CN106304436B - A kind of self-melting ice conductor ice-melting equipment - Google Patents
A kind of self-melting ice conductor ice-melting equipment Download PDFInfo
- Publication number
- CN106304436B CN106304436B CN201610867150.1A CN201610867150A CN106304436B CN 106304436 B CN106304436 B CN 106304436B CN 201610867150 A CN201610867150 A CN 201610867150A CN 106304436 B CN106304436 B CN 106304436B
- Authority
- CN
- China
- Prior art keywords
- conductor
- ice
- melting
- self
- wire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000004020 conductor Substances 0.000 title claims abstract description 322
- 238000002844 melting Methods 0.000 title claims abstract description 176
- 238000010438 heat treatment Methods 0.000 claims abstract description 80
- 230000005540 biological transmission Effects 0.000 claims abstract description 67
- 239000000463 material Substances 0.000 claims abstract description 65
- 238000004891 communication Methods 0.000 claims abstract description 49
- 230000008018 melting Effects 0.000 claims abstract description 20
- 230000000694 effects Effects 0.000 claims abstract description 4
- 229910052751 metal Inorganic materials 0.000 claims description 105
- 239000002184 metal Substances 0.000 claims description 105
- 238000004804 winding Methods 0.000 claims description 49
- 239000013307 optical fiber Substances 0.000 claims description 33
- 229910052782 aluminium Inorganic materials 0.000 claims description 29
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 29
- 229910000831 Steel Inorganic materials 0.000 claims description 23
- 239000010959 steel Substances 0.000 claims description 23
- 229910045601 alloy Inorganic materials 0.000 claims description 22
- 239000000956 alloy Substances 0.000 claims description 22
- 230000001681 protective effect Effects 0.000 claims description 16
- 238000009826 distribution Methods 0.000 claims description 12
- 239000011810 insulating material Substances 0.000 claims description 11
- 229910001335 Galvanized steel Inorganic materials 0.000 claims description 7
- 239000000945 filler Substances 0.000 claims description 7
- 239000008397 galvanized steel Substances 0.000 claims description 7
- 229910000838 Al alloy Inorganic materials 0.000 claims description 6
- 238000013461 design Methods 0.000 claims description 4
- 230000006698 induction Effects 0.000 abstract description 5
- 238000000034 method Methods 0.000 abstract description 5
- 238000005516 engineering process Methods 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 24
- 229920000049 Carbon (fiber) Polymers 0.000 description 5
- 239000004917 carbon fiber Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000009413 insulation Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 239000004811 fluoropolymer Substances 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/40—Heating elements having the shape of rods or tubes
Landscapes
- Suspension Of Electric Lines Or Cables (AREA)
- Resistance Heating (AREA)
Abstract
Description
(一)技术领域(1) Technical field
本发明涉及导线融冰技术领域,具体是一种自融冰导体的融冰设备。The invention relates to the technical field of ice-melting conductors, in particular to ice-melting equipment for self-melting ice conductors.
(二)背景技术(2) Background technology
随着社会经济的发展,国家电力、通信等线路的需求不断增加,在不断增加电力负荷应用的环境下,对裸露在外的线路,特别是电力线路的要求愈来愈高。而在寒冷的冬季,不少地区的线路都会结冰,造成线路的损坏。当结冰超过线路的承受力时,还会发生断线等严重事故。所以,冬季的电力线路或其他线路的除冰是必不可少,十分重要的。With the development of social economy, the demand for national electric power and communication lines continues to increase. Under the environment of increasing power load applications, the requirements for exposed lines, especially power lines, are getting higher and higher. In the cold winter, the lines in many areas will freeze, causing damage to the lines. When the icing exceeds the bearing capacity of the line, serious accidents such as disconnection will also occur. Therefore, deicing of power lines or other lines in winter is essential and very important.
现有自融冰导线都需要加入可以通过电源加热的材料,使用加热材料时,加热材料需要有专门的导线连接到加热电源。此外,由于现有自融冰导线需要有与加热电源连接的专门导线,导致现有自融冰导线在分割时很不方便。The existing self-melting ice conductors all need to add materials that can be heated by a power supply. When using heating materials, the heating materials need to have special wires to connect to the heating power supply. In addition, since the existing self-melting ice wire needs a special wire connected to the heating power source, it is very inconvenient to divide the existing self-melting ice wire.
申请号为CN201210395025.7的《新型低温红外线加热自动除冰避雷线》,将一种新型可产生低温红外线热能的导电聚酯纤维制成的辅助加热导线与普通避雷线相结合,并铰缠于钢铰线的中央。将辅助电源加载到这种辅助加热导线上,辅助加热导线便产生低温红外线热能,使钢铰线温度升高,达到防止或自动除覆冰的目的。但是该方法制作的导线,使用时不便于任意长度分割,且发热使用的加热电源的导体为加热专用导体,不好维护。申请号CN201510400177.5的《除冰碳纤维高低压架空电缆》,除冰碳纤维高低压架空电缆,包括高压电缆,高压电缆由内部的高压电缆线和表面的绝缘层组成,高压电缆的绝缘层表面设置碳纤维发热线。通过在高压电缆表面设置可通电发热的碳纤维发热线,利用碳纤维将电能转换为热量,从而保证高压电缆在严寒地区或冬季中正常运行。但是该方法制作的导线,同样在使用时不便于任意长度分割,且发热使用的加热电源的导体为加热专用导体,不好维护。The application number is CN201210395025.7 "New Low-Temperature Infrared Heating Automatic Deicing Lightning Protection Wire", which combines a new type of auxiliary heating wire made of conductive polyester fiber that can generate low-temperature infrared heat energy with ordinary lightning protection wires, and is hinged on The center of the steel hinge line. When the auxiliary power supply is loaded on the auxiliary heating wire, the auxiliary heating wire will generate low-temperature infrared heat energy, which will increase the temperature of the steel hinge wire to achieve the purpose of preventing or automatically deicing. However, the wires made by this method are not convenient to be divided into arbitrary lengths during use, and the conductor of the heating power supply used for heating is a dedicated conductor for heating, which is difficult to maintain. Application number CN201510400177.5 "Deicing carbon fiber high and low voltage overhead cables", deicing carbon fiber high and low voltage overhead cables, including high voltage cables, high voltage cables are composed of internal high voltage cables and surface insulation layers, and the surface of the insulation layer of high voltage cables is set Carbon fiber heating wire. By setting a carbon fiber heating wire that can be energized and heated on the surface of the high-voltage cable, the carbon fiber is used to convert electrical energy into heat, thereby ensuring the normal operation of the high-voltage cable in severe cold regions or in winter. But the lead wire that this method makes is inconvenient to split at arbitrary length equally when using, and the conductor of the heating power source that heat generation uses is heating special conductor, is difficult to maintain.
(三)发明内容(3) Contents of the invention
本发明的目的,是针对现有技术的不足,设计一种采用导体本身结构作为加热电源导体的自融冰导线,同时设计连接在自融冰导线上的自动融冰设备,自动完成导体线路的融冰工作。本发明的加热电源导线可以任意分割,便于维护。The object of the present invention is to aim at the deficiencies of the prior art, to design a self-melting ice-melting wire that uses the structure of the conductor itself as a heating power conductor, and to design an automatic ice-melting device connected to the self-melting ice wire to automatically complete the wiring of the conductor line. Melting works. The heating power wire of the present invention can be divided arbitrarily, which is convenient for maintenance.
本发明的目的是这样达到的:The purpose of the present invention is achieved like this:
一种自融冰导体融冰设备,其特征在于:采用导体本身结构的一部分作为加热元件的自融冰导体,融冰设备直接连接到自融冰导体的内导体、外导体上。A self-melting ice-melting conductor ice-melting device is characterized in that a part of the structure of the conductor itself is used as the self-melting ice-melting conductor of the heating element, and the ice-melting device is directly connected to the inner conductor and the outer conductor of the self-melting ice conductor.
自融冰导体采用同轴电缆形式,包括外导体,加热材料,内导体。内导体为圆柱状金属,加热材料是正温度系数效应的发热材料,加热材料包围在内导体外边,将内导体外周完全包围,使得内外导体完全隔离,避免内外导体短路。加热材料内表面和内导体外表面完全接触,加热材料外表面和外导体内表面完全接触。外导体包围在加热材料外边。The self-melting ice conductor is in the form of a coaxial cable, including an outer conductor, a heating material, and an inner conductor. The inner conductor is a cylindrical metal, and the heating material is a heating material with a positive temperature coefficient effect. The heating material surrounds the outside of the inner conductor and completely surrounds the outer circumference of the inner conductor, so that the inner and outer conductors are completely isolated and the short circuit of the inner and outer conductors is avoided. The inner surface of the heating material is in full contact with the outer surface of the inner conductor, and the outer surface of the heating material is in full contact with the inner surface of the outer conductor. The outer conductor surrounds the heating material.
内导体为单根金属线或者金属绞线或者内嵌光纤的金属管或者单根合金线或者合金绞线。外导体是金属管或者合金管或者金属绞线或者合金绞线。The inner conductor is a single metal wire or a metal stranded wire or a metal tube embedded with an optical fiber or a single alloy wire or an alloy stranded wire. The outer conductor is a metal tube or an alloy tube or a metal strand or an alloy strand.
自动融冰设备由变压器、开关电路、微处理器、通信模块、结冰感应模块构成。微处理器连接通信模块、结冰感应模块和开关电路,接收通信模块控制信号,向通信模块传输数据,并接收结冰感应模块数据,控制中心向微处理器传输控制命令,微处理器响应控制中心的命令并控制自动融冰设备的运行。The automatic ice-melting device is composed of a transformer, a switch circuit, a microprocessor, a communication module and an ice sensing module. The microprocessor connects the communication module, the icing sensing module and the switch circuit, receives the control signal of the communication module, transmits data to the communication module, and receives the data of the icing sensing module, the control center transmits the control command to the microprocessor, and the microprocessor responds to the control The center commands and controls the operation of automatic ice melting equipment.
自融冰导体在用做非输电线时,自动融冰设备设有两个开关电路。When the self-melting ice conductor is used as a non-power transmission line, the automatic ice melting equipment is provided with two switching circuits.
电源的两端连接到变压器的一次绕组,变压器二次绕组连接两个开关电路,一个开关电路两端分别连接变压器二次绕组的一端和自融冰导体的内导体,另一个开关电路两端分别连接变压器二次绕组的另一端和自融冰导体的外导体。两个开关电路开关状态受微处理器控制。自融冰导体的内导体和外导体分别连接到两个开关电路。The two ends of the power supply are connected to the primary winding of the transformer, and the secondary winding of the transformer is connected to two switching circuits. Connect the other end of the transformer secondary winding to the outer conductor of the self-melting ice conductor. The switching states of the two switching circuits are controlled by the microprocessor. The inner conductor and the outer conductor of the self-melting ice conductor are respectively connected to two switching circuits.
自融冰导体在用做架空输电线导体时,自动融冰设备设置一个开关电路,自融冰导体的内导体连接到开关电路的一端,自融冰导体的外导体与架空输电线路系统变电站的输出电源连接。在自动融冰设备中,自融冰导体的外导体与架空输电线路地线系统分别连接到变压器一次绕组两端。变压器二次绕组两端分别连接开关电路和架空输电线路地线系统。开关电路两端分别连接变压器二次绕组的一端和自融冰导体的内导体。开关电路接受微处理器控制。When the self-melting ice conductor is used as an overhead transmission line conductor, the automatic ice-melting equipment is equipped with a switch circuit, the inner conductor of the self-melting ice conductor is connected to one end of the switch circuit, and the outer conductor of the self-melting ice conductor is connected to the substation of the overhead power transmission line system. Output power connection. In the automatic ice-melting equipment, the outer conductor of the self-melting ice conductor and the ground wire system of the overhead transmission line are respectively connected to both ends of the primary winding of the transformer. The two ends of the secondary winding of the transformer are respectively connected to the switch circuit and the ground wire system of the overhead transmission line. Two ends of the switch circuit are respectively connected to one end of the secondary winding of the transformer and the inner conductor of the self-melting ice conductor. The switching circuit is controlled by a microprocessor.
自融冰导体用做架空输电线路地线时,自动融冰设备设置开关电路,自融冰导体的内导体连接到开关电路的一端,自融冰导体的外导体与架空输电线路的地线系统连接。在自动融冰设备中,自融冰导体的外导体与架空输电线路导体分别连接到变压器一次绕组两端,当架空输电线路导体采用本发明的自融冰导体时,一次绕组连接架空输电线路导体的外导体。变压器二次绕组两端分别连接开关电路和自融冰导体的外导体;开关电路两端分别连接变压器二次绕组的一端和自融冰导体的内导体。开关电路接受微处理器控制。When the self-melting ice conductor is used as the ground wire of the overhead transmission line, the automatic ice-melting equipment is equipped with a switch circuit, the inner conductor of the self-melting ice conductor is connected to one end of the switch circuit, and the outer conductor of the self-melting ice conductor is connected to the ground wire system of the overhead transmission line connect. In the automatic ice-melting equipment, the outer conductor of the self-melting ice conductor and the conductor of the overhead power transmission line are respectively connected to both ends of the primary winding of the transformer. When the conductor of the overhead power transmission line adopts the self-melting ice conductor of the present invention, the primary winding is connected to the conductor the outer conductor. The two ends of the secondary winding of the transformer are respectively connected to the switch circuit and the outer conductor of the self-melting ice conductor; the two ends of the switch circuit are respectively connected to one end of the secondary winding of the transformer and the inner conductor of the self-melting ice conductor. The switching circuit is controlled by a microprocessor.
内导体为单根金属线时,单根金属线是单根钢线或单根镀锌钢线或单根铝包钢芯线或单根内嵌光纤的金属管中的一种;外导体为6根或18根金属绞线,金属绞线为6根或18根铝线绞线、铝合金绞线、铝包钢芯绞线中的一种。When the inner conductor is a single metal wire, the single metal wire is one of a single steel wire or a single galvanized steel wire or a single aluminum-clad steel core wire or a single metal tube embedded with an optical fiber; the outer conductor is 6 or 18 metal stranded wires, the metal stranded wire is one of 6 or 18 aluminum wire stranded wires, aluminum alloy stranded wires, and aluminum-clad steel core stranded wires.
当内导体或外导体为金属绞线或合金绞线时,金属绞线或合金绞线中的一股或多股由内嵌光纤的金属管替代。When the inner conductor or the outer conductor is a metal strand or an alloy strand, one or more strands of the metal strand or alloy strand are replaced by a metal tube embedded with an optical fiber.
内导体为金属绞线时,金属绞线为7根钢线绞线、镀锌钢线、铝包钢芯线、内嵌光纤的金属管中的一种;外导体为12根或24根铝线绞线、铝合金绞线、铝包钢芯绞线,内嵌光纤的金属管中的一种。When the inner conductor is a metal strand, the metal strand is one of 7 steel wire strands, galvanized steel wire, aluminum-clad steel core wire, and metal tube with embedded optical fiber; the outer conductor is 12 or 24 aluminum Wire stranded wire, aluminum alloy stranded wire, aluminum clad steel core stranded wire, one of the metal tubes embedded with optical fibers.
除上述内导体和外导体的选择外,内导体可以是依据中华人民共和国国家标准铝绞线及钢芯 铝绞线GB1179的规定设计的铝绞线或钢芯 铝绞线的最内一圈导线,或从内到外,除最外一圈导线外的导线。外导体可以是依据中华人民共和国国家标准铝绞线及钢芯铝绞线GB1179的规定设计的铝绞线或钢芯 铝绞线的除了内导体外的所有导线。内导体和外导体都可以选择钢线绞线、镀锌钢线、铝包钢芯线、内嵌光纤的金属管、铝线绞线、铝合金绞线的一种。对于绞线中的一股或几股可以选择内嵌光纤的金属管。In addition to the selection of the above-mentioned inner conductor and outer conductor, the inner conductor can be the innermost coil of aluminum stranded wire or steel-reinforced aluminum stranded wire designed according to the provisions of the national standard of the People's Republic of China for aluminum stranded wire and steel-reinforced aluminum stranded wire GB1179 , or from the inside to the outside, except for the outermost circle of wires. The outer conductor can be the aluminum stranded wire or all wires of the steel-cored aluminum stranded wire except the inner conductor designed according to the provisions of the national standard of the People's Republic of China for aluminum stranded wire and steel-cored aluminum stranded wire GB1179. Both the inner conductor and the outer conductor can choose one of steel wire strands, galvanized steel wires, aluminum-clad steel core wires, metal tubes with embedded optical fibers, aluminum wire strands, and aluminum alloy strands. For one or several strands in the twisted wire, a metal tube with embedded optical fiber can be selected.
内嵌光纤的金属管是由保护金属管、保护填充物和n根光纤构成,保护金属管在外,里边放置n根光纤,光纤与保护金属管间充满保护填充物。The metal tube embedded with the optical fiber is composed of a protective metal tube, a protective filler and n optical fibers, the protective metal tube is outside, and n optical fibers are placed inside, and the protective filler is filled between the optical fiber and the protective metal tube.
当自融冰导体用做非输电系统,变压器的一次绕组输入电压为电源电压,二次绕组输出电压为加热材料工作电压;当自融冰导体用做架空输电线路导体时,变压器的一次绕组输入电压为输电线路导体电压,二次绕组的输出电压为输电线路导体电压减去加热材料工作电压,或者输电线路导体电压加上加热材料工作电压;当自融冰导体用做架空输电线路地线时,变压器的一次绕组输入电压为输电线路导体电压,二次绕组的输出电压为加热材料工作电压。When the self-melting ice conductor is used as a non-transmission system, the input voltage of the primary winding of the transformer is the power supply voltage, and the output voltage of the secondary winding is the working voltage of the heating material; when the self-melting ice conductor is used as an overhead transmission line conductor, the primary winding input voltage of the transformer is The voltage is the conductor voltage of the transmission line, and the output voltage of the secondary winding is the conductor voltage of the transmission line minus the working voltage of the heating material, or the conductor voltage of the transmission line plus the working voltage of the heating material; when the self-melting ice conductor is used as the ground wire of the overhead transmission line , the input voltage of the primary winding of the transformer is the conductor voltage of the transmission line, and the output voltage of the secondary winding is the working voltage of the heating material.
自融冰导体中的加热材料在同轴电缆内的分布采用间断分布,间断分布间的加热材料间用绝缘材料填充,相邻加热材料与绝缘材料紧密连接,中间无缝隙。The heating material in the self-melting ice conductor is distributed discontinuously in the coaxial cable, and the heating material between discontinuous distributions is filled with insulating material, and adjacent heating materials and insulating materials are closely connected without gaps in the middle.
所述微处理器的控制程序是:The control program of the microprocessor is:
第一步:通过通信模块接收控制中心命令;Step 1: Receive commands from the control center through the communication module;
第二步:分析控制中心命令,是否开始融冰?是,进入第七步;否,进入第三步;Step 2: Analyze the control center command, whether to start melting ice? Yes, go to step seven; no, go to step three;
第三步:分析控制中心命令,是否结束融冰?是,进入第六步;否,进入第四步;Step 3: Analyze the command of the control center, whether to end the ice melting? Yes, go to
第四步:分析控制中心命令,是否由结冰感应模块控制开关电路?是,进入第五步;否,进入第一步;Step 4: Analyze the command of the control center, whether the switching circuit is controlled by the icing sensing module? Yes, go to
第五步:判断结冰感应模块发现是否有冰?无冰:进入第六步;有冰,进入第七步;Step 5: Determine whether there is ice found by the icing sensor module? No ice: go to the sixth step; with ice, go to the seventh step;
第六步:断开开关电路,进入第一步。Step 6: Disconnect the switch circuit and enter the first step.
第七步:接通开关电路,进入第一步。Step 7: Connect the switch circuit and enter the first step.
本发明的积极效果是:The positive effect of the present invention is:
1采用本发明技术,可以在高压输电线工作时实施融冰,避免现有融冰技术需断电的情况,有利于高压输电线可靠工作。1. By adopting the technology of the present invention, ice melting can be implemented when the high-voltage transmission line is working, avoiding the situation that the existing ice-melting technology needs to be powered off, and is conducive to the reliable operation of the high-voltage transmission line.
2可以在控制中心控制下融冰,也可以判断输电线结冰而自动融冰,也可在判断高压架空输电线即将结冰时加热而避免结冰。2. The ice can be melted under the control of the control center, or it can be judged that the power line is frozen to automatically melt the ice, and it can also be heated to avoid freezing when it is judged that the high-voltage overhead power line is about to freeze.
3采用本方法,高压输电线不会有冰存在,避免了高压输电线的舞动现象,杜绝了因结冰导致的高压输电线断线等严重事故。3. With this method, there will be no ice on the high-voltage transmission line, avoiding the galloping phenomenon of the high-voltage transmission line, and preventing serious accidents such as disconnection of the high-voltage transmission line caused by icing.
(四)附图说明(4) Description of drawings
图1是本发明的自融冰导体结构示意图。Fig. 1 is a schematic diagram of the structure of the self-melting ice conductor of the present invention.
图2是本发明的自融冰导体内部结构示意图。Fig. 2 is a schematic diagram of the internal structure of the self-melting ice conductor of the present invention.
图3是内导体为单根导线,外导体为6根金属绞线的自融冰导体结构示意图。Fig. 3 is a schematic diagram of the self-melting ice conductor structure in which the inner conductor is a single wire and the outer conductor is 6 metal stranded wires.
图4是内导体为单根导线,外导体为18根金属绞线的自融冰导体结构示意图。Fig. 4 is a schematic diagram of the self-melting ice conductor structure in which the inner conductor is a single wire and the outer conductor is 18 metal strands.
图5是内导体为7根金属绞线,外导体为12根金属绞线的自融冰导体结构示意图。Fig. 5 is a schematic diagram of the structure of the self-melting ice conductor with 7 metal strands as the inner conductor and 12 metal strands as the outer conductor.
图6是内导体为7根金属绞线,外导体为24根金属绞线的自融冰导体结构示意图Figure 6 is a schematic diagram of the structure of a self-melting ice conductor with 7 metal strands as the inner conductor and 24 metal strands as the outer conductor
图7是内嵌光纤的金属管结构示意图。Fig. 7 is a structural schematic diagram of a metal tube embedded with an optical fiber.
图8自融冰导体内加热材料连续分布示意图。Fig. 8 is a schematic diagram of the continuous distribution of heating materials in the self-melting ice conductor.
图9自融冰导体内加热材料间断分布示意图。Fig. 9 is a schematic diagram of discontinuous distribution of heating materials in the self-melting ice conductor.
图10是自融冰导体用做非输电线时自动融冰设备结构连接示意图。Fig. 10 is a schematic diagram of the structural connection of the automatic ice-melting equipment when the self-melting ice conductor is used as a non-power transmission line.
图11是自融冰导体用做架空输电线路导体时自动融冰设备结构连接示意图。Fig. 11 is a schematic diagram of the structural connection of the automatic ice-melting equipment when the self-melting ice conductor is used as the conductor of the overhead transmission line.
图12是自融冰导体用做架空输电线路地线时自动融冰设备结构连接示意图。Fig. 12 is a schematic diagram of the structural connection of the automatic ice-melting equipment when the self-melting ice conductor is used as the ground wire of the overhead transmission line.
图13是开关电路结构原理图。Figure 13 is a schematic diagram of the switch circuit structure.
图14是微处理器电路图。Fig. 14 is a circuit diagram of a microprocessor.
图15是微处理器RS232接口原理图。Figure 15 is a schematic diagram of the microprocessor RS232 interface.
图16是五伏转三伏电源转换电路图。Fig. 16 is a circuit diagram of a five-volt to three-volt power conversion circuit.
图17是三伏转二伏电源转换电路图。Fig. 17 is a three-volt to two-volt power conversion circuit diagram.
图18是JTAG电路图。Figure 18 is a JTAG circuit diagram.
图19是微处理器控制流程图。Figure 19 is a microprocessor control flow chart.
图中,1外导体,2加热材料,3内导体,4-1、4-2、4-3、4-4、4-5、4-6为外导体的6根金属绞线,5-1、5-2、5-3、5-4、5-5、5-6为外导体内圈的6根金属绞线,6-1、 6-2、6-3、6-4、6-5、6-6、6-7、6-8、6-9、6-10、6-11、6-12为外导体外圈的12根金属绞线,7是内导体最里边的金属导线,8-1、8-2、8-3、8-4、8-5、8-6内导体外圈的6 根金属绞线,9-1、9-2、9-3、9-4、9-5、9-6、9-7、9-8、9-9、9-10、9-11、9-12为外导体的12根金属绞线,10-1、10-2、10-3、10-4、10-5、10-6、10-7、10-8、10-9外导体内圈的9根金属绞线,11-1、11-2、11-3、11-4,11-5、11-6、11-7、11-8、11-9、11-10、 11-11、11-12、11-13、11-14、11-15为外导体外圈的15根金属绞线,12为保护金属管, 13保护填充物,14-1、14-2、14-3、14-n-1、14-n光纤,15-1、15-2、15-3、15-4为间断分布的加热材料,16-1、16-2、16-3、16-4为间断分布的绝缘材料,17电源,18变压器,19-1、19-2、19-3、19-4开关电路,20自融冰导体,21通信模块,22微处理器,23 结冰感应模块,24控制中心,25架空输电线路地线,26架空输电线路导体。In the figure, 1 outer conductor, 2 heating material, 3 inner conductor, 4-1, 4-2, 4-3, 4-4, 4-5, 4-6 are 6 metal strands of outer conductor, 5- 1. 5-2, 5-3, 5-4, 5-5, 5-6 are 6 metal stranded wires in the inner ring of the outer conductor, 6-1, 6-2, 6-3, 6-4, 6 -5, 6-6, 6-7, 6-8, 6-9, 6-10, 6-11, 6-12 are 12 metal stranded wires in the outer ring of the outer conductor, 7 is the innermost metal of the inner conductor Conductors, 8-1, 8-2, 8-3, 8-4, 8-5, 8-6 6 metal strands of inner conductor outer ring, 9-1, 9-2, 9-3, 9- 4. 9-5, 9-6, 9-7, 9-8, 9-9, 9-10, 9-11, 9-12 are 12 metal stranded wires with outer conductors, 10-1, 10-2 , 10-3, 10-4, 10-5, 10-6, 10-7, 10-8, 10-9 9 metal stranded wires in the inner ring of the outer conductor, 11-1, 11-2, 11-3 , 11-4, 11-5, 11-6, 11-7, 11-8, 11-9, 11-10, 11-11, 11-12, 11-13, 11-14, 11-15 are outside 15 metal stranded wires in the outer ring of the conductor, 12 is a protective metal tube, 13 is a protective filler, 14-1, 14-2, 14-3, 14-n-1, 14-n optical fiber, 15-1, 15- 2. 15-3, 15-4 are discontinuously distributed heating materials, 16-1, 16-2, 16-3, 16-4 are discontinuously distributed insulating materials, 17 power supply, 18 transformer, 19-1, 19- 2. 19-3, 19-4 switching circuit, 20 self-melting ice conductor, 21 communication module, 22 microprocessor, 23 icing sensing module, 24 control center, 25 overhead transmission line ground wire, 26 overhead transmission line conductor.
(五)具体实施方式(5) Specific implementation methods
参见附图1-7。See attached drawings 1-7.
本发明使用了采用导体本身结构的一部分作为加热元件的自融冰导体20,融冰设备直接连接到自融冰导体20的内导体3、外导体1上。The present invention uses a self-melting
自融冰导体20采用同轴电缆形式,包括外导体1,加热材料2,内导体3。内导体为圆柱状金属,加热材料是正温度系数效应的发热材料,加热材料2包围在内导体3外边,将内导体外周完全包围,使得内外导体完全隔离,避免内外导体短路。加热材料内表面和内导体外表面完全接触,加热材料外表面和外导体内表面完全接触;外导体包围在加热材料外边。当内导体和外导体之间加上交流电或直流电,加热材料将电能转化为热能,使得导体温度升高,导体外边的冰加热融化。加热材料发热所需的电压,称为加热材料工作电压。The self-melting
加热材料选择芜湖佳红新材料有限公司生产的辐照交联PTC半导体材料。加热材料工作电压为交流220伏。The heating material is the irradiation cross-linked PTC semiconductor material produced by Wuhu Jiahong New Material Co., Ltd. The working voltage of the heating material is AC 220 volts.
内导体1为单根金属线或者金属绞线或者内嵌光纤的金属管或者单根合金线或者合金绞线;外导体3是金属管或者合金管或者金属绞线或者合金绞线。The
内导体是单根导线时,导线材料为金属或者合金或者内嵌光纤的金属管,可以具有防腐能力,也可以不具有防腐能力。内导体也可以是金属绞线,绞线为金属或者合金,可以具有防腐能力,也可以不具有防腐能力。绞线的组成部分可以含有一根或多根内嵌光纤的金属管。When the inner conductor is a single wire, the material of the wire is metal or alloy or a metal tube embedded with optical fiber, which may or may not have anti-corrosion capability. The inner conductor can also be a metal stranded wire, and the stranded wire is a metal or an alloy, which may or may not have anti-corrosion capability. The strands consist of one or more metal tubes with embedded optical fibers.
外导体为包围在加热材料外边的金属或合金,可以是金属管或者合金管,也可以是金属绞线或者合金绞线。金属和合金可以具有防腐能力,也可以不具有防腐能力。绞线的组成部分可以含有一根或多根内嵌光纤的金属管。The outer conductor is a metal or alloy surrounded by the heating material, which can be a metal tube or an alloy tube, or a metal strand or an alloy strand. Metals and alloys may or may not be corrosion resistant. The strands consist of one or more metal tubes with embedded optical fibers.
内导体依据中华人民共和国国家标准铝绞线及钢芯 铝绞线GB1179的规定设计的铝绞线或钢芯 铝绞线的最内一圈导线,或从内到外,除最外一圈导线外的导线。如果有3圈导线,且从内到外分别称为第一圈,第二圈,第三圈。则内导体可以是第一圈,也可以是第一圈和第二圈。如果有4圈导线,且从内到外分别称为第一圈,第二圈,第三圈,第四圈。则内导体可以是第一圈,也可以是第一圈和第二圈,也可以是第一圈第二圈和第三圈。如果有5圈导线,且从内到外分别称为第一圈,第二圈,第三圈,第四圈,第五圈。则内导体可以是第一圈,也可以是第一圈和第二圈,也可以是第一圈第二圈第三圈第四圈。The inner conductor is designed according to the national standard of the People's Republic of China for aluminum stranded wire and aluminum steel-reinforced wire GB1179. external wires. If there are 3 turns of wire, and they are called the first turn, the second turn, and the third turn from the inside to the outside. Then the inner conductor can be the first circle, or the first circle and the second circle. If there are 4 turns of wire, and they are called the first turn, the second turn, the third turn, and the fourth turn from the inside to the outside. Then the inner conductor can be the first circle, the first circle and the second circle, or the first circle, the second circle and the third circle. If there are 5 turns of wire, and they are called the first turn, the second turn, the third turn, the fourth turn, and the fifth turn from the inside to the outside. Then the inner conductor can be the first circle, the first circle and the second circle, or the first circle, the second circle, the third circle and the fourth circle.
外导体依据中华人民共和国国家标准铝绞线及钢芯 铝绞线GB1179的规定设计的铝绞线或钢芯 铝绞线的除了内导体外的所有导线。The outer conductor is designed according to the national standard of the People's Republic of China for aluminum stranded wire and steel-cored aluminum stranded wire GB1179, except for the inner conductor of the aluminum stranded wire or steel-cored aluminum stranded wire.
内导体为单根金属线的自融冰导体结构时,单根金属线是单根钢线或单根镀锌钢线或单根铝包钢芯线或单根内嵌光纤的金属管中的一种;外导体为6根或18根金属绞线,金属绞线为6根或18铝线绞线、铝合金绞线、铝包钢芯绞线中的一种。如图3所示,外导体为6根金属绞线。图中,4-1、4-2、4-3、4-4、4-5、4-6为外导体的6根金属绞线。如图4所示,外导体为18根金属绞线,其中,外导体分为2圈排列,5-1、5-2、5-3、5-4、 5-5、5-6为外导体内圈的6根金属绞线,6-1、6-2、6-3、6-4、6-5、6-6、6-7、6-8、6-9、 6-10、6-11、6-12为外导体外圈的12根金属绞线。When the inner conductor is a self-melting ice conductor structure of a single metal wire, the single metal wire is a single steel wire or a single galvanized steel wire or a single aluminum-clad steel core wire or a single metal tube embedded with an optical fiber. One; the outer conductor is 6 or 18 metal stranded wires, and the metal stranded wire is one of 6 or 18 aluminum wire stranded wires, aluminum alloy stranded wires, and aluminum-clad steel core stranded wires. As shown in Figure 3, the outer conductor is 6 metal twisted wires. In the figure, 4-1, 4-2, 4-3, 4-4, 4-5, 4-6 are 6 metal stranded wires of the outer conductor. As shown in Figure 4, the outer conductors are 18 metal stranded wires, wherein the outer conductors are arranged in 2 circles, 5-1, 5-2, 5-3, 5-4, 5-5, 5-6 are outer 6 metal strands in the inner ring of the conductor, 6-1, 6-2, 6-3, 6-4, 6-5, 6-6, 6-7, 6-8, 6-9, 6-10, 6-11 and 6-12 are 12 metal stranded wires of the outer ring of the outer conductor.
内导体为金属绞线时,金属绞线为7根钢线绞线、镀锌钢线、铝包钢芯线、内嵌光纤的金属管中的一种。图5是内导体为7根金属绞线,外导体为12根金属绞线的自融冰导体结构示意图。内导体分为2圈,7是内导体最里边的金属导线,8-1、8-2、8-3、8-4、8-5、8-6内导体外圈的6根金属绞线。9-1、9-2、9-3、9-4、9-5、9-6、9-7、9-8、9-9、 9-10、9-11、9-12为外导体的12根金属绞线。When the inner conductor is a metal stranded wire, the metal stranded wire is one of 7 steel wire stranded wires, galvanized steel wires, aluminum-clad steel core wires, and metal tubes embedded with optical fibers. Fig. 5 is a schematic diagram of the structure of the self-melting ice conductor with 7 metal strands as the inner conductor and 12 metal strands as the outer conductor. The inner conductor is divided into 2 circles, 7 is the innermost metal wire of the inner conductor, 8-1, 8-2, 8-3, 8-4, 8-5, 8-6 are 6 metal stranded wires in the outer circle of the inner conductor . 9-1, 9-2, 9-3, 9-4, 9-5, 9-6, 9-7, 9-8, 9-9, 9-10, 9-11, 9-12 are
图6是内导体为7根金属绞线,外导体为24根金属绞线的自融冰导体结构示意图。内导体分为2圈,7是内导体最里边的金属导线,8-1、8-2、8-3、8-4、8-5、8-6内导体外圈的6根金属绞线。外导体也分为2圈,10-1、10-2、10-3、10-4、10-5、10-6、10-7、 10-8、10-9外导体内圈的9根金属绞线,11-1、11-2、11-3、11-4,11-5、11-6、11-7、 11-8、11-9、11-10、11-11、11-12、11-13、11-14、11-15为外导体外圈的15根金属绞线。Fig. 6 is a schematic diagram of the structure of the self-melting ice conductor with 7 metal strands as the inner conductor and 24 metal strands as the outer conductor. The inner conductor is divided into 2 circles, 7 is the innermost metal wire of the inner conductor, 8-1, 8-2, 8-3, 8-4, 8-5, 8-6 are 6 metal stranded wires in the outer circle of the inner conductor . The outer conductor is also divided into 2 circles, 10-1, 10-2, 10-3, 10-4, 10-5, 10-6, 10-7, 10-8, 10-9 9 inner circles of the outer conductor Stranded wire, 11-1, 11-2, 11-3, 11-4, 11-5, 11-6, 11-7, 11-8, 11-9, 11-10, 11-11, 11- 12, 11-13, 11-14, 11-15 are 15 metal stranded wires of the outer ring of the outer conductor.
参见图7,内嵌光纤的金属管结构示意图。内嵌光纤的金属管是由保护金属管12、保护填充物13和光纤14-1、14-2、14-3、14-n-1、14-n构成,保护金属管12在外,里边放置n根光纤,光纤与保护金属管间充满保护填充物13。Referring to FIG. 7 , a schematic structural diagram of a metal tube embedded with an optical fiber. The metal tube embedded with optical fiber is composed of
参见图8、图9。See Figure 8, Figure 9.
自融冰导体内加热材料可以连续分布,也可以间断分布。加热材料连续分布示意图如图8。自融冰导体内加热材料间断分布如图9。The heating material in the self-melting ice conductor can be distributed continuously or discontinuously. The schematic diagram of the continuous distribution of heating materials is shown in Figure 8. The discontinuous distribution of the heating material in the self-melting ice conductor is shown in Figure 9.
自融冰导体20中的加热材料2在同轴电缆内的分布采用间断分布,间断分布间的加热材料15-1,15-2,15-3,15-4间用绝缘材料16-1,16-2,16-3,16-4填充,相邻加热材料与绝缘材料紧密连接,中间无缝隙。间断分布的加热材料呈管状。图中实例为四段。实际根据需要数量可以任意间断。间断分布的绝缘材料,呈管状。图中实例为四段。实际根据需要数量可以比加热材料段数少一段,相等,或多一段。绝缘材料可以是含氟聚合物绝缘材料,也可以是其他绝缘材料。The distribution of the
参见图10-12。See Figure 10-12.
自动融冰设备由变压器18,开关电路,微处理器22,通信模块21,结冰感应模块23构成,微处理器连接通信模块、结冰感应模块和开关电路,接收通信模块控制信号,向通信模块传输数据,并接收结冰感应模块数据,控制中心通过通信模块向微处理器传输控制命令,微处理器响应控制中心的命令并控制自动融冰设备的运行。根据自融冰导体用做非输电线、用做架空输电线导体、用做架空输电线路地线时的不同,自动融冰设备连接到自融冰导体的连接关系和开关电路、变压器的设计有不同。Automatic ice-melting equipment is made up of
自融冰导体在用做非输电线时,自动融冰设备设有两个开关电路19-1、19-2;电源的两端连接到变压器18的一次绕组,变压器二次绕组连接两个开关电路19-1、19-2,开关电路19-2两端分别连接变压器二次绕组的一端和自融冰导体的内导体,开关电路19-1两端分别连接变压器二次绕组的另一端和自融冰导体的外导体;两个开关电路19-1、19-2 开关状态受微处理器22控制;自融冰导体20的内导体3和外导体1分别连接到开关电路 19-2和19-1。When the self-melting ice conductor is used as a non-power transmission line, the automatic ice melting equipment is provided with two switching circuits 19-1, 19-2; the two ends of the power supply are connected to the primary winding of the
控制中心通过通信模块控制自动融冰设备的运行。通信模块与微处理器连接,用于向微处理器传送控制中心的控制命令,并将微处理器的数据传送给控制中心。微处理器连接通信模块、结冰感应模块、两个开关电路,接收通信模块控制信号,向通信模块传输数据,并接收结冰感应模块数据。根据结冰感应模块数据与通信模块发送的控制中心命令,控制开关电路通与断。结冰感应模块连接微处理器,并将感应数据发送给微处理器。The control center controls the operation of the automatic ice-melting equipment through the communication module. The communication module is connected with the microprocessor, and is used for transmitting the control command of the control center to the microprocessor, and transmitting the data of the microprocessor to the control center. The microprocessor connects the communication module, the icing sensing module and two switch circuits, receives the control signal of the communication module, transmits data to the communication module, and receives the data of the icing sensing module. According to the data of the icing sensing module and the command of the control center sent by the communication module, the on and off of the switching circuit is controlled. The icing sensing module is connected with the microprocessor, and sends sensing data to the microprocessor.
自融冰导体在用做架空输电线导体时,自动融冰设备设置开关电路19-3,自融冰导体的内导体3连接到开关电路19-3的一端,自融冰导体的外导体1与架空输电系统变电站的输出电源连接;在自动融冰设备中,自融冰导体的外导体1与架空输电线路地线系统分别连接到变压器18一次绕组两端;变压器18二次绕组两端分别连接开关电路19-3和架空传输线路地线系统;开关电路19-3两端分别连接变压器18二次绕组的一端和自融冰导体的内导体3;开关电路接受微处理器控制。When the self-melting ice conductor is used as an overhead transmission line conductor, the automatic ice-melting equipment is provided with a switch circuit 19-3, the
控制中心通过通信模块控制自动融冰设备的运行。通信模块与微处理器连接,用于向微处理器传送控制中心的控制命令,并将微处理器的数据传送给控制中心。微处理器连接通信模块、结冰感应模块、开关电路,接收通信模块控制信号,向通信模块传输数据,并接收结冰感应模块数据。根据结冰感应模块数据与通信模块发送的控制中心命令,控制开关电路通与断。结冰感应模块连接微处理器,并将感应数据发送给微处理器。The control center controls the operation of the automatic ice-melting equipment through the communication module. The communication module is connected with the microprocessor, and is used for transmitting the control command of the control center to the microprocessor, and transmitting the data of the microprocessor to the control center. The microprocessor connects the communication module, the icing sensing module and the switch circuit, receives the control signal of the communication module, transmits data to the communication module, and receives the data of the icing sensing module. According to the data of the icing sensing module and the command of the control center sent by the communication module, the on and off of the switching circuit is controlled. The icing sensing module is connected with the microprocessor, and sends sensing data to the microprocessor.
自融冰导体用做架空输电线路地线时,自动融冰设备设置开关电路19-4,自融冰导体的内导体3连接到开关电路19-4的一端,自融冰导体的外导体1与架空输电线路的地线系统连接;在自动融冰设备中,自融冰导体的外导体1与架空输电线路导体26分别连接到变压器18一次绕组两端,当架空输电线路导体采用本发明的自融冰导体时,一次绕组连接架空输电线路导体26的外导体;变压器18二次绕组两端分别连接开关电路19-4和自融冰导体的外导体1;开关电路19-4两端分别连接变压器18二次绕组的一端和自融冰导体的内导体3;开关电路接受微处理器控制。When the self-melting ice conductor is used as the ground wire of the overhead transmission line, the automatic ice-melting equipment is provided with a switch circuit 19-4, the
控制中心通过通信模块控制自动融冰设备的运行。通信模块与微处理器连接,用于向微处理器传送控制中心的控制命令,并将微处理器的数据传送给控制中心。微处理器连接通信模块、结冰感应模块、开关电路,接收通信模块控制信号,向通信模块传输数据,并接收结冰感应模块数据。根据结冰感应模块数据与通信模块发送的控制中心命令,控制开关电路通与断。结冰感应模块连接微处理器,并将感应数据发送给微处理器。The control center controls the operation of the automatic ice-melting equipment through the communication module. The communication module is connected with the microprocessor, and is used for transmitting the control command of the control center to the microprocessor, and transmitting the data of the microprocessor to the control center. The microprocessor connects the communication module, the icing sensing module and the switch circuit, receives the control signal of the communication module, transmits data to the communication module, and receives the data of the icing sensing module. According to the data of the icing sensing module and the command of the control center sent by the communication module, the on and off of the switching circuit is controlled. The icing sensing module is connected with the microprocessor, and sends sensing data to the microprocessor.
当自融冰导体用做非输电系统,变压器18的一次绕组输入电压为电源电压,二次绕组输出电压为加热材料工作电压;当自融冰导体用架空输电线路导体时,变压器18的一次绕组输入电压为输电线路导体电压,二次绕组的输出电压为输电线路导体电压减去加热材料工作电压,或者输电线路导体电压加上加热材料工作电压;当自融冰导体用做架空输电线路地线时,变压器18的一次绕组输入电压为输电线路导体电压,二次绕组的输出电压为加热材料工作电压。When the self-melting ice conductor is used as a non-transmission system, the input voltage of the primary winding of the
参见附图13-18。See accompanying drawings 13-18.
图13开关电路,KT为日本欧姆龙公司,LY1-J,UT1:为日本东芝公司生产,TLP521。QT4为美国Fairchild Semiconductor Corporation公司:SS9013,Figure 13 switch circuit, KT is Japan's Omron company, LY1-J, UT1: produced for Japan's Toshiba company, TLP521. QT4 is Fairchild Semiconductor Corporation of the United States: SS9013,
QT1为美国Fairchild Semiconductor Corporation公司:IN4148。QT1 is the US Fairchild Semiconductor Corporation: IN4148.
开关端口A连接变压器,开关端口B连接自融冰导体的内导体或外导体。The switch port A is connected to the transformer, and the switch port B is connected to the inner conductor or the outer conductor of the self-melting ice conductor.
RELAYIN1连接微处理器电路同名网络。RELAYIN1 connects the network of the same name to the microprocessor circuit.
本实施例中,微处理采用如图14所示U11:MSP430F5438:单片机,美国TEXASINSTRUMENTS公司生产。微处理器RS232接口原理图如图15。图中,U8:MAX232:RS232 接口芯片,美国maxim公司生产。In the present embodiment, the microprocessing adopts U11: MSP430F5438: single-chip microcomputer as shown in Fig. 14, produced by TEXASINSTRUMENTS Company of the United States. The schematic diagram of the RS232 interface of the microprocessor is shown in Figure 15. In the figure, U8: MAX232: RS232 interface chip, produced by Maxim Corporation of the United States.
五伏转三伏电源转换电路见图16,是三伏转二伏电源转换电路见图17,JTAG电路图见图18。图中,UP18:LM26400Y:电源转换芯片,由美国NATIONAL SEMICONDUCTOTR公司生产。The five-volt to three-volt power conversion circuit is shown in Figure 16, the three-volt to two-volt power conversion circuit is shown in Figure 17, and the JTAG circuit diagram is shown in Figure 18. In the figure, UP18: LM26400Y: power conversion chip, produced by NATIONAL SEMICONDUCTOTR company in the United States.
本发明的通信模块可以是光纤通信模块,也可以是无线传输通信模块。本实施例采用无线传输通信模块:北京接麦通信器材有限公司生产:G300型GSM数传模块。G300型GSM数传模块接口与微处理器RS232接口连接。The communication module of the present invention may be an optical fiber communication module, or a wireless transmission communication module. This embodiment adopts a wireless transmission communication module: a G300 GSM data transmission module produced by Beijing Jiemai Communication Equipment Co., Ltd. The interface of G300 GSM data transmission module is connected with the RS232 interface of the microprocessor.
结冰感应模块采用武汉国电长征电力设备有限公司生产的GD-FB输电电路覆冰在线监测系统。监控数据送给微处理器。The icing sensing module adopts the GD-FB transmission circuit icing online monitoring system produced by Wuhan Guodian Changzheng Electric Equipment Co., Ltd. The monitoring data is sent to the microprocessor.
本发明中,控制中心通过通信模块控制自动融冰设备的运行。通信模块与微处理器连接,用于向微处理器传送控制中心的控制命令,并将微处理器的数据传送给控制中心。In the present invention, the control center controls the operation of the automatic ice-melting equipment through the communication module. The communication module is connected with the microprocessor, and is used for transmitting the control command of the control center to the microprocessor, and transmitting the data of the microprocessor to the control center.
微处理器的控制程序是:The control program of the microprocessor is:
第一步:通过通信模块接收控制中心命令;Step 1: Receive commands from the control center through the communication module;
第二步:分析控制中心命令,是否开始融冰?是,进入第七步;否,进入第三步;Step 2: Analyze the control center command, whether to start melting ice? Yes, go to step seven; no, go to step three;
第三步:分析控制中心命令,是否结束融冰?是,进入第六步;否,进入第四步;Step 3: Analyze the command of the control center, whether to end the ice melting? Yes, go to
第四步:分析控制中心命令,是否由结冰感应模块控制开关电路?是,进入第五步;否,进入第一步;Step 4: Analyze the command of the control center, whether the switching circuit is controlled by the icing sensing module? Yes, go to
第五步:判断结冰感应模块发现是否有冰?无冰:进入第六步;有冰,进入第七步;Step 5: Determine whether there is ice found by the icing sensor module? No ice: go to the sixth step; with ice, go to the seventh step;
第六步:断开开关电路,进入第一步;Step 6: Disconnect the switch circuit and enter the first step;
第七步:接通开关电路,进入第一步。Step 7: Connect the switch circuit and enter the first step.
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610867150.1A CN106304436B (en) | 2016-09-30 | 2016-09-30 | A kind of self-melting ice conductor ice-melting equipment |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610867150.1A CN106304436B (en) | 2016-09-30 | 2016-09-30 | A kind of self-melting ice conductor ice-melting equipment |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN106304436A CN106304436A (en) | 2017-01-04 |
| CN106304436B true CN106304436B (en) | 2022-11-25 |
Family
ID=57715801
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201610867150.1A Expired - Fee Related CN106304436B (en) | 2016-09-30 | 2016-09-30 | A kind of self-melting ice conductor ice-melting equipment |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN106304436B (en) |
Families Citing this family (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108322950A (en) * | 2017-12-27 | 2018-07-24 | 中国船舶重工集团公司第七0研究所 | A kind of electrical heating method of no magnetic |
| CN108366442B (en) * | 2018-04-23 | 2023-08-15 | 四川大学 | Self-made heat conductor heating equipment embedded with insulating heat conducting material and implementation method thereof |
| CN109119931B (en) * | 2018-08-06 | 2020-01-24 | 四川大学 | Calculation method of on-line anti-icing and melting heat of transmission lines based on self-made thermal conductors |
| CN109063360B (en) * | 2018-08-16 | 2022-10-04 | 四川大学 | Method for optimizing alternating-current heating parameters of self-heating transmission wire embedded with uniform material |
| CN109033690B (en) * | 2018-08-16 | 2022-10-11 | 四川大学 | Self-heating transmission conductor uniform power optimization method based on alternating-current heating power supply |
| CN108760527B (en) * | 2018-08-20 | 2023-10-13 | 四川大学 | On-line monitoring equipment and monitoring method for self-ice melting wire embedded with heating material |
| CN110336235B (en) * | 2019-05-09 | 2020-06-23 | 国网湖南省电力有限公司 | Alternating current transmission direct current ice melting equipment based on self-ice melting conductor |
| CN113388181B (en) * | 2021-06-21 | 2022-07-29 | 四川大学 | High-pressure-resistant heating material, preparation method thereof and self-heating deicing cable |
| CN113541081B (en) * | 2021-07-14 | 2022-08-19 | 四川大学 | Lossless single-phase anti-icing and de-icing control equipment based on thyristor |
| CN113687484A (en) * | 2021-09-06 | 2021-11-23 | 福建永福电力设计股份有限公司 | Novel ADSS anti-icing method |
Citations (21)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB1141390A (en) * | 1967-04-24 | 1969-01-29 | Mullard Ltd | An improved method of preventing the formation of ice on an overhead power transmission line |
| CN1455623A (en) * | 2003-03-21 | 2003-11-12 | 重庆仪表材料研究所 | Current-limiting armoured heating cable and element |
| WO2005083862A1 (en) * | 2003-08-22 | 2005-09-09 | The Trustees Of Dartmouth College | Pulse electrothermal deicer for power cables |
| CN1863417A (en) * | 2006-06-15 | 2006-11-15 | 王崇 | Positive temp coefficient high polymer semiconductor temp control heatingcable and mfg. method thereof |
| JP2008103854A (en) * | 2006-10-17 | 2008-05-01 | Matsushita Electric Works Ltd | Power line carrier communication device |
| CN101286382A (en) * | 2008-04-11 | 2008-10-15 | 浙江科技学院 | Power line ice and snow removal method |
| CN201181607Y (en) * | 2008-03-03 | 2009-01-14 | 昆山火凤凰线缆有限公司 | Aerial snow-melting and deicing optical/electrical cable |
| CN201215740Y (en) * | 2008-07-10 | 2009-04-01 | 远东电缆有限公司 | Anti-ice and snow wire |
| CN201222376Y (en) * | 2008-07-11 | 2009-04-15 | 江苏赛德电气有限公司 | Snow-proof freezing-resistant environment protection aerial cable |
| CN201323086Y (en) * | 2008-10-17 | 2009-10-07 | 芜湖市恒鑫电缆有限责任公司 | Novel heat tracing cable structure |
| CN101552051A (en) * | 2008-04-01 | 2009-10-07 | 康迪 | Microwave self-heating power cable and de-icing device applying same |
| RU90448U1 (en) * | 2009-09-03 | 2010-01-10 | Государственное образовательное учреждение высшего профессионального образования "Московский государственный университет путей сообщения" (МИИТ) | DEVICE FOR CLEANING LINE AND ICE TRANSFERS BY ELECTRIC HEATING WITH INDIVIDUAL REGULATION |
| CN101872952A (en) * | 2009-04-27 | 2010-10-27 | 张根祥 | Ice-melting heater of high-voltage transmission line |
| CN102437542A (en) * | 2011-12-20 | 2012-05-02 | 中铁二院工程集团有限责任公司 | Alternating current ice melting system of electrified railway traction network |
| CN102496898A (en) * | 2011-11-16 | 2012-06-13 | 四川大学 | Bifunctional direct current ice melting apparatus based on voltage source type current converter and ice melting method thereof |
| CN102638019A (en) * | 2012-04-09 | 2012-08-15 | 株洲变流技术国家工程研究中心有限公司 | Direct-current catenary de-icing method of high-speed electrified railway |
| CN102638020A (en) * | 2012-04-09 | 2012-08-15 | 株洲变流技术国家工程研究中心有限公司 | Direct-current catenary de-icing equipment of high-speed electrified railway and direct-current catenary de-icing system |
| CN102881356A (en) * | 2012-10-17 | 2013-01-16 | 李天昌 | Novel low-temperature infrared heated automatic deicing ground wire |
| CN103345280A (en) * | 2013-07-18 | 2013-10-09 | 国家电网公司 | Internal temperature monitoring system of de-icing device |
| CN104992743A (en) * | 2015-07-10 | 2015-10-21 | 德州暖康碳纤维科技有限公司 | Deicing carbon-fiber-based high-low-voltage overhead cable |
| CN206433205U (en) * | 2016-09-30 | 2017-08-22 | 四川大学 | A self-melting ice conductor and its ice-melting equipment |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DK1166599T3 (en) * | 1999-03-01 | 2010-08-30 | Dartmouth College | Process and systems for removing ice from surfaces |
| RU2316867C1 (en) * | 2006-08-11 | 2008-02-10 | Открытое Акционерное Общество "Федеральная Сетевая Компания Единой Энергетической Системы" (Оао "Фск Еэс") | Combinatorial ice melting and reactive power correcting installation |
| CN103489277B (en) * | 2013-09-26 | 2015-08-26 | 胡亨华 | The fire early-warning system of on-line monitoring electric wiring resistance parameter |
| CR20160559A (en) * | 2014-06-10 | 2017-02-03 | General Cable Tech Corp | COATINGS OF TWO COMPONENTS, CURABLE, FOR DRIVERS |
-
2016
- 2016-09-30 CN CN201610867150.1A patent/CN106304436B/en not_active Expired - Fee Related
Patent Citations (21)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB1141390A (en) * | 1967-04-24 | 1969-01-29 | Mullard Ltd | An improved method of preventing the formation of ice on an overhead power transmission line |
| CN1455623A (en) * | 2003-03-21 | 2003-11-12 | 重庆仪表材料研究所 | Current-limiting armoured heating cable and element |
| WO2005083862A1 (en) * | 2003-08-22 | 2005-09-09 | The Trustees Of Dartmouth College | Pulse electrothermal deicer for power cables |
| CN1863417A (en) * | 2006-06-15 | 2006-11-15 | 王崇 | Positive temp coefficient high polymer semiconductor temp control heatingcable and mfg. method thereof |
| JP2008103854A (en) * | 2006-10-17 | 2008-05-01 | Matsushita Electric Works Ltd | Power line carrier communication device |
| CN201181607Y (en) * | 2008-03-03 | 2009-01-14 | 昆山火凤凰线缆有限公司 | Aerial snow-melting and deicing optical/electrical cable |
| CN101552051A (en) * | 2008-04-01 | 2009-10-07 | 康迪 | Microwave self-heating power cable and de-icing device applying same |
| CN101286382A (en) * | 2008-04-11 | 2008-10-15 | 浙江科技学院 | Power line ice and snow removal method |
| CN201215740Y (en) * | 2008-07-10 | 2009-04-01 | 远东电缆有限公司 | Anti-ice and snow wire |
| CN201222376Y (en) * | 2008-07-11 | 2009-04-15 | 江苏赛德电气有限公司 | Snow-proof freezing-resistant environment protection aerial cable |
| CN201323086Y (en) * | 2008-10-17 | 2009-10-07 | 芜湖市恒鑫电缆有限责任公司 | Novel heat tracing cable structure |
| CN101872952A (en) * | 2009-04-27 | 2010-10-27 | 张根祥 | Ice-melting heater of high-voltage transmission line |
| RU90448U1 (en) * | 2009-09-03 | 2010-01-10 | Государственное образовательное учреждение высшего профессионального образования "Московский государственный университет путей сообщения" (МИИТ) | DEVICE FOR CLEANING LINE AND ICE TRANSFERS BY ELECTRIC HEATING WITH INDIVIDUAL REGULATION |
| CN102496898A (en) * | 2011-11-16 | 2012-06-13 | 四川大学 | Bifunctional direct current ice melting apparatus based on voltage source type current converter and ice melting method thereof |
| CN102437542A (en) * | 2011-12-20 | 2012-05-02 | 中铁二院工程集团有限责任公司 | Alternating current ice melting system of electrified railway traction network |
| CN102638019A (en) * | 2012-04-09 | 2012-08-15 | 株洲变流技术国家工程研究中心有限公司 | Direct-current catenary de-icing method of high-speed electrified railway |
| CN102638020A (en) * | 2012-04-09 | 2012-08-15 | 株洲变流技术国家工程研究中心有限公司 | Direct-current catenary de-icing equipment of high-speed electrified railway and direct-current catenary de-icing system |
| CN102881356A (en) * | 2012-10-17 | 2013-01-16 | 李天昌 | Novel low-temperature infrared heated automatic deicing ground wire |
| CN103345280A (en) * | 2013-07-18 | 2013-10-09 | 国家电网公司 | Internal temperature monitoring system of de-icing device |
| CN104992743A (en) * | 2015-07-10 | 2015-10-21 | 德州暖康碳纤维科技有限公司 | Deicing carbon-fiber-based high-low-voltage overhead cable |
| CN206433205U (en) * | 2016-09-30 | 2017-08-22 | 四川大学 | A self-melting ice conductor and its ice-melting equipment |
Non-Patent Citations (1)
| Title |
|---|
| 《基于电压源型换流器的直流融冰装置扩展功能研究》;史华勃,刘天琪,李兴源;《华东电力》;20120930;第40卷(第9期);全文 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN106304436A (en) | 2017-01-04 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN106304436B (en) | A kind of self-melting ice conductor ice-melting equipment | |
| CN108366442B (en) | Self-made heat conductor heating equipment embedded with insulating heat conducting material and implementation method thereof | |
| CN106229059B (en) | A kind of ice-melting device from ice melting electric cable | |
| CN206433205U (en) | A self-melting ice conductor and its ice-melting equipment | |
| CN206225052U (en) | It is a kind of from ice melting electric cable and its ice-melting device | |
| CN201181607Y (en) | Aerial snow-melting and deicing optical/electrical cable | |
| CN101710683B (en) | Intelligent circulation anti-icing method for transmitting current by split lead | |
| CN101431224A (en) | De-icing technology for overhead transmission line | |
| WO2020238050A1 (en) | Layer-stranded deicing optical fiber composite overhead ground wire | |
| CN110112694B (en) | A high voltage cable, cable connection method, deicing method and deicing system | |
| CN103022947B (en) | A kind of automatic heating line system | |
| CN202275648U (en) | Middling voltage fiber composite cable of copper strip shielding fiber with temperature measurement and communication function | |
| CN113078603A (en) | Ice melting device for power line | |
| CN208175017U (en) | It is embedded in the heating equipment of the self-control heat conductor of insulating heat-conduction material | |
| CN105761837A (en) | Optical fiber composite overhead ground wire with fast ice melting function | |
| CN209658875U (en) | A kind of high-tension cable and deicing system | |
| CN109149493B (en) | Heating control equipment and control method of multi-strand insulated self-made thermal overhead ground wire | |
| CN209296795U (en) | Heating control and detection equipment for multi-strand insulated self-made heating wires | |
| CN207638920U (en) | A kind of series electric heating band | |
| CN208904612U (en) | Heating control equipment for multi-strand insulated self-made thermal overhead ground wire | |
| CN202307270U (en) | Anti-freezing electric power steel-cored aluminum/copper stranded wire | |
| CN202495289U (en) | Composite core cable | |
| CN211239262U (en) | Ice melting device for transmission conductor | |
| CN111181118A (en) | Ice melting method and device for power transmission conductor | |
| CN201259798Y (en) | Ice melting electric cable |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| CB03 | Change of inventor or designer information |
Inventor after: Li Bixiong Inventor after: Liu Tianqi Inventor after: Mo Site Inventor before: Mo Site Inventor before: Liu Tianqi Inventor before: Li Bixiong |
|
| CB03 | Change of inventor or designer information | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20221125 |
|
| CF01 | Termination of patent right due to non-payment of annual fee |