CN106449850A - High efficiency silicon-based heterojunction double-sided battery and its preparation method - Google Patents
High efficiency silicon-based heterojunction double-sided battery and its preparation method Download PDFInfo
- Publication number
- CN106449850A CN106449850A CN201510474317.3A CN201510474317A CN106449850A CN 106449850 A CN106449850 A CN 106449850A CN 201510474317 A CN201510474317 A CN 201510474317A CN 106449850 A CN106449850 A CN 106449850A
- Authority
- CN
- China
- Prior art keywords
- amorphous silicon
- intrinsic amorphous
- layer
- silicon layer
- type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 96
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 96
- 239000010703 silicon Substances 0.000 title claims abstract description 96
- 238000002360 preparation method Methods 0.000 title abstract description 12
- 229910021417 amorphous silicon Inorganic materials 0.000 claims abstract description 220
- 239000002184 metal Substances 0.000 claims abstract description 27
- 238000000151 deposition Methods 0.000 claims description 37
- 238000000034 method Methods 0.000 claims description 23
- 238000005229 chemical vapour deposition Methods 0.000 claims description 21
- 238000006243 chemical reaction Methods 0.000 claims description 12
- 238000005240 physical vapour deposition Methods 0.000 claims description 11
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 10
- 239000002019 doping agent Substances 0.000 claims description 8
- 230000008021 deposition Effects 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims 1
- 238000007740 vapor deposition Methods 0.000 claims 1
- 229910021419 crystalline silicon Inorganic materials 0.000 abstract description 14
- 238000005215 recombination Methods 0.000 abstract description 6
- 230000006798 recombination Effects 0.000 abstract description 6
- 230000000903 blocking effect Effects 0.000 abstract description 2
- 239000010408 film Substances 0.000 description 79
- 239000007789 gas Substances 0.000 description 9
- 239000010409 thin film Substances 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 238000009713 electroplating Methods 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 230000005684 electric field Effects 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
- H10F10/10—Individual photovoltaic cells, e.g. solar cells having potential barriers
- H10F10/16—Photovoltaic cells having only PN heterojunction potential barriers
- H10F10/164—Photovoltaic cells having only PN heterojunction potential barriers comprising heterojunctions with Group IV materials, e.g. ITO/Si or GaAs/SiGe photovoltaic cells
- H10F10/165—Photovoltaic cells having only PN heterojunction potential barriers comprising heterojunctions with Group IV materials, e.g. ITO/Si or GaAs/SiGe photovoltaic cells the heterojunctions being Group IV-IV heterojunctions, e.g. Si/Ge, SiGe/Si or Si/SiC photovoltaic cells
- H10F10/166—Photovoltaic cells having only PN heterojunction potential barriers comprising heterojunctions with Group IV materials, e.g. ITO/Si or GaAs/SiGe photovoltaic cells the heterojunctions being Group IV-IV heterojunctions, e.g. Si/Ge, SiGe/Si or Si/SiC photovoltaic cells the Group IV-IV heterojunctions being heterojunctions of crystalline and amorphous materials, e.g. silicon heterojunction [SHJ] photovoltaic cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/10—Manufacture or treatment of devices covered by this subclass the devices comprising amorphous semiconductor material
- H10F71/103—Manufacture or treatment of devices covered by this subclass the devices comprising amorphous semiconductor material including only Group IV materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
Abstract
本发明公开了一种高效硅基异质结双面电池及其制备方法,其中所述一种高效硅基异质结双面电池,包括:N型硅片;在所述N型硅片的正面依序设有第一本征非晶硅层、第二本征非晶硅层、P型掺杂非晶硅层、透明导电膜层、金属栅线电极;所述第二本征非晶硅层的电子带隙大于第一本征非晶硅层;在所述N型硅片的反面依序设有第三本征非晶硅层、N型掺杂非晶硅层、透明导电膜层,金属栅线电极。本发明通过的第一本征非晶硅层和第二本征非晶硅层分别在不同的腔室内制备完成,第一本征非晶硅层的制备温度比第二本征非晶硅层的制备温度高,从而使得第二本征非晶硅层具有相对较宽的电子带隙,其对应于晶体硅的禁带宽度,因此可作为阻挡层利用带宽的差异阻挡电子扩散到发射极,减少了电子与空穴的复合,从而提高了电池片的电学性能。
The invention discloses a high-efficiency silicon-based heterojunction double-sided battery and a preparation method thereof, wherein the high-efficiency silicon-based heterojunction double-sided battery comprises: an N-type silicon wafer; The front is sequentially provided with a first intrinsic amorphous silicon layer, a second intrinsic amorphous silicon layer, a P-type doped amorphous silicon layer, a transparent conductive film layer, and a metal grid electrode; the second intrinsic amorphous The electronic band gap of the silicon layer is greater than that of the first intrinsic amorphous silicon layer; on the reverse side of the N-type silicon wafer, a third intrinsic amorphous silicon layer, an N-type doped amorphous silicon layer, and a transparent conductive film are arranged in sequence. layer, metal grid electrodes. The first intrinsic amorphous silicon layer and the second intrinsic amorphous silicon layer adopted in the present invention are respectively prepared in different chambers, and the preparation temperature of the first intrinsic amorphous silicon layer is higher than that of the second intrinsic amorphous silicon layer. The preparation temperature is high, so that the second intrinsic amorphous silicon layer has a relatively wide electronic band gap, which corresponds to the forbidden band width of crystalline silicon, so it can be used as a blocking layer to prevent electrons from diffusing to the emitter by utilizing the difference in bandwidth, The recombination of electrons and holes is reduced, thereby improving the electrical performance of the battery sheet.
Description
技术领域technical field
本发明涉及太阳能电池领域,尤其涉及一种高效硅基异质结双面电池及其制备方法。The invention relates to the field of solar cells, in particular to a high-efficiency silicon-based heterojunction double-sided cell and a preparation method thereof.
背景技术Background technique
薄膜太阳能电池是在基板上沉积很薄的光电材料形成的一种太阳能电池。薄膜太阳能电池弱光条件下仍可发电,其生产过程能耗低,具备大幅度降低原料和制造成本的潜力,因此,市场对薄膜太阳能电池的需求正逐渐增长,而薄膜太阳能电池技术更是成为近年来的研究热点。其中提高光电转换效率,降低成本是太阳能行业的终极目标。A thin film solar cell is a solar cell formed by depositing a thin photoelectric material on a substrate. Thin-film solar cells can still generate electricity under weak light conditions, and their production process consumes less energy, which has the potential to greatly reduce raw material and manufacturing costs. Therefore, the market demand for thin-film solar cells is gradually increasing, and thin-film solar cell technology has become a research hotspot in recent years. Among them, improving photoelectric conversion efficiency and reducing costs are the ultimate goals of the solar industry.
近年来随着硅材料的成本降低,使硅基太阳能电池更有吸引力。为了提高硅基太阳能电池的转换效率:其中两种技术已被广泛研究并应用于大规模生产。一个是移除前格栅和汇流条,集成发射极和集电极至背面整合,称为交指背接触电极(IBC);另一个是基于异质结技术来增加开路电压,主要是因为薄膜非晶硅的电子带隙比晶体硅更高。薄膜硅含有氢,通常是通过化学气相沉积的方法沉积至晶体硅片的表面,其厚度小于10nm,用来钝化硅表面的悬挂键。异质结技术的优点是形成PN结的工艺简单,外观看正反结构对称,因此正反两面均可吸光,通过优化电池片的放置角度,反面也可吸收环境中的散射光用于增加短路电流,使得电池片输出功率可增加10~20%。Silicon-based solar cells have become more attractive in recent years as the cost of the silicon material has decreased. To improve the conversion efficiency of silicon-based solar cells: two of these techniques have been extensively studied and applied to large-scale production. One is to remove the front grid and bus bars, and integrate the emitter and collector to the back, which is called interdigitated back contact (IBC); the other is based on heterojunction technology to increase the open circuit voltage, mainly because the thin film is not Crystalline silicon has a higher electronic bandgap than crystalline silicon. Thin-film silicon contains hydrogen and is usually deposited onto the surface of a crystalline silicon wafer by chemical vapor deposition with a thickness of less than 10 nm to passivate the dangling bonds on the silicon surface. The advantage of heterojunction technology is that the process of forming a PN junction is simple, and the front and back structures are symmetrical in appearance, so both sides can absorb light. By optimizing the placement angle of the cell, the back side can also absorb scattered light in the environment to increase short circuits. Current, so that the output power of the cell can be increased by 10-20%.
晶硅异质结太阳能电池通常采用N型晶体硅作为衬底,主要是因为N型晶体硅含杂质少,普遍少子寿命高,其与P型非晶硅膜层因接触形成的PN结内的自建电场高,所以更容易获得电池片的高开压。由于自建电场高,也更容易分离PN结内及晶体硅中产生的载流子即电子和空穴,但是由于电子的扩散作用,电子也会向发射极移动,从而造成电子与空穴在发射极区的复合,减少了电池片的短路电流,降低了电池片的光电转换效率即输出功率。Crystalline silicon heterojunction solar cells usually use N-type crystalline silicon as the substrate, mainly because N-type crystalline silicon contains less impurities and generally has a high minority carrier life. The self-built electric field is high, so it is easier to obtain a high opening voltage of the cell. Due to the high self-built electric field, it is easier to separate the carriers generated in the PN junction and in the crystalline silicon, that is, electrons and holes. However, due to the diffusion of electrons, electrons will also move to the emitter, resulting in electrons and holes being separated. The recombination of the emitter region reduces the short-circuit current of the cell and reduces the photoelectric conversion efficiency of the cell, that is, the output power.
发明内容Contents of the invention
为了解决现有技术中的问题,本发明的目的是提供一种高效硅基异质结双面电池及其制备方法,其可以很好的防止载流子中的电子扩散到发射极区,减少电子与空穴的复合,从而增加了电池片的短路电流。In order to solve the problems in the prior art, the object of the present invention is to provide a high-efficiency silicon-based heterojunction double-sided battery and its preparation method, which can well prevent the electrons in the carriers from diffusing to the emitter region, reducing The recombination of electrons and holes increases the short-circuit current of the cell.
为实现上述目的,本发明采用以下技术方案:To achieve the above object, the present invention adopts the following technical solutions:
一种高效硅基异质结双面电池,包括:N型硅片;在所述N型硅片的正面依序设有第一本征非晶硅层、第二本征非晶硅层、P型掺杂非晶硅层、透明导电膜层、金属栅线电极;所述第二本征非晶硅层的电子带隙大于第一本征非晶硅层;在所述N型硅片的反面依序设有第三本征非晶硅层、N型掺杂非晶硅层、透明导电膜层,金属栅线电极。A high-efficiency silicon-based heterojunction double-sided cell, comprising: an N-type silicon wafer; a first intrinsic amorphous silicon layer, a second intrinsic amorphous silicon layer, A P-type doped amorphous silicon layer, a transparent conductive film layer, and a metal grid electrode; the electronic band gap of the second intrinsic amorphous silicon layer is greater than that of the first intrinsic amorphous silicon layer; on the N-type silicon wafer The reverse side is sequentially provided with a third intrinsic amorphous silicon layer, an N-type doped amorphous silicon layer, a transparent conductive film layer, and a metal grid line electrode.
优选的,所述第二本征非晶硅膜层的厚度小于1nm,第一本征非晶硅膜层和第三本征非晶硅膜层的厚度分别为5-10nm,所述P型掺杂非晶硅层和N型掺杂非晶硅层的厚度分别为5-10nm,设在N型硅片正面的透明导电膜的厚度为70-110nm,设在N型硅片反面的透明导电膜的厚度为25-110nm。Preferably, the thickness of the second intrinsic amorphous silicon film layer is less than 1 nm, the thicknesses of the first intrinsic amorphous silicon film layer and the third intrinsic amorphous silicon film layer are respectively 5-10 nm, and the P-type The thicknesses of the doped amorphous silicon layer and the N-type doped amorphous silicon layer are 5-10nm respectively, the thickness of the transparent conductive film on the front side of the N-type silicon chip is 70-110nm, and the transparent conductive film on the back side of the N-type silicon chip is The thickness of the conductive film is 25-110 nm.
本发明还提供了一种高效硅基异质结双面电池的制备方法,包括以下步骤:提供一N型硅片;在第一温度条件下,在N型硅片的正反两面上分别通过化学气相沉积法,沉积第一本征非晶硅膜层和第三本征非晶硅膜层;在第三本征非晶硅层上沉积N型掺杂非晶硅层;在第二温度条件下,在第一本征非晶硅膜层上沉积第二本征非晶硅膜层和P型掺杂非晶硅层,所述第二本征非晶硅层的电子带隙大于第一本征非晶硅层;分别在P型掺杂非晶硅层和N型掺杂非晶硅层上通过PVD磁控溅射沉积透明导电膜;在N型硅片的正反两面的透明导电膜上形成金属栅线电极。The present invention also provides a method for preparing a high-efficiency silicon-based heterojunction double-sided cell, comprising the following steps: providing an N-type silicon chip; Chemical vapor deposition method, depositing the first intrinsic amorphous silicon film layer and the third intrinsic amorphous silicon film layer; depositing an N-type doped amorphous silicon layer on the third intrinsic amorphous silicon layer; at a second temperature Under the condition, a second intrinsic amorphous silicon film layer and a P-type doped amorphous silicon layer are deposited on the first intrinsic amorphous silicon film layer, and the electron band gap of the second intrinsic amorphous silicon layer is larger than that of the first intrinsic amorphous silicon layer. An intrinsic amorphous silicon layer; a transparent conductive film is deposited on the P-type doped amorphous silicon layer and the N-type doped amorphous silicon layer by PVD magnetron sputtering; the transparent film on the front and back sides of the N-type silicon wafer A metal grid line electrode is formed on the conductive film.
优选的,所述在N型硅片的正反两面上分别通过化学气相沉积法沉积第一本征非晶硅膜层和第三本征非晶硅膜层具体为:在第一温度条件下,将N型硅片放置反应腔中,往反应腔中通入SiH4和H2的混合气体,通过化学气相沉积法在N型硅片的正反两面上依次沉积形成第一本征非晶硅膜层和第三本征非晶硅膜层。Preferably, the deposition of the first intrinsic amorphous silicon film layer and the third intrinsic amorphous silicon film layer on the front and back sides of the N-type silicon wafer by chemical vapor deposition method is specifically: under the first temperature condition , put the N-type silicon wafer in the reaction chamber, pass the mixed gas of SiH 4 and H 2 into the reaction chamber, and deposit the first intrinsic amorphous silicon on the front and back sides of the N-type silicon wafer by chemical vapor deposition method. a silicon film layer and a third intrinsic amorphous silicon film layer.
优选的,所述在第三本征非晶硅层上沉积N型掺杂非晶硅层具体为:将形成第一本征非晶硅膜层和第三本征非晶硅膜层的N型硅片放入第一掺杂腔内,往第一掺杂腔中通入SiH4、H2以及含掺杂剂的气体,由此在第三本征非晶硅层上沉积N型掺杂非晶硅层。Preferably, the depositing the N-type doped amorphous silicon layer on the third intrinsic amorphous silicon layer is specifically: the N type that will form the first intrinsic amorphous silicon film layer and the third intrinsic amorphous silicon film layer Type silicon wafer is placed in the first doping chamber, and SiH 4 , H 2 and dopant-containing gas are introduced into the first doping chamber, thereby depositing N-type doped silicon on the third intrinsic amorphous silicon layer. amorphous silicon layer.
优选的,所述在第一本征非晶硅膜层上沉积第二本征非晶硅膜层和P型掺杂非晶硅层具体为:在第二温度条件下,将在第三本征非晶硅层上形成N型掺杂非晶硅层的N型硅片放入第二掺杂腔内,先在第二掺杂腔内通入SiH4和H2的混合气体,通过化学气相沉积的方法在第一本征非晶硅膜层上沉积第二本征非晶硅膜层后;继续通入SiH4和H2的混合气体,并且同步通入含掺杂剂的气体,在第二本征非晶硅膜层上形成P型掺杂非晶硅层。Preferably, the depositing the second intrinsic amorphous silicon film layer and the P-type doped amorphous silicon layer on the first intrinsic amorphous silicon film layer is specifically: under the second temperature condition, the third intrinsic The N-type silicon wafer with the N-type doped amorphous silicon layer formed on the non-crystalline silicon layer is put into the second doping chamber, and the mixed gas of SiH 4 and H 2 is introduced into the second doping chamber first, through chemical After the method of vapor phase deposition deposits the second intrinsic amorphous silicon film layer on the first intrinsic amorphous silicon film layer; continue to feed the mixed gas of SiH 4 and H 2 , and simultaneously feed the gas containing dopant, A P-type doped amorphous silicon layer is formed on the second intrinsic amorphous silicon film layer.
优选的,所述掺杂剂为P或B。Preferably, the dopant is P or B.
优选的,所述第一温度为150-250℃,所述第一温度比第二温度高至少20℃。Preferably, the first temperature is 150-250°C, and the first temperature is at least 20°C higher than the second temperature.
本发明还提供另一种高效硅基异质结双面电池的制备方法,包括以下步骤:提供一N型硅片;在第一温度条件下,在N型硅片的反面上通过化学气相沉积法分别沉积第三本征非晶硅膜层;在第三本征非晶硅层上沉积N型掺杂非晶硅层;在N型硅片的正面上通过化学气相沉积的方法分别沉积第一本征非晶硅膜层;在第二温度条件下,在第一本征非晶硅膜层上沉积第二本征非晶硅膜层和P型掺杂非晶硅层;所述第二本征非晶硅层的电子带隙大于第一本征非晶硅层;分别在P型掺杂非晶硅层和N型掺杂非晶硅层上通过PVD磁控溅射沉积透明导电膜;在N型硅片的正反两面的透明导电膜上同时形成金属栅线电极。The present invention also provides another method for preparing a high-efficiency silicon-based heterojunction double-sided battery, which includes the following steps: providing an N-type silicon wafer; under the first temperature condition, chemical vapor deposition respectively depositing the third intrinsic amorphous silicon film layer; depositing an N-type doped amorphous silicon layer on the third intrinsic amorphous silicon layer; An intrinsic amorphous silicon film layer; under a second temperature condition, a second intrinsic amorphous silicon film layer and a P-type doped amorphous silicon layer are deposited on the first intrinsic amorphous silicon film layer; the first The electronic bandgap of the two intrinsic amorphous silicon layers is greater than that of the first intrinsic amorphous silicon layer; transparent conductive materials are deposited on the P-type doped amorphous silicon layer and the N-type doped amorphous silicon layer by PVD magnetron sputtering respectively. film; metal grid line electrodes are simultaneously formed on the transparent conductive films on the front and back sides of the N-type silicon wafer.
本发明还提供另一种高效硅基异质结双面电池的制备方法,包括以下步骤:提供一N型硅片;在第一温度条件下,在N型硅片的正面上通过化学气相沉积法分别沉积第一本征非晶硅膜层;在第二温度条件下,在第一本征非晶硅膜层上沉积第二本征非晶硅膜层和P型掺杂非晶硅层;所述第二本征非晶硅层的电子带隙大于第一本征非晶硅层;在N型硅片的反面上通过化学气相沉积的方法分别沉积第三本征非晶硅膜层;在第三本征非晶硅层上沉积N型掺杂非晶硅层;分别在P型掺杂非晶硅层和N型掺杂非晶硅层上通过PVD磁控溅射沉积的方式形成透明导电膜;在N型硅片的正反两面的透明导电膜上同时形成金属栅线电极。The present invention also provides another method for preparing a high-efficiency silicon-based heterojunction double-sided battery, comprising the following steps: providing an N-type silicon wafer; under the first temperature condition, chemical vapor deposition The first intrinsic amorphous silicon film layer is deposited respectively by method; under the second temperature condition, the second intrinsic amorphous silicon film layer and the P-type doped amorphous silicon layer are deposited on the first intrinsic amorphous silicon film layer ; The electronic band gap of the second intrinsic amorphous silicon layer is greater than that of the first intrinsic amorphous silicon layer; the third intrinsic amorphous silicon film layer is respectively deposited by chemical vapor deposition on the reverse side of the N-type silicon wafer ; On the third intrinsic amorphous silicon layer, an N-type doped amorphous silicon layer is deposited; on a P-type doped amorphous silicon layer and an N-type doped amorphous silicon layer, respectively, by means of PVD magnetron sputtering deposition Forming a transparent conductive film; forming metal grid line electrodes on the transparent conductive film on the front and back sides of the N-type silicon wafer at the same time.
本发明采用以上技术方案,通过在所述N型硅片的一面设有第一本征非晶硅层、第二本征非晶硅层,而且第一本征非晶硅层和第二本征非晶硅层分别在不同的腔室内制备完成,第一本征非晶硅层的制备温度比第二本征非晶硅层的制备温度高,从而使得第二本征非晶硅层具有较大的电子带隙,因此可以用来作为阻挡层来阻挡电子扩散到发射极,减少了电子与空穴的复合,从而提高了电池片的电学性能,增加了电池片的光电转换效率即输出功率。The present invention adopts the above technical scheme, by providing a first intrinsic amorphous silicon layer and a second intrinsic amorphous silicon layer on one side of the N-type silicon wafer, and the first intrinsic amorphous silicon layer and the second intrinsic amorphous silicon layer The intrinsic amorphous silicon layers are prepared in different chambers, and the preparation temperature of the first intrinsic amorphous silicon layer is higher than that of the second intrinsic amorphous silicon layer, so that the second intrinsic amorphous silicon layer has Larger electronic band gap, so it can be used as a barrier layer to prevent electrons from diffusing to the emitter, reducing the recombination of electrons and holes, thereby improving the electrical performance of the cell and increasing the photoelectric conversion efficiency of the cell, that is, the output power.
附图说明Description of drawings
图1为本发明高效硅基异质结双面电池的结构示意图;Fig. 1 is a schematic structural view of a high-efficiency silicon-based heterojunction double-sided battery of the present invention;
图2为本发明的制备方法实施例一的流程示意图;Fig. 2 is the schematic flow chart of the first embodiment of the preparation method of the present invention;
图3为本发明的制备方法实施例二的流程示意图;Fig. 3 is the schematic flow chart of the second embodiment of the preparation method of the present invention;
图4为本发明的制备方法实施例三的流程示意图。Fig. 4 is a schematic flow diagram of Example 3 of the preparation method of the present invention.
具体实施方式detailed description
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.
如图1所示,本发明公开了一种高效硅基异质结双面电池,其包括:As shown in Figure 1, the present invention discloses a high-efficiency silicon-based heterojunction bifacial battery, which includes:
N型硅片1;N-type silicon wafer 1;
在所述N型硅片1的正面依序设有第一本征非晶硅层2、第二本征非晶硅层3、P型掺杂非晶硅层4、透明导电膜层5、金属栅线电极6;On the front side of the N-type silicon wafer 1, a first intrinsic amorphous silicon layer 2, a second intrinsic amorphous silicon layer 3, a P-type doped amorphous silicon layer 4, a transparent conductive film layer 5, Metal grid electrode 6;
在所述N型硅片的反面依序设有第三本征非晶硅层7、N型掺杂非晶硅层8、透明导电膜层9、金属栅线电极10。A third intrinsic amorphous silicon layer 7 , an N-type doped amorphous silicon layer 8 , a transparent conductive film layer 9 , and a metal grid line electrode 10 are arranged in sequence on the reverse side of the N-type silicon chip.
其中,所述第二本征非晶硅层3的电子带隙大于第一本征非晶硅层2。所述第二本征非晶硅膜层的厚度小于1nm,第一本征非晶硅膜层和第三本征非晶硅膜层的厚度分别为5-10nm,所述N型掺杂非晶硅层和P型掺杂非晶硅层的厚度分别为5-10nm,设在N型硅片正面的透明导电膜的厚度为70-110nm,设在N型硅片反面的透明导电膜的厚度为25-110nm。Wherein, the electronic band gap of the second intrinsic amorphous silicon layer 3 is larger than that of the first intrinsic amorphous silicon layer 2 . The thickness of the second intrinsic amorphous silicon film layer is less than 1 nm, the thicknesses of the first intrinsic amorphous silicon film layer and the third intrinsic amorphous silicon film layer are respectively 5-10 nm, and the N-type doped non-crystalline silicon film layer is The thicknesses of the crystalline silicon layer and the P-type doped amorphous silicon layer are 5-10nm respectively, the thickness of the transparent conductive film arranged on the front side of the N-type silicon wafer is 70-110nm, and the thickness of the transparent conductive film arranged on the reverse side of the N-type silicon wafer is The thickness is 25-110nm.
本发明中所述的N型硅片可以为单晶硅片或者多晶硅片,本发明的电池在太阳光的照射下,会在其PN结中及衬底的N-型晶体硅里产生大量的电子与空穴,通常PN结中的自建电场会分离产生的电子与空穴。对于N-型晶体硅,其少子为空穴,因此空穴向受光面移动,而多子电子会向相反的方向移动而产生电流。但是由于电子扩散的作用,部分电子也会向受光面移动,从而增加了电子与空穴在PN结区的复合几率,造成电子的流失,降低了电池片的短路电流。本发明通过在第一本征非晶硅层2增加第二本征非晶硅层3,且第二本征非晶硅层3的电子带隙大于第一本征非晶硅层2,因此可以用来作为阻挡层来阻挡电子扩散到PN结区,即发射极,减少了电子与空穴的复合,从而提高了电池片的电学性能,增加了电池片的光电转换效率即输出功率。The N-type silicon wafer described in the present invention can be a monocrystalline silicon wafer or a polycrystalline silicon wafer. Under the irradiation of sunlight, the battery of the present invention will generate a large amount of carbon dioxide in its PN junction and in the N-type crystalline silicon of the substrate. Electrons and holes, usually the self-built electric field in the PN junction will separate the generated electrons and holes. For N-type crystalline silicon, the minority electrons are holes, so the holes move to the light-receiving surface, while the majority electrons move in the opposite direction to generate current. However, due to the effect of electron diffusion, some electrons will also move to the light-receiving surface, thereby increasing the recombination probability of electrons and holes in the PN junction area, resulting in the loss of electrons and reducing the short-circuit current of the cell. In the present invention, the second intrinsic amorphous silicon layer 3 is added to the first intrinsic amorphous silicon layer 2, and the electronic band gap of the second intrinsic amorphous silicon layer 3 is larger than that of the first intrinsic amorphous silicon layer 2, so It can be used as a barrier layer to prevent electrons from diffusing to the PN junction region, that is, the emitter, which reduces the recombination of electrons and holes, thereby improving the electrical performance of the cell and increasing the photoelectric conversion efficiency of the cell, that is, the output power.
实施例一:Embodiment one:
如图2所示,本发明公开了一种高效硅基异质结双面电池的制备方法,其包括以下步骤:As shown in Figure 2, the present invention discloses a method for preparing a high-efficiency silicon-based heterojunction double-sided battery, which includes the following steps:
S101:提供一N型硅片;S101: providing an N-type silicon wafer;
S102:在第一温度条件下,在N型硅片的正反两面上分别通过化学气相沉积法分别沉积第一本征非晶硅膜层和第三本征非晶硅膜层;S102: Under the first temperature condition, respectively deposit a first intrinsic amorphous silicon film layer and a third intrinsic amorphous silicon film layer by chemical vapor deposition on both sides of the N-type silicon wafer;
S103:在第三本征非晶硅层上沉积N型掺杂非晶硅层;S103: Depositing an N-type doped amorphous silicon layer on the third intrinsic amorphous silicon layer;
S104:在第二温度条件下,在第一本征非晶硅膜层上沉积第二本征非晶硅膜层和P型掺杂非晶硅层;S104: Depositing a second intrinsic amorphous silicon film layer and a P-type doped amorphous silicon layer on the first intrinsic amorphous silicon film layer under a second temperature condition;
S105:分别在P型掺杂非晶硅层和N型掺杂非晶硅层上通过PVD(物理气相沉积法)磁控溅射沉积的方式沉积透明导电膜;S105: Depositing a transparent conductive film on the P-type doped amorphous silicon layer and the N-type doped amorphous silicon layer by PVD (Physical Vapor Deposition) magnetron sputtering deposition;
S106:在两面的透明导电膜上同时电镀金属栅线电极。S106: Simultaneously electroplating metal grid line electrodes on both sides of the transparent conductive film.
具体的步骤可以如下:The specific steps can be as follows:
步骤1:提供一N型硅片,对N型硅片清洗和制绒,然后在150-220℃温度条件下,将N型硅片放置反应腔中,往反应腔中通入SiH4和H2的混合气体,其中H2的含量为5至20%,通过化学气相沉积的方法在N型硅片的两面上沉积形成第一本征非晶硅膜层和第三本征非晶硅膜层。Step 1: Provide an N-type silicon wafer, clean and texture the N-type silicon wafer, then place the N-type silicon wafer in the reaction chamber at a temperature of 150-220°C, and feed SiH 4 and H into the reaction chamber 2 , wherein the content of H2 is 5 to 20%, and the first intrinsic amorphous silicon film layer and the third intrinsic amorphous silicon film are deposited on both sides of the N-type silicon wafer by chemical vapor deposition. layer.
步骤2:将形成第一本征非晶硅膜层和第三本征非晶硅膜层的N型硅片放入第一掺杂腔内,往第一掺杂腔中通入SiH4、H2以及含掺杂剂P的气体,由此在第三本征非晶硅层上沉积N型掺杂非晶硅层;Step 2: Put the N-type silicon wafer forming the first intrinsic amorphous silicon film layer and the third intrinsic amorphous silicon film layer into the first doping chamber, and inject SiH 4 , H 2 and a gas containing dopant P, thereby depositing an N-type doped amorphous silicon layer on the third intrinsic amorphous silicon layer;
步骤3:在比150-220℃至少低20℃的温度条件下,将在第三本征非晶硅层上形成N型掺杂非晶硅层的N型硅片放入第二掺杂腔内,先在第二掺杂腔内通入SiH4和H2的混合气体,通过化学气相沉积法在第一本征非晶硅膜层上沉积第二本征非晶硅膜层;继续通入SiH4和H2气体,并且同步通入含掺杂剂B的气体,在第二本征非晶硅膜层上形成P型掺杂非晶硅层;Step 3: Put the N-type silicon wafer with the N-type doped amorphous silicon layer formed on the third intrinsic amorphous silicon layer into the second doping chamber at a temperature at least 20°C lower than 150-220°C In the second doping chamber, the mixed gas of SiH 4 and H 2 is first passed into the second doping chamber, and the second intrinsic amorphous silicon film layer is deposited on the first intrinsic amorphous silicon film layer by chemical vapor deposition; continue to pass through Inject SiH 4 and H 2 gases, and simultaneously pass into the gas containing dopant B to form a P-type doped amorphous silicon layer on the second intrinsic amorphous silicon film layer;
步骤4:在受光面的P型掺杂非晶硅层和背光面的N型掺杂非晶硅层上分别通过PVD磁控溅射的方法生成透明导电膜层和金属叠层,然后再在金属叠层上进行干膜掩膜、曝光、显影后形成金属栅线图案;之后通过电镀的方法对漏出的金属栅线图案加厚。Step 4: On the P-type doped amorphous silicon layer on the light-receiving surface and the N-type doped amorphous silicon layer on the backlight surface, a transparent conductive film layer and a metal stack are respectively generated by PVD magnetron sputtering, and then on the A metal grid line pattern is formed after dry film masking, exposure, and development are carried out on the metal stack; then, the leaked metal grid line pattern is thickened by electroplating.
步骤5:去除掉干膜,并对金属叠层进行选择性腐蚀,金属叠层未被加厚的区域会漏出透明导电膜层,从而在表面形成金属栅线图案,至此完成电池制备。Step 5: Remove the dry film and perform selective etching on the metal stack. The area where the metal stack is not thickened will leak the transparent conductive film layer, thereby forming a metal grid line pattern on the surface, and the battery preparation is completed.
实施例二:Embodiment two:
如图3所示,与实施例一不同的是,本实施例中其主要是先制备N型硅片其中一面的第三本征非晶硅膜层和N型掺杂非晶硅层,然后再制备另外一面的第一本征非晶硅层、第二本征非晶硅层和P型掺杂非晶硅层,最后制备透明导电膜层及金属栅线电极,其具体包括以下步骤:As shown in Figure 3, different from the first embodiment, in this embodiment, the third intrinsic amorphous silicon film layer and the N-type doped amorphous silicon layer on one side of the N-type silicon wafer are prepared first, and then Then prepare the first intrinsic amorphous silicon layer, the second intrinsic amorphous silicon layer and the P-type doped amorphous silicon layer on the other side, and finally prepare a transparent conductive film layer and a metal grid line electrode, which specifically includes the following steps:
S201:提供一N型硅片;S201: providing an N-type silicon wafer;
S202:在第一温度条件下,在N型硅片的反面上通过化学气相沉积的方法分别沉积第三本征非晶硅膜层;S202: Under the first temperature condition, respectively deposit a third intrinsic amorphous silicon film layer on the reverse side of the N-type silicon wafer by chemical vapor deposition;
S203:在第三本征非晶硅层上沉积N型掺杂非晶硅层;S203: depositing an N-type doped amorphous silicon layer on the third intrinsic amorphous silicon layer;
S204:在N型硅片的正面上通过化学气相沉积法分别沉积第一本征非晶硅膜层;S204: respectively depositing a first intrinsic amorphous silicon film layer on the front side of the N-type silicon wafer by chemical vapor deposition;
S205:在第二温度条件下,在第一本征非晶硅膜层上沉积第二本征非晶硅膜层和P型掺杂非晶硅层;S205: Depositing a second intrinsic amorphous silicon film layer and a P-type doped amorphous silicon layer on the first intrinsic amorphous silicon film layer under a second temperature condition;
S206:分别在P型掺杂非晶硅层和N型掺杂非晶硅层上通过PVD磁控溅射沉积的方式形成透明导电膜;S206: Form a transparent conductive film on the P-type doped amorphous silicon layer and the N-type doped amorphous silicon layer by PVD magnetron sputtering deposition;
S207:在N型硅片的正反两面的透明导电膜上同时电镀金属栅线电极。S207: electroplating metal grid line electrodes on the transparent conductive films on the front and back sides of the N-type silicon wafer at the same time.
所述第一温度比第二温度高至少20℃。The first temperature is at least 20°C higher than the second temperature.
实施例三:Embodiment three:
如图4所示,与实施例一不同的是,本实施例中其主要是先制备N型硅片其中一面的第一本征非晶硅层、第二本征非晶硅层和P型掺杂非晶硅层,然后再制备另一面的第三本征非晶硅膜层和N型掺杂非晶硅层,最后制备透明导电膜层及金属栅线电极,其具体包括以下步骤:As shown in Figure 4, the difference from Example 1 is that in this example, the first intrinsic amorphous silicon layer, the second intrinsic amorphous silicon layer and the P-type Doping the amorphous silicon layer, and then preparing the third intrinsic amorphous silicon film layer and the N-type doped amorphous silicon layer on the other side, and finally preparing the transparent conductive film layer and the metal grid line electrode, which specifically includes the following steps:
S301:提供一N型硅片;S301: providing an N-type silicon wafer;
S302:在第一温度条件下,在N型硅片的正面上通过化学气相沉积的方法分别沉积第一本征非晶硅膜层;S302: Depositing a first intrinsic amorphous silicon film layer on the front side of the N-type silicon wafer by chemical vapor deposition under the first temperature condition;
S303:在第二温度条件下,在第一本征非晶硅膜层上沉积第二本征非晶硅膜层和P型掺杂非晶硅层;S303: Depositing a second intrinsic amorphous silicon film layer and a P-type doped amorphous silicon layer on the first intrinsic amorphous silicon film layer under a second temperature condition;
S304:在N型硅片的反面上通过化学气相沉积法分别沉积第三本征非晶硅膜层;S304: respectively depositing a third intrinsic amorphous silicon film layer on the reverse surface of the N-type silicon wafer by chemical vapor deposition;
S305:在第三本征非晶硅层上沉积N型掺杂非晶硅层;S305: depositing an N-type doped amorphous silicon layer on the third intrinsic amorphous silicon layer;
S306:分别在P型掺杂非晶硅层和N型掺杂非晶硅层上通过PVD磁控溅射沉积的方式形成透明导电膜;S306: Forming a transparent conductive film on the P-type doped amorphous silicon layer and the N-type doped amorphous silicon layer by PVD magnetron sputtering deposition;
S307:在N型硅片的正反两面的透明导电膜上同时电镀金属栅线电极。S307: Electroplating metal grid line electrodes on the transparent conductive films on the front and back sides of the N-type silicon wafer at the same time.
所述第一温度比第二温度高至少20℃。The first temperature is at least 20°C higher than the second temperature.
本发明在N型基板的正反两面都设有金属栅线电极,这样使得电池片的正,反两面均可吸光,增加电池片的输出功率,通过在所述N型硅片的一面设有第一本征非晶硅层、第二本征非晶硅层,而且第一本征非晶硅层和第二本征非晶硅层分别在不同的腔室内制备完成,第一本征非晶硅层的制备温度比第二本征非晶硅层的制备温度高,从而使得第二本征非晶硅层具有较大的电子带隙,因此可以用来作为阻挡层来阻挡电子扩散到PN结区,即发射极,减少了电子的流失,提高了光电转换效率。其中,本发明公开的“硅基异质结双面电池片技术”,英文为“Silicon-based Heterojunction Double-sided Solar CellTechnology”,简写为“HDT”。In the present invention, metal grid wire electrodes are arranged on the front and back sides of the N-type substrate, so that the front and back sides of the cell can absorb light, and the output power of the cell can be increased. The first intrinsic amorphous silicon layer, the second intrinsic amorphous silicon layer, and the first intrinsic amorphous silicon layer and the second intrinsic amorphous silicon layer are respectively prepared in different chambers, the first intrinsic amorphous silicon layer The preparation temperature of the crystalline silicon layer is higher than that of the second intrinsic amorphous silicon layer, so that the second intrinsic amorphous silicon layer has a larger electronic band gap, so it can be used as a blocking layer to prevent electrons from diffusing to The PN junction area, that is, the emitter, reduces the loss of electrons and improves the photoelectric conversion efficiency. Among them, the "Silicon-based Heterojunction Double-sided Solar Cell Technology" disclosed in the present invention is "Silicon-based Heterojunction Double-sided Solar Cell Technology" in English, abbreviated as "HDT".
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention should be included in the protection of the present invention. within range.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201510474317.3A CN106449850B (en) | 2015-08-05 | 2015-08-05 | A kind of efficient silicon based hetero-junction double-side cell and preparation method thereof |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201510474317.3A CN106449850B (en) | 2015-08-05 | 2015-08-05 | A kind of efficient silicon based hetero-junction double-side cell and preparation method thereof |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN106449850A true CN106449850A (en) | 2017-02-22 |
| CN106449850B CN106449850B (en) | 2018-07-13 |
Family
ID=58092718
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201510474317.3A Active CN106449850B (en) | 2015-08-05 | 2015-08-05 | A kind of efficient silicon based hetero-junction double-side cell and preparation method thereof |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN106449850B (en) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107819052A (en) * | 2017-12-11 | 2018-03-20 | 晋能光伏技术有限责任公司 | A kind of efficiently crystal silicon non crystal heterogeneous agglomeration battery structure and preparation method thereof |
| CN111009593A (en) * | 2019-11-08 | 2020-04-14 | 江苏杰太光电技术有限公司 | Method for preparing local polycrystalline silicon thin film passivation contact based on PVD (physical vapor deposition) technology |
| CN112366232A (en) * | 2020-10-21 | 2021-02-12 | 长沙壹纳光电材料有限公司 | Heterojunction solar cell and preparation method and application thereof |
| CN114823935A (en) * | 2022-05-16 | 2022-07-29 | 东方日升新能源股份有限公司 | Heterojunction battery and preparation method thereof |
| CN115863490A (en) * | 2021-09-24 | 2023-03-28 | 嘉兴阿特斯技术研究院有限公司 | Method for depositing intrinsic amorphous silicon thin film by PECVD method, cell preparation method and cell |
| JP2024524608A (en) * | 2021-07-07 | 2024-07-05 | 安徽▲華▼晟新能源科技有限公司 | Heterojunction battery and method of manufacturing same |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102738291A (en) * | 2012-07-07 | 2012-10-17 | 蚌埠玻璃工业设计研究院 | Silicon-based heterojunction double-side solar cell and preparation method thereof |
| CN103000741A (en) * | 2012-11-21 | 2013-03-27 | 国电光伏(江苏)有限公司 | Black heterogeneous crystalline cell and manufacture method thereof |
| US20130112253A1 (en) * | 2011-11-08 | 2013-05-09 | Min-Seok Oh | Solar cell |
| CN104600157A (en) * | 2015-01-13 | 2015-05-06 | 福建铂阳精工设备有限公司 | Manufacturing method of hetero-junction solar cell and hetero-junction solar cell |
-
2015
- 2015-08-05 CN CN201510474317.3A patent/CN106449850B/en active Active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20130112253A1 (en) * | 2011-11-08 | 2013-05-09 | Min-Seok Oh | Solar cell |
| CN102738291A (en) * | 2012-07-07 | 2012-10-17 | 蚌埠玻璃工业设计研究院 | Silicon-based heterojunction double-side solar cell and preparation method thereof |
| CN103000741A (en) * | 2012-11-21 | 2013-03-27 | 国电光伏(江苏)有限公司 | Black heterogeneous crystalline cell and manufacture method thereof |
| CN104600157A (en) * | 2015-01-13 | 2015-05-06 | 福建铂阳精工设备有限公司 | Manufacturing method of hetero-junction solar cell and hetero-junction solar cell |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107819052A (en) * | 2017-12-11 | 2018-03-20 | 晋能光伏技术有限责任公司 | A kind of efficiently crystal silicon non crystal heterogeneous agglomeration battery structure and preparation method thereof |
| CN111009593A (en) * | 2019-11-08 | 2020-04-14 | 江苏杰太光电技术有限公司 | Method for preparing local polycrystalline silicon thin film passivation contact based on PVD (physical vapor deposition) technology |
| CN112366232A (en) * | 2020-10-21 | 2021-02-12 | 长沙壹纳光电材料有限公司 | Heterojunction solar cell and preparation method and application thereof |
| JP2024524608A (en) * | 2021-07-07 | 2024-07-05 | 安徽▲華▼晟新能源科技有限公司 | Heterojunction battery and method of manufacturing same |
| CN115863490A (en) * | 2021-09-24 | 2023-03-28 | 嘉兴阿特斯技术研究院有限公司 | Method for depositing intrinsic amorphous silicon thin film by PECVD method, cell preparation method and cell |
| CN114823935A (en) * | 2022-05-16 | 2022-07-29 | 东方日升新能源股份有限公司 | Heterojunction battery and preparation method thereof |
| CN114823935B (en) * | 2022-05-16 | 2024-05-03 | 东方日升新能源股份有限公司 | Heterojunction battery and preparation method thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| CN106449850B (en) | 2018-07-13 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR101000064B1 (en) | Heterojunction solar cell and its manufacturing method | |
| CN101611497B (en) | Solar cell | |
| CN106449850B (en) | A kind of efficient silicon based hetero-junction double-side cell and preparation method thereof | |
| CN102623517B (en) | Back contact type crystalline silicon solar cell and production method thereof | |
| CN102446991B (en) | Film solar battery based on crystalline silicon and manufacturing method thereof | |
| CN204651337U (en) | Hybrid solar cell | |
| CN109509807B (en) | Emitter structure of crystalline silicon heterojunction solar cell and preparation method thereof | |
| CN106601855A (en) | Preparation method of double-side power generation heterojunction solar cell | |
| CN102064216A (en) | Novel crystalline silicon solar cell and manufacturing method thereof | |
| KR101886818B1 (en) | Method for manufacturing of heterojunction silicon solar cell | |
| CN115172478B (en) | Solar cell and photovoltaic module | |
| CN104600157A (en) | Manufacturing method of hetero-junction solar cell and hetero-junction solar cell | |
| CN106057926A (en) | Passivated emitting electrode solar cell with laminated heterojunction structure and preparation method thereof | |
| CN102468365A (en) | Method for manufacturing double-sided solar cell | |
| CN102341919B (en) | Solar cell | |
| CN102683468A (en) | Emitter structure of crystal silicon heterojunction solar battery | |
| CN102201481A (en) | Novel N-type silicon hetero-junction battery with IBC (interdigitated back-contacted) structure and fabrication method thereof | |
| RU2590284C1 (en) | Solar cell | |
| CN114725225A (en) | A kind of high-efficiency P-type IBC battery and preparation method thereof | |
| JP5645734B2 (en) | Solar cell element | |
| CN210156406U (en) | Heterojunction solar cell structure with double-layer amorphous silicon intrinsic layer | |
| CN108172644B (en) | A kind of preparation method of phosphorus-doped cadmium telluride thin-film solar cell | |
| CN103107236B (en) | Heterojunction solar battery and preparation method thereof | |
| CN101459206A (en) | Manufacturing process for high-efficiency multi-junction solar cell | |
| CN210156405U (en) | Heterojunction cell structure with hydrogen annealed TCO conductive film |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| TR01 | Transfer of patent right |
Effective date of registration: 20201012 Address after: 362000 South Ring Road High-tech Park, Licheng District, Quanzhou City, Fujian Province Patentee after: GS-SOLAR (FUJIAN) Co.,Ltd. Address before: 362000, Quanzhou, Fujian province Licheng district on the streets of Sin Tong Community Patentee before: GS-SOLAR (CHINA) Co.,Ltd. |
|
| TR01 | Transfer of patent right | ||
| TR01 | Transfer of patent right |
Effective date of registration: 20211208 Address after: No.17, Quanyuan Road, Jinjiang Economic Development Zone (wuliyuan), Quanzhou City, Fujian Province, 362000 Patentee after: FUJIAN JINSHI ENERGY Co.,Ltd. Address before: 362000 Nanhuan high tech park, Licheng District, Quanzhou City, Fujian Province Patentee before: GS-SOLAR (FU JIAN) Co.,Ltd. |
|
| TR01 | Transfer of patent right |