CN106256025A - The self-aligned contacts part of back contact solar cell - Google Patents
The self-aligned contacts part of back contact solar cell Download PDFInfo
- Publication number
- CN106256025A CN106256025A CN201580022322.9A CN201580022322A CN106256025A CN 106256025 A CN106256025 A CN 106256025A CN 201580022322 A CN201580022322 A CN 201580022322A CN 106256025 A CN106256025 A CN 106256025A
- Authority
- CN
- China
- Prior art keywords
- self
- solar cell
- dopant
- contact
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052751 metal Inorganic materials 0.000 claims abstract description 34
- 239000002184 metal Substances 0.000 claims abstract description 34
- 239000004065 semiconductor Substances 0.000 claims abstract description 9
- 238000001465 metallisation Methods 0.000 claims description 31
- 238000002161 passivation Methods 0.000 claims description 5
- 230000002787 reinforcement Effects 0.000 claims description 2
- 239000003351 stiffener Substances 0.000 claims 2
- 238000003306 harvesting Methods 0.000 claims 1
- 238000000059 patterning Methods 0.000 abstract description 3
- 238000009413 insulation Methods 0.000 abstract 1
- 239000002019 doping agent Substances 0.000 description 108
- 238000000034 method Methods 0.000 description 79
- 230000008569 process Effects 0.000 description 45
- 238000009792 diffusion process Methods 0.000 description 38
- 238000004519 manufacturing process Methods 0.000 description 33
- 238000001505 atmospheric-pressure chemical vapour deposition Methods 0.000 description 30
- 238000007639 printing Methods 0.000 description 26
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 24
- 229910052710 silicon Inorganic materials 0.000 description 24
- 239000010703 silicon Substances 0.000 description 24
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical group [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 23
- 229910052796 boron Chemical group 0.000 description 23
- 239000000463 material Substances 0.000 description 22
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 21
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 20
- 229910052814 silicon oxide Inorganic materials 0.000 description 20
- 238000001035 drying Methods 0.000 description 18
- 238000000137 annealing Methods 0.000 description 17
- 239000010408 film Substances 0.000 description 15
- 238000000608 laser ablation Methods 0.000 description 15
- 239000006096 absorbing agent Substances 0.000 description 13
- 238000000151 deposition Methods 0.000 description 13
- 230000008021 deposition Effects 0.000 description 13
- 238000001039 wet etching Methods 0.000 description 12
- 229910052782 aluminium Inorganic materials 0.000 description 11
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 11
- XHXFXVLFKHQFAL-UHFFFAOYSA-N phosphoryl trichloride Chemical compound ClP(Cl)(Cl)=O XHXFXVLFKHQFAL-UHFFFAOYSA-N 0.000 description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 9
- 229910052802 copper Inorganic materials 0.000 description 9
- 239000010949 copper Substances 0.000 description 9
- 235000012431 wafers Nutrition 0.000 description 9
- 230000008901 benefit Effects 0.000 description 8
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical group [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 8
- 230000004888 barrier function Effects 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000005530 etching Methods 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 5
- 229910021419 crystalline silicon Inorganic materials 0.000 description 5
- 238000003475 lamination Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000005368 silicate glass Substances 0.000 description 5
- 229910019213 POCl3 Inorganic materials 0.000 description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 4
- 229910052698 phosphorus Inorganic materials 0.000 description 4
- 239000011574 phosphorus Substances 0.000 description 4
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 4
- 230000005641 tunneling Effects 0.000 description 4
- -1 Phospho Chemical class 0.000 description 3
- 229920006231 aramid fiber Polymers 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000005553 drilling Methods 0.000 description 3
- 238000002294 plasma sputter deposition Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 101100268078 Mus musculus Zbtb24 gene Proteins 0.000 description 2
- 101100335694 Oryza sativa subsp. japonica G1L6 gene Proteins 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 description 2
- 239000006117 anti-reflective coating Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000012864 cross contamination Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- 238000000407 epitaxy Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000000637 aluminium metallisation Methods 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001723 curing Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000004811 fluoropolymer Substances 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000010329 laser etching Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229910021426 porous silicon Inorganic materials 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 239000012783 reinforcing fiber Substances 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000009756 wet lay-up Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/20—Electrodes
- H10F77/206—Electrodes for devices having potential barriers
- H10F77/211—Electrodes for devices having potential barriers for photovoltaic cells
- H10F77/219—Arrangements for electrodes of back-contact photovoltaic cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/20—Electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
- H10F10/10—Individual photovoltaic cells, e.g. solar cells having potential barriers
- H10F10/14—Photovoltaic cells having only PN homojunction potential barriers
- H10F10/146—Back-junction photovoltaic cells, e.g. having interdigitated base-emitter regions on the back side
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F19/00—Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules
- H10F19/80—Encapsulations or containers for integrated devices, or assemblies of multiple devices, having photovoltaic cells
- H10F19/85—Protective back sheets
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/121—The active layers comprising only Group IV materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
Abstract
Description
相关申请的交叉参考Cross References to Related Applications
本申请要求2014年2月26日提交的美国临时专利申请61/954,116的权益,所述美国临时专利申请以全文引用的方式并入本文。This application claims the benefit of US Provisional Patent Application 61/954,116, filed February 26, 2014, which is hereby incorporated by reference in its entirety.
技术领域technical field
本公开大体上涉及光伏(PV)太阳能电池的领域,且更特定来说涉及太阳能电池的自对准接触件。The present disclosure relates generally to the field of photovoltaic (PV) solar cells, and more particularly to self-aligned contacts for solar cells.
背景技术Background technique
随着在越来越广泛的规模上采用光伏太阳能电池技术作为能量产生解决方案,需要与太阳能电池效率、金属化、材料消耗和制作相关的制作和效率改进。制造成本和转换效率因素驱动着太阳能电池吸收体厚度越来越薄且面积越来越大,因此增加了机械脆性、效率且使这些基于薄吸收体的太阳能电池的处理和处置复杂化-脆性效应尤其相对于晶体硅吸收体来说增加。With the adoption of photovoltaic solar cell technology as an energy generation solution on an increasingly widespread scale, fabrication and efficiency improvements related to solar cell efficiency, metallization, material consumption, and fabrication are required. Manufacturing cost and conversion efficiency factors are driving solar cell absorbers to thinner thicknesses and larger areas, thus increasing mechanical fragility, efficiency and complicating the handling and disposal of these thin absorber based solar cells - the fragility effect Especially increased relative to crystalline silicon absorbers.
大体上,太阳能电池接触结构包含基极和发射极扩散区域上的导电金属化-例如分别通过相对重的磷和硼区域连接基极和发射极接触区域中的硅的铝金属化。In general, the solar cell contact structure comprises conductive metallization on the base and emitter diffusion regions - eg aluminum metallization connecting silicon in the base and emitter contact regions via relatively heavy phosphorous and boron regions respectively.
附图说明Description of drawings
从下文结合附图陈述的详细描述,所公开主题的特征、性质和优点可变得更加显而易见,在附图中相同参考标号指示相同特征且其中:The features, properties, and advantages of the disclosed subject matter may become more apparent from the following detailed description, set forth in conjunction with the accompanying drawings, in which like reference numerals indicate like features and in which:
图1A到1D是具有自对准接触结构的太阳能电池的横截面图;1A to 1D are cross-sectional views of solar cells with self-aligned contact structures;
图2A到2E是在具有自对准接触件的对接结叉指状背接触太阳能电池的制作期间在各个步骤处的太阳能电池的横截面图;2A to 2E are cross-sectional views of a solar cell at various steps during fabrication of a butt-junction interdigitated back contact solar cell with self-aligned contacts;
图3A到3G是在具有自对准接触件的非对接结叉指状背接触太阳能电池的制作期间在各个步骤处的太阳能电池的横截面图;3A to 3G are cross-sectional views of solar cells at various steps during the fabrication of non-butted junction interdigitated back contact solar cells with self-aligned contacts;
图4A到4E是在具有自对准接触件的非对接结叉指状背接触太阳能电池的制作期间在各个步骤处的太阳能电池的横截面图;以及4A to 4E are cross-sectional views of solar cells at various steps during fabrication of non-butted junction interdigitated back contact solar cells with self-aligned contacts; and
图5是具有与图1A一致的自对准接触结构且具有多层级金属化的太阳能电池的横截面图。5 is a cross-sectional view of a solar cell with a self-aligned contact structure consistent with FIG. 1A and with multi-level metallization.
具体实施方式detailed description
因此,需要用于背接触太阳能电池的制作方法。根据所公开的主题,提供用于背接触太阳能电池的制作的方法。这些创新基本上减少或消除与先前开发的背接触太阳能电池制作方法相关联的缺点和问题。Therefore, there is a need for fabrication methods for back contact solar cells. In accordance with the disclosed subject matter, methods for the fabrication of back contact solar cells are provided. These innovations substantially reduce or eliminate the disadvantages and problems associated with previously developed back contact solar cell fabrication methods.
本专利涉及太阳能电池。除了本文描述的之外,至少部分地具有共同发明权且提供太阳能电池结构和制作细节的相关专利申请包含:2014年2月2日提交的美国专利申请14/179,526;2013年11月5日提交的美国专利申请14/072,759(在2014年11月6日公布为美国公开案20140326295);2013年4月24日提交的美国专利13/869,928(在2013年9月5日公布为美国公开案20130228221);2014年9月22日提交的美国专利申请14/493,341;以及2014年9月22日提交的美国专利申请14/493,335,以上全部申请以全文引用的方式并入本文。This patent relates to solar cells. In addition to those described herein, related patent applications, at least in part co-invention rights, that provide details of solar cell construction and fabrication include: U.S. Patent Application 14/179,526, filed February 2, 2014; US Patent Application 14/072,759 (published as US Publication 20140326295 on November 6, 2014); US Patent 13/869,928 filed on April 24, 2013 (published as US Publication 20130228221 on September 5, 2013) ; US Patent Application 14/493,341, filed September 22, 2014; and US Patent Application 14/493,335, filed September 22, 2014, all of which are hereby incorporated by reference in their entirety.
根据所公开主题的一个方面,提供用于背接触背结太阳能电池的自对准接触件。所述太阳能电池包括半导体层,所述半导体层具有光接收前侧和与所述前侧相对的背侧且附接到电绝缘背板。具有自对准于基极和发射极区的基极和发射极电极的第一金属层定位于所述半导体层背侧上。提供电池互连且通过通孔插塞连接到所述第一金属层的图案化第二金属层定位于所述背板上。According to one aspect of the disclosed subject matter, self-aligned contacts for back-contacted back-junction solar cells are provided. The solar cell includes a semiconductor layer having a light receiving front side and a back side opposite the front side and attached to an electrically insulating backsheet. A first metal layer having base and emitter electrodes self-aligned to the base and emitter regions is positioned on the backside of the semiconductor layer. A patterned second metal layer providing battery interconnects and connected to the first metal layer by via plugs is positioned on the backplane.
所公开主题的这些和其它优点以及额外的新颖特征将从本文提供的描述中显而易见。此概述的目的不是详尽地描述主题,而是提供主题的一些功能性的简短概括。本领域的技术人员在检阅附图和详细说明后将变为明了本文提供的其它系统、方法、特征和优点。希望此说明内包含的所有此类额外的系统、方法、特征和优点处于权利要求书的范围内。These and other advantages, as well as additional novel features, of the disclosed subject matter will be apparent from the description provided herein. The purpose of this overview is not to describe the subject matter exhaustively, but to provide a brief, functional overview of the subject matter. Other systems, methods, features, and advantages provided herein will become apparent to those skilled in the art upon review of the drawings and detailed description. All such additional systems, methods, features and advantages included within this description are intended to be within the scope of the following claims.
所公开主题提供用于制作用于背接触背结太阳能电池的自对准接触件的结构和方法。具体来说,所公开主题和对应图式提供了用于使用用于背接触背结(例如,叉指状背接触IBC)太阳能电池的自对准接触件形成薄硅太阳能电池的低损坏、高效率且低成本工艺流程。所描述的新颖自对准接触结构可以实现较高的太阳能电池转换效率。另外,描述了用于形成具有自对准接触件的太阳能电池结构的具有最少或减少的工艺步骤的太阳能电池制作方法。The disclosed subject matter provides structures and methods for fabricating self-aligned contacts for back-contact back-junction solar cells. In particular, the disclosed subject matter and corresponding drawings provide low-damage, high-density silicon solar cells for forming thin silicon solar cells using self-aligned contacts for back-contact back-junction (e.g., interdigitated back-contact IBC) solar cells. Efficient and low-cost process flow. The described novel self-aligned contact structure can achieve high solar cell conversion efficiency. Additionally, solar cell fabrication methods with minimal or reduced process steps for forming solar cell structures with self-aligned contacts are described.
术语“自对准”描述了电池结构,使得在基极和发射极金属接触件下方的重掺杂的n+和p+区域相对于接触开口是自对准的-例如在图1A到1D中所示。图1A是具有自对准接触结构的选择性发射极太阳能电池的横截面图,所述自对准接触结构具有掺杂剂扩散区,恰在金属到硅吸收体接触下方具有较高掺杂水平(例如,大于1E18cm-3)。通过在硅中具有重掺杂区(n和p型)以用于改善的金属/硅接触电阻和在金属/硅接触处的较低表面重组速率,以及通过使太阳能电池中的重掺杂区域(例如,大于1E 18cm-2的掺杂)最少且因此减少总体饱和电流密度,自对准接触结构可以提供较高的太阳能电池效率。替代地,本文公开的自对准接触结构也可以通过使用穿过金属与硅之间的势垒层的异质/隧穿接触件来形成-例如图1B中所示。图1B是具有使用穿过金属与硅之间的势垒层的异质/隧穿接触件形成的自对准接触结构的太阳能电池的横截面图。The term "self-aligned" describes the cell structure such that the heavily doped n+ and p+ regions under the base and emitter metal contacts are self-aligned with respect to the contact openings - shown for example in Figures 1A to 1D . Figure 1A is a cross-sectional view of a selective emitter solar cell with a self-aligned contact structure with a dopant diffusion region with a higher doping level just below the metal-to-silicon absorber contact (eg, greater than 1E18cm-3). By having heavily doped regions (n and p-type) in silicon for improved metal/silicon contact resistance and lower surface recombination rates at metal/silicon contacts, and by making heavily doped regions in solar cells With minimal doping (eg, greater than 1E 18 cm-2) and thus reducing the overall saturation current density, the self-aligned contact structure can provide higher solar cell efficiencies. Alternatively, the self-aligned contact structures disclosed herein can also be formed by using hetero/tunneling contacts through the barrier layer between metal and silicon - such as shown in FIG. 1B . 1B is a cross-sectional view of a solar cell with a self-aligned contact structure formed using hetero/tunneling contacts through a barrier layer between metal and silicon.
自对准结构的优点在于重掺杂区域被限于仅在需要它们之处的接触件下方。如果接触开口需要对准于具有非自对准接触结构的重掺杂,那么重扩散需要比所述接触开口宽得多,以适应对准容限。与非自对准接触结构相比,所提供的自对准接触结构由于两个不同原因而可以具有更高效率。第一,重掺杂当在钝化条件下使用时可为有害的,换句话说,重掺杂较多且在一些情况中仅当在例如金属等不良钝化条件下使用时为有用的。因此,自对准结构在高质量钝化条件下消除了重掺杂的区域。第二,对于非自对准结构,需要制作两个开口:第一个用于掺杂,且第二个用于接触开口。如果使用容易在硅中产生损坏的方法(例如,在一些情况中激光处理)制作这些开口,那么自对准结构移除了外部嵌套开口,并且最小化且在一些情况中消除来自此步骤的激光损坏。此外,除了效率优点之外,自对准结构需要的工艺步骤也可以较少,且因此减少电池成本。The advantage of the self-aligned structure is that the heavily doped regions are limited to under the contacts only where they are needed. If a contact opening needs to be aligned to a heavily doped with a non-self-aligned contact structure, then the heavy diffusion needs to be much wider than the contact opening to accommodate alignment tolerances. Compared to non-self-aligned contact structures, the provided self-aligned contact structures can be more efficient for two different reasons. First, heavy doping can be detrimental when used under passivating conditions, in other words, heavily doped and in some cases only useful when used under poor passivating conditions such as metals. Therefore, the self-aligned structure eliminates heavily doped regions under high-quality passivation conditions. Second, for non-self-aligned structures, two openings need to be made: the first one for doping and the second one for contact openings. If these openings are made using methods that are prone to damage in the silicon (eg, laser processing in some cases), then the self-aligned structure removes the outer nested openings and minimizes and in some cases eliminates damage from this step. Laser damage. Furthermore, in addition to the efficiency advantages, self-aligned structures may also require fewer process steps and thus reduce cell cost.
以下表1示出了用于使用掺杂剂膏步骤形成具有自对准接触件和场发射极的选择性发射极太阳能电池(例如图1A中所示)的前端工艺流程。Table 1 below shows a front-end process flow for forming a selective emitter solar cell with self-aligned contacts and field emitters, such as that shown in FIG. 1A , using a dopant paste step.
表1.具有带掺杂剂膏的自对准接触件和场发射极的选择性发射极太阳能电池。Table 1. Selective emitter solar cells with self-aligned contacts and field emitters with dopant paste.
表1示出了其中使用自对准接触用于制作高效率背接触背结太阳能电池的工艺流程。如所示,步骤1是用以从晶片(例如,CZ晶片)移除损坏的锯切损坏移除步骤;然而,所提供的流程同等地适用于在模板上时处理的以外延方式形成的硅衬底,在此情况下,步骤1锯切损坏移除被如本文详细描述的多孔硅和外延硅沉积步骤代替。因此,在外延实施方案中,所描述的前端处理在模板附接的外延衬底的暴露表面上发生,在此之后可以在后端处理中从模板释放(例如,机械或湿式蚀刻释放)外延衬底。重要的是,所提供的示例性工艺流程是为了描述性目的而在制作高效率背接触背结太阳能电池的上下文中描述,且本领域的技术人员可以在总体工艺流程内组合、添加或移除、更改或移动所公开的各种处理步骤。换句话说,来自本文提供的表中描述的每一工艺流程的元素可以一起组合或者与其它已知的太阳能电池制造方法组合。举例来说,参考表1:步骤3中所示的激光接触开口可以分为两个步骤(例如表2中所示)以单独地形成仅用于基极和发射极接触件的自对准接触件;步骤4中所示的掺杂剂膏印刷步骤可具有在已经印刷的掺杂剂膏的顶部上的未掺杂膏的额外第三次印刷(例如图8中所示)。此外,表1的步骤6中所示且移除经退火掺杂剂膏的湿式蚀刻步骤可以被干式HF蒸气蚀刻工艺代替,或者可以针对全干式前端工艺完全跳过(即,去除)移除步骤6。此外,表1的步骤6中所示的激光接触开口步骤可以被用于无激光前端工艺的蚀刻膏工艺代替,其包括蚀刻膏沉积、干燥和冲洗。Table 1 shows the process flow in which self-aligned contacts are used for fabricating high efficiency back contact back junction solar cells. As shown, step 1 is a saw damage removal step to remove damage from a wafer (e.g., a CZ wafer); however, the flow presented is equally applicable to epitaxially formed silicon processed while on a template The substrate, in which case step 1 sawing damage removal was replaced by porous silicon and epitaxial silicon deposition steps as described in detail herein. Thus, in epitaxial embodiments, the described front-end processing occurs on the exposed surface of the template-attached epitaxial substrate, after which the epitaxial liner can be released (e.g., mechanically or wet-etched) from the template in back-end processing. end. Importantly, the exemplary process flows provided are described in the context of fabricating high efficiency back-contact back-junction solar cells for descriptive purposes, and those skilled in the art may combine, add to, or remove from the overall process flow , alter, or move the various process steps disclosed. In other words, elements from each of the process flows described in the tables provided herein can be combined together or with other known methods of solar cell fabrication. As an example, refer to Table 1: The laser contact opening shown in Step 3 can be split into two steps (such as shown in Table 2) to separately form self-aligned contacts for base and emitter contacts only pieces; the dopant paste printing step shown in step 4 may have an additional third print of undoped paste on top of the already printed dopant paste (such as shown in FIG. 8 ). Furthermore, the wet etch step shown in step 6 of Table 1 and which removes the annealed dopant paste can be replaced by a dry HF vapor etch process, or can be skipped (i.e., removed) entirely for an all-dry front-end process. except step 6. Furthermore, the laser contact opening step shown in step 6 of Table 1 can be replaced by an etch paste process for a laser-less front-end process, which includes etch paste deposition, drying, and rinsing.
以下表2示出了用于使用掺杂剂膏且使用单独的接触开口步骤形成具有自对准接触件的选择性发射极太阳能电池的前端工艺流程。Table 2 below shows the front-end process flow for forming a selective emitter solar cell with self-aligned contacts using dopant paste and using a separate contact opening step.
表2.具有带掺杂剂膏的自对准接触件和单独接触开口步骤的选择性发射极太阳能电池。Table 2. Selective emitter solar cells with self-aligned contacts with dopant paste and a separate contact opening step.
以下表3示出了用于形成具有带掺杂剂膏的自对准接触件的选择性发射极太阳能电池以及应用扩散势垒的前端工艺流程。Table 3 below shows the front-end process flow for forming a selective emitter solar cell with self-aligned contacts with dopant paste and applying a diffusion barrier.
表3.具有带掺杂剂膏的自对准接触件和扩散势垒的应用的选择性发射极太阳能电池。Table 3. Selective emitter solar cells with application of self-aligned contacts with dopant paste and diffusion barrier.
替代地,表3的步骤5中示出为APCVD USG沉积的扩散势垒沉积也可以是未掺杂膏印刷。Alternatively, the diffusion barrier deposition shown as APCVD USG deposition in step 5 of Table 3 can also be undoped paste printing.
表2和3的工艺流程实施方案可用以在扩散退火期间从掺杂剂膏减少自动掺杂。The process flow embodiments of Tables 2 and 3 can be used to reduce autodoping from the dopant paste during diffusion annealing.
以下表4示出了用于形成具有带扩散势垒掺杂剂膏印刷的自对准接触件的非对接结太阳能电池(例如图1C中所示)的前端工艺流程。图1C是具有自对准接触结构的非对接结太阳能电池的横截面图,所述自对准接触结构具有掺杂剂扩散区,恰在金属到硅吸收体接触下方具有较高掺杂水平(例如,大于1E18cm-3)。Table 4 below shows the front-end process flow for forming a non-butted junction solar cell with self-aligned contacts with diffusion barrier dopant paste printing, such as that shown in FIG. 1C . Figure 1C is a cross-sectional view of a non-butted junction solar cell with a self-aligned contact structure with a dopant diffusion region with a higher doping level just below the metal-to-silicon absorber contact ( For example, greater than 1E18cm-3).
表4.具有带掺杂剂膏印刷的自对准接触件和带扩散势垒膏印刷的非对接结的非对接结太阳能电池。Table 4. Non-butted junction solar cells with self-aligned contacts with dopant paste printing and non-butted junctions with diffusion barrier paste printing.
替代地参考表4的非对接结太阳能电池流程,表4的步骤2、3和4可以被APCVD硼掺杂氧化硅(BSG1)沉积接着是皮秒(ps)CO2激光的两个步骤代替-称为带掺杂剂膏印刷的自对准接触件以及通过APCVD带硼掺杂氧化硅的非对接结的替代实施方案。Alternatively referring to the non-butted junction solar cell flow of Table 4, steps 2, 3 and 4 of Table 4 can be replaced by two steps of APCVD boron-doped silicon oxide (BSG1) deposition followed by picosecond (ps) CO2 laser - called Alternative implementations for self-aligned contacts printed with dopant paste and non-butted junctions with boron-doped silicon oxide by APCVD.
以下表5示出了用于具有自对准接触件且使用磷掺杂剂膏的非选择性发射极太阳能电池的制作工艺流程。Table 5 below shows the fabrication process flow for a non-selective emitter solar cell with self-aligned contacts and using phosphorous dopant paste.
表5.具有带掺杂剂膏的自对准接触件的非选择性发射极太阳能电池。Table 5. Non-selective emitter solar cells with self-aligned contacts with dopant paste.
替代地,以下表6示出了用于具有自对准接触件且使用三氯氧化磷POCl3(POCl)的非选择性发射极太阳能电池的制作工艺流程。Alternatively, Table 6 below shows the fabrication process flow for a non-selective emitter solar cell with self-aligned contacts and using phosphorus oxychloride POCl3 (POCl).
表6.具有带基于POCl的扩散的自对准接触件的非选择性发射极太阳能电池。Table 6. Non-selective emitter solar cells with self-aligned contacts with POCl-based diffusion.
以下表7示出了用于使用掺杂剂膏的具有自对准钝化基极接触件的非选择性发射极太阳能电池的制作工艺流程。Table 7 below shows the fabrication process flow for a non-selective emitter solar cell with self-aligned passivated base contact using dopant paste.
表7.具有带掺杂剂膏的自对准钝化基极接触件的非选择性发射极太阳能电池。Table 7. Non-selective emitter solar cells with self-aligned passivated base contacts with dopant paste.
以下表8示出了用于具有自对准基极隧穿/异质结接触件(例如图1B中所示)的太阳能电池的制作工艺流程。Table 8 below shows the fabrication process flow for a solar cell with a self-aligned base tunneling/heterojunction contact such as that shown in FIG. 1B .
表8.具有自对准隧穿/异质结接触件的太阳能电池。Table 8. Solar cells with self-aligned tunneling/heterojunction contacts.
以下表9示出了用于具有自对准接触件而在基极接触下方无重扩散区的太阳能电池的制作工艺流程。Table 9 below shows the fabrication process flow for a solar cell with self-aligned contacts without a heavy diffusion region below the base contact.
表9.具有自对准钝化基极接触件的太阳能电池。Table 9. Solar cells with self-aligned passivated base contacts.
替代地,本文描述的自对准接触结构和方法可以应用于Alternatively, the self-aligned contact structures and methods described herein can be applied to
以下表10示出了用于形成具有带场基极的自对准接触件的太阳能电池(例如图1D中所示)的前端工艺流程。图1D是具有场基极和自对准接触结构的太阳能电池的横截面图,所述自对准接触结构具有掺杂剂扩散区,恰在金属到硅吸收体接触下方具有较高掺杂水平(例如,大于1E18cm-3)。替代地,例如,表10中的移除经退火掺杂剂膏的HF蒸气步骤6可以被湿式蚀刻步骤代替。Table 10 below shows the front-end process flow for forming a solar cell with self-aligned contacts with field bases, such as that shown in FIG. 1D . Figure 1D is a cross-sectional view of a solar cell with a field base and a self-aligned contact structure with a dopant diffusion region with a higher doping level just below the metal-to-silicon absorber contact (eg, greater than 1E18cm-3). Alternatively, for example, the HF vapor step 6 in Table 10 to remove the annealed dopant paste can be replaced by a wet etch step.
表10.具有场基极和带掺杂剂膏的自对准接触件的太阳能电池。Table 10. Solar cells with field bases and self-aligned contacts with dopant paste.
替代地,以下表11示出了用于形成具有带蚀刻膏和掺杂剂膏印刷的场基极自对准接触件的太阳能电池(例如图1D中所示)的前端工艺流程。Alternatively, Table 11 below shows a front-end process flow for forming a solar cell with field base self-aligned contacts with etch paste and dopant paste printing, such as that shown in FIG. 1D .
表11.具有场基极和带蚀刻膏和掺杂剂膏印刷的自对准接触件的太阳能电池。Table 11. Solar cells with field bases and self-aligned contacts printed with etch paste and dopant paste.
图2A到2E是示出在具有带掺杂剂膏的自对准接触件的对接结叉指状背接触太阳能电池的制作期间在各个步骤处的太阳能电池的横截面图的工艺流程表示。图2A示出了在硅衬底/晶片上沉积(例如,通过APCVD)的氧化铝(Al2O3)层。氧化铝层也可以具有未掺杂硅酸盐玻璃层。接着,如图2B中所示,纳秒(ns或ps)激光打开基极和发射极接触件。此步骤也可以包含湿式蚀刻以移除任何氧化物残余(例如,铝硅氧化物残余)。接着,如图2C中所示,掺杂剂膏是发射极和基极区中的膏印刷,之后进行扩散退火以驱入/扩散掺杂剂且形成基极和发射极区。接着如图2D中所示,剥落(例如,通过湿式蚀刻)掺杂剂膏。接着如图2E中所示,在基极和发射极区上印刷金属且进行退火,从而导致最小的分路风险。2A to 2E are process flow representations showing cross-sectional views of a solar cell at various steps during the fabrication of a butt junction interdigitated back contact solar cell with self-aligned contacts with dopant paste. Figure 2A shows an aluminum oxide (Al2O3) layer deposited (eg, by APCVD) on a silicon substrate/wafer. The aluminum oxide layer can also have an undoped silicate glass layer. Next, as shown in Figure 2B, a nanosecond (ns or ps) laser opens the base and emitter contacts. This step may also include a wet etch to remove any oxide residues (eg, aluminum silicon oxide residues). Next, as shown in Figure 2C, the dopant paste is paste printing in the emitter and base regions, followed by a diffusion anneal to drive in/diffuse the dopants and form the base and emitter regions. Next, as shown in Figure 2D, the dopant paste is exfoliated (eg, by wet etching). Metal is then printed and annealed on the base and emitter regions as shown in Figure 2E, resulting in minimal shunting risk.
图3A到3G是示出在具有带掺杂剂膏的自对准接触件的非对接结叉指状背接触太阳能电池的制作期间在各个步骤处的太阳能电池的横截面图的工艺流程表示。图3A示出了在硅衬底/晶片上沉积(例如,通过APCVD)的氧化铝(Al2O3)层。氧化铝层也可以具有未掺杂硅酸盐玻璃层。接着,如图3B中所示,纳秒(ns)激光打开基极接触件。此步骤也可以包含湿式蚀刻以移除任何氧化物残余(例如,铝硅氧化物残余)。接着,如图3C中所示,沉积(例如,通过APCVD)未掺杂硅酸盐玻璃层。接着如图3D中所示,皮秒(ps)激光烧蚀基极和发射极接触开口。接着,如图3E中所示,掺杂剂膏是发射极和基极区中的膏印刷,之后进行扩散退火以驱入/扩散掺杂剂且形成基极和发射极区。接着如图3F中所示,剥落(例如,通过湿式蚀刻)掺杂剂膏。接着如图3G中所示,在基极和发射极区上印刷金属且进行退火,从而导致最小的分路风险。3A to 3G are process flow representations showing cross-sectional views of a solar cell at various steps during the fabrication of a non-butted junction interdigitated back contact solar cell with self-aligned contacts with dopant paste. Figure 3A shows an aluminum oxide (Al2O3) layer deposited (eg, by APCVD) on a silicon substrate/wafer. The aluminum oxide layer can also have an undoped silicate glass layer. Next, as shown in Figure 3B, a nanosecond (ns) laser opens the base contact. This step may also include a wet etch to remove any oxide residues (eg, aluminum silicon oxide residues). Next, as shown in Figure 3C, a layer of undoped silicate glass is deposited (eg, by APCVD). The base and emitter contact openings are then ablated by a picosecond (ps) laser as shown in Figure 3D. Next, as shown in Figure 3E, the dopant paste is paste printing in the emitter and base regions, followed by a diffusion anneal to drive in/diffuse the dopants and form the base and emitter regions. Next, as shown in Figure 3F, the dopant paste is exfoliated (eg, by wet etching). Metal is then printed and annealed on the base and emitter regions as shown in Figure 3G, resulting in minimal shunting risk.
图4A到4E是示出在首先使用未掺杂膏制作具有带掺杂剂膏的自对准接触件的非对接结叉指状背接触太阳能电池期间在各个步骤处的太阳能电池的横截面图的工艺流程表示。图4A示出了仅在硅衬底/晶片的所需基极区上印刷的未掺杂氧化硅(SiO2)膏。接着,如图4B中所示,沉积(例如,通过APCVD)掺杂层(例如,掺杂氧化铝层Al2O3或掺杂硼硅酸盐玻璃层BSG1)和未掺杂硅酸盐玻璃(USG)层。未掺杂硅酸盐玻璃层可具有比未掺杂层厚三到四倍的厚度。接着如图4C中所示,皮秒(ps)激光烧蚀基极和发射极接触开口。接着,如图4D中所示,掺杂剂膏是发射极和基极区中的膏印刷,之后进行扩散退火以驱入/扩散掺杂剂且形成基极和发射极区。接着,剥落(例如,通过湿式蚀刻)掺杂剂膏。接着如图4E中所示,在基极和发射极区上印刷金属且进行退火,从而导致最小的分路风险。4A to 4E are cross-sectional views showing a solar cell at various steps during first fabricating a non-butted junction interdigitated back contact solar cell with self-aligned contacts with dopant paste using undoped paste process flow representation. Figure 4A shows an undoped silicon oxide (SiO2) paste printed on only the desired base regions of a silicon substrate/wafer. Next, as shown in FIG. 4B , deposit (for example, by APCVD) a doped layer (for example, a doped aluminum oxide layer Al2O3 or a doped borosilicate glass layer BSG1 ) and an undoped silicate glass (USG) layer. The undoped silicate glass layer may have a thickness three to four times thicker than the undoped layer. The base and emitter contact openings are then ablated by a picosecond (ps) laser as shown in Figure 4C. Next, as shown in Figure 4D, the dopant paste is paste printing in the emitter and base regions, followed by a diffusion anneal to drive in/diffuse the dopants and form the base and emitter regions. Next, the dopant paste is peeled off (eg, by wet etching). Metal is then printed and annealed on the base and emitter regions as shown in Figure 4E, resulting in minimal shunting risk.
虽然在CZ晶片的一般情形中描述制造自对准背接触背结太阳能电池的方法,但这些方法也同等地适用于外延生长的背接触背结太阳能电池的情形。另外,所述方法适用于厚晶体硅(例如,具有在近似100um到200um的范围内的吸收体厚度)以及薄晶体硅背接触背结太阳能电池(例如,具有在近似5um到100um的范围内的吸收体厚度)。Although the methods for fabricating self-aligned back-contact back-junction solar cells are described in the general context of CZ wafers, the methods are equally applicable in the case of epitaxially grown back-contact back-junction solar cells. Additionally, the method is applicable to thick crystalline silicon (e.g., with absorber thickness in the range of approximately 100um to 200um) as well as thin crystalline silicon back-contact back-junction solar cells (e.g., with absorber thickness in the range of approximately 5um to 100um). absorber thickness).
大体上且特定适用于以下表中表示的工艺流程,使用各种场电介质移除技术(例如使用激光或者湿式蚀刻或蚀刻膏)顺序地(以任一次序)或同时地打开发射极或基极接触件。且随后,在打开的接触件中沉积掺杂剂源,在高温下将掺杂剂驱动到硅中,且选择性移除/蚀刻掺杂剂源,同时保持场电介质不受蚀刻剂危害。这使得被驱动到硅中的掺杂剂仅留在接触件被打开之处下方的区域中,从而留下自对准结构。In general and specifically applicable to the process flow represented in the table below, the emitter or base are turned on sequentially (in either order) or simultaneously using various field dielectric removal techniques such as using a laser or wet etching or etching paste contacts. And then, a dopant source is deposited in the open contact, the dopant is driven into the silicon at high temperature, and the dopant source is selectively removed/etched while leaving the field dielectric unharmed by the etchant. This leaves the dopants driven into the silicon only in the area below where the contacts were opened, leaving a self-aligned structure.
所描述的制造方法可以进一步通过接触件下方掺杂剂的源来分类。这些可以来自掺杂剂膏(例如,用于n型的磷和用于p型的硼)或者其中合并有掺杂剂的沉积膜,例如APCVD沉积的硼或磷掺杂SiO2膜。最后,混合源,其中N+和p+掺杂剂源来自用于一种类型的掺杂剂的APCVD以及用于另一类型的掺杂剂的掺杂剂膏。通过蚀刻掉/移除掺杂剂源的技术界定进一步子分类,其适用于晶片和基于外延的吸收体以及掺杂剂源分类(掺杂剂膏、APCVC膜和混合掺杂剂源)。作为一个实施例,对于例如掺杂SiO2等基于氧化物的掺杂剂源,可使用借助HF的湿式工艺,或者可部署使用HF气相蚀刻的干式工艺。如果场区域也是SiO2,那么获得湿式HF选择性,因为重掺杂SiOx膜可以比未掺杂膜蚀刻快得多。替代地,场区域堆叠可以含有Al2O3(例如,也使用APCVD沉积)。此膜一旦在例如大于900℃的高温下经处理,便可以具有对HF溶液的高选择性。替代地,HF蒸气也极为选择性地蚀刻掺杂剂源。The described fabrication methods can be further categorized by the source of dopants under the contacts. These can come from dopant pastes (eg phosphorus for n-type and boron for p-type) or deposited films in which dopants are incorporated, eg APCVD deposited boron or phosphorus doped SiO2 films. Finally, a mixed source, where the N+ and p+ dopant sources come from APCVD for one type of dopant and dopant paste for the other type of dopant. A further subclassification is defined by the technique of etching away/removing the dopant source, which applies to both wafer and epitaxy based absorbers and dopant source classification (dopant paste, APCVC film and mixed dopant source). As an example, for oxide-based dopant sources such as doped SiO2, a wet process with HF can be used, or a dry process with HF vapor phase etching can be deployed. If the field region is also SiO2, then wet HF selectivity is obtained since heavily doped SiOx films can be etched much faster than undoped films. Alternatively, the field region stack may contain Al2O3 (eg also deposited using APCVD). This membrane can have a high selectivity to HF solutions once treated at elevated temperatures, eg greater than 900°C. Alternatively, HF vapor also etches dopant sources very selectively.
大体上,如果同时打开接触件,那么两个掺杂剂源可为丝网印刷掺杂剂膏。如果循序地打开接触件,那么可以利用用于两个接触件的沉积膜或者混合源。In general, the two dopant sources can be screen printed dopant pastes if the contacts are opened at the same time. If the contacts are opened sequentially, a deposited film or mixed source for both contacts can be utilized.
表12示出了前端自对准接触制作流程,其产生分离结且是使用掺杂剂膏(例如,丝网印刷掺杂剂膏)来实现。在分离结中,发射极掺杂不对接基极接触掺杂,且通过基极的背景体掺杂而分离。步骤2示出了跟随有顶盖的发射极的沉积。并且虽然发射极源示出为是APCVD沉积的硼掺杂Al2O3,但其也可以是硼掺杂SiO2层或使用不同方式沉积的另一掺杂剂源层。第一激光烧蚀(步骤3)是打开发射极与基极掺杂之间的分离,使得在退火后,结之间存在分离。所述流程建议使用激光ns UV和ps UV。也可以使用皮秒绿色激光、飞秒激光或者蚀刻膏或光刻技术来产生此基极窗。如果使用皮秒激光,那么之后可以是硅的小型湿式蚀刻以移除硅中的激光损坏。表12的步骤5也是使用皮秒绿色激光或飞秒激光来完成。步骤5是用于基极接触件的基极窗口内的接触开口以及用于发射极的接触开口。两个接触件是在同一个步骤中打开,因此印刷掺杂剂源的方法应当是这些接触件的顶部上的选择性印刷,例如掺杂剂膏的丝网印刷(与薄掺杂剂源膜的毯覆式沉积相比)。在步骤7中进行退火以将掺杂剂驱入两个接触件中之后,对掺杂剂源进行湿式蚀刻或使用HF蒸气选择性蚀刻。在一个单独实施方案中,如果掺杂剂的源是导电的,如同基于硅的掺杂剂源,那么可以跳过蚀刻步骤(步骤#8)。Table 12 shows a front-end self-aligned contact fabrication flow that creates a split junction and is implemented using a dopant paste (eg, screen-printed dopant paste). In a split junction, the emitter doping does not abut the base contact doping and is separated by the background bulk doping of the base. Step 2 shows the deposition of the emitter followed by a cap. And while the emitter source is shown as an APCVD deposited boron doped Al2O3, it could also be a boron doped SiO2 layer or another dopant source layer deposited using a different means. The first laser ablation (step 3) is to open the separation between the emitter and base doping so that after annealing there is a separation between the junctions. The described protocol suggests the use of lasers ns UV and ps UV. This base window can also be produced using picosecond green laser, femtosecond laser or etching paste or photolithography. If a picosecond laser is used, this can be followed by a small wet etch of the silicon to remove the laser damage in the silicon. Step 5 of Table 12 is also done using picosecond green laser or femtosecond laser. Step 5 is a contact opening in the base window for the base contact and a contact opening for the emitter. Both contacts are opened in the same step, so the method of printing the dopant source should be selective printing on top of these contacts, e.g. screen printing of dopant paste (with thin dopant source film compared to blanket deposition). After the anneal in step 7 to drive the dopants into the two contacts, the dopant sources are wet etched or selectively etched using HF vapor. In a separate embodiment, the etch step (step #8) may be skipped if the source of dopant is conductive, like a silicon-based dopant source.
表12.使用掺杂剂膏产生分离结的自对准接触制作流程。Table 12. Self-aligned contact fabrication flow using dopant paste to create split junctions.
在另一实施方案中,如果在干燥或掺杂剂驱动期间存在共同扩散的风险,那么可以循序地打开接触件。在此情形中,首先打开基极或发射极接触件,并且印刷和干燥对应的膏。接着,打开另一接触件,并且印刷和干燥对应的膏。最后,同时驱动两种膏。此替代方案可以避免在干燥和燃烧期间接触件中的交叉污染。In another embodiment, the contacts can be opened sequentially if there is a risk of co-diffusion during drying or dopant drive. In this case, first the base or emitter contact is opened, and the corresponding paste is printed and dried. Next, the other contact is opened, and the corresponding paste is printed and dried. Finally, drive both pastes simultaneously. This alternative avoids cross-contamination in the contacts during drying and burning.
在较极端情况中,如果交叉污染的问题是在掺杂剂驱动期间,那么可以对一种类型的掺杂剂执行接触件打开、掺杂剂膏印刷、干燥/燃烧以及退火。此序列之后是针对第二类型的接触件重复的相同步骤。这导致两种不同的退火,在此情况下应当优化热预算。In a more extreme case, if cross-contamination is an issue during dopant drive, then contact opening, dopant paste printing, drying/burning, and annealing can be performed on one type of dopant. This sequence is followed by the same steps repeated for the second type of contact. This results in two different anneals, in which case the thermal budget should be optimized.
在表12中的工艺流程的对接结实施方案中,可以跳过步骤3和4,且可以针对基极和发射极直接打开接触件。In the butt junction implementation of the process flow in Table 12, steps 3 and 4 can be skipped and the contacts can be opened directly to the base and emitter.
最后,在另一变化中,可以通过对掺杂剂源蚀刻剂化学性质具有抵抗性的薄膜来对场区域进行封端。在掺杂剂源是基于SiOx且蚀刻化学品是基于HF的情况下,顶盖层可以是基于APCVD的Al2O3(未掺杂或掺杂)或氧化钛(TiO2)或非晶硅(a-Si)。Finally, in another variation, the field region can be terminated by a thin film that is resistant to the dopant source etchant chemistry. In cases where the dopant source is based on SiOx and the etch chemistry is based on HF, the cap layer can be APCVD based Al2O3 (undoped or doped) or titanium oxide (TiO2) or amorphous silicon (a-Si ).
表13示出了仅使用用作掺杂剂源的APCVD沉积膜的前端分离结自对准太阳能电池工艺流程。此流程遵循与表12相同的步骤(具有上述所有变化)直到步骤4。在步骤5,首先打开仅一个类型的接触件。在此情况下,所述接触件为发射极接触件(用于n型背接触电池)。这之后是APCVD BSG膜,其为用于发射极接触件掺杂的掺杂剂源(步骤6)。接着,打开基极接触件,且使用APCVD沉积PSG。在一个变化中,发射极和基极接触件打开的顺序可以颠倒。表13中描述的分离结流程的对接型式跳过/移除了步骤3和4以产生对接结。Table 13 shows the process flow of the front-separated junction self-aligned solar cell using only APCVD-deposited film as dopant source. This procedure follows the same steps as Table 12 (with all the changes above) until step 4. At step 5, only one type of contact is opened first. In this case, the contact is an emitter contact (for n-type back contact cells). This is followed by the APCVD BSG film, which is the dopant source for emitter contact doping (step 6). Next, the base contact is opened and PSG is deposited using APCVD. In one variation, the order in which the emitter and base contacts are opened can be reversed. The butted version of the split junction procedure described in Table 13 skipped/removed steps 3 and 4 to create a butted junction.
表13.使用APCVD掺杂电介质膜产生分离结的自对准接触制作流程。Table 13. Self-aligned contact fabrication flow using APCVD doped dielectric films to create split junctions.
以下表14示出了使用混合方法的前端分离结自对准工艺流程。在此方法中,一个掺杂剂源是沉积APCVD膜,而另一类型的掺杂剂源是印刷掺杂剂膏。Table 14 below shows the front-end split junction self-alignment process flow using a hybrid approach. In this method, one dopant source is deposited APCVD film and another type of dopant source is printed dopant paste.
表14.使用混合APCVD掺杂电介质膜和基于磷的掺杂剂膏产生分离结的自对准接触制作流程。Table 14. Self-aligned contact fabrication flow for creating split junctions using mixed APCVD doped dielectric films and phosphorous-based dopant pastes.
表14的流程与表13共享前四个步骤(及其变化)。在表14的步骤5中,打开发射极接触件。在步骤6中沉积BSG,且步骤7用激光打开基极接触件(应注意,虽然所述流程建议使用ps激光,但不排除具有不同波长的纳秒或飞秒激光,只要它们满足接触件打开要求即可)。随后,在步骤8中印刷、干燥剂基于磷的掺杂剂膏。步骤9是退火步骤,用以从BSG和从磷膏驱动掺杂剂以产生接触件下方的掺杂区域,而步骤10基于湿式或HF蒸气技术而移除掺杂剂源。表14中描述的分离结流程的对接型式跳过/移除了步骤3和4以产生对接结。The procedure of Table 14 shares the first four steps (and variations thereof) with Table 13. In step 5 of Table 14, the emitter contact is opened. The BSG is deposited in step 6 and the base contact is opened with a laser in step 7 (note that while the described flow suggests the use of a ps laser, nanosecond or femtosecond lasers with different wavelengths are not excluded as long as they satisfy the contact opening upon request). Subsequently, in step 8, a phosphorous-based dopant paste is printed and dried. Step 9 is an annealing step to drive dopants from the BSG and from the phosphopaste to create doped regions under the contacts, while step 10 removes dopant sources based on wet or HF vapor techniques. The butted version of the split junction procedure described in Table 14 skipped/removed steps 3 and 4 to create a butted junction.
在表14的流程的变化中,BSG2(步骤6)和磷掺杂剂膏(步骤8)的顺序颠倒。首先打开基极接触件,之后是磷膏。这之后继而是发射极接触件和BSG2沉积,且剩余流程是类似的。In a variation of the procedure in Table 14, the order of BSG2 (step 6) and phosphorus dopant paste (step 8) is reversed. The base contact is opened first, followed by the phosphopaste. This is followed by emitter contact and BSG2 deposition, and the rest of the flow is similar.
在另一变化中,混合掺杂剂源是基于APCVD PSG和掺杂剂膏硼,使得以APCVD沉积掺杂SiO2制作基极接触件,同时使用基于硼的掺杂剂膏制作发射极接触件。此变化具有进一步变化,其中接触件打开及其伴随的掺杂剂源的顺序具有两种可能性。In another variation, the mixed dopant source is based on APCVD PSG and dopant paste boron such that doped SiO2 is APCVD deposited to make the base contact while boron based dopant paste is used to make the emitter contact. This variation has a further variation in which the sequence of contact opening and its accompanying dopant source has two possibilities.
以下表15是示出了表14的混合方法的变化的前端工艺流程,其中掺杂剂膏和掺杂电介质膜均用作用于基极和发射极接触件下方掺杂的掺杂剂源。Table 15 below is a front-end process flow showing a variation of the hybrid approach of Table 14, where both dopant paste and doped dielectric film are used as dopant sources for doping below the base and emitter contacts.
表15.使用混合APCVD掺杂电介质膜和基于磷的掺杂剂膏产生分离结的自对准接触制作流程,其中通过扩散退火进行分离接触件打开,消除了掺杂剂共同扩散风险Table 15. Self-aligned contact fabrication flow for creating split junctions using a hybrid APCVD-doped dielectric film and phosphorous-based dopant paste, where the split contacts are opened by diffusion annealing, eliminating the risk of dopant co-diffusion
在表15与表14相比的一个变化中,通过APCVD-PSG和扩散退火来分离发射极和基极接触件。这是为了减少在扩散退火期间掺杂剂共同扩散的风险。共同扩散是当来自掺杂剂膏(磷或硼)的基极或发射极接触扩散区域(磷或硼)的掺杂剂源通过气相移动到其它极性(基极或发射极)中时的过程。此过程可以例如通过以下方式而避免:在PSG的顶部上放置固体相掺杂剂源(APCVD-PSG)且在下一个接触发射极接触件打开步骤之前增加退火,如表15中所示。在一些情况下,膏是磷,且首先打开基极(对于n型背接触电池),且在一种变化中,膏是硼膏,且首先打开发射极。In a variation of Table 15 compared to Table 14, the emitter and base contacts were separated by APCVD-PSG and diffusion annealing. This is to reduce the risk of dopant co-diffusion during the diffusion anneal. Co-diffusion is when the dopant source from the base or emitter contact diffusion region (phosphorous or boron) of the dopant paste (phosphorus or boron) moves through the gas phase into the other polarity (base or emitter) process. This process can be avoided, for example, by placing a solid phase dopant source (APCVD-PSG) on top of the PSG and adding an anneal before the next contact-emitter contact opening step, as shown in Table 15. In some cases the paste is phosphorous and the base is turned on first (for n-type back contact cells), and in one variation the paste is boron and the emitter is turned on first.
表15工艺流程的变化通过跳过步骤3和4而形成对接结,如以下表16中所示。贯穿本公开,接合表15描述的变化同等适用于对接结流程。A variation of the process flow of Table 15 forms a butt junction by skipping steps 3 and 4, as shown in Table 16 below. Throughout this disclosure, the variations described in Bonding Table 15 apply equally to the butt bonding process.
表16.使用混合APCVD掺杂电介质膜和基于磷的掺杂剂膏产生对接结的自对准接触制作流程,其中通过扩散退火进行分离接触件打开,消除了掺杂剂共同扩散风险。Table 16. Self-aligned contact fabrication flow for butt junctions using hybrid APCVD-doped dielectric films and phosphorous-based dopant pastes, where separation contacts are opened by diffusion annealing, eliminating the risk of dopant co-diffusion.
在表15和16的变化中,可通过消除APCVD-PSG或消除扩散退火来避免共同扩散风险。In the variations of Tables 15 and 16, the risk of co-diffusion can be avoided by eliminating APCVD-PSG or eliminating diffusion annealing.
应注意,至此所描述的所有自对准工艺流程及其变化对于外延生长的薄膜太阳能电池同等有效。针对外延薄膜太阳能电池在表17中示出对应于表12中概括的方法(具有掺杂剂膏的分离结)的代表性工艺流程。外延流程可以使用HF蒸气方法来保持流程大部分干燥,同时外延吸收体仍然在模板上。关于具有混合掺杂剂源或所有APCVD掺杂剂源(针对CZ晶片示出)的对接结和分离结的所有其它实施方案通过基于表16的修改流程而对于外延太阳能电池是同等有效的。本申请提供围绕外延形成的其它方面的更详细流程。自对准属性及其制造方法可以与基于外延和CZ晶片的工艺流程的任何先前论述的变化进行组合。It should be noted that all self-aligned process flows and variations thereof described thus far are equally valid for epitaxially grown thin film solar cells. A representative process flow corresponding to the method outlined in Table 12 (split junction with dopant paste) is shown in Table 17 for epitaxial thin film solar cells. The epitaxial process can use the HF vapor method to keep the process mostly dry while the epitaxial absorber is still on the template. All other embodiments regarding docked and split junctions with mixed dopant sources or all APCVD dopant sources (shown for CZ wafers) are equally valid for epitaxial solar cells by modifying the procedure based on Table 16. This application provides a more detailed flow around other aspects of epitaxial formation. The self-aligned properties and methods of fabrication thereof can be combined with any of the previously discussed variations of epitaxy and CZ wafer based process flows.
表17.使用基于外延形成的衬底的掺杂剂膏产生分离结的自对准接触制作流程。Table 17. Self-aligned contact fabrication flow for creating split junctions using dopant pastes on epitaxially formed substrates.
在太阳能电池背侧基极和发射极区的完成之后,本文描述的太阳能电池结构可以利用多层金属化结构,例如两层级金属化结构,包括电池上基极和发射极金属化第一层级金属(M1),以及从第一层级金属收集功率(电压和电流)(因此完成太阳能电池金属化)且还可形成电池到电池互连的第二层级金属(M2)。第二层级金属(M2)可以包括基极和发射极电流收集指形物的叉指状图案,且任选地包括太阳能电池基极和发射极汇流条(例如,分别从基极和发射极汇流条延伸的M2基极和发射极指形物)。第一层级金属(M1)可以包括叉指状背接触金属化结构,其中相对精细间距叉指状指形物(比第二层级金属间距精细得多的间距)正交/垂直或(在一些情况中)平行于M2的叉指状指形物而布置。形成于M1与M2之间且附接到太阳能电池的相对薄电绝缘背板提供太阳能电池结构支撑、M1电绝缘,且允许太阳能电池制作(尤其是M2制作和太阳能电池前侧处理)处理改进。背板片可以是与太阳能电池半导体衬底材料(例如,用于硅太阳能电池的晶体硅)接近地CTE匹配的连续柔性材料,其在剩余太阳能电池制造工艺步骤的完成之前层压或以另外方式附接到例如背接触/背结太阳能电池。After the completion of the base and emitter regions on the backside of the solar cell, the solar cell structures described herein can utilize a multi-level metallization structure, such as a two-level metallization structure, including base and emitter metallization on the cell first level metallization (M1), and a second level metal (M2) that collects power (voltage and current) from the first level metal (thus completing the solar cell metallization) and can also form cell-to-cell interconnects. The second level metal (M2) may include an interdigitated pattern of base and emitter current collecting fingers, and optionally include solar cell base and emitter bus bars (e.g., from the base and emitter bus bars, respectively strip extended M2 base and emitter fingers). First level metal (M1) may include interdigitated back contact metallization with relatively fine pitch interdigitated fingers (much finer pitch than second level metal pitch) orthogonal/perpendicular or (in some cases Middle) Arranged parallel to the interdigitated fingers of M2. The relatively thin electrically insulating backsheet formed between M1 and M2 and attached to the solar cells provides solar cell structural support, M1 electrical isolation, and allows solar cell fabrication (especially M2 fabrication and solar cell frontside processing) process improvements. The backplane sheet may be a continuous flexible material closely CTE-matched to the solar cell semiconductor substrate material (e.g., crystalline silicon for silicon solar cells), which is laminated or otherwise Attached to e.g. back contact/back junction solar cells.
在多层级金属化设计中,例如包括第一层级电池上金属M1(例如,包括铝或另一合适金属的精细间距叉指状金属化结构)和第二层级金属M2(例如,包括铝、铜或合适导电金属的粗间距叉指状金属化结构)的两层级金属设计,M1可以包括叉指状基极和发射极线(例如,基极-发射极指形物间距小于2mm且在一些情况中小于1mm)且M2(在一些情况中,叉指状指形物基本上正交/垂直于M1指形物且基极-发射极间距与M1相比粗得多)用作M1基极和发射极线之间的电连接器(即,无汇流条的M1图案,同时任选的电池汇流条可放置于M2图案上)。所公开多层级金属设计中的金属层通过电介质或电绝缘层而分离,例如基于树脂/纤维的预浸材料或者合适的基于塑料或聚合物的材料,从而形成用于放置在连续背板上的太阳能电池阵列中的多个太阳能电池中的每一者的连续背板。重要的是,所述背板应当优选地相对接近地CTE(热膨胀系数)匹配于半导体吸收体(例如,晶体硅)的CTE,以便最小化在热处理期间的CTE失配应力或翘曲效应,例如,经特殊配制的芳纶纤维树脂预浸材料可以提供与硅的接近CTE匹配,同时提供灵活性、电绝缘、热和化学稳定性以及其它所需的处理和可靠性特性,例如有效的无裂缝层压。M1/M2互连结构包含穿过定位于M1与M2之间的绝缘层(例如,诸如预浸背板等绝缘电介质层)的导电材料填充的通孔,所述绝缘层在图案化M2层的形成之后层压或附接到太阳能电池的背侧。In a multi-level metallization design, for example, a first level metallization M1 (eg, fine pitch interdigitated metallization comprising aluminum or another suitable metal) and a second level metal M2 (eg, comprising aluminum, copper, etc.) are included. or coarse-pitch interdigitated metallization of suitable conductive metal), M1 may include interdigitated base and emitter lines (e.g., base-emitter finger spacing less than 2mm and in some cases ) and M2 (in some cases the interdigitated fingers are substantially orthogonal/perpendicular to the M1 fingers and the base-emitter spacing is much thicker than M1) serves as the M1 base and Electrical connectors between emitter lines (ie M1 pattern without busbars, while optional battery busbars can be placed on M2 pattern). The metal layers in the disclosed multi-level metal design are separated by a dielectric or electrically insulating layer, such as a resin/fiber based prepreg material or a suitable plastic or polymer based material, forming a layer for placement on a continuous backplane A continuous backsheet for each of the plurality of solar cells in the solar array. Importantly, the backplate should preferably be relatively closely CTE (coefficient of thermal expansion) matched to the CTE of the semiconductor absorber (e.g., crystalline silicon) in order to minimize CTE mismatch stress or warpage effects during thermal processing, e.g. , a specially formulated aramid fiber resin prepreg that provides a close CTE match to silicon while providing flexibility, electrical insulation, thermal and chemical stability, and other desirable handling and reliability characteristics, such as effective crack-free laminated. The M1/M2 interconnect structure includes conductive material-filled vias through an insulating layer (e.g., an insulating dielectric layer such as a pre-preg backplane) positioned between M1 and M2, the insulating layer being in the patterned M2 layer. Laminated or attached to the backside of the solar cell after formation.
具体来说,所提供的太阳能电池可以利用两层级金属化方案,其包括:优选无汇流条(但可使用任选的汇流条)的第一层级接触金属化(M1),其使用相对薄的图案化金属(例如,通过铝膏的丝网印刷或铝墨水的喷墨印刷或者从铝目标的等离子溅镀之后进行激光烧蚀或湿式蚀刻图案化而形成的薄铝),其在背板层压之前直接形成于太阳能电池背侧上;以及第二层级薄图案化金属M2(例如,包括近似3到5微米厚的Al或者大约一到几微米的铜,其在任一情况下可任选地用例如锡等可焊接涂层来封端),其在背板层压之后形成。图案化M2层也可以通过使用高导电性金属箔(包括铜或铝)的电镀或层压和图案化而形成。M1和M2层通过背板而分离,且在指定区处通过导电通孔插塞(导电通孔插塞可以在M2形成期间形成)互连。M1具有精细间距图案,且M2优选地正交(或基本上垂直)于M1且具有粗间距图案(因此,与M1相比较少的基极和发射极指形物)。图案化M2完成电池层级电金属化,且也可以为层压到连续背板的多个太阳能电池提供电池到电池电互连,因此在一些情况中消除了对单独的电池到电池搭接/汇流/焊接的需要。此外,当阵列/模块电互连设计需要时,M2可以形成阵列/模块层级汇流或互连。In particular, the provided solar cells can utilize a two-level metallization scheme comprising: a first-level contact metallization (M1) preferably without bus bars (although optional bus bars can be used) using a relatively thin Patterned metal (for example, thin aluminum formed by screen printing of aluminum paste or inkjet printing of aluminum ink or plasma sputtering from an aluminum target followed by laser ablation or wet etch patterning) on the backplane layer formed directly on the backside of the solar cell prior to pressing; and a second level of thin patterned metal M2 (e.g., comprising approximately 3 to 5 microns thick Al or approximately one to several microns copper, which in either case is optionally capped with a solderable coating such as tin), which is formed after backplane lamination. The patterned M2 layer can also be formed by electroplating or lamination and patterning using highly conductive metal foils including copper or aluminum. The M1 and M2 layers are separated by a backplate and interconnected at designated areas by conductive via plugs (conductive via plugs may be formed during M2 formation). M1 has a fine pitch pattern, and M2 is preferably orthogonal (or substantially perpendicular) to M1 and has a coarse pitch pattern (thus, fewer base and emitter fingers compared to M1 ). Patterned M2 completes the cell-level electrical metallization and can also provide cell-to-cell electrical interconnection for multiple solar cells laminated to a continuous backsheet, thus eliminating the need for individual cell-to-cell straps/busses in some cases / soldering as needed. In addition, when the array/module electrical interconnection design requires, M2 can form an array/module level bus or interconnection.
在一些情况中,电压和电流缩放(例如,较高电压和较低电流太阳能电池)可以放松且减少M2导电性要求和约束。举例来说,考虑其它因素,与较厚的M2金属化(例如,大约50到80微米厚的电镀铜)相比,利用较薄的M2金属(例如,通过PVD的大约2到5微米厚的蒸发铝或者通过等离子溅镀或蒸发形成的大约1到几微米的铜)。重要的是,还可以基于M1层和M2层上的叉指状指形物的数目、尺寸和形状来调整M1和M2金属化层的厚度。与M2的叉指状指形物相比,M1以较精细的叉指状指形物图案化可以是有利的。然而,所提供的电池结构和制作实施方案适用于利用背板和M2金属化层的各种双层级金属化方案。In some cases, voltage and current scaling (eg, higher voltage and lower current solar cells) can relax and reduce M2 conductivity requirements and constraints. For example, using thinner M2 metal (e.g., approximately 2 to 5 micron thick via PVD) compared to thicker M2 metallization (e.g., approximately 50 to 80 micron thick electroplated copper) Evaporated aluminum or approximately 1 to several microns of copper formed by plasma sputtering or evaporation). Importantly, the thickness of the M1 and M2 metallization layers can also be adjusted based on the number, size and shape of the interdigitated fingers on the M1 and M2 layers. It may be advantageous for M1 to be patterned with finer interdigitated fingers than the interdigitated fingers of M2. However, the presented cell structure and fabrication embodiments are applicable to various dual-level metallization schemes utilizing the backplane and M2 metallization layers.
在背板层压之前,例如使用丝网印刷或喷墨印刷或等离子溅镀(PVD)或蒸发铝(或者铝硅合金或Al/NiV/Sn堆叠)材料层的薄层,直接在电池背侧上形成太阳能电池基极和发射极接触金属化图案。此第一金属化层(下文称为M1)界定太阳能电池接触金属化图案,例如精细间距叉指状背接触(IBC)导体指形物,其界定IBC电池的基极和发射极区。M1层提取太阳能电池电流和电压(因此,太阳能电池功率)且通过形成于背板中的导电通孔插塞将太阳能电池电功率传送到在M1之后形成的高导电性抬眼能电池金属化的第二层级/层(本文称为M2)。导电通孔插塞可以在图案化M2层的形成期间同时形成,例如在背板层中的通孔的激光钻制之后。Directly on the backside of the cell prior to backsheet lamination, e.g. Form the solar cell base and emitter contact metallization patterns. This first metallization layer (hereinafter referred to as M1 ) defines a solar cell contact metallization pattern, such as fine pitch interdigitated back contact (IBC) conductor fingers, which define the base and emitter regions of the IBC cell. The M1 layer extracts the solar cell current and voltage (thus, the solar cell power) and delivers the solar cell electrical power through conductive via plugs formed in the backsheet to the first layer of highly conductive solar cell metallization formed after M1. The second level/layer (herein referred to as M2). The conductive via plugs may be formed simultaneously during the formation of the patterned M2 layer, for example after laser drilling of the vias in the backplane layer.
附接到太阳能电池的背侧且放置于图案化M1和M2层之间的背板材料可以是聚合材料的薄(例如,在近似25微米与1mm之间且在一些情况中在近似25微米与250微米之间)片,所述聚合材料具有接近地匹配于半导体吸收体层的充分低热膨胀系数(CTE),以便避免对太阳能电池阵列造成过量的热引发应力和翘曲。而且,背板材料应当满足后端电池制作工艺的工艺整合要求,尤其是在电池前侧的湿式纹理化期间的化学抵抗性以及在前侧钝化和抗反射涂层(ARC)层的PECVD沉积期间的热稳定性。而且,电绝缘背板材料应当还满足模块级层压工艺和长期可靠性要求。虽然各种合适的聚合材料(例如塑料、氟聚合物、预浸物等)和合适的非聚合材料(例如玻璃、陶瓷等)可以用作背板材料,但背板材料选择取决于许多考虑,包含(但不限于)材料成本、工艺整合的容易性、可靠性、柔韧性、质量密度等。The backsheet material attached to the backside of the solar cell and placed between the patterned M1 and M2 layers can be a thin (e.g., between approximately 25 microns and 1 mm and in some cases between approximately 25 microns and 1 mm) of polymeric material. 250 micron) sheet, the polymeric material has a sufficiently low coefficient of thermal expansion (CTE) closely matched to the semiconductor absorber layer so as to avoid excessive thermally induced stress and warpage to the solar cell array. Furthermore, the backsheet material should meet the process integration requirements of the back-end cell fabrication process, especially chemical resistance during wet texturing of the cell front side and PECVD deposition of passivation and anti-reflective coating (ARC) layers on the front side period of thermal stability. Moreover, the electrically insulating backplane material should also meet module-level lamination process and long-term reliability requirements. While a variety of suitable polymeric materials (e.g. plastics, fluoropolymers, prepregs, etc.) and suitable non-polymeric materials (e.g. glass, ceramics, etc.) can be used as backsheet materials, the choice of backsheet material depends on a number of considerations, Including (but not limited to) material cost, ease of process integration, reliability, flexibility, mass density, etc.
背板材料的一种有利材料选择是预浸物,且更特定来说是基于芳纶纤维树脂的预浸物。在一些情况中,非机织芳纶纤维是尤其有利的。大体上,预浸物是以树脂预先浸渍的加强材料,且容易用来产生复合部分(预浸物可用以比湿式层叠系统更快且更容易产生复合物)。通过使用被设计成确保一致性的设备将加强纤维或织物与特殊配制的预催化树脂进行组合来制造预浸物。便宜的预浸物材料在印刷电路板中是常用的。An advantageous material choice for the backsheet material is prepreg, and more particularly prepreg based on aramid fiber resin. In some cases, nonwoven aramid fibers are especially advantageous. In general, prepregs are reinforcement materials that are pre-impregnated with resin and are easy to use to create composite parts (prepregs can be used to create composites faster and easier than wet lay-up systems). Prepregs are manufactured by combining reinforcing fibers or fabrics with specially formulated pre-catalyzed resins using equipment designed to ensure consistency. Inexpensive prepreg materials are commonly used in printed circuit boards.
可以使用真空层压器将背板(例如,预浸物片)附接到太阳能电池背侧。在施加热和压力的组合后,薄背板(例如,预浸物片)永久地层压或附接到部分处理的(或甚至完全处理的)太阳能电池的背侧。在部分处理的太阳能电池的情况下,后续的层压后制作工艺步骤可包含:(i)太阳能电池的向日侧(前侧)上的纹理化和钝化过程的完成,(ii)太阳能电池的背侧(可包括太阳能电池背板的部分)上的高导电性金属化(M2)的完成。包括发射极和基极记性的高导电性金属化M2层(例如包括铝、铜或银,其中铝和/或铜由于低得多的材料成本而与银相比是优选的)形成于附接到太阳能电池的背侧的层压背板上。A vacuum laminator can be used to attach a backsheet (eg, a prepreg sheet) to the solar cell backside. After applying a combination of heat and pressure, a thin backsheet (eg, a prepreg sheet) is permanently laminated or attached to the backside of the partially processed (or even fully processed) solar cell. In the case of partially processed solar cells, subsequent post-lamination fabrication process steps may include: (i) completion of the texturing and passivation process on the sun-facing side (front side) of the solar cell, (ii) completion of the solar cell Completion of highly conductive metallization (M2) on the backside of the solar cell (which may include part of the solar cell backsheet). A highly conductive metallization M2 layer comprising emitter and base electrodes (e.g. comprising aluminum, copper or silver, where aluminum and/or copper are preferred over silver due to much lower material cost) is formed on the attached to the laminated backsheet on the backside of the solar cell.
在背板的形成(M1层上或中以及周围),在背板上形成较高导电性M2层。(例如通过激光钻制、蚀刻或者部分激光钻制之后蚀刻的组合)在背板中钻制通孔(在一些情况中每太阳能电池多达数百或数千个通孔),且所述通孔可以具有在近似50直到500微米的范围中(尤其在大约100到300微米的直径范围中)的直径(在一些情况中成锥形)。这些通孔着陆于M1的预先指定的着陆垫区上,用于通过形成于这些通孔中的导电插塞在图案化M2和M1层之间进行电连接。在一些情况中,可以用导电金属化覆盖或至少部分地填充所述通孔,且可在单独的步骤中沉积M2,且在其它情况中在相同的M2沉积或形成步骤中,M2沉积至少部分地覆盖或部分地填充所述通孔。随后或者与通孔填充和导电插塞形成相结合,形成图案化高导电性金属化层M2(例如通过等离子溅镀、电镀、蒸发或其组合,使用包括例如铝、Al/NIV、Al/NiV/Sn或者铜或涂覆焊料的铜的M2材料)。对于在M1上具有精细间距叉指状背接触(IBC)指形物(例如,数百个指形物)的IBC太阳能电池,图案化M2层可以被设计成正交于M1,换句话说,基本上垂直于M1指形物的矩形或锥形M2指形物。由于此正交变形,图案化叉指状M2层可以具有比M1层少得多且宽得多的IBC指形物(例如,相对于M1指形物少大约10到50倍)。因此,M2层可以用比M1层粗得多的具有较宽IBC指形物的图案形成。任选的太阳能电池汇流条可以定位于M2层上而不是M1层上(换句话说,无汇流条的M1),以消除与电池上汇流条相关联的电遮蔽损失。由于基极和发射极互连以及汇流条都可定位于太阳能电池背侧背板上的M2层上,因此提供从太阳能电池的背侧对背板上的太阳能电池的基极和发射极端子两者的电接入。In the formation of the backplane (on or in and around the M1 layer), a higher conductivity M2 layer is formed on the backplane. Vias are drilled (for example by laser drilling, etching, or a combination of partial laser drilling followed by etching) in the backplane (in some cases as many as hundreds or thousands of vias per solar cell), and the vias The pores may have a diameter (in some cases tapered) in the range of approximately 50 up to 500 microns, especially in the diameter range of about 100 to 300 microns. These vias land on pre-designated landing pad areas of M1 for electrical connection between the patterned M2 and M1 layers through conductive plugs formed in the vias. In some cases, the via may be covered or at least partially filled with conductive metallization, and M2 may be deposited in a separate step, and in other cases in the same M2 deposition or formation step, M2 is deposited at least in part completely cover or partially fill the via. Subsequently or in combination with via filling and conductive plug formation, a patterned highly conductive metallization layer M2 is formed (e.g., by plasma sputtering, electroplating, evaporation, or combinations thereof, using materials including, for example, aluminum, Al/NIV, Al/NiV /Sn or copper or solder-coated copper M2 material). For IBC solar cells with fine pitch interdigitated back contact (IBC) fingers (e.g., hundreds of fingers) on M1, the patterned M2 layer can be designed to be orthogonal to M1, in other words, Rectangular or tapered M2 fingers substantially perpendicular to the M1 fingers. Due to this orthogonal deformation, the patterned interdigitated M2 layer can have much fewer and wider IBC fingers than the M1 layer (eg, about 10 to 50 times fewer relative to the M1 fingers). Therefore, the M2 layer can be formed with a much coarser pattern with wider IBC fingers than the M1 layer. Optional solar cell bus bars can be positioned on the M2 layer instead of the M1 layer (in other words, M1 without bus bars) to eliminate the electrical shading losses associated with the bus bars on the cells. Since both base and emitter interconnects and bus bars can be positioned on the M2 layer on the backsheet of the solar cell, it is possible to provide two the electric access of the person.
图5是具有与图1A一致的自对准接触结构且具有多层级金属化的太阳能电池的横截面图。具体来说,图5示出了通过背板通孔的第一层级金属M1到第二层级金属M2发射极连接,其中第二层级金属M2的叉指状指形物正交于M1的叉指状指形物而图案化。5 is a cross-sectional view of a solar cell with a self-aligned contact structure consistent with FIG. 1A and with multi-level metallization. Specifically, Figure 5 shows a first-level metal M1 to second-level metal M2 emitter connection through a backplane via, where the interdigitated fingers of the second-level metal M2 are orthogonal to the interdigitated fingers of M1 Finger-shaped and patterned.
提供示例性实施方案的先前描述以使得所属领域的任何技术人员能够制作或使用所要求的主题。所属领域的技术人员将容易明了对这些实施方案的各种修改,且在不脱离创新能力的使用的情况下可将本文界定的一般原理应用于其它实施方案。因此,所要求的主题不希望限于本文示出的实施方案,而是应被赋予与本文公开的原理和新颖特征一致的最广范围。The previous description of the exemplary embodiments is provided to enable any person skilled in the art to make or use the claimed subject matter. Various modifications to these implementations will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other implementations without departing from the use of innovative capabilities. Thus, claimed subject matter is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
希望此说明内包含的所有此类额外的系统、方法、特征和优点处于权利要求书的范围内。All such additional systems, methods, features and advantages included within this description are intended to be within the scope of the following claims.
Claims (1)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201461945116P | 2014-02-26 | 2014-02-26 | |
| US61/945,116 | 2014-02-26 | ||
| PCT/US2015/017852 WO2015130989A1 (en) | 2014-02-26 | 2015-02-26 | Self aligned contacts for back contact solar cells |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN106256025A true CN106256025A (en) | 2016-12-21 |
Family
ID=54009634
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201580022322.9A Pending CN106256025A (en) | 2014-02-26 | 2015-02-26 | The self-aligned contacts part of back contact solar cell |
Country Status (5)
| Country | Link |
|---|---|
| EP (1) | EP3111482A4 (en) |
| JP (1) | JP2017508292A (en) |
| KR (1) | KR20170003526A (en) |
| CN (1) | CN106256025A (en) |
| WO (1) | WO2015130989A1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108831953A (en) * | 2017-05-04 | 2018-11-16 | 上海凯世通半导体股份有限公司 | How to make a solar cell |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP6291136B1 (en) | 2016-10-14 | 2018-03-14 | 信越化学工業株式会社 | Solar cell manufacturing method and solar cell manufacturing system |
| US12136655B2 (en) | 2021-09-22 | 2024-11-05 | International Business Machines Corporation | Backside electrical contacts to buried power rails |
Family Cites Families (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4927770A (en) * | 1988-11-14 | 1990-05-22 | Electric Power Research Inst. Corp. Of District Of Columbia | Method of fabricating back surface point contact solar cells |
| JP2001217443A (en) * | 2000-02-04 | 2001-08-10 | Sony Corp | Semiconductor element and method for manufacturing the same, solar cell and method for manufacturing the same, and optical element using semiconductor element |
| JP2004221188A (en) * | 2003-01-10 | 2004-08-05 | Ebara Corp | Back junction solar cell and method of manufacturing the same |
| US7335555B2 (en) * | 2004-02-05 | 2008-02-26 | Advent Solar, Inc. | Buried-contact solar cells with self-doping contacts |
| US9508886B2 (en) * | 2007-10-06 | 2016-11-29 | Solexel, Inc. | Method for making a crystalline silicon solar cell substrate utilizing flat top laser beam |
| US20100184250A1 (en) * | 2009-01-22 | 2010-07-22 | Julian Blake | Self-aligned selective emitter formed by counterdoping |
| WO2011072153A2 (en) * | 2009-12-09 | 2011-06-16 | Solexel, Inc. | High-efficiency photovoltaic back-contact solar cell structures and manufacturing methods using three-dimensional semiconductor absorbers |
| US8241945B2 (en) * | 2010-02-08 | 2012-08-14 | Suniva, Inc. | Solar cells and methods of fabrication thereof |
| US20130213469A1 (en) * | 2011-08-05 | 2013-08-22 | Solexel, Inc. | High efficiency solar cell structures and manufacturing methods |
| US8486747B1 (en) * | 2012-04-17 | 2013-07-16 | Boris Gilman | Backside silicon photovoltaic cell and method of manufacturing thereof |
-
2015
- 2015-02-26 CN CN201580022322.9A patent/CN106256025A/en active Pending
- 2015-02-26 EP EP15755082.3A patent/EP3111482A4/en not_active Withdrawn
- 2015-02-26 JP JP2016554365A patent/JP2017508292A/en active Pending
- 2015-02-26 WO PCT/US2015/017852 patent/WO2015130989A1/en active Application Filing
- 2015-02-26 KR KR1020167026447A patent/KR20170003526A/en not_active Withdrawn
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108831953A (en) * | 2017-05-04 | 2018-11-16 | 上海凯世通半导体股份有限公司 | How to make a solar cell |
| CN108831953B (en) * | 2017-05-04 | 2021-04-27 | 上海凯世通半导体股份有限公司 | How to make a solar cell |
Also Published As
| Publication number | Publication date |
|---|---|
| EP3111482A1 (en) | 2017-01-04 |
| JP2017508292A (en) | 2017-03-23 |
| WO2015130989A1 (en) | 2015-09-03 |
| KR20170003526A (en) | 2017-01-09 |
| EP3111482A4 (en) | 2017-10-25 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN104272475B (en) | The battery of back contact solar photovoltaic module semiconductor wafer and module processing | |
| CN103918088B (en) | Using the high-efficiency solar photovoltaic battery and module of fine grain semiconductor absorber | |
| CN101673776B (en) | Interdigitated back contact silicon solar cell with laser ablated grooves and manufacturing method thereof | |
| CN100452289C (en) | Back-contact solar cell and preparation method | |
| KR101027829B1 (en) | Manufacturing method of back electrode solar cell | |
| AU2010281673B2 (en) | Methods and apparatus for metallization of solar cells | |
| JP5172480B2 (en) | Photoelectric conversion device and manufacturing method thereof | |
| US20140360567A1 (en) | Back contact solar cells using aluminum-based alloy metallization | |
| EP2071632B1 (en) | Thin-film solar cell and process for its manufacture | |
| US20150027522A1 (en) | All-black-contact solar cell and fabrication method | |
| CN102077358B (en) | Photoelectromotive force device and manufacturing method thereof | |
| TWI424582B (en) | Solar cell manufacturing method | |
| KR101528447B1 (en) | Structures and methods of formation of contiguous and non-contiguous base regions for high efficiency back-contact solar cells | |
| US20170194520A1 (en) | Self aligned contacts for solar cells | |
| CN106256025A (en) | The self-aligned contacts part of back contact solar cell | |
| WO2016036892A1 (en) | Dual level solar cell metallization having first level metal busbars | |
| JP5623131B2 (en) | SOLAR CELL DEVICE, ITS MANUFACTURING METHOD, AND SOLAR CELL MODULE | |
| CN107946410A (en) | A kind of production method of N-type IBC solar cells | |
| JP2015106585A (en) | Method for manufacturing solar cell element and solar cell module | |
| WO2016033614A1 (en) | Laser doping for making back contact back junction solar cells | |
| WO2013099805A1 (en) | Method for manufacturing solar cell | |
| JP2011222630A (en) | Manufacturing method for photovoltaic device | |
| WO2015083259A1 (en) | Solar cell manufacturing method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20161221 |
|
| WD01 | Invention patent application deemed withdrawn after publication |