CN106404217B - A kind of temperature demodulation method based on distributed fiber Raman thermometric - Google Patents
A kind of temperature demodulation method based on distributed fiber Raman thermometric Download PDFInfo
- Publication number
- CN106404217B CN106404217B CN201611010576.1A CN201611010576A CN106404217B CN 106404217 B CN106404217 B CN 106404217B CN 201611010576 A CN201611010576 A CN 201611010576A CN 106404217 B CN106404217 B CN 106404217B
- Authority
- CN
- China
- Prior art keywords
- stokes light
- optical fiber
- light
- light intensity
- stokes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000001069 Raman spectroscopy Methods 0.000 title claims abstract description 54
- 238000000034 method Methods 0.000 title claims abstract description 29
- 239000000835 fiber Substances 0.000 title claims description 46
- 239000013307 optical fiber Substances 0.000 claims abstract description 98
- 238000012360 testing method Methods 0.000 claims description 22
- 238000012545 processing Methods 0.000 claims description 7
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 230000002269 spontaneous effect Effects 0.000 claims description 4
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical compound C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 claims 2
- 241000208340 Araliaceae Species 0.000 claims 1
- 235000005035 Panax pseudoginseng ssp. pseudoginseng Nutrition 0.000 claims 1
- 235000003140 Panax quinquefolius Nutrition 0.000 claims 1
- 230000005540 biological transmission Effects 0.000 claims 1
- 235000008434 ginseng Nutrition 0.000 claims 1
- 230000000644 propagated effect Effects 0.000 claims 1
- 238000009529 body temperature measurement Methods 0.000 abstract description 38
- 238000010586 diagram Methods 0.000 description 7
- 101100379210 Arabidopsis thaliana APD4 gene Proteins 0.000 description 5
- 101100379209 Arabidopsis thaliana APD3 gene Proteins 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 3
- 238000000253 optical time-domain reflectometry Methods 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K11/00—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
- G01K11/32—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K11/00—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
- G01K11/32—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
- G01K11/324—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres using Raman scattering
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
Abstract
本发明涉及分布式光纤拉曼测温系统中的温度解调方法,具体是一种基于分布式光纤拉曼测温的新型温度解调方法。本发明解决了现有分布式光纤拉曼测温系统中的温度解调方法导致系统的测温精度低和测温效率低的问题。一种基于分布式光纤拉曼测温的新型温度解调方法,该方法包括如下步骤:步骤一:搭建分布式光纤拉曼测温系统;步骤二:激光脉冲在待测光纤中传播时发生自发拉曼散射,由此使得待测光纤的各个位置均产生背向传输的Stokes光和anti‑Stokes光;步骤三:对Stokes光进行插值处理;步骤四:对Stokes光和anti‑Stokes光进行损耗补偿;步骤五:对待测光纤进行温度解调。本发明适用于分布式光纤拉曼测温系统。
The invention relates to a temperature demodulation method in a distributed optical fiber Raman temperature measurement system, in particular to a novel temperature demodulation method based on distributed optical fiber Raman temperature measurement. The invention solves the problems of low temperature measurement accuracy and low temperature measurement efficiency of the system caused by the temperature demodulation method in the existing distributed optical fiber Raman temperature measurement system. A new temperature demodulation method based on distributed optical fiber Raman temperature measurement, the method includes the following steps: Step 1: build a distributed optical fiber Raman temperature measurement system; Raman scattering, so that each position of the optical fiber to be tested produces back-transmitted Stokes light and anti-Stokes light; Step 3: Interpolate Stokes light; Step 4: Loss Stokes light and anti-Stokes light Compensation; step five: performing temperature demodulation on the optical fiber to be tested. The invention is applicable to a distributed optical fiber Raman temperature measurement system.
Description
技术领域technical field
本发明涉及分布式光纤拉曼测温系统中的温度解调方法,具体是一种基于分布式光纤拉曼测温的温度解调方法。The invention relates to a temperature demodulation method in a distributed optical fiber Raman temperature measurement system, in particular to a temperature demodulation method based on distributed optical fiber Raman temperature measurement.
背景技术Background technique
分布式光纤拉曼测温系统是利用光纤中的自发拉曼散射效应,结合光时域反射技术(Optical Time Domain Reflectometry,OTDR)实现的可用于分布式、连续式、实时测量空间温度场分布的一种新型传感系统。与传统的电子温度传感器相比,分布式光纤拉曼测温系统具有抗电磁干扰、耐高压、精度高、结构简单等优点,所以被广泛应用于电力电缆温度监测、结构健康监测、大坝泄漏监测等领域。The distributed optical fiber Raman temperature measurement system is realized by using the spontaneous Raman scattering effect in the optical fiber, combined with Optical Time Domain Reflectometry (OTDR), which can be used for distributed, continuous, and real-time measurement of spatial temperature field distribution. A new type of sensing system. Compared with traditional electronic temperature sensors, the distributed optical fiber Raman temperature measurement system has the advantages of anti-electromagnetic interference, high voltage resistance, high precision, and simple structure, so it is widely used in power cable temperature monitoring, structural health monitoring, dam leakage monitoring and other fields.
在分布式光纤拉曼测温系统中,目前常用的温度解调方法是利用Stokes光作为参考通道,利用anti-Stokes光作为信号通道,然后利用这两种光的波长比值来解调温度信息。然而实践表明,现有温度解调方法由于自身原理所限,存在如下问题:其一,由于Stokes光和anti-Stokes光的波长不同,其在光纤中的传播速度存在差异,因此同一位置散射回来的Stokes光和anti-Stokes光到达数据采集卡的时间不同,导致数据采集卡在同一时间采集到的Stokes光和anti-Stokes光并不是来自同一位置,由此导致信号错位,从而导致系统的测温精度低。其二,在现有温度解调方法中,为了消除光纤损耗来解调出温度信息,必须在测温前将整条待测光纤置于恒温下进行定标处理(倘若更换待测光纤、调整激光器功率或更换任意系统器件,则必须重新进行定标处理),由此导致操作繁琐,从而导致系统的测温效率低。基于此,有必要发明一种全新的温度解调方法,以解决现有分布式光纤拉曼测温系统中的温度解调方法导致系统的测温精度低和测温效率低的问题。In the distributed optical fiber Raman temperature measurement system, the commonly used temperature demodulation method is to use Stokes light as the reference channel, use anti-Stokes light as the signal channel, and then use the wavelength ratio of the two lights to demodulate the temperature information. However, practice has shown that the existing temperature demodulation method has the following problems due to its own principle limitations: First, due to the different wavelengths of Stokes light and anti-Stokes light, their propagation speeds in the optical fiber are different, so the same position is scattered back The Stokes light and anti-Stokes light arrive at the data acquisition card at different times, resulting in that the Stokes light and anti-Stokes light collected by the data acquisition card at the same time do not come from the same position, which leads to signal misalignment, which leads to the measurement of the system. The temperature accuracy is low. Second, in the existing temperature demodulation method, in order to eliminate the fiber loss and demodulate the temperature information, the entire optical fiber to be tested must be placed at a constant temperature for calibration before temperature measurement (if the optical fiber to be tested is replaced, adjusted If the laser power is changed or any system component is replaced, the calibration process must be performed again), which leads to cumbersome operation and low temperature measurement efficiency of the system. Based on this, it is necessary to invent a brand-new temperature demodulation method to solve the problems of low temperature measurement accuracy and low temperature measurement efficiency of the system caused by the temperature demodulation method in the existing distributed optical fiber Raman temperature measurement system.
发明内容Contents of the invention
本发明为了解决现有分布式光纤拉曼测温系统中的温度解调方法导致系统的测温精度低和测温效率低的问题,提供了一种基于分布式光纤拉曼测温的温度解调方法。In order to solve the problems of low temperature measurement accuracy and low temperature measurement efficiency caused by the temperature demodulation method in the existing distributed optical fiber Raman temperature measurement system, the present invention provides a temperature solution based on distributed optical fiber Raman temperature measurement. tune method.
本发明是采用如下技术方案实现的:The present invention is realized by adopting the following technical solutions:
一种基于分布式光纤拉曼测温的温度解调方法,该方法包括如下步骤:A temperature demodulation method based on distributed optical fiber Raman temperature measurement, the method comprises the following steps:
步骤一:搭建分布式光纤拉曼测温系统;Step 1: Build a distributed optical fiber Raman temperature measurement system;
所述分布式光纤拉曼测温系统包括拉曼测温仪、第一高精度恒温槽、第二高精度恒温槽、待测光纤、第一温度传感器、第二温度传感器;The distributed optical fiber Raman temperature measurement system includes a Raman thermometer, a first high-precision constant temperature bath, a second high-precision constant temperature bath, an optical fiber to be tested, a first temperature sensor, and a second temperature sensor;
所述拉曼测温仪包括脉冲激光器、WDM、第一APD、第二APD、第一LNA、第二LNA、数据采集卡、计算机;其中,脉冲激光器的输出端与WDM的输入端连接;WDM的两个输出端分别与第一APD的输入端和第二APD的输入端连接;第一APD的输出端与第一LNA的输入端连接;第二APD的输出端与第二LNA的输入端连接;第一LNA的输出端和第二LNA的输出端均与数据采集卡的输入端连接;数据采集卡的输出端与计算机的输入端连接;计算机与脉冲激光器双向连接;Described Raman thermometer comprises pulse laser, WDM, the first APD, the second APD, the first LNA, the second LNA, data acquisition card, computer; Wherein, the output end of pulse laser is connected with the input end of WDM; WDM The two output terminals of the first APD are respectively connected to the input terminal of the first APD and the input terminal of the second APD; the output terminal of the first APD is connected to the input terminal of the first LNA; the output terminal of the second APD is connected to the input terminal of the second LNA connection; the output end of the first LNA and the output end of the second LNA are connected with the input end of the data acquisition card; the output end of the data acquisition card is connected with the input end of the computer; the computer and the pulse laser are bidirectionally connected;
待测光纤的前端与WDM的公共端连接;待测光纤的中间部分分别绕制有第一参考光纤环和第二参考光纤环;第一参考光纤环放置于第一高精度恒温槽中;第二参考光纤环放置于第二高精度恒温槽中;第一温度传感器安装于第一高精度恒温槽上;第二温度传感器安装于第二高精度恒温槽上;第一温度传感器和第二温度传感器均与计算机双向连接;The front end of the optical fiber to be tested is connected to the common end of the WDM; the middle part of the optical fiber to be tested is respectively wound with a first reference optical fiber ring and a second reference optical fiber ring; the first reference optical fiber ring is placed in the first high-precision constant temperature bath; The two reference optical fiber rings are placed in the second high-precision constant temperature tank; the first temperature sensor is installed on the first high-precision constant temperature tank; the second temperature sensor is installed on the second high-precision constant temperature tank; the first temperature sensor and the second temperature The sensors are bidirectionally connected with the computer;
步骤二:将第一高精度恒温槽的温度值设置为T1,将第二高精度恒温槽的温度值设置为T2;然后,启动拉曼测温仪,脉冲激光器发出的激光脉冲经WDM入射到待测光纤;激光脉冲在待测光纤中传播时发生自发拉曼散射,由此使得待测光纤的各个位置均产生背向传输的Stokes光和anti-Stokes光;Step 2: Set the temperature value of the first high-precision constant temperature bath to T 1 , and set the temperature value of the second high-precision constant temperature bath to T 2 ; then, start the Raman thermometer, and the laser pulse emitted by the pulse laser passes through the WDM Incident to the optical fiber to be tested; when the laser pulse propagates in the optical fiber to be tested, spontaneous Raman scattering occurs, so that each position of the optical fiber to be tested produces Stokes light and anti-Stokes light transmitted backward;
Stokes光依次经WDM、第一APD、第一LNA入射到数据采集卡,数据采集卡对Stokes光进行模数转换,由此得到Stokes光的光强曲线,该光强曲线中包含一个因菲涅尔反射导致的尖峰;The Stokes light enters the data acquisition card sequentially through the WDM, the first APD, and the first LNA, and the data acquisition card performs analog-to-digital conversion on the Stokes light, thereby obtaining the light intensity curve of the Stokes light, which contains an Inferne Spikes caused by Ole reflection;
anti-Stokes光依次经WDM、第二APD、第二LNA入射到数据采集卡,数据采集卡对anti-Stokes光进行模数转换,由此得到anti-Stokes光的光强曲线,该光强曲线中同样包含一个因菲涅尔反射导致的尖峰;The anti-Stokes light enters the data acquisition card through the WDM, the second APD, and the second LNA in turn, and the data acquisition card performs analog-to-digital conversion on the anti-Stokes light, thereby obtaining the light intensity curve of the anti-Stokes light, the light intensity curve also contains a spike due to Fresnel reflection;
步骤三:根据Stokes光的光强曲线中的尖峰位置和anti-Stokes光的光强曲线中的尖峰位置,对Stokes光进行插值处理,由此使得待测光纤的同一位置产生的Stokes光和anti-Stokes光到达数据采集卡的时间相同;Step 3: Interpolate the Stokes light according to the peak position in the light intensity curve of the Stokes light and the peak position in the light intensity curve of the anti-Stokes light, so that the Stokes light and anti-Stokes light generated at the same position of the optical fiber to be tested are - Stokes light takes the same time to reach the data acquisition card;
步骤四:根据第一参考光纤环的位置和第二参考光纤环的位置,对Stokes光和anti-Stokes光进行损耗补偿;Step 4: performing loss compensation on Stokes light and anti-Stokes light according to the position of the first reference fiber ring and the position of the second reference fiber ring;
步骤五:根据损耗补偿后的Stokes光和anti-Stokes光,对待测光纤进行温度解调。Step 5: Perform temperature demodulation on the optical fiber under test according to the Stokes light and anti-Stokes light after loss compensation.
与现有分布式光纤拉曼测温系统中的温度解调方法相比,本发明所述的一种基于分布式光纤拉曼测温的温度解调方法具有如下优点:其一,本发明通过对Stokes光进行插值处理,使得同一位置散射回来的Stokes光和anti-Stokes光到达数据采集卡的时间相同,由此有效避免了信号错位,从而有效提高了系统的测温精度。其二,本发明通过对Stokes光和anti-Stokes光进行损耗补偿,使得在测温前无需将待测光纤进行定标处理,由此有效简化了操作,从而有效提高了系统的测温效率。Compared with the temperature demodulation method in the existing distributed optical fiber Raman temperature measurement system, a kind of temperature demodulation method based on distributed optical fiber Raman temperature measurement of the present invention has the following advantages: First, the present invention adopts The Stokes light is interpolated so that the Stokes light scattered back from the same position and the anti-Stokes light arrive at the data acquisition card at the same time, thus effectively avoiding signal misalignment and thus effectively improving the temperature measurement accuracy of the system. Second, the present invention compensates for the loss of Stokes light and anti-Stokes light, so that the optical fiber to be tested does not need to be calibrated before temperature measurement, thereby effectively simplifying the operation and effectively improving the temperature measurement efficiency of the system.
本发明有效解决了现有分布式光纤拉曼测温系统中的温度解调方法导致系统的测温精度低和测温效率低的问题,适用于分布式光纤拉曼测温系统。The invention effectively solves the problems of low temperature measurement accuracy and low temperature measurement efficiency of the system caused by the temperature demodulation method in the existing distributed optical fiber Raman temperature measurement system, and is suitable for the distributed optical fiber Raman temperature measurement system.
附图说明Description of drawings
图1是本发明中分布式光纤拉曼测温系统的结构示意图。Fig. 1 is a schematic structural diagram of a distributed optical fiber Raman temperature measurement system in the present invention.
图2是插值处理前Stokes光和anti-Stokes光的测量位置示意图。Fig. 2 is a schematic diagram of measurement positions of Stokes light and anti-Stokes light before interpolation processing.
图3是插值处理前Stokes光和anti-Stokes光的光强曲线示意图。Fig. 3 is a schematic diagram of light intensity curves of Stokes light and anti-Stokes light before interpolation processing.
图4是插值处理后Stokes光和anti-Stokes光的测量位置示意图。Fig. 4 is a schematic diagram of measurement positions of Stokes light and anti-Stokes light after interpolation processing.
图5是插值处理后Stokes光和anti-Stokes光的光强曲线示意图。Fig. 5 is a schematic diagram of light intensity curves of Stokes light and anti-Stokes light after interpolation processing.
图6是损耗补偿前Stokes光和anti-Stokes光的光强曲线示意图。Fig. 6 is a schematic diagram of light intensity curves of Stokes light and anti-Stokes light before loss compensation.
图7是损耗补偿后Stokes光和anti-Stokes光的光强曲线示意图。Fig. 7 is a schematic diagram of light intensity curves of Stokes light and anti-Stokes light after loss compensation.
图1中:1-脉冲激光器,2-WDM(波分复用器),3-第一APD(第一雪崩光电二极管),4-第二APD(第二雪崩光电二极管),5-第一LNA(第一低噪放大器),6-第二LNA(第二低噪放大器),7-数据采集卡,8-计算机,9-第一高精度恒温槽,10-第二高精度恒温槽,11-待测光纤,12-第一温度传感器,13-第二温度传感器,虚线框部分表示拉曼测温仪。In Figure 1: 1-pulse laser, 2-WDM (wavelength division multiplexer), 3-first APD (first avalanche photodiode), 4-second APD (second avalanche photodiode), 5-first LNA (the first low-noise amplifier), 6-the second LNA (the second low-noise amplifier), 7-data acquisition card, 8-computer, 9-the first high-precision constant temperature bath, 10-the second high-precision constant temperature bath, 11 - the optical fiber to be tested, 12 - the first temperature sensor, 13 - the second temperature sensor, and the dotted box part represents a Raman thermometer.
图2中:a表示拉曼测温仪,虚线框部分表示待测光纤。In Fig. 2: a represents the Raman pyrometer, and the dotted box part represents the optical fiber to be tested.
图4中:a表示拉曼测温仪,虚线框部分表示待测光纤。In Fig. 4: a represents the Raman pyrometer, and the dotted box part represents the optical fiber to be tested.
具体实施方式Detailed ways
一种基于分布式光纤拉曼测温的温度解调方法,该方法包括如下步骤:A temperature demodulation method based on distributed optical fiber Raman temperature measurement, the method comprises the following steps:
步骤一:搭建分布式光纤拉曼测温系统;Step 1: Build a distributed optical fiber Raman temperature measurement system;
所述分布式光纤拉曼测温系统包括拉曼测温仪、第一高精度恒温槽9、第二高精度恒温槽10、待测光纤11、第一温度传感器12、第二温度传感器13;The distributed optical fiber Raman temperature measurement system includes a Raman thermometer, a first high-precision constant temperature bath 9, a second high-precision constant temperature bath 10, an optical fiber to be tested 11, a first temperature sensor 12, and a second temperature sensor 13;
所述拉曼测温仪包括脉冲激光器1、WDM2、第一APD3、第二APD4、第一LNA5、第二LNA6、数据采集卡7、计算机8;其中,脉冲激光器1的输出端与WDM2的输入端连接;WDM2的两个输出端分别与第一APD3的输入端和第二APD4的输入端连接;第一APD3的输出端与第一LNA5的输入端连接;第二APD4的输出端与第二LNA6的输入端连接;第一LNA5的输出端和第二LNA6的输出端均与数据采集卡7的输入端连接;数据采集卡7的输出端与计算机8的输入端连接;计算机8与脉冲激光器1双向连接;Described Raman thermometer comprises pulsed laser 1, WDM2, the first APD3, the second APD4, the first LNA5, the second LNA6, data acquisition card 7, computer 8; Wherein, the output end of pulsed laser 1 and the input of WDM2 The two output terminals of WDM2 are respectively connected with the input terminal of the first APD3 and the input terminal of the second APD4; the output terminal of the first APD3 is connected with the input terminal of the first LNA5; the output terminal of the second APD4 is connected with the second APD4 The input end of LNA6 is connected; The output end of the first LNA5 and the output end of the second LNA6 are all connected with the input end of data acquisition card 7; The output end of data acquisition card 7 is connected with the input end of computer 8; Computer 8 and pulse laser 1 two-way connection;
待测光纤11的前端与WDM2的公共端连接;待测光纤11的中间部分分别绕制有第一参考光纤环和第二参考光纤环;第一参考光纤环放置于第一高精度恒温槽9中;第二参考光纤环放置于第二高精度恒温槽10中;第一温度传感器12安装于第一高精度恒温槽9上;第二温度传感器13安装于第二高精度恒温槽10上;第一温度传感器12和第二温度传感器13均与计算机8双向连接;The front end of the optical fiber 11 to be tested is connected to the common end of WDM2; the middle part of the optical fiber 11 to be tested is respectively wound with a first reference optical fiber ring and a second reference optical fiber ring; the first reference optical fiber ring is placed in the first high-precision constant temperature bath 9 Middle; the second reference optical fiber ring is placed in the second high-precision constant temperature tank 10; the first temperature sensor 12 is installed on the first high-precision constant temperature tank 9; the second temperature sensor 13 is installed on the second high-precision constant temperature tank 10; Both the first temperature sensor 12 and the second temperature sensor 13 are bidirectionally connected with the computer 8;
步骤二:将第一高精度恒温槽9的温度值设置为T1,将第二高精度恒温槽10的温度值设置为T2;然后,启动拉曼测温仪,脉冲激光器1发出的激光脉冲经WDM2入射到待测光纤11;激光脉冲在待测光纤11中传播时发生自发拉曼散射,由此使得待测光纤11的各个位置均产生背向传输的Stokes光和anti-Stokes光;Step 2: Set the temperature value of the first high-precision constant temperature tank 9 to T 1 , and set the temperature value of the second high-precision constant temperature tank 10 to T 2 ; then, start the Raman thermometer, and the laser pulse laser 1 sends The pulse is incident on the optical fiber 11 to be tested through the WDM2; spontaneous Raman scattering occurs when the laser pulse propagates in the optical fiber 11 to be tested, thereby causing back-transmitted Stokes light and anti-Stokes light to be generated at each position of the optical fiber 11 to be tested;
Stokes光依次经WDM2、第一APD3、第一LNA5入射到数据采集卡7,数据采集卡7对Stokes光进行模数转换,由此得到Stokes光的光强曲线,该光强曲线中包含一个因菲涅尔反射导致的尖峰;The Stokes light enters the data acquisition card 7 through the WDM2, the first APD3, and the first LNA5 in turn, and the data acquisition card 7 performs analog-to-digital conversion on the Stokes light, thereby obtaining the light intensity curve of the Stokes light, which contains a factor Spikes caused by Fresnel reflections;
anti-Stokes光依次经WDM2、第二APD4、第二LNA6入射到数据采集卡7,数据采集卡7对anti-Stokes光进行模数转换,由此得到anti-Stokes光的光强曲线,该光强曲线中同样包含一个因菲涅尔反射导致的尖峰;The anti-Stokes light enters the data acquisition card 7 through the WDM2, the second APD4, and the second LNA6 in turn, and the data acquisition card 7 performs analog-to-digital conversion on the anti-Stokes light, thereby obtaining the light intensity curve of the anti-Stokes light. The strong curve also contains a spike due to Fresnel reflection;
步骤三:根据Stokes光的光强曲线中的尖峰位置和anti-Stokes光的光强曲线中的尖峰位置,对Stokes光进行插值处理,由此使得待测光纤11的同一位置产生的Stokes光和anti-Stokes光到达数据采集卡7的时间相同;Step 3: According to the peak position in the light intensity curve of the Stokes light and the peak position in the light intensity curve of the anti-Stokes light, the Stokes light is interpolated, so that the Stokes light and The time when the anti-Stokes light reaches the data acquisition card 7 is the same;
步骤四:根据第一参考光纤环的位置和第二参考光纤环的位置,对Stokes光和anti-Stokes光进行损耗补偿;Step 4: performing loss compensation on Stokes light and anti-Stokes light according to the position of the first reference fiber ring and the position of the second reference fiber ring;
步骤五:根据损耗补偿后的Stokes光和anti-Stokes光,对待测光纤11进行温度解调。Step 5: Perform temperature demodulation on the optical fiber 11 to be tested according to the loss-compensated Stokes light and anti-Stokes light.
所述步骤三中,插值处理的具体步骤如下:In said step three, the specific steps of interpolation processing are as follows:
设Stokes光的光强曲线中的尖峰位置为L1 max,设anti-Stokes光的光强曲线中的尖峰位置为L2 max,则其差值Lc=|L1 max-L2 max|;然后,对差值Lc采用就最近整数取整处理,并令其中,φs(L)表示待测光纤11的某一位置产生的Stokes光的光强值;L表示该位置与待测光纤11的前端之间的距离。Let the peak position in the light intensity curve of Stokes light be L 1 max , let the peak position in the light intensity curve of anti-Stokes light be L 2 max , then the difference L c =|L 1 max -L 2 max | ; Then, the difference L c is rounded to the nearest integer, and let Wherein, φ s (L) represents the light intensity value of the Stokes light generated at a certain position of the optical fiber 11 to be tested; L represents the distance between the position and the front end of the optical fiber 11 to be tested.
所述步骤四中,损耗补偿的具体步骤如下:In the step four, the specific steps of loss compensation are as follows:
设第一参考光纤环的位置与待测光纤11的前端之间的距离为L1,设第二参考光纤环的位置与待测光纤11的前端之间的距离为L2;The distance between the position of the first reference fiber ring and the front end of the optical fiber 11 to be tested is L1 , and the distance between the position of the second reference fiber ring and the front end of the optical fiber 11 to be tested is L2 ;
根据Stokes光的光强曲线,确定第一参考光纤环的位置产生的Stokes光的光强值为φs1,确定第二参考光纤环的位置产生的Stokes光的光强值为φs2;According to the light intensity curve of Stokes light, determine that the light intensity value of the Stokes light that the position of the first reference fiber ring produces is φ s1 , determine the light intensity value of the Stokes light that the position of the second reference fiber ring produces is φ s2 ;
计算待测光纤11对Stokes光的损耗系数αo+αs;具体计算公式如下:Calculate the loss coefficient α o +α s of the optical fiber 11 to be tested for the Stokes light; the specific calculation formula is as follows:
公式(1)中:αo表示激光脉冲在待测光纤11中单位长度下的损耗系数;αs表示Stokes光在待测光纤11中单位长度下的损耗系数;h表示普朗克常数;Δv表示光纤的拉曼频移量;K表示玻尔兹曼常数;In the formula (1): α o represents the loss coefficient of the laser pulse per unit length in the optical fiber 11 to be tested; α s represents the loss coefficient of the Stokes light per unit length in the optical fiber 11 to be tested; h represents Planck’s constant; Δv Indicates the Raman frequency shift of the fiber; K indicates the Boltzmann constant;
根据anti-Stokes光的光强曲线,确定第一参考光纤环的位置产生的anti-Stokes光的光强值为φa1,确定第二参考光纤环的位置产生的anti-Stokes光的光强值为φa2;According to the light intensity curve of the anti-Stokes light, determine the light intensity value of the anti-Stokes light generated by the position of the first reference fiber ring, determine the light intensity value of the anti-Stokes light generated by the position of the second reference fiber ring is φ a2 ;
计算待测光纤11对anti-Stokes光的损耗系数αo+αa;具体计算公式如下:Calculate the loss coefficient α o +α a of the optical fiber 11 to be tested for anti-Stokes light; the specific calculation formula is as follows:
公式(2)中:αo表示激光脉冲在待测光纤11中单位长度下的损耗系数;αa表示anti-Stokes光在待测光纤11中单位长度下的损耗系数;h表示普朗克常数;Δv表示光纤的拉曼频移量;K表示玻尔兹曼常数。In the formula (2): α o represents the loss coefficient of the laser pulse per unit length in the optical fiber 11 to be tested; α a represents the loss coefficient of the anti-Stokes light per unit length in the optical fiber 11 to be tested; h represents Planck’s constant ; Δv represents the Raman frequency shift of the fiber; K represents the Boltzmann constant.
所述步骤五中,具体温度解调公式如下:In the step five, the specific temperature demodulation formula is as follows:
公式(3)中:T表示待测光纤11的某一位置的温度值;φs表示该位置产生的Stokes光的光强值;φa表示该位置产生的anti-Stokes光的光强值;L表示该位置与待测光纤11的前端之间的距离;φs1表示第一参考光纤环的位置产生的Stokes光的光强值;φa1表示第一参考光纤环的位置产生的anti-Stokes光的光强值;φs2表示第二参考光纤环的位置产生的Stokes光的光强值;φa2表示第二参考光纤环的位置产生的anti-Stokes光的光强值;L1表示第一参考光纤环的位置与待测光纤11的前端之间的距离;L2表示第二参考光纤环的位置与待测光纤11的前端之间的距离;h表示普朗克常数;Δv表示光纤的拉曼频移量;K表示玻尔兹曼常数。In formula (3): T represents the temperature value of a certain position of optical fiber 11 to be tested; φ s represents the light intensity value of the Stokes light that this position produces; φ a represents the light intensity value of the anti-Stokes light that this position produces; L represents the distance between the position and the front end of the optical fiber 11 to be tested; φ s1 represents the light intensity value of the Stokes light produced by the position of the first reference fiber ring; φ a1 represents the anti-Stokes produced by the position of the first reference fiber ring The light intensity value of light; φ s2 represents the light intensity value of the Stokes light that the position of the second reference fiber ring produces; φ a2 represents the light intensity value of the anti-Stokes light that the position of the second reference fiber ring produces; L 1 represents the first The distance between the position of a reference optical fiber ring and the front end of the optical fiber 11 to be tested; L2 represents the distance between the position of the second reference optical fiber ring and the front end of the optical fiber 11 to be tested; h represents Planck's constant; Δv represents the optical fiber The Raman frequency shift; K represents the Boltzmann constant.
具体实施时,所述脉冲激光器的波长为1550.1nm、脉宽为10ns、重复频率为8KHz。所述WDM的工作波长为1550nm/1450nm/1663nm。所述第一APD的带宽为80MHz、光谱响应范围为900~1700nm。所述第二APD的带宽为80MHz、光谱响应范围为900~1700nm。所述第一LNA的带宽为100MHz。所述第二LNA的带宽为100MHz。所述数据采集卡的通道数为4、采样率为100M/s、带宽为100MHz。所述待测光纤为普通多模光纤。During specific implementation, the wavelength of the pulsed laser is 1550.1 nm, the pulse width is 10 ns, and the repetition frequency is 8 KHz. The working wavelength of the WDM is 1550nm/1450nm/1663nm. The first APD has a bandwidth of 80 MHz and a spectral response range of 900-1700 nm. The second APD has a bandwidth of 80 MHz and a spectral response range of 900-1700 nm. The bandwidth of the first LNA is 100MHz. The bandwidth of the second LNA is 100MHz. The number of channels of the data acquisition card is 4, the sampling rate is 100M/s, and the bandwidth is 100MHz. The optical fiber to be tested is a common multimode optical fiber.
Claims (4)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201611010576.1A CN106404217B (en) | 2016-11-17 | 2016-11-17 | A kind of temperature demodulation method based on distributed fiber Raman thermometric |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201611010576.1A CN106404217B (en) | 2016-11-17 | 2016-11-17 | A kind of temperature demodulation method based on distributed fiber Raman thermometric |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN106404217A CN106404217A (en) | 2017-02-15 |
| CN106404217B true CN106404217B (en) | 2018-09-25 |
Family
ID=58068283
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201611010576.1A Expired - Fee Related CN106404217B (en) | 2016-11-17 | 2016-11-17 | A kind of temperature demodulation method based on distributed fiber Raman thermometric |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN106404217B (en) |
Families Citing this family (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106813805B (en) * | 2017-02-22 | 2019-05-17 | 太原理工大学 | Intelligent temperature method for early warning towards Raman temperature measurer |
| CN107843357B (en) * | 2017-11-02 | 2019-11-08 | 太原理工大学 | Distributed optical fiber temperature and strain detection method based on Raman scattering |
| CN108254100B (en) * | 2018-02-01 | 2019-12-13 | 太原理工大学 | Optical fiber sensing liquid refractive index and temperature simultaneous measurement system and measurement method |
| CN108760078B (en) * | 2018-04-23 | 2021-09-21 | 北京石油化工学院 | Distributed optical fiber temperature measurement method and system |
| CN108731839A (en) * | 2018-05-07 | 2018-11-02 | 珠海西默电气股份有限公司 | The method of distributed optical fiber temperature sensing system and the automatic parameter for obtaining calibration |
| CN108663138B (en) * | 2018-05-16 | 2020-12-01 | 湖北三江航天万峰科技发展有限公司 | Distributed optical fiber temperature and vibration sensing system and method |
| CN109029769A (en) * | 2018-06-25 | 2018-12-18 | 太原理工大学 | High-precision temperature demodulation method based on distributed fiber Raman sensing technology |
| CN108458814B (en) | 2018-07-09 | 2019-10-08 | 太原理工大学 | Self-calibration detection device and temperature demodulation method for optical fiber Raman temperature sensing system |
| CN108871607B (en) * | 2018-08-13 | 2020-01-03 | 太原理工大学 | High-precision temperature demodulation method for distributed optical fiber Raman sensor |
| CN109556703B (en) * | 2018-11-27 | 2020-04-28 | 电子科技大学 | A Distributed Acoustic Detection System Based on Time Division Multiplexing Technology |
| CN110887579A (en) * | 2019-11-08 | 2020-03-17 | 华中科技大学 | A dynamic temperature demodulation method based on distributed optical fiber Raman temperature measurement system |
| CN111006787B (en) * | 2019-11-22 | 2020-12-29 | 太原理工大学 | Distributed fiber Raman double-ended temperature demodulation method based on differential temperature compensation |
| CN111638025B (en) * | 2020-05-19 | 2022-02-25 | 太原理工大学 | Distributed optical fiber Raman sensing device and method for tunnel water leakage monitoring |
| CN113155309B (en) * | 2021-03-09 | 2023-06-06 | 电子科技大学 | Optical fiber dispersion compensation method in distributed optical fiber Raman temperature measurement system |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102853936A (en) * | 2012-09-12 | 2013-01-02 | 威海北洋电气集团股份有限公司 | Remote distributed fiber Raman temperature sensor |
| CN103115696A (en) * | 2013-01-22 | 2013-05-22 | 山东大学 | Distribution type optical fiber Raman temperature measurement system and distribution type optical fiber Raman temperature measurement method capable of eliminating Rayleigh light crosstalk |
| CN104101447A (en) * | 2014-07-16 | 2014-10-15 | 金海新源电气江苏有限公司 | Distributed optical fiber temperature sensor and method for removing nonlinear error of same |
| CN104864979A (en) * | 2015-06-16 | 2015-08-26 | 北京航天易联科技发展有限公司 | Correction method of errors measured by distributed raman optical fiber temperature measuring system |
| CN204903035U (en) * | 2015-08-27 | 2015-12-23 | 山西省交通科学研究院 | Distributed optical fiber temperature measurement system of double -end structure |
| CN105783955A (en) * | 2016-03-28 | 2016-07-20 | 太原理工大学 | Sensitivity adjustable distributed fiber sensing system based on high-order Stokes waves |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS61270632A (en) * | 1985-05-25 | 1986-11-29 | Hitachi Cable Ltd | Optical fiber type measuring instrument for temperature distribution |
-
2016
- 2016-11-17 CN CN201611010576.1A patent/CN106404217B/en not_active Expired - Fee Related
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102853936A (en) * | 2012-09-12 | 2013-01-02 | 威海北洋电气集团股份有限公司 | Remote distributed fiber Raman temperature sensor |
| CN103115696A (en) * | 2013-01-22 | 2013-05-22 | 山东大学 | Distribution type optical fiber Raman temperature measurement system and distribution type optical fiber Raman temperature measurement method capable of eliminating Rayleigh light crosstalk |
| CN104101447A (en) * | 2014-07-16 | 2014-10-15 | 金海新源电气江苏有限公司 | Distributed optical fiber temperature sensor and method for removing nonlinear error of same |
| CN104864979A (en) * | 2015-06-16 | 2015-08-26 | 北京航天易联科技发展有限公司 | Correction method of errors measured by distributed raman optical fiber temperature measuring system |
| CN204903035U (en) * | 2015-08-27 | 2015-12-23 | 山西省交通科学研究院 | Distributed optical fiber temperature measurement system of double -end structure |
| CN105783955A (en) * | 2016-03-28 | 2016-07-20 | 太原理工大学 | Sensitivity adjustable distributed fiber sensing system based on high-order Stokes waves |
Also Published As
| Publication number | Publication date |
|---|---|
| CN106404217A (en) | 2017-02-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN106404217B (en) | A kind of temperature demodulation method based on distributed fiber Raman thermometric | |
| CN108458814B (en) | Self-calibration detection device and temperature demodulation method for optical fiber Raman temperature sensing system | |
| CN107843357B (en) | Distributed optical fiber temperature and strain detection method based on Raman scattering | |
| CN108871607B (en) | High-precision temperature demodulation method for distributed optical fiber Raman sensor | |
| CN103017934B (en) | Self-correction method capable of eliminating wavelength dispersion of distributed Raman temperature measurement system | |
| US9046425B2 (en) | Opticalfiber temperature distribution measurement apparatus | |
| CN109029769A (en) | High-precision temperature demodulation method based on distributed fiber Raman sensing technology | |
| CN111879436B (en) | Distributed fiber Raman temperature demodulation device and method based on double pulse modulation | |
| CN111896136B (en) | Dual-parameter distributed optical fiber sensing device and method with centimeter-level spatial resolution | |
| CN111896137B (en) | A distributed optical fiber Raman sensing device and method with centimeter-level spatial resolution | |
| CN111006787B (en) | Distributed fiber Raman double-ended temperature demodulation method based on differential temperature compensation | |
| CN109029770B (en) | Distributed optical fiber Raman temperature and strain demodulation method based on loop demodulation | |
| CN104596670A (en) | Method for solving temperature drift of distributed optical fiber Raman temperature sensing system | |
| RU2458325C1 (en) | Method of measuring temperature distribution and device for realising said method | |
| CN112880866A (en) | Long-distance high-spatial-resolution Raman fiber multi-parameter sensing system and method | |
| CN101256098A (en) | Method for measuring temperature of distributed optical fiber temperature transducer system | |
| CN103115696B (en) | Distribution type optical fiber Raman temperature measurement system and distribution type optical fiber Raman temperature measurement method capable of eliminating Rayleigh light crosstalk | |
| CN112697303B (en) | Distributed optical fiber sensing system and detection method for smart grid | |
| CN108760078A (en) | Distributed optical fiber temperature measuring method and system | |
| CN112082494B (en) | Optical fiber strain and temperature distribution composite test BOTDR and its working method | |
| CN112098039B (en) | System and method for measuring pulsation density of hypersonic flow field | |
| CN116499606A (en) | An optical fiber Raman temperature measurement device based on detection power correction | |
| US11598678B1 (en) | Distributed temperature sensor with shortened sensing regions | |
| CN106353009B (en) | DTS system attenuation coefficient different time scales determine method | |
| JP4201995B2 (en) | Optical fiber strain measurement method and apparatus |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180925 Termination date: 20191117 |