[go: up one dir, main page]

CN106409677B - Semiconductor device and method of forming the same - Google Patents

Semiconductor device and method of forming the same Download PDF

Info

Publication number
CN106409677B
CN106409677B CN201510459384.8A CN201510459384A CN106409677B CN 106409677 B CN106409677 B CN 106409677B CN 201510459384 A CN201510459384 A CN 201510459384A CN 106409677 B CN106409677 B CN 106409677B
Authority
CN
China
Prior art keywords
layer
barrier layer
forming
semiconductor device
dielectric layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510459384.8A
Other languages
Chinese (zh)
Other versions
CN106409677A (en
Inventor
周飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Manufacturing International Shanghai Corp
Semiconductor Manufacturing International Beijing Corp
Original Assignee
Semiconductor Manufacturing International Shanghai Corp
Semiconductor Manufacturing International Beijing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Manufacturing International Shanghai Corp, Semiconductor Manufacturing International Beijing Corp filed Critical Semiconductor Manufacturing International Shanghai Corp
Priority to CN201510459384.8A priority Critical patent/CN106409677B/en
Publication of CN106409677A publication Critical patent/CN106409677A/en
Application granted granted Critical
Publication of CN106409677B publication Critical patent/CN106409677B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/024Manufacture or treatment of FETs having insulated gates [IGFET] of fin field-effect transistors [FinFET]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/62Fin field-effect transistors [FinFET]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/01Manufacture or treatment
    • H10D64/017Manufacture or treatment using dummy gates in processes wherein at least parts of the final gates are self-aligned to the dummy gates, i.e. replacement gate processes

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

一种半导体器件及其形成方法,其中,半导体器件的形成方法包括:提供基底,所述基底表面具有层间介质层,且所述层间介质层内具有凹槽,所述凹槽暴露出基底表面;形成覆盖所述凹槽底部和侧壁的栅介质层;形成覆盖所述栅介质层的第一阻挡层;对第一阻挡层进行非晶化处理,使得第一阻挡层转变为第二阻挡层;形成覆盖第二阻挡层的金属层,所述金属层的表面与所述层间介质层表面齐平。所述半导体器件及其形成方法提高了半导体器件的性能。

Figure 201510459384

A semiconductor device and a method for forming the same, wherein the method for forming the semiconductor device comprises: providing a substrate, the substrate has an interlayer dielectric layer on the surface, and the interlayer dielectric layer has grooves in the interlayer dielectric layer, and the grooves expose the substrate forming a gate dielectric layer covering the bottom and sidewalls of the groove; forming a first barrier layer covering the gate dielectric layer; amorphizing the first barrier layer so that the first barrier layer is transformed into a second barrier layer A barrier layer; a metal layer covering the second barrier layer is formed, and the surface of the metal layer is flush with the surface of the interlayer dielectric layer. The semiconductor device and method of forming the same improve the performance of the semiconductor device.

Figure 201510459384

Description

半导体器件及其形成方法Semiconductor device and method of forming the same

技术领域technical field

本发明涉及半导体制造领域,尤其涉及一种半导体器件及其形成方法。The present invention relates to the field of semiconductor manufacturing, in particular to a semiconductor device and a method for forming the same.

背景技术Background technique

MOS晶体管是现代集成电路中最重要的元件之一。MOS晶体管的基本结构包括:半导体衬底;位于衬底表面的栅极结构,位于栅极结构一侧半导体衬底内的源区和位于栅极结构另一侧半导体衬底内的漏区。MOS晶体管通过在栅极结构施加电压,调节通过栅极结构底部沟道的电流来产生开关信号。MOS transistors are one of the most important components in modern integrated circuits. The basic structure of a MOS transistor includes: a semiconductor substrate; a gate structure located on the surface of the substrate, a source region located in the semiconductor substrate on one side of the gate structure, and a drain region located in the semiconductor substrate on the other side of the gate structure. MOS transistors generate switching signals by applying a voltage across the gate structure, regulating the current through the channel at the bottom of the gate structure.

随着MOS晶体管集成度越来越高,MOS晶体管工作需要的电压和电流不断降低,晶体管开关的速度随之加快,随之对半导体工艺方面要求大幅度提高。因此,业界找到了替代SiO2的高介电常数材料(High-K Material)作为栅介质层,以更好的隔离栅极结构和MOS晶体管的其它部分,减少漏电。同时,为了与高K(K大于3.9)介电常数材料兼容,采用金属材料替代原有多晶硅作为栅电极层。高K栅介质层金属栅电极的MOS晶体管的漏电进一步降低。As the integration of MOS transistors becomes higher and higher, the voltage and current required for MOS transistors to operate continues to decrease, and the speed of transistor switching is accelerated, and the requirements for semiconductor technology are greatly increased. Therefore, the industry finds a high dielectric constant material (High-K Material) that replaces SiO 2 as a gate dielectric layer to better isolate the gate structure from other parts of the MOS transistor and reduce leakage. At the same time, in order to be compatible with high-K (K greater than 3.9) dielectric constant materials, metal materials are used to replace the original polysilicon as the gate electrode layer. The leakage of the MOS transistor with the metal gate electrode of the high-K gate dielectric layer is further reduced.

然而,随着特征尺寸的进一步缩小,现有技术中形成的MOS晶体管的性能较差。However, as the feature size is further reduced, the performance of the MOS transistors formed in the prior art is poor.

发明内容SUMMARY OF THE INVENTION

本发明解决的问题是提供一种半导体器件及其形成方法,提高半导体器件的性能。The problem solved by the present invention is to provide a semiconductor device and a method for forming the same to improve the performance of the semiconductor device.

为解决上述问题,本发明提供一种半导体器件的形成方法,包括:提供基底,所述基底表面具有层间介质层,且所述层间介质层内具有凹槽,所述凹槽暴露出基底表面;形成覆盖所述凹槽底部和侧壁的栅介质层;形成覆盖所述栅介质层的第一阻挡层;对第一阻挡层进行非晶化处理,使得第一阻挡层转变为第二阻挡层;形成覆盖第二阻挡层的金属层,所述金属层的表面与所述层间介质层表面齐平。In order to solve the above problems, the present invention provides a method for forming a semiconductor device, comprising: providing a substrate, the surface of the substrate has an interlayer dielectric layer, and the interlayer dielectric layer has grooves in the interlayer dielectric layer, and the grooves expose the substrate forming a gate dielectric layer covering the bottom and sidewalls of the groove; forming a first barrier layer covering the gate dielectric layer; amorphizing the first barrier layer so that the first barrier layer is transformed into a second barrier layer A barrier layer; a metal layer covering the second barrier layer is formed, and the surface of the metal layer is flush with the surface of the interlayer dielectric layer.

可选的,还包括:在形成栅介质层之前,形成界面层,所述界面层覆盖所述凹槽的底部和侧壁。Optionally, the method further includes: before forming the gate dielectric layer, forming an interface layer, the interface layer covering the bottom and sidewalls of the groove.

可选的,还包括:在形成所述金属层之前,形成覆盖第二阻挡层的功函数层。Optionally, the method further includes: before forming the metal layer, forming a work function layer covering the second barrier layer.

可选的,当所述半导体器件为N型MOS晶体管时,所述功函数层的材料为TiAl;当所述半导体器件为P型MOS晶体管时,所述功函数层的材料为TaN。Optionally, when the semiconductor device is an N-type MOS transistor, the material of the work function layer is TiAl; when the semiconductor device is a P-type MOS transistor, the material of the work function layer is TaN.

可选的,所述基底包括衬底和位于衬底表面的鳍部;所述凹槽暴露出鳍部的顶部表面和侧壁。Optionally, the base includes a substrate and a fin on a surface of the substrate; the groove exposes a top surface and sidewalls of the fin.

可选的,所述基底为衬底,所述凹槽暴露出衬底表面。Optionally, the base is a substrate, and the groove exposes a surface of the substrate.

可选的,所述栅介质层的材料为高K介质材料。Optionally, the material of the gate dielectric layer is a high-K dielectric material.

可选的,所述第一阻挡层的材料为TiN或TaN。Optionally, the material of the first barrier layer is TiN or TaN.

可选的,所述非晶化处理的方法为:采用第一离子注入工艺在第一阻挡层中掺杂第一离子;对掺杂有第一离子的第一阻挡层进行第一退火处理,使得第一阻挡层转变为第二阻挡层。Optionally, the amorphization treatment method is as follows: using a first ion implantation process to dope the first ions in the first barrier layer; performing a first annealing treatment on the first barrier layer doped with the first ions, The first barrier layer is transformed into a second barrier layer.

可选的,所述第一离子注入工艺的参数为:注入离子为硅离子,注入能量为0.5KeV~5KeV,注入剂量为1E 15atom/cm2~5E 16atom/cm2,注入角度为7度~20度。Optionally, the parameters of the first ion implantation process are: the implanted ions are silicon ions, the implantation energy is 0.5KeV~5KeV, the implantation dose is 1E 15atom/cm 2 ~ 5E 16atom/cm 2 , and the implantation angle is 7°~ 20 degrees.

可选的,所述第一退火处理为尖峰退火,采用的气体为N2或Ar,退火温度为950摄氏度~1050摄氏度。Optionally, the first annealing treatment is spike annealing, the gas used is N 2 or Ar, and the annealing temperature is 950 degrees Celsius to 1050 degrees Celsius.

可选的,当所述第一阻挡层为TiN,第一离子为Si离子时,形成的第二阻挡层为TiSiN。Optionally, when the first barrier layer is TiN and the first ion is Si ion, the second barrier layer formed is TiSiN.

可选的,所述非晶化处理的方法为:形成覆盖第一阻挡层的硅层;对硅层和第一阻挡层进行第二退火处理,使得硅层中的硅原子进入第一阻挡层中,形成第二阻挡层;形成第二阻挡层后,去除硅层。Optionally, the amorphization treatment method is: forming a silicon layer covering the first barrier layer; performing a second annealing treatment on the silicon layer and the first barrier layer, so that silicon atoms in the silicon layer enter the first barrier layer In the process, the second barrier layer is formed; after the second barrier layer is formed, the silicon layer is removed.

可选的,形成所述硅层的工艺为低压化学气相沉积工艺,具体的工艺参数为:采用的气体为SiH4,SiH4的流量为10sccm~60sccm,温度为350摄氏度~500摄氏度,沉积腔室压强为0.4torr~2torr。Optionally, the process for forming the silicon layer is a low pressure chemical vapor deposition process, and the specific process parameters are: the gas used is SiH 4 , the flow rate of SiH 4 is 10 sccm to 60 sccm, the temperature is 350 degrees Celsius to 500 degrees Celsius, and the deposition chamber is The chamber pressure is 0.4torr to 2torr.

可选的,所述硅层的厚度为40埃~100埃。Optionally, the thickness of the silicon layer is 40 angstroms to 100 angstroms.

可选的,所述第二退火处理为尖峰退火,采用的气体为N2或Ar,退火温度为800摄氏度~1000摄氏度。Optionally, the second annealing treatment is spike annealing, the gas used is N 2 or Ar, and the annealing temperature is 800 degrees Celsius to 1000 degrees Celsius.

可选的,当第一阻挡层为TiN时,所述第二阻挡层为TiSiN。Optionally, when the first barrier layer is TiN, the second barrier layer is TiSiN.

可选的,所述第二阻挡层的厚度为10埃~30埃。Optionally, the thickness of the second barrier layer is 10 angstroms to 30 angstroms.

可选的,所述金属层为W、Al、Ti、Cu、Mo或Pt。Optionally, the metal layer is W, Al, Ti, Cu, Mo or Pt.

本发明还提供了采用上述任意一项方法形成的半导体器件,包括:基底;所述基底表面具有层间介质层,且所述层间介质层内具有凹槽,所述凹槽暴露出基底表面;覆盖所述凹槽底部和侧壁的栅介质层;覆盖所述栅介质层的第二阻挡层,所述第二阻挡层具有非晶结构;覆盖第二阻挡层的金属层,所述金属层的表面与所述层间介质层表面齐平。The present invention also provides a semiconductor device formed by any one of the above methods, comprising: a substrate; a surface of the substrate has an interlayer dielectric layer, and a groove is formed in the interlayer dielectric layer, and the groove exposes the surface of the substrate a gate dielectric layer covering the bottom and sidewalls of the groove; a second barrier layer covering the gate dielectric layer, the second barrier layer having an amorphous structure; a metal layer covering the second barrier layer, the metal layer The surface of the layer is flush with the surface of the interlayer dielectric layer.

与现有技术相比,本发明的技术方案具有以下优点:Compared with the prior art, the technical solution of the present invention has the following advantages:

本发明提供的半导体器件的形成方法,由于对所述第一阻挡层进行了非晶化处理,使得所述第一阻挡层转变为第二阻挡层,第二阻挡层具有非晶结构,使得第二阻挡层的阻挡作用大于第一阻挡层的阻挡作用,第二阻挡层能够有效的阻挡金属层中的金属原子进入栅介质层中;另外,在形成金属层的过程中,第二阻挡层能够有效的阻挡前驱体产生的中间产物进入栅介质层中。In the method for forming a semiconductor device provided by the present invention, since the first barrier layer is amorphized, the first barrier layer is transformed into a second barrier layer, and the second barrier layer has an amorphous structure, so that the first barrier layer is transformed into a second barrier layer. The blocking effect of the second barrier layer is greater than that of the first barrier layer, and the second barrier layer can effectively prevent the metal atoms in the metal layer from entering the gate dielectric layer; in addition, in the process of forming the metal layer, the second barrier layer can The intermediate products generated by the precursor are effectively blocked from entering the gate dielectric layer.

进一步的,在形成栅介质层之前,形成覆盖所述凹槽的底部和侧壁的界面层。所述界面层作为基底和栅介质层之间的过渡层,避免栅介质层直接和基底结合不牢固的现象。同时,第二阻挡层能够有效的阻挡金属层中的金属原子进入界面层中,以及在形成金属层过程中,有效的阻挡前驱体产生的中间产物进入界面层中。Further, before forming the gate dielectric layer, an interface layer covering the bottom and sidewalls of the groove is formed. The interface layer acts as a transition layer between the substrate and the gate dielectric layer, so as to avoid the phenomenon that the gate dielectric layer is directly bonded to the substrate and is not firmly bonded. At the same time, the second barrier layer can effectively block metal atoms in the metal layer from entering the interface layer, and in the process of forming the metal layer, effectively prevent intermediate products generated by the precursor from entering the interface layer.

进一步的,在第二阻挡层和金属层之间形成功函数层。所述功函数层能够调节半导体器件的阈值电压。同时,所述第二阻挡层能够有效的阻挡功函数层中的金属原子进入栅介质层中。Further, a work function layer is formed between the second barrier layer and the metal layer. The work function layer can adjust the threshold voltage of the semiconductor device. Meanwhile, the second blocking layer can effectively block the metal atoms in the work function layer from entering the gate dielectric layer.

进一步的,所述非晶化处理的方法为:形成覆盖第一阻挡层的硅层;对硅层和第一阻挡层进行第二退火处理,使得硅层中的硅原子进入第一阻挡层中,形成第二阻挡层;形成第二阻挡层后,去除硅层。所述非晶化处理方法能够使得第一阻挡层转变为第二阻挡层;另外,在进行第二退火处理的过程中,所述硅层能够吸附界面层中的氧原子,使得界面层的等效氧化物厚度减小,从而提高了半导体器件的性能。Further, the amorphization treatment method is as follows: forming a silicon layer covering the first barrier layer; performing a second annealing treatment on the silicon layer and the first barrier layer, so that silicon atoms in the silicon layer enter the first barrier layer , forming a second barrier layer; after forming the second barrier layer, remove the silicon layer. The amorphization treatment method can transform the first barrier layer into the second barrier layer; in addition, during the second annealing treatment, the silicon layer can adsorb oxygen atoms in the interface layer, so that the interface layer, etc. The thickness of the effective oxide is reduced, thereby improving the performance of the semiconductor device.

本发明提供的半导体器件中,由于所述第二阻挡层具有非晶结构,使得第二阻挡层的阻挡作用较强,所述第二阻挡层能够有效的阻挡金属层中的金属原子进入栅介质层中;另外,第二阻挡层能够有效的阻挡在形成金属层的过程中产生的中间产物进入栅介质层中。In the semiconductor device provided by the present invention, since the second barrier layer has an amorphous structure, the barrier effect of the second barrier layer is strong, and the second barrier layer can effectively prevent the metal atoms in the metal layer from entering the gate dielectric. In addition, the second barrier layer can effectively block the intermediate products generated in the process of forming the metal layer from entering the gate dielectric layer.

附图说明Description of drawings

图1至图3为本发明一实施例中半导体器件形成过程的示意图;1 to 3 are schematic diagrams illustrating a process of forming a semiconductor device according to an embodiment of the present invention;

图4至图13为本发明另一实施例中半导体器件形成过程的示意图;4 to 13 are schematic diagrams illustrating a process of forming a semiconductor device in another embodiment of the present invention;

图14至图18为本发明又一实施例中半导体器件形成过程的示意图。14 to 18 are schematic diagrams illustrating a process of forming a semiconductor device according to still another embodiment of the present invention.

具体实施方式Detailed ways

随着特征尺寸的进一步缩小,现有技术中形成的半导体器件的性能较差。As the feature size is further reduced, the performance of the semiconductor devices formed in the prior art is poor.

图1至图3为本发明一实施例中半导体器件的形成过程的结构示意图。FIG. 1 to FIG. 3 are schematic structural diagrams of a formation process of a semiconductor device according to an embodiment of the present invention.

参考图1,提供基底,所述基底包括衬底100和位于衬底100表面的鳍部120;所述基底表面形成有层间介质层130,且所述层间介质层130内形成有凹槽131,所述凹槽131暴露出鳍部120的顶部表面和侧壁。Referring to FIG. 1 , a base is provided, the base includes a substrate 100 and fins 120 located on the surface of the substrate 100 ; an interlayer dielectric layer 130 is formed on the surface of the base, and grooves are formed in the interlayer dielectric layer 130 131 , the grooves 131 expose the top surface and sidewalls of the fins 120 .

参考图2,形成覆盖所述凹槽131(参考图1)底部和侧壁的栅介质层140;形成覆盖所述栅介质层140的阻挡层141;形成覆盖所述阻挡层141的金属层142,所述金属层142的整个表面高于层间介质层130表面。Referring to FIG. 2 , a gate dielectric layer 140 covering the bottom and sidewalls of the groove 131 (refer to FIG. 1 ) is formed; a barrier layer 141 covering the gate dielectric layer 140 is formed; a metal layer 142 covering the barrier layer 141 is formed , the entire surface of the metal layer 142 is higher than the surface of the interlayer dielectric layer 130 .

所述阻挡层141的材料为TiN,所述金属层142的材料为W。The material of the barrier layer 141 is TiN, and the material of the metal layer 142 is W.

参考图3,以层间介质层130为停止层,平坦化金属层142、阻挡层141和栅介质层140,使得金属层142、阻挡层141和栅介质层140与层间介质层130齐平。Referring to FIG. 3 , using the interlayer dielectric layer 130 as a stop layer, the metal layer 142 , the barrier layer 141 and the gate dielectric layer 140 are planarized so that the metal layer 142 , the barrier layer 141 and the gate dielectric layer 140 are flush with the interlayer dielectric layer 130 .

研究发现,上述方法形成的半导体器件存在性能差的原因在于:The study found that the reasons for the poor performance of the semiconductor device formed by the above method are:

由于在形成金属层的过程中,形成金属层采用具有含氟的前驱体,如WF6,所述前驱体产生含氟的中间产物,所述中间产物中的氟原子容易扩散进入栅介质层中。另外,由于所述阻挡层的材料为TiN,TiN具有多晶结构,所述阻挡层的阻挡作用较弱,使得所述中间产物的氟原子容易通过阻挡层中的晶界扩散进入栅介质层中,从而在栅介质层中形成缺陷,使得半导体器件的阈值电压不稳定。In the process of forming the metal layer, a fluorine-containing precursor, such as WF 6 is used to form the metal layer, and the precursor produces a fluorine-containing intermediate product, and the fluorine atoms in the intermediate product are easily diffused into the gate dielectric layer. . In addition, since the material of the barrier layer is TiN, TiN has a polycrystalline structure, and the barrier effect of the barrier layer is weak, so that the fluorine atoms of the intermediate product are easily diffused into the gate dielectric layer through the grain boundaries in the barrier layer , so that defects are formed in the gate dielectric layer, so that the threshold voltage of the semiconductor device is unstable.

在此基础上,本发明另一实施例提供一种半导体器件的形成方法,包括:提供基底,所述基底表面具有层间介质层,且所述层间介质层内具有凹槽,所述凹槽暴露出基底表面;形成覆盖所述凹槽底部和侧壁的栅介质层;形成覆盖所述栅介质层的第一阻挡层;对第一阻挡层进行非晶化处理,使得第一阻挡层转变为第二阻挡层;形成覆盖第二阻挡层的金属层,所述金属层的表面与所述层间介质层表面齐平。On this basis, another embodiment of the present invention provides a method for forming a semiconductor device, comprising: providing a substrate, a surface of the substrate has an interlayer dielectric layer, and a groove is formed in the interlayer dielectric layer, and the concave The groove exposes the surface of the substrate; a gate dielectric layer covering the bottom and sidewalls of the groove is formed; a first barrier layer covering the gate dielectric layer is formed; the first barrier layer is amorphized to make the first barrier layer transforming into a second barrier layer; forming a metal layer covering the second barrier layer, the surface of the metal layer being flush with the surface of the interlayer dielectric layer.

相比前述实施例,由于对所述第一阻挡层进行了非晶化处理,使得所述第一阻挡层转变为第二阻挡层,第二阻挡层具有非晶结构,使得第二阻挡层的阻挡作用大于第一阻挡层的阻挡作用,第二阻挡层能够有效的阻挡金属层中的金属原子进入栅介质层中;另外,在形成金属层过程中,第二阻挡层能够有效的阻挡前驱体产生的中间产物进入栅介质层中。Compared with the previous embodiment, since the first barrier layer is amorphized, the first barrier layer is transformed into a second barrier layer, and the second barrier layer has an amorphous structure, so that the second barrier layer has an amorphous structure. The blocking effect is greater than that of the first blocking layer, and the second blocking layer can effectively block the metal atoms in the metal layer from entering the gate dielectric layer; in addition, in the process of forming the metal layer, the second blocking layer can effectively block the precursor. The resulting intermediate product enters the gate dielectric layer.

为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。In order to make the above objects, features and advantages of the present invention more clearly understood, the specific embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

图4至图13是本发明另一实施例中半导体器件形成过程的示意图。在本实施例中,以半导体器件为鳍式场效应晶体管为例进行说明。4 to 13 are schematic diagrams illustrating a process of forming a semiconductor device according to another embodiment of the present invention. In this embodiment, the semiconductor device is a fin field effect transistor as an example for description.

结合参考图4和图5,图5为沿着图4中鳍部延伸方向(A-A1轴线)得到的剖面图,提供基底,所述基底包括衬底200和位于衬底200表面的鳍部220;所述鳍部220表面具有横跨鳍部220的伪栅极结构230,伪栅极结构230覆盖部分鳍部220的顶部表面和侧壁。4 and 5, FIG. 5 is a cross-sectional view taken along the extension direction of the fins (A-A1 axis) in FIG. 4, providing a base including a substrate 200 and fins located on the surface of the substrate 200 220 ; the surface of the fin portion 220 has a dummy gate structure 230 across the fin portion 220 , and the dummy gate structure 230 covers part of the top surface and sidewalls of the fin portion 220 .

所述衬底200为后续形成半导体器件提供工艺平台。The substrate 200 provides a process platform for the subsequent formation of semiconductor devices.

所述衬底200可以是单晶硅,多晶硅或非晶硅;所述衬底200也可以是硅、锗、锗化硅、砷化镓等半导体材料;所述衬底200可以是体材料,也可以是复合结构,如绝缘体上硅;本实施例中,所述衬底200的材料为硅。The substrate 200 can be monocrystalline silicon, polycrystalline silicon or amorphous silicon; the substrate 200 can also be a semiconductor material such as silicon, germanium, silicon germanium, gallium arsenide; the substrate 200 can be a bulk material, It can also be a composite structure, such as silicon-on-insulator; in this embodiment, the material of the substrate 200 is silicon.

形成所述鳍部220步骤为:在衬底200表面形成图案化的掩膜层,所述图案化的掩膜层定义鳍部220的位置;以所述图案化的掩膜层为掩膜刻蚀部分厚度的衬底200,形成鳍部220。The steps of forming the fins 220 are: forming a patterned mask layer on the surface of the substrate 200 , the patterned mask layer defines the position of the fins 220 ; using the patterned mask layer as a mask to etch A partial thickness of the substrate 200 is etched to form the fins 220 .

由于所述鳍部220通过刻蚀衬底200而形成,所以鳍部220的材料和衬底200的材料相同。在其它实施例中,所述鳍部220的材料可以与衬底200的材料不相同。Since the fins 220 are formed by etching the substrate 200 , the material of the fins 220 is the same as the material of the substrate 200 . In other embodiments, the material of the fins 220 may be different from the material of the substrate 200 .

本实施例中,以三个鳍部220作为示例,并不代表实际工艺中鳍部220的个数。在实际工艺中,可以根据需要选择鳍部220的具体个数。In this embodiment, three fins 220 are used as an example, which does not represent the number of fins 220 in an actual process. In the actual process, the specific number of the fins 220 can be selected as required.

所述衬底200表面还具有隔离结构210,隔离结构210的表面低于鳍部220的顶部表面,隔离结构210用于电学隔离相邻的鳍部220。所述隔离结构210的材料包括氧化硅或氮氧化硅。本实施例中,隔离结构210的材料为氧化硅。The surface of the substrate 200 also has an isolation structure 210 , the surface of the isolation structure 210 is lower than the top surface of the fins 220 , and the isolation structures 210 are used to electrically isolate the adjacent fins 220 . The material of the isolation structure 210 includes silicon oxide or silicon oxynitride. In this embodiment, the material of the isolation structure 210 is silicon oxide.

所述伪栅极结构230包括横跨鳍部220的伪栅介质层231和覆盖伪栅介质层231的伪栅电极层232。其中,伪栅介质层231位于隔离结构210表面、覆盖部分鳍部220的顶部表面和侧壁。本实施例中,所述伪栅介质层231的材料为氧化硅,所述伪栅电极层232的材料为多晶硅。The dummy gate structure 230 includes a dummy gate dielectric layer 231 spanning the fins 220 and a dummy gate electrode layer 232 covering the dummy gate dielectric layer 231 . The dummy gate dielectric layer 231 is located on the surface of the isolation structure 210 and covers part of the top surface and sidewalls of the fins 220 . In this embodiment, the material of the dummy gate dielectric layer 231 is silicon oxide, and the material of the dummy gate electrode layer 232 is polysilicon.

本实施例中,以一个伪栅极结构230作为示例,并不代表实际工艺中的伪栅极结构230个数。在实际工艺中,可以根据需要选择伪栅极结构230的个数。In this embodiment, one dummy gate structure 230 is used as an example, which does not represent the number of dummy gate structures 230 in an actual process. In an actual process, the number of the dummy gate structures 230 can be selected as required.

参考图6,图6为在图5基础上形成的示意图,形成覆盖伪栅极结构230两侧侧壁的侧墙240;形成源区(未图示)和漏区(未图示),所述源区位于侧墙240和伪栅极结构230一侧的鳍部220中,所述漏区位于侧墙240和伪栅极结构230另一侧的鳍部220中;形成源区和漏区后,在基底表面形成层间介质层250,所述层间介质层250覆盖侧墙240侧壁,且所述层间介质层250表面与伪栅极结构230表面齐平。Referring to FIG. 6, FIG. 6 is a schematic diagram formed on the basis of FIG. 5, forming sidewall spacers 240 covering the sidewalls on both sides of the dummy gate structure 230; forming a source region (not shown) and a drain region (not shown), so The source region is located in the fin portion 220 on one side of the spacer 240 and the dummy gate structure 230, and the drain region is located in the fin portion 220 on the other side of the sidewall spacer 240 and the dummy gate structure 230; the source region and the drain region are formed Then, an interlayer dielectric layer 250 is formed on the surface of the substrate, the interlayer dielectric layer 250 covers the sidewalls of the spacers 240 , and the surface of the interlayer dielectric layer 250 is flush with the surface of the dummy gate structure 230 .

所述层间介质层250的材料为氧化硅、氮氧化硅或碳氧化硅。The material of the interlayer dielectric layer 250 is silicon oxide, silicon oxynitride or silicon oxycarbide.

形成所述层间介质层250的步骤为:形成覆盖鳍部220、伪栅极结构230、隔离结构210和衬底200的层间介质材料层,所述层间介质材料层的整个表面高于伪栅极结构230的顶部表面;平坦化所述层间介质材料层直至暴露出伪栅极结构230的顶部表面,形成层间介质层250。The steps of forming the interlayer dielectric layer 250 are: forming an interlayer dielectric material layer covering the fins 220, the dummy gate structure 230, the isolation structure 210 and the substrate 200, and the entire surface of the interlayer dielectric material layer is higher than The top surface of the dummy gate structure 230 ; the interlayer dielectric material layer is planarized until the top surface of the dummy gate structure 230 is exposed to form the interlayer dielectric layer 250 .

参考图7,去除伪栅极结构230(参考图6),形成凹槽251。Referring to FIG. 7 , the dummy gate structures 230 (refer to FIG. 6 ) are removed to form recesses 251 .

采用干法刻蚀工艺或湿法刻蚀工艺刻蚀去除所述伪栅极结构230。The dummy gate structure 230 is etched and removed by a dry etching process or a wet etching process.

去除所述伪栅极结构230之后,暴露出鳍部220的顶部表面和侧壁,形成凹槽251。After the dummy gate structure 230 is removed, the top surface and sidewalls of the fins 220 are exposed to form the grooves 251 .

参考图8,形成覆盖所述凹槽251(参考图7)底部和侧壁的栅介质层260。Referring to FIG. 8 , a gate dielectric layer 260 covering the bottom and sidewalls of the groove 251 (refer to FIG. 7 ) is formed.

所述栅介质层260的作用为隔离基底和后续在栅介质层表面形成的其它材料层。The function of the gate dielectric layer 260 is to isolate the substrate from other material layers subsequently formed on the surface of the gate dielectric layer.

所述栅介质层260的材料为高K(K大于3.9)介质材料,如HfO2、HfSiO、HfSiON、Al2O3或ZrO2。本发明的实施例中,所述栅介质层260的材料为HfO2The material of the gate dielectric layer 260 is a high-K (K greater than 3.9) dielectric material, such as HfO 2 , HfSiO, HfSiON, Al 2 O 3 or ZrO 2 . In the embodiment of the present invention, the material of the gate dielectric layer 260 is HfO 2 .

形成所述栅介质层260的工艺为沉积工艺,如原子层沉积工艺或等离子体化学气相沉积工艺。本实施例中,采用等离子体化学气相沉积工艺形成所述栅介质层260。The process of forming the gate dielectric layer 260 is a deposition process, such as an atomic layer deposition process or a plasma chemical vapor deposition process. In this embodiment, the gate dielectric layer 260 is formed by a plasma chemical vapor deposition process.

本实施例中,还可以在栅介质层260底部形成界面层(未图示),作为基底和栅介质层260之间的过渡层,避免栅介质层260直接和基底结合不牢固的问题。In this embodiment, an interface layer (not shown) may also be formed at the bottom of the gate dielectric layer 260 as a transition layer between the substrate and the gate dielectric layer 260 to avoid the problem that the gate dielectric layer 260 is not firmly bonded directly to the substrate.

所述界面层的材料为SiO2或SiON。本实施例中,所述界面层的材料为氧化硅。The material of the interface layer is SiO 2 or SiON. In this embodiment, the material of the interface layer is silicon oxide.

形成所述界面层的工艺为沉积工艺,如原子层沉积工艺、化学气相沉积工艺、热氧化工艺和氮化工艺。本实施例中,采用热氧化工艺形成所述界面层。The process of forming the interface layer is a deposition process, such as atomic layer deposition process, chemical vapor deposition process, thermal oxidation process and nitridation process. In this embodiment, the interface layer is formed by a thermal oxidation process.

继续参考图8,形成覆盖所述栅介质层260的第一阻挡层261。Continuing to refer to FIG. 8 , a first barrier layer 261 covering the gate dielectric layer 260 is formed.

所述第一阻挡层261的作用为:阻挡后续形成的金属层中的金属原子扩散至栅介质层260和界面层中;阻挡后续在形成金属层的过程中产生的中间产物进入栅介质层260的界面层中The functions of the first barrier layer 261 are: to prevent the metal atoms in the subsequently formed metal layer from diffusing into the gate dielectric layer 260 and the interface layer; to prevent intermediate products generated in the process of forming the metal layer from entering the gate dielectric layer 260 in the interface layer

所述第一阻挡层261的材料为TiN或TaN。本实施例中,所述第一阻挡层261的材料为TiN。The material of the first barrier layer 261 is TiN or TaN. In this embodiment, the material of the first barrier layer 261 is TiN.

所述第一阻挡层261的厚度为10埃~30埃。The thickness of the first barrier layer 261 is 10 angstroms to 30 angstroms.

形成第一阻挡层261的工艺为沉积工艺,如原子层沉积工艺或等离子体化学气相沉积工艺。本实施例中,采用等离子体化学气相沉积工艺形成所述第一阻挡层261。The process of forming the first barrier layer 261 is a deposition process, such as an atomic layer deposition process or a plasma chemical vapor deposition process. In this embodiment, the first barrier layer 261 is formed by a plasma chemical vapor deposition process.

由于第一阻挡层261具有多晶结构,后续在形成金属层的过程中,会产生中间产物,所述中间产物容易进入栅介质层260中,如当金属层的材料为W时,所述中间产物含有氟原子,所述氟原子容易通过第一阻挡层261中的晶界扩散进入栅介质层260中,增加栅介质层260中的缺陷,使得半导体器件的阈值电压不稳定。即第一阻挡层261对所述中间产物中的氟原子的阻挡作用较弱,故本实施例中采用对第一阻挡层261进行非晶化处理的方法,使得第一阻挡层261转变为具有非晶结构的第二阻挡层,,第一阻挡层261的阻挡作用较强,能够避免形成金属层的过程中产生的中间产物进入栅介质层260中。Since the first barrier layer 261 has a polycrystalline structure, in the subsequent process of forming the metal layer, an intermediate product will be generated, and the intermediate product will easily enter the gate dielectric layer 260. For example, when the material of the metal layer is W, the intermediate product The product contains fluorine atoms, which are easily diffused into the gate dielectric layer 260 through the grain boundaries in the first barrier layer 261 , increasing defects in the gate dielectric layer 260 and making the threshold voltage of the semiconductor device unstable. That is, the blocking effect of the first barrier layer 261 on the fluorine atoms in the intermediate product is weak, so in this embodiment, a method of amorphizing the first barrier layer 261 is adopted, so that the first barrier layer 261 is transformed into a The second barrier layer of the amorphous structure, the first barrier layer 261 has a strong barrier effect, which can prevent intermediate products generated in the process of forming the metal layer from entering the gate dielectric layer 260 .

在一个实施例中,所述非晶化处理的方法为:采用第一离子注入工艺在第一阻挡层261中掺杂第一离子;对掺杂有第一离子的第一阻挡层261进行第一退火处理,使得第一阻挡层261转变为第二阻挡层。In one embodiment, the amorphization treatment method is as follows: doping the first barrier layer 261 with first ions by using a first ion implantation process; An annealing process converts the first barrier layer 261 into the second barrier layer.

第一阻挡层261转变为第二阻挡层的原理为:采用第一离子注入使得第一离子进入第一阻挡层261的晶界间隙,并且第一离子撞击第一阻挡层261中原子离开晶格位置进入晶格间隙,同时留下空位;在第一退火处理的过程中,第一离子占据空位,并与第一阻挡层261中的原子结合成键,从而改变第一阻挡层261的组分和晶向,形成第二阻挡层,所述第二阻挡层具有非晶结构。The principle of transforming the first barrier layer 261 into the second barrier layer is as follows: the first ion implantation is used to make the first ions enter the grain boundary gap of the first barrier layer 261 , and the first ions strike the atoms in the first barrier layer 261 and leave the crystal lattice The position enters the lattice gap while leaving vacancies; during the first annealing process, the first ions occupy the vacancies and combine with atoms in the first barrier layer 261 to form bonds, thereby changing the composition of the first barrier layer 261 and crystal orientation to form a second barrier layer, the second barrier layer has an amorphous structure.

在一个具体的实施例中,所述第一离子注入工艺的参数为:注入离子为硅离子,注入能量为0.5KeV~5KeV,注入剂量为1E 15atom/cm2~5E 16atom/cm2,注入角度为7度~20度。所述注入角度为与衬底200法线之间形成的夹角。In a specific embodiment, the parameters of the first ion implantation process are: the implanted ions are silicon ions, the implantation energy is 0.5KeV~5KeV, the implantation dose is 1E 15atom/cm 2 ~5E 16atom/cm 2 , and the implantation angle is 7 degrees to 20 degrees. The implantation angle is an angle formed with the normal line of the substrate 200 .

所述第一退火处理为尖峰退火,采用的气体为N2或Ar,退火温度为950摄氏度~1050摄氏度。The first annealing treatment is spike annealing, the gas used is N 2 or Ar, and the annealing temperature is 950 degrees Celsius to 1050 degrees Celsius.

需要说明的是,第一离子不限于硅离子,在其它实施例中,可以采用其它的离子使得第一阻挡层261转变为非晶结构的第二阻挡层。优选的,第一离子的离子半径大于第一阻挡层261晶格间隙的尺寸,使得第一离子注入到第一阻挡层261后,第一阻挡层261的晶格畸变程度加强,利于形成非晶化的第二阻挡层。It should be noted that the first ions are not limited to silicon ions, and in other embodiments, other ions may be used to convert the first barrier layer 261 into the second barrier layer of amorphous structure. Preferably, the ion radius of the first ions is larger than the size of the lattice gap of the first barrier layer 261, so that after the first ions are implanted into the first barrier layer 261, the lattice distortion of the first barrier layer 261 is enhanced, which is conducive to the formation of amorphous the second barrier layer.

本实施例中,第一阻挡层261的材料为TiN,第一离子注入采用的注入离子为硅离子,形成的第二阻挡层的材料为TiSiN。In this embodiment, the material of the first barrier layer 261 is TiN, the implanted ions used in the first ion implantation are silicon ions, and the material of the formed second barrier layer is TiSiN.

在另一个实施例中,所述非晶化处理的方法为:形成覆盖第一阻挡层261的硅层;对硅层和第一阻挡层261进行第二退火处理,使得硅层中的硅原子进入第一阻挡层261中,形成第二阻挡层;形成第二阻挡层后,去除硅层。In another embodiment, the amorphization treatment method is: forming a silicon layer covering the first barrier layer 261; performing a second annealing treatment on the silicon layer and the first barrier layer 261, so that the silicon atoms in the silicon layer are Entering into the first barrier layer 261, a second barrier layer is formed; after the second barrier layer is formed, the silicon layer is removed.

参考图9,形成覆盖第一阻挡层261的硅层262。Referring to FIG. 9, a silicon layer 262 covering the first barrier layer 261 is formed.

形成所述硅层262的工艺为沉积工艺,如原子层沉积工艺、等离子体化学气相沉积工艺或低压化学气相沉积工艺。The process for forming the silicon layer 262 is a deposition process, such as an atomic layer deposition process, a plasma chemical vapor deposition process or a low pressure chemical vapor deposition process.

本实施例中,采用低压化学气相沉积工艺形成所述硅层262,具体的工艺参数为:采用的气体为SiH4,SiH4的流量为10sccm~60sccm,温度为350摄氏度~500摄氏度,沉积腔室压强为0.4torr~2torr。In this embodiment, the silicon layer 262 is formed by a low pressure chemical vapor deposition process. The specific process parameters are: the gas used is SiH 4 , the flow rate of SiH 4 is 10 sccm-60 sccm, the temperature is 350-500 degrees Celsius, the deposition chamber is The chamber pressure is 0.4torr to 2torr.

所述硅层262的厚度为40埃~100埃。The thickness of the silicon layer 262 is 40 angstroms to 100 angstroms.

参考图10,对硅层262和第一阻挡层261(参考图9)进行第二退火处理,使得硅层262中的硅原子进入第一阻挡层261中,形成第二阻挡层263。Referring to FIG. 10 , a second annealing process is performed on the silicon layer 262 and the first barrier layer 261 (refer to FIG. 9 ), so that silicon atoms in the silicon layer 262 enter the first barrier layer 261 to form a second barrier layer 263 .

第一阻挡层261转变为第二阻挡层263的原理为:在第二退火处理的过程中,所述硅层262中的硅原子进入第一阻挡层261中,并且硅原子和第一阻挡层261中各原子重新结合成键,从而改变第一阻挡层261的组分和晶向,形成第二阻挡层263,所述第二阻挡层263具有非晶结构。The principle of converting the first barrier layer 261 into the second barrier layer 263 is as follows: during the second annealing process, the silicon atoms in the silicon layer 262 enter the first barrier layer 261, and the silicon atoms and the first barrier layer The atoms in 261 recombine to form bonds, thereby changing the composition and crystal orientation of the first barrier layer 261 to form a second barrier layer 263, and the second barrier layer 263 has an amorphous structure.

所述第二退火处理为尖峰退火,采用的气体为N2或Ar,退火温度为800摄氏度~1000摄氏度。The second annealing treatment is peak annealing, the gas used is N 2 or Ar, and the annealing temperature is 800 degrees Celsius to 1000 degrees Celsius.

本实施例中,第一阻挡层261的材料为TiN,形成的第二阻挡层263的材料为TiSiN。In this embodiment, the material of the first barrier layer 261 is TiN, and the material of the formed second barrier layer 263 is TiSiN.

所述第一阻挡层261经过上述非晶化处理后转变为第二阻挡层263。The first barrier layer 261 is transformed into the second barrier layer 263 after the above-mentioned amorphization process.

所述第二阻挡层263的作用为:阻挡后续形成的金属层中的金属原子扩散至栅介质层260和界面层中;阻挡后续在形成金属层的过程中产生的中间产物进入栅介质层260和界面层中。The functions of the second barrier layer 263 are: to prevent the metal atoms in the subsequently formed metal layer from diffusing into the gate dielectric layer 260 and the interface layer; to prevent intermediate products generated in the process of forming the metal layer from entering the gate dielectric layer 260 and the interface layer.

由于第二阻挡层263具有非晶结构,所述第二阻挡层263的阻挡作用比第一阻挡层261的阻挡作用强,可以有效的阻挡在形成金属层的过程中产生的中间产物进入栅介质层260和界面层中。Since the second barrier layer 263 has an amorphous structure, the barrier effect of the second barrier layer 263 is stronger than that of the first barrier layer 261 , which can effectively prevent the intermediate products generated during the formation of the metal layer from entering the gate dielectric. layer 260 and the interface layer.

所述第二阻挡层263的厚度为10埃~30埃。The thickness of the second barrier layer 263 is 10 angstroms˜30 angstroms.

本实施例中,对整个厚度的第一阻挡层261都进行了非晶化处理。在其它实施例中,可以对部分厚度的第一阻挡层261进行非晶化处理,即只对第一阻挡层261的上部进行非晶化处理。In this embodiment, the entire thickness of the first barrier layer 261 is amorphized. In other embodiments, a partial thickness of the first barrier layer 261 may be amorphized, that is, only the upper portion of the first barrier layer 261 may be amorphized.

参考图11,去除硅层262(参考图10)。Referring to FIG. 11, the silicon layer 262 (refer to FIG. 10) is removed.

去除所述硅层262的工艺为湿刻工艺或干刻工艺。本实施例中,采用湿法刻蚀工艺去除所述硅层262。The process of removing the silicon layer 262 is a wet etching process or a dry etching process. In this embodiment, the silicon layer 262 is removed by a wet etching process.

在一个具体的实施例中,去除所述硅层262采用的湿刻工艺的参数为:刻蚀溶液为四甲基氢氧化铵溶液,四甲基氢氧化铵的质量百分比浓度为10%~25%,刻蚀温度为40摄氏度~90摄氏度。In a specific embodiment, the parameters of the wet etching process used to remove the silicon layer 262 are: the etching solution is a tetramethyl ammonium hydroxide solution, and the mass percentage concentration of tetramethyl ammonium hydroxide is 10% to 25% %, the etching temperature is 40 degrees Celsius to 90 degrees Celsius.

需要说明的是,当所述半导体器件具有所述界面层,且采用的非晶化处理的方法为:形成覆盖第一阻挡层261的硅层262;对硅层262和第一阻挡层261进行第二退火处理,使得硅层262中的硅原子进入第一阻挡层261中,形成第二阻挡层263;形成第二阻挡层263后,去除硅层262,在进行第二退火处理的过程中,所述硅层262能够吸附界面层中的氧原子,使得界面层的等效氧化物厚度减小,从而提高了半导体器件的性能。It should be noted that when the semiconductor device has the interface layer, and the amorphization treatment method adopted is: forming the silicon layer 262 covering the first barrier layer 261; The second annealing process causes the silicon atoms in the silicon layer 262 to enter the first barrier layer 261 to form the second barrier layer 263; after the second barrier layer 263 is formed, the silicon layer 262 is removed, and during the second annealing process , the silicon layer 262 can adsorb oxygen atoms in the interface layer, so that the equivalent oxide thickness of the interface layer is reduced, thereby improving the performance of the semiconductor device.

参考图12,形成覆盖第二阻挡层263的金属层264,所述金属层264的整个表面高于层间介质层250表面。Referring to FIG. 12 , a metal layer 264 covering the second barrier layer 263 is formed, and the entire surface of the metal layer 264 is higher than the surface of the interlayer dielectric layer 250 .

所述金属层264作为半导体器件的金属栅极。The metal layer 264 serves as the metal gate of the semiconductor device.

所述金属层264的材料为W、Al、Ti、Cu、Mo或Pt。本实施例中,所述金属层264的材料为W。The material of the metal layer 264 is W, Al, Ti, Cu, Mo or Pt. In this embodiment, the material of the metal layer 264 is W.

形成金属层264的工艺为化学气相沉积工艺、物理气相沉积工艺或电镀工艺。本实施例中,采用化学气相沉积工艺形成所述金属层264。The process of forming the metal layer 264 is a chemical vapor deposition process, a physical vapor deposition process or an electroplating process. In this embodiment, the metal layer 264 is formed by a chemical vapor deposition process.

在一个具体的实施例中,形成金属层264的工艺参数为:采用的气体为WF6和SiH4,WF6的流量为300sccm~800sccm,SiH4的流量为30sccm~100sccm,温度为350摄氏度~500摄氏度,沉积腔室压强为40torr~130torr。In a specific embodiment, the process parameters for forming the metal layer 264 are: the gas used is WF 6 and SiH 4 , the flow rate of WF 6 is 300 sccm-800 sccm, the flow rate of SiH 4 is 30 sccm-100 sccm, and the temperature is 350 ℃~ At 500 degrees Celsius, the deposition chamber pressure is 40torr to 130torr.

在形成金属层264的过程中,形成金属层264的前驱体采用含氟的前驱体,所述前驱体会产生含氟的中间产物,所述中间产物中的氟原子容易扩散进入栅介质层260中。但是,由于对所述第一阻挡层261进行了非晶化处理,使得所述第一阻挡层261转变为具有非晶结构的第二阻挡层263,使得第二阻挡层263的阻挡作用大于第一阻挡层261的阻挡作用,在形成金属层264过程中,第二阻挡层263能够有效的阻挡前驱体产生的中间产物进入栅介质层260和界面层中,使得半导体器件的阈值电压稳定。In the process of forming the metal layer 264 , the precursor for forming the metal layer 264 is a fluorine-containing precursor, and the precursor will generate a fluorine-containing intermediate product, and the fluorine atoms in the intermediate product can easily diffuse into the gate dielectric layer 260 . However, since the first barrier layer 261 is amorphized, the first barrier layer 261 is transformed into the second barrier layer 263 having an amorphous structure, so that the barrier effect of the second barrier layer 263 is greater than that of the second barrier layer 263. With the blocking effect of the first barrier layer 261, during the formation of the metal layer 264, the second barrier layer 263 can effectively block the intermediate products generated by the precursor from entering the gate dielectric layer 260 and the interface layer, so as to stabilize the threshold voltage of the semiconductor device.

本实施例中,在形成金属层264之前,还可以形成覆盖第二阻挡层263的功函数层(未图示),形成功函数层之后,再形成覆盖所述功函数层的金属层264。所述功函数层能够调节半导体器件的阈值电压。In this embodiment, before the metal layer 264 is formed, a work function layer (not shown) covering the second barrier layer 263 may also be formed, and after the work function layer is formed, the metal layer 264 covering the work function layer is formed. The work function layer can adjust the threshold voltage of the semiconductor device.

当所述半导体器件为P型鳍式场效应晶体管,所述功函数层的材料为TaN;当所述半导体器件为N型鳍式场效应晶体管时,所述功函数层的材料为TiAl。When the semiconductor device is a P-type fin field effect transistor, the material of the work function layer is TaN; when the semiconductor device is an N-type fin field effect transistor, the material of the work function layer is TiAl.

形成所述功函数层的工艺为沉积工艺,如化学气相沉积工艺或原子层沉积工艺形成。The process of forming the work function layer is a deposition process, such as a chemical vapor deposition process or an atomic layer deposition process.

本实施例中,采用原子层沉积工艺形成所述功函数层,当所述功函数层的材料为TaN时,前驱反应物为五(二甲基氨基)钽(PDMAT)和氨气(NH3);当所述功函数层的材料为TiAl,前驱反应物为氯化钛(TiCl4)和三甲基铝(Tri methyl Al,MTA)。In this embodiment, the atomic layer deposition process is used to form the work function layer. When the material of the work function layer is TaN, the precursor reactants are penta(dimethylamino) tantalum (PDMAT) and ammonia (NH 3 ). ); when the material of the work function layer is TiAl, the precursor reactants are titanium chloride (TiCl4) and trimethyl aluminum (Tri methyl Al, MTA).

当半导体器件中具有所述功函数层时,所述第二阻挡层263还具有阻挡功函数层中的金属原子进入栅介质层260和界面层中的作用。When the semiconductor device has the work function layer, the second barrier layer 263 also has the function of blocking the metal atoms in the work function layer from entering the gate dielectric layer 260 and the interface layer.

尤其,当半导体器件为N型鳍式场效应晶体管,所述功函数层的材料为TiAl时,TiAl中的铝原子很容易扩散至其它介质中,而由于第二阻挡层263具有非晶结构,能够有效的阻挡铝原子进入栅介质层260和界面层中。使得栅介质层260的介电常数稳定,使得界面层的可靠性增强。Especially, when the semiconductor device is an N-type fin field effect transistor and the material of the work function layer is TiAl, the aluminum atoms in TiAl are easily diffused into other media, and since the second barrier layer 263 has an amorphous structure, It can effectively block aluminum atoms from entering the gate dielectric layer 260 and the interface layer. The dielectric constant of the gate dielectric layer 260 is stabilized, so that the reliability of the interface layer is enhanced.

参考图13,去除高于层间介质层250表面的栅介质层260、第二阻挡层263和金属层264。Referring to FIG. 13 , the gate dielectric layer 260 , the second barrier layer 263 and the metal layer 264 above the surface of the interlayer dielectric layer 250 are removed.

去除高于层间介质层250表面的栅介质层260、第二阻挡层263和金属层264的工艺为化学机械研磨(CMP)工艺。The process of removing the gate dielectric layer 260 , the second barrier layer 263 and the metal layer 264 higher than the surface of the interlayer dielectric layer 250 is a chemical mechanical polishing (CMP) process.

当所述半导体器件还具有界面层和功函数层时,还需要将高于层间介质层250表面的界面层和功函数层去除。When the semiconductor device further has an interface layer and a work function layer, the interface layer and the work function layer above the surface of the interlayer dielectric layer 250 also need to be removed.

本实施例中,在同一步骤中将高于层间介质层250表面的栅介质层260、第二阻挡层263和金属层264去除,有效的节省了工艺步骤。本发明的其它实施例中,也可以分多次步骤去除高于层间介质层250表面的栅介质层260、第二阻挡层263和金属层264,例如形成每一层后将高于层间介质层230表面的部分去除。In this embodiment, the gate dielectric layer 260 , the second barrier layer 263 and the metal layer 264 above the surface of the interlayer dielectric layer 250 are removed in the same step, which effectively saves process steps. In other embodiments of the present invention, the gate dielectric layer 260 , the second barrier layer 263 and the metal layer 264 which are higher than the surface of the interlayer dielectric layer 250 may also be removed in multiple steps. Part of the surface of the dielectric layer 230 is removed.

图14至图18为又一实施例提供的半导体器件的形成方法。本实施例中,以半导体器件为平面MOS晶体管为例进行说明。14 to 18 illustrate a method for forming a semiconductor device provided by yet another embodiment. In this embodiment, the semiconductor device is an example of a planar MOS transistor for description.

参考图14,提供基底,所述基底为衬底300,所述基底表面具有层间介质层350,所述层间介质层350中具有贯穿其厚度的凹槽351。Referring to FIG. 14 , a base is provided, which is a substrate 300 , and a surface of the base has an interlayer dielectric layer 350 , and the interlayer dielectric layer 350 has grooves 351 throughout its thickness.

本实施例中,所述基底表面还具有侧墙340。In this embodiment, the base surface also has sidewalls 340 .

需要说明的是,在形成层间介质层350之前,在衬底300表面形成有伪栅极结构,所述侧墙340覆盖伪栅极结构侧壁;然后形成源区(未图示)和漏区(未图示),所述源区位于伪栅极结构和侧墙340一侧的衬底300中,所述漏区位于伪栅极结构和侧墙340另一侧的衬底300中;形成源区和漏区后,形成层间介质层350,所述层间介质层350覆盖侧墙340侧壁,且所述层间介质层350表面与伪栅极结构表面齐平;形成层间介质层350之后,去除所述伪栅极结构,形成所述凹槽351。It should be noted that, before the interlayer dielectric layer 350 is formed, a dummy gate structure is formed on the surface of the substrate 300, and the sidewall spacers 340 cover the sidewalls of the dummy gate structure; then a source region (not shown) and a drain are formed region (not shown), the source region is located in the substrate 300 on one side of the dummy gate structure and the spacer 340, and the drain region is located in the substrate 300 on the other side of the dummy gate structure and the spacer 340; After the source region and the drain region are formed, an interlayer dielectric layer 350 is formed, the interlayer dielectric layer 350 covers the sidewalls of the sidewall spacers 340 , and the surface of the interlayer dielectric layer 350 is flush with the surface of the dummy gate structure; forming an interlayer After the dielectric layer 350 , the dummy gate structure is removed to form the groove 351 .

参考图15,形成覆盖所述凹槽351(参考图14)底部和侧壁的栅介质层360;形成覆盖所述栅介质层360的第一阻挡层361。Referring to FIG. 15 , a gate dielectric layer 360 covering the bottom and sidewalls of the groove 351 (refer to FIG. 14 ) is formed; a first barrier layer 361 covering the gate dielectric layer 360 is formed.

参考图16,对第一阻挡层361(参考图15)进行非晶化处理,使得第一阻挡层361转变为第二阻挡层363。Referring to FIG. 16 , an amorphization process is performed on the first barrier layer 361 (refer to FIG. 15 ), so that the first barrier layer 361 is transformed into the second barrier layer 363 .

参考图17,形成覆盖第二阻挡层363的金属层364。Referring to FIG. 17, a metal layer 364 covering the second barrier layer 363 is formed.

所述金属层364的整个表面高于层间介质层350表面。The entire surface of the metal layer 364 is higher than the surface of the interlayer dielectric layer 350 .

参考图18,去除高于层间介质层350表面的栅介质层360、第二阻挡层363和金属层364。Referring to FIG. 18 , the gate dielectric layer 360 , the second barrier layer 363 and the metal layer 364 above the surface of the interlayer dielectric layer 350 are removed.

形成所述衬底300、层间介质层350、凹槽351、栅介质层360、第一阻挡层361、第二阻挡层363、金属层364的方法参照前述实施例。去除高于层间介质层350表面的栅介质层360、第二阻挡层363和金属层364的方法参照前述实施例,不再详述。The method for forming the substrate 300 , the interlayer dielectric layer 350 , the groove 351 , the gate dielectric layer 360 , the first barrier layer 361 , the second barrier layer 363 , and the metal layer 364 refers to the foregoing embodiments. The method for removing the gate dielectric layer 360 , the second barrier layer 363 and the metal layer 364 higher than the surface of the interlayer dielectric layer 350 refers to the foregoing embodiments and will not be described in detail again.

本实施例中,还可以在栅介质层360底部形成界面层,所述界面层覆盖凹槽351的侧壁和底部;本实施例中,还可以在第二阻挡层363和金属层364之间形成功函数层。In this embodiment, an interface layer can also be formed at the bottom of the gate dielectric layer 360 , and the interface layer covers the sidewalls and the bottom of the groove 351 ; in this embodiment, an interface layer can also be formed between the second barrier layer 363 and the metal layer 364 . Form a success function layer.

形成界面层和功函数的方法参照前述实施例,不再详述。The method for forming the interface layer and the work function refers to the foregoing embodiments, and will not be described in detail again.

本发明又一实施例提供一种半导体器件,包括:基底,所述基底表面具有层间介质层,且所述层间介质层内具有凹槽,所述凹槽暴露出基底表面;覆盖所述凹槽底部和侧壁的栅介质层;覆盖所述栅介质层的第二阻挡层,所述第二阻挡层具有非晶结构;覆盖第二阻挡层的金属层,所述金属层的表面与所述层间介质层表面齐平。Still another embodiment of the present invention provides a semiconductor device, comprising: a substrate, the surface of the substrate has an interlayer dielectric layer, and the interlayer dielectric layer has grooves in the interlayer dielectric layer, the grooves expose the surface of the substrate; A gate dielectric layer on the bottom and sidewalls of the groove; a second barrier layer covering the gate dielectric layer, the second barrier layer having an amorphous structure; a metal layer covering the second barrier layer, the surface of the metal layer being The surface of the interlayer dielectric layer is flush.

当所述半导体器件为鳍式场效应晶体管时,参考图7和13,所述基底包括衬底200和位于衬底200表面的鳍部220;所述基底表面具有层间介质层250,且所述层间介质层250内具有凹槽251,所述凹槽251暴露出鳍部220的顶部表面和侧壁;覆盖所述凹槽251底部和侧壁的栅介质层260;覆盖所述栅介质层260的第二阻挡层263,所述第二阻挡层263具有非晶结构;覆盖第二阻挡层263的金属层264,所述金属层264的表面与所述层间介质层250表面齐平。When the semiconductor device is a fin field effect transistor, referring to FIGS. 7 and 13 , the base includes a substrate 200 and a fin 220 located on the surface of the substrate 200; the surface of the base has an interlayer dielectric layer 250, and all The interlayer dielectric layer 250 has grooves 251, the grooves 251 expose the top surface and sidewalls of the fins 220; the gate dielectric layer 260 covers the bottom and sidewalls of the grooves 251; covers the gate dielectric The second barrier layer 263 of the layer 260, the second barrier layer 263 has an amorphous structure; the metal layer 264 covering the second barrier layer 263, the surface of the metal layer 264 is flush with the surface of the interlayer dielectric layer 250 .

形成衬底200、鳍部220、层间介质层250、凹槽251、栅介质层260、第二阻挡层263和金属层264的方法参照前述实施例,不再详述。The method for forming the substrate 200 , the fins 220 , the interlayer dielectric layer 250 , the grooves 251 , the gate dielectric layer 260 , the second barrier layer 263 and the metal layer 264 refers to the foregoing embodiments and will not be described in detail.

当所述半导体器件为平面MOS晶体管时,参考图14和图18,所述基底为衬底300,所述衬底300表面具有层间介质层350,且所述层间介质层350内具有凹槽351,所述凹槽351暴露出衬底300表面;覆盖所述凹槽351底部和侧壁的栅介质层360;覆盖所述栅介质层360的第二阻挡层363,所述第二阻挡层363具有非晶结构;覆盖第二阻挡层363的金属层364,所述金属层364的表面与所述层间介质层350表面齐平。When the semiconductor device is a planar MOS transistor, referring to FIG. 14 and FIG. 18 , the base is a substrate 300 , the surface of the substrate 300 has an interlayer dielectric layer 350 , and the interlayer dielectric layer 350 has recesses in it. A groove 351, the groove 351 exposes the surface of the substrate 300; a gate dielectric layer 360 covering the bottom and sidewalls of the groove 351; a second barrier layer 363 covering the gate dielectric layer 360, the second blocking layer The layer 363 has an amorphous structure; the metal layer 364 covers the second barrier layer 363 , and the surface of the metal layer 364 is flush with the surface of the interlayer dielectric layer 350 .

形成衬底300、层间介质层350、凹槽351、栅介质层360、第二阻挡层363和金属层364的方法参照前述实施例,不再详述。The method for forming the substrate 300 , the interlayer dielectric layer 350 , the groove 351 , the gate dielectric layer 360 , the second barrier layer 363 and the metal layer 364 refers to the foregoing embodiments and will not be described in detail again.

所述半导体器件还可以包括:位于栅介质层底部的界面层(未图示),所述界面层覆盖凹槽的侧壁和底部以及层间介质层;位于第二阻挡层和金属层之间的功函数层(未图示)。The semiconductor device may further include: an interface layer (not shown) located at the bottom of the gate dielectric layer, the interface layer covering the sidewalls and the bottom of the groove and the interlayer dielectric layer; located between the second barrier layer and the metal layer The work function layer (not shown).

形成界面层和功函数层的方法参照前述实施例,不再详述。The method for forming the interface layer and the work function layer refers to the foregoing embodiments and will not be described in detail again.

由于所述第二阻挡层具有非晶结构,第二阻挡层的阻挡作用较强,所述第二阻挡层能够有效的阻挡金属层中的金属原子进入栅介质层中;另外,第二阻挡层能够有效的阻挡在形成金属层的过程中产生的中间产物进入栅介质层中。Because the second barrier layer has an amorphous structure, the barrier effect of the second barrier layer is strong, and the second barrier layer can effectively prevent the metal atoms in the metal layer from entering the gate dielectric layer; in addition, the second barrier layer It can effectively block the intermediate products generated in the process of forming the metal layer from entering the gate dielectric layer.

综上所述,本发明的技术方案具有以下优点:To sum up, the technical solution of the present invention has the following advantages:

本发明提供的半导体器件的形成方法,由于对所述第一阻挡层进行了非晶化处理,使得所述第一阻挡层转变为第二阻挡层,第二阻挡层具有非晶结构,使得第二阻挡层的阻挡作用大于第一阻挡层的阻挡作用,第二阻挡层能够有效的阻挡金属层中的金属原子进入栅介质层中;另外,在形成金属层过程中,第二阻挡层能够有效的阻挡前驱体产生的中间产物进入栅介质层中。In the method for forming a semiconductor device provided by the present invention, since the first barrier layer is amorphized, the first barrier layer is transformed into a second barrier layer, and the second barrier layer has an amorphous structure, so that the first barrier layer is transformed into a second barrier layer. The blocking effect of the second barrier layer is greater than that of the first barrier layer, and the second barrier layer can effectively prevent the metal atoms in the metal layer from entering the gate dielectric layer; in addition, in the process of forming the metal layer, the second barrier layer can effectively The intermediate product generated by the blocking precursor enters the gate dielectric layer.

进一步的,在形成栅介质层之前,形成覆盖所述凹槽的底部和侧壁的界面层。所述界面层作为基底和栅介质层之间的过渡层,避免栅介质层直接和基底结合不牢固的现象。同时,第二阻挡层能够有效的阻挡金属层中金属原子进入界面层中,以及在形成金属层过程中,有效的阻挡前驱体产生的中间产物进入界面层中。Further, before forming the gate dielectric layer, an interface layer covering the bottom and sidewalls of the groove is formed. The interface layer acts as a transition layer between the substrate and the gate dielectric layer, so as to avoid the phenomenon that the gate dielectric layer is directly bonded to the substrate and is not firmly bonded. At the same time, the second barrier layer can effectively block the metal atoms in the metal layer from entering the interface layer, and in the process of forming the metal layer, effectively prevent intermediate products generated by the precursor from entering the interface layer.

进一步的,在第二阻挡层和金属层之间形成功函数层。所述功函数层能够调节半导体器件的阈值电压。同时,所述第二阻挡层能够有效的阻挡功函数层中的金属原子进入栅介质层中。Further, a work function layer is formed between the second barrier layer and the metal layer. The work function layer can adjust the threshold voltage of the semiconductor device. Meanwhile, the second blocking layer can effectively block the metal atoms in the work function layer from entering the gate dielectric layer.

进一步的,所述非晶化处理的方法为:形成覆盖第一阻挡层的硅层;对硅层和第一阻挡层进行第二退火处理,使得硅层中的硅原子进入第一阻挡层中,形成第二阻挡层;形成第二阻挡层后,去除硅层。所述非晶化处理方法能够使得第一阻挡层转变为第二阻挡层;另外,在进行第二退火处理的过程中,所述硅层能够吸附界面层中的氧原子,使得界面层的等效氧化物厚度减小,从而提高了半导体器件的性能。Further, the amorphization treatment method is as follows: forming a silicon layer covering the first barrier layer; performing a second annealing treatment on the silicon layer and the first barrier layer, so that silicon atoms in the silicon layer enter the first barrier layer , forming a second barrier layer; after forming the second barrier layer, remove the silicon layer. The amorphization treatment method can transform the first barrier layer into the second barrier layer; in addition, during the second annealing treatment, the silicon layer can adsorb oxygen atoms in the interface layer, so that the interface layer, etc. The thickness of the effective oxide is reduced, thereby improving the performance of the semiconductor device.

本发明提供的半导体器件中,由于所述第二阻挡层具有非晶结构,使得第二阻挡层的阻挡作用较强,所述第二阻挡层能够有效的阻挡金属层中的金属原子进入栅介质层中;另外,第二阻挡层能够有效的阻挡在形成金属层的过程中产生的中间产物进入栅介质层中。In the semiconductor device provided by the present invention, since the second barrier layer has an amorphous structure, the barrier effect of the second barrier layer is strong, and the second barrier layer can effectively prevent the metal atoms in the metal layer from entering the gate dielectric. In addition, the second barrier layer can effectively block the intermediate products generated in the process of forming the metal layer from entering the gate dielectric layer.

虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。Although the present invention is disclosed above, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention should be based on the scope defined by the claims.

Claims (13)

1. A method of forming a semiconductor device, comprising:
providing a substrate, wherein the surface of the substrate is provided with an interlayer dielectric layer, a groove is arranged in the interlayer dielectric layer, and the groove is exposed out of the surface of the substrate;
forming an interface layer, wherein the interface layer covers the bottom and the side wall of the groove;
forming a gate dielectric layer covering the interface layer;
forming a first barrier layer covering the gate dielectric layer;
carrying out non-crystallizing treatment on the first barrier layer to convert the first barrier layer into a second barrier layer;
forming a metal layer covering the second barrier layer, wherein the surface of the metal layer is flush with the surface of the interlayer dielectric layer;
the method for the non-crystallizing treatment comprises the following steps: forming a silicon layer covering the first barrier layer; carrying out second annealing treatment on the silicon layer and the first barrier layer to enable silicon atoms in the silicon layer to enter the first barrier layer to form a second barrier layer; and after the second barrier layer is formed, removing the silicon layer.
2. The method for forming a semiconductor device according to claim 1, further comprising: forming a work function layer overlying the second barrier layer prior to forming the metal layer.
3. The method for forming a semiconductor device according to claim 2, wherein when the semiconductor device is an N-type MOS transistor, a material of the work function layer is TiAl; when the semiconductor device is a P-type MOS transistor, the work function layer is made of TaN.
4. The method for forming the semiconductor device according to claim 1 or 2, wherein the base comprises a substrate and a fin portion located on the surface of the substrate; the recess exposes a top surface and sidewalls of the fin.
5. The method according to claim 1 or 2, wherein the base is a substrate, and the groove exposes a surface of the substrate.
6. The method for forming the semiconductor device according to claim 1 or 2, wherein the material of the gate dielectric layer is a high-K dielectric material.
7. The method for forming a semiconductor device according to claim 1 or 2, wherein a material of the first barrier layer is TiN or TaN.
8. The method of claim 1, wherein the silicon layer is formed by a low pressure chemical vapor deposition process, and the specific process parameters are as follows: the gas used is SiH4,SiH4The flow rate of the deposition chamber is 10-60 sccm, the temperature is 350-500 ℃, and the pressure of the deposition chamber is 0.4-2 torr.
9. The method for forming a semiconductor device according to claim 1, wherein the silicon layer has a thickness of 40to 100 angstroms.
10. The method of claim 1, wherein the second annealing process is spike annealing and the gas used is N2Or Ar, the annealing temperature is 800-1000 ℃.
11. The method according to claim 1, wherein when the first barrier layer is TiN, the second barrier layer is TiSiN.
12. The method for forming a semiconductor device according to claim 1 or 2, wherein the second barrier layer has a thickness of 10 to 30 angstroms.
13. The method according to claim 1 or 2, wherein the metal layer is W, Al, Ti, Cu, Mo, or Pt.
CN201510459384.8A 2015-07-30 2015-07-30 Semiconductor device and method of forming the same Active CN106409677B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510459384.8A CN106409677B (en) 2015-07-30 2015-07-30 Semiconductor device and method of forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510459384.8A CN106409677B (en) 2015-07-30 2015-07-30 Semiconductor device and method of forming the same

Publications (2)

Publication Number Publication Date
CN106409677A CN106409677A (en) 2017-02-15
CN106409677B true CN106409677B (en) 2020-03-10

Family

ID=58008751

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510459384.8A Active CN106409677B (en) 2015-07-30 2015-07-30 Semiconductor device and method of forming the same

Country Status (1)

Country Link
CN (1) CN106409677B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108574009B (en) * 2017-03-07 2021-04-02 中芯国际集成电路制造(上海)有限公司 Fin-type field effect transistor and method of forming the same
CN108630751B (en) * 2017-03-21 2022-02-15 中芯国际集成电路制造(上海)有限公司 Semiconductor structure and method of forming the same
CN108807378A (en) * 2017-05-05 2018-11-13 中芯国际集成电路制造(上海)有限公司 Fin field effect pipe and forming method thereof
KR102341721B1 (en) * 2017-09-08 2021-12-23 삼성전자주식회사 Semiconductor device
KR102316293B1 (en) * 2017-09-18 2021-10-22 삼성전자주식회사 Semiconductor devices
CN109786448A (en) * 2017-11-10 2019-05-21 中芯国际集成电路制造(上海)有限公司 Metal gates, semiconductor devices and its manufacturing method
CN108493246A (en) * 2018-02-09 2018-09-04 中国科学院微电子研究所 Semiconductor device and method for manufacturing the same
CN114373714A (en) * 2020-10-15 2022-04-19 长鑫存储技术有限公司 Method for manufacturing semiconductor structure
CN114823895A (en) * 2021-01-19 2022-07-29 中芯国际集成电路制造(上海)有限公司 Semiconductor structure and forming method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101136328B (en) * 2006-08-29 2010-11-17 东部高科股份有限公司 Gate of semiconductor device and method for forming the same
CN104716172A (en) * 2013-12-12 2015-06-17 中芯国际集成电路制造(上海)有限公司 Semiconductor device and manufacturing method thereof
CN106328529A (en) * 2015-06-30 2017-01-11 中芯国际集成电路制造(上海)有限公司 MOS (Metal-Oxide-Semiconductor) transistor and formation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4528460B2 (en) * 2000-06-30 2010-08-18 株式会社東芝 Semiconductor element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101136328B (en) * 2006-08-29 2010-11-17 东部高科股份有限公司 Gate of semiconductor device and method for forming the same
CN104716172A (en) * 2013-12-12 2015-06-17 中芯国际集成电路制造(上海)有限公司 Semiconductor device and manufacturing method thereof
CN106328529A (en) * 2015-06-30 2017-01-11 中芯国际集成电路制造(上海)有限公司 MOS (Metal-Oxide-Semiconductor) transistor and formation method thereof

Also Published As

Publication number Publication date
CN106409677A (en) 2017-02-15

Similar Documents

Publication Publication Date Title
CN106409677B (en) Semiconductor device and method of forming the same
CN101661883B (en) Manufacturing method of semiconductor element
TWI693634B (en) Method of manufacturing semiconductor devices
TWI392030B (en) Semiconductor device manufacturing method
CN105990145B (en) A kind of semiconductor devices and preparation method thereof and electronic device
TWI756544B (en) Semiconductor device and fabrication method thereof
CN112864009B (en) Method for manufacturing semiconductor device, high-K dielectric structure and method for manufacturing high-K dielectric structure
CN106653588A (en) Method of manufacturing gate structure in semiconductor device
CN108122851B (en) Multi-threshold voltage transistor and method of forming the same
CN106298527B (en) PMOS transistor and forming method thereof
US10483371B2 (en) Semiconductor structure and fabrication method thereof
CN104752447B (en) A kind of semiconductor devices and preparation method thereof
CN103545190A (en) Method for forming grid structure, method for forming semiconductor device and semiconductor device
TWI730478B (en) Method of manufacturing semiconductor devices and semiconductor devices
CN111834223A (en) Semiconductor device and manufacturing method
CN106328529B (en) MOS transistor and forming method thereof
CN106611788B (en) Method of forming a semiconductor structure
CN104752349B (en) A method of making semiconductor devices
CN104299994B (en) The forming method of transistor and transistor
CN107424926A (en) A kind of semiconductor devices and its manufacture method
CN102067287A (en) Interfacial layer regrowth control in high-K gate structure for field effect transistor
CN104465378B (en) The production method of semiconductor devices
CN107919323A (en) Semiconductor structure and forming method thereof
TWI822361B (en) Method of forming gate stack, gate structure and method of forming the same
TWI859921B (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant