中掺杂P型离子,进而在对衬垫层和隔离材料层进行退火时,该P型离子会向衬底和第一多晶硅层中扩散,一方面弥补了衬底的P阱区中由于杂质离子扩散造成的损失,避免了扩散造成的开启电压的损失;1), the above-mentioned manufacturing method doped P-type ions in the liner layer of the shallow trench isolation structure, and then when the liner layer and the isolation material layer are annealed, the P-type ions will be directed to the substrate and the first polycrystalline Diffusion in the silicon layer, on the one hand, makes up for the loss caused by the diffusion of impurity ions in the P-well region of the substrate, and avoids the loss of turn-on voltage caused by diffusion;
2)、另一方面衬垫层中的P型离子扩散进入第一多晶硅层后在第一多晶硅层的两端形成P型区域,使得第一多晶硅层在宽度方向上形成P-N-P结构,由于第一多晶硅层中的N区存在电子,而P区的存在会降低电子移动的势垒,进而能够实现较高的编程速度、较低的开启电压以及可靠的数据存储效果。2) On the other hand, P-type ions in the liner layer diffuse into the first polysilicon layer to form P-type regions at both ends of the first polysilicon layer, so that the first polysilicon layer is formed in the width direction In the P-N-P structure, due to the existence of electrons in the N region in the first polysilicon layer, the existence of the P region will reduce the potential barrier for electron movement, thereby enabling higher programming speed, lower turn-on voltage and reliable data storage effect. .
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。The above are only preferred embodiments of the present application, and are not intended to limit the present application. For those skilled in the art, the present application may have various modifications and changes. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of this application shall be included within the protection scope of this application.
Claims (15)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201510161268.8A CN106158610B (en) | 2015-04-03 | 2015-04-03 | Floating gate structure, method for fabricating the same, and flash memory including the same |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201510161268.8A CN106158610B (en) | 2015-04-03 | 2015-04-03 | Floating gate structure, method for fabricating the same, and flash memory including the same |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN106158610A CN106158610A (en) | 2016-11-23 |
| CN106158610B true CN106158610B (en) | 2019-07-16 |
Family
ID=57337828
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201510161268.8A Active CN106158610B (en) | 2015-04-03 | 2015-04-03 | Floating gate structure, method for fabricating the same, and flash memory including the same |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN106158610B (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN114999906A (en) * | 2022-06-23 | 2022-09-02 | 上海华力集成电路制造有限公司 | Method for manufacturing floating gate of memory |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101853785A (en) * | 2009-11-05 | 2010-10-06 | 苏州博创集成电路设计有限公司 | Method for preparing longitudinal high-pressure boron diffusion deep groove semiconductor pipe |
| CN103295950A (en) * | 2012-02-27 | 2013-09-11 | 中芯国际集成电路制造(上海)有限公司 | Shallow groove isolating structure manufacturing method |
| CN104112665A (en) * | 2013-04-22 | 2014-10-22 | 中国科学院微电子研究所 | Semiconductor device and method for manufacturing the same |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2006229045A (en) * | 2005-02-18 | 2006-08-31 | Toshiba Corp | Semiconductor device and manufacturing method thereof |
-
2015
- 2015-04-03 CN CN201510161268.8A patent/CN106158610B/en active Active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101853785A (en) * | 2009-11-05 | 2010-10-06 | 苏州博创集成电路设计有限公司 | Method for preparing longitudinal high-pressure boron diffusion deep groove semiconductor pipe |
| CN103295950A (en) * | 2012-02-27 | 2013-09-11 | 中芯国际集成电路制造(上海)有限公司 | Shallow groove isolating structure manufacturing method |
| CN104112665A (en) * | 2013-04-22 | 2014-10-22 | 中国科学院微电子研究所 | Semiconductor device and method for manufacturing the same |
Also Published As
| Publication number | Publication date |
|---|---|
| CN106158610A (en) | 2016-11-23 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| TWI696220B (en) | Method of fabricating semiconductor device | |
| US9276089B2 (en) | FinFETs and methods for forming the same | |
| CN100539152C (en) | Semiconductor structures and methods of forming them | |
| CN103681355B (en) | Prepare the method for accurate SOI source-drain field effect transistor device | |
| CN106653751B (en) | Semiconductor device and method of manufacturing the same | |
| CN106373924B (en) | Method for forming semiconductor structure | |
| CN110797262B (en) | Semiconductor device and method of forming the same | |
| CN104733314B (en) | Semiconductor structure and forming method thereof | |
| CN116525614B (en) | Semiconductor device and manufacturing method thereof | |
| CN105655284B (en) | The forming method of groove isolation construction | |
| US9343530B2 (en) | Method for manufacturing fin structure of finFET | |
| CN117153866B (en) | Semiconductor device and manufacturing method thereof | |
| CN106960795B (en) | Method for forming PMOS transistor | |
| CN109980003A (en) | Semiconductor devices and forming method thereof | |
| CN103545185B (en) | A kind of method that use dummy grid manufactures semiconductor devices | |
| CN106158720A (en) | The manufacture method of semiconductor device | |
| CN103855074B (en) | A kind of manufacture method of semiconductor device | |
| CN106158610B (en) | Floating gate structure, method for fabricating the same, and flash memory including the same | |
| US8269307B2 (en) | Shallow trench isolation structure and method for forming the same | |
| CN104916588A (en) | Semiconductor device and manufacturing method thereof | |
| CN105161414B (en) | The minimizing technology of gate hard mask layer | |
| CN104701262A (en) | Formation method of semiconductor device | |
| CN109786457B (en) | Semiconductor device and method of forming the same | |
| US10043888B2 (en) | Method for forming a semiconductor structure | |
| CN106847751B (en) | The forming method of fin formula field effect transistor |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |