[go: up one dir, main page]

CN106471671A - Antenna feeder integrated on a multilayer printed circuit board - Google Patents

Antenna feeder integrated on a multilayer printed circuit board Download PDF

Info

Publication number
CN106471671A
CN106471671A CN201580035709.8A CN201580035709A CN106471671A CN 106471671 A CN106471671 A CN 106471671A CN 201580035709 A CN201580035709 A CN 201580035709A CN 106471671 A CN106471671 A CN 106471671A
Authority
CN
China
Prior art keywords
antenna
pcb
conductive layer
layer
multilayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201580035709.8A
Other languages
Chinese (zh)
Other versions
CN106471671B (en
Inventor
伊奥安尼斯·扎尼蒂斯
罗伯特·门罗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of CN106471671A publication Critical patent/CN106471671A/en
Application granted granted Critical
Publication of CN106471671B publication Critical patent/CN106471671B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/18Vertical disposition of the antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/66High-frequency adaptations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
    • H01Q9/0457Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means electromagnetically coupled to the feed line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/20Two collinear substantially straight active elements; Substantially straight single active elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/0243Printed circuits associated with mounted high frequency components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/0969Apertured conductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10098Components for radio transmission, e.g. radio frequency identification [RFID] tag, printed or non-printed antennas

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Support Of Aerials (AREA)
  • Transceivers (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)

Abstract

本公开涉及为支持更高的数据速率而提供的预第五代(5G)或5G通信系统,超第四代(4G)通信系统,第四代(4G)通信系统诸如长期演进LTE。发射机包括用于将天线馈电器集成到多层印刷电路板(PCB)中的设备。本设备包括布置在具有缝隙开口的多层PCB之上的天线元件,缝隙开口基本上互相重叠并且使得RF信号能够从位于多层PCB导电层中的一个上的印刷传输线耦合。多层PCB板包括至少一个收发器单元和基带单元,使得在不降低天线带宽和效率的情况下将天线馈电器、收发器和基带单元集成到单个多层PCB板上。

The present disclosure relates to pre-fifth generation (5G) or 5G communication systems, beyond fourth generation (4G) communication systems, fourth generation (4G) communication systems such as Long Term Evolution LTE, provided to support higher data rates. The transmitter includes equipment for integrating the antenna feed into a multilayer printed circuit board (PCB). The device includes antenna elements disposed over a multilayer PCB having slot openings substantially overlapping each other and enabling coupling of RF signals from a printed transmission line on one of the conductive layers of the multilayer PCB. The multilayer PCB board includes at least one transceiver unit and baseband unit, so that the antenna feeder, transceiver and baseband unit are integrated into a single multilayer PCB board without reducing the bandwidth and efficiency of the antenna.

Description

集成在多层印刷电路板上的天线馈电器Antenna feeder integrated on a multilayer printed circuit board

技术领域technical field

本申请大体涉及无线通信装置,并且更具体地,涉及集成在多层印刷电路板上的天线馈电器。The present application relates generally to wireless communication devices and, more particularly, to antenna feeds integrated on multilayer printed circuit boards.

背景技术Background technique

为满足对由于第四代(4G)通信系统的发展而增加的无线数据通信量的需要,已经为研发改进的第五代(5G)或预5G通信系统做出了努力。因此,5G或预5G通信系统也称为“超4G网络”或“后长期演进(LTE)系统”。Efforts have been made to develop improved fifth generation (5G) or pre-5G communication systems in order to meet the demand for increased wireless data traffic due to the development of fourth generation (4G) communication systems. Therefore, the 5G or pre-5G communication system is also called "super 4G network" or "post-Long Term Evolution (LTE) system".

5G通信系统被认为是在例如60GHz波段的更高频率(毫米波)波段中实施,以便实现更高的数据速率。为了减少无线电波的传播损耗并且增大传输距离,在5G通信系统中讨论了波束成形、大规模多输入多输出(MIMO)、全维度MIMO(FD-MIDO)、阵列天线、模拟波束成形、大规模天线技术。5G communication systems are considered to be implemented in higher frequency (millimeter wave) bands such as the 60GHz band in order to achieve higher data rates. In order to reduce the propagation loss of radio waves and increase the transmission distance, beamforming, massive multiple-input multiple-output (MIMO), full-dimensional MIMO (FD-MIDO), array antennas, analog beamforming, large scale antenna technology.

另外,在5G通信系统中,正在基于先进小小区、云无线接入网络(RAN)、超密度网络、装置到装置(D2D)通信、无线回程、移动网络、协作通信、协作多点(CoMP)、接收端干扰消除等进行用于系统网络改进的研发。In addition, in the 5G communication system, based on advanced small cells, cloud radio access network (RAN), ultra-dense network, device-to-device (D2D) communication, wireless backhaul, mobile network, cooperative communication, coordinated multi-point (CoMP) , interference cancellation at the receiving end, etc. to conduct research and development for system network improvement.

在5G系统中,已经研发了作为先进编码调制(ACM)的混合频率移位键控(FSK)、正交幅度调制(FQAM)和滑动窗叠加编码(SWSC)、以及作为先进接入技术的滤波器组多载波(FBMC)、非正交多址接入(NOMA)和稀疏编码多址接入(SCMA)。In 5G systems, Hybrid Frequency Shift Keying (FSK), Quadrature Amplitude Modulation (FQAM) and Sliding Window Superposition Coding (SWSC) as Advanced Coded Modulation (ACM), and Filtering as Advanced Access Techniques have been developed. There are group multi-carrier (FBMC), non-orthogonal multiple access (NOMA) and sparse coded multiple access (SCMA).

FD-MIMO应用在基站(BS)处排列成二维点阵的大量有源天线元件。这样,BS阵列能够以提供充分的自由度来支持多用户MIMO(MU-MIMO)的方位角和仰角波束成形。基站的工作频率取决于频谱可用性、服务供应商和所使用的双工方案。例如,LTE TDD波段#41(2.496-2.69GHz)和#42(3.4-3.6GHz)以及FDD波段#7(2.5-2.57GHz UL和2.62-2.69GHzDL)以及#22(3.41-3.5GHz UL和3.51-3.6GHz DL)为FD-MIMO提供适当波谱。在这些频率波段处,波长在8-12厘米的范围内,鉴于FD-MIMO系统可由几百个有源天线组成,因此天线系统相对庞大。因而,有必要进行高度集成来保持总体较小的形状因数、低成本、轻重量并且避免不必要的功率损耗。这意味着构成有源天线系统的多个板(诸如,天线板、天线馈电板、收发器板和基带板)需要集成到一个紧凑单元中。FD-MIMO employs a large number of active antenna elements arranged in a two-dimensional lattice at a base station (BS). In this way, the BS array can support azimuth and elevation beamforming for multi-user MIMO (MU-MIMO) with sufficient degrees of freedom. The base station's operating frequency depends on spectrum availability, service provider, and duplexing scheme used. For example, LTE TDD band #41 (2.496-2.69GHz) and #42 (3.4-3.6GHz) and FDD band #7 (2.5-2.57GHz UL and 2.62-2.69GHzDL) and #22 (3.41-3.5GHz UL and 3.51 -3.6GHz DL) provides suitable spectrum for FD-MIMO. At these frequency bands, with wavelengths in the range of 8-12 cm, the antenna system is relatively bulky given that FD-MIMO systems can consist of several hundred active antennas. Thus, a high level of integration is necessary to maintain an overall small form factor, low cost, light weight and avoid unnecessary power loss. This means that multiple boards making up an active antenna system, such as antenna board, antenna feed board, transceiver board and baseband board, need to be integrated into one compact unit.

通常,集成收发器板和基带板需要多层PCB技术和极高效的系统架构。然而,天线和天线馈电板集成并不简单,因为其通常导致频带宽度和效率的损失。Typically, integrating transceiver boards and baseband boards requires multilayer PCB technology and extremely efficient system architectures. However, antenna and antenna feed board integration is not straightforward as it usually results in a loss of bandwidth and efficiency.

发明内容Contents of the invention

技术方案Technical solutions

在第一实施方式中,提供了天线系统。该天线系统包括布置成与多层印刷电路板(PCB)层叠接近的天线元件。多层PCB层叠包括多个交替的导电层和介电层,其中,第一导电层配置为用作天线接地面层并且包括缝隙开口,该缝隙开口的横向尺寸小于天线元件的横向尺寸,第二导电层配置为用作屏蔽层,第三导电层配置为用作系统接地面层。多层PCB层叠还包括至少两个第一缝隙开口,该至少两个第一缝隙开口的横向尺寸小于天线元件的横向尺寸,该至少两个第一缝隙开口布置在类似的横向位置处并且穿过至少两个连续的导电层,使得第一缝隙开口基本上互相重叠。所述多层PCB层叠还包括印刷在至少一个导电层上的传输线,传输线配置为传播射频(RF)信号并且配置为通过至少两个第一缝隙开口中的至少一个将RF信号耦合至天线元件。多层PCB层叠还包括具有配置为传播直流(DC)信号的部分的至少一个导电层。多层PCB层叠还包括电耦合至传输线的至少一个RF收发器单元和电耦合至RF收发器单元的至少一个基带处理单元。多层PCB层叠还包括多个导电层互连通孔,该多个导电层互连通孔使得所述多层PCB层叠中的所述接地面层与天线接地面层的部分之间、所述屏蔽层与所述导电层的部分之间能够电连接,该通孔布置成穿过所有导电层、跨多层PCB层叠的区域中不包括第一缝隙开口的实质部分分布。In a first embodiment, an antenna system is provided. The antenna system includes an antenna element arranged proximate to a multilayer printed circuit board (PCB) stack. The multilayer PCB stack-up includes a plurality of alternating conductive and dielectric layers, wherein a first conductive layer is configured to serve as an antenna ground plane and includes a slot opening having a lateral dimension smaller than that of the antenna element, a second The conductive layer is configured to function as a shielding layer, and the third conductive layer is configured to function as a system ground plane. The multilayer PCB stack-up also includes at least two first slot openings having lateral dimensions smaller than the lateral dimensions of the antenna element, the at least two first slot openings being arranged at similar lateral positions and passing through At least two continuous conductive layers such that the first slot openings substantially overlap each other. The multilayer PCB layup also includes a transmission line printed on the at least one conductive layer, the transmission line configured to propagate a radio frequency (RF) signal and to couple the RF signal to the antenna element through at least one of the at least two first slot openings. The multilayer PCB layup also includes at least one conductive layer having a portion configured to propagate a direct current (DC) signal. The multilayer PCB stack-up also includes at least one RF transceiver unit electrically coupled to the transmission line and at least one baseband processing unit electrically coupled to the RF transceiver unit. The multi-layer PCB stack-up also includes a plurality of conductive layer interconnection vias, the plurality of conductive layer interconnection holes make the ground plane layer and the antenna ground plane layer in the multi-layer PCB stack-up between parts, the The shielding layer is electrically connectable to portions of said conductive layer, the vias being arranged through all of the conductive layers, distributed across a substantial portion of the region of the multilayer PCB stack excluding the first slot opening.

根据以下附图、描述和权利要求,其它技术特征可对本领域技术人员显而易见。在本专利文件的全文中,对某些特定的词汇和短语进行了定义。本领域普通技术人员应理解的是,在绝大多数情况下,这些定义应用于这些所限定的词汇和短语的以往使用以及将来使用。Other technical features may be apparent to those skilled in the art from the following figures, descriptions and claims. Throughout this patent document, certain specific words and phrases are defined. Those of ordinary skill in the art should understand that these definitions apply to past uses, as well as future uses, of these defined words and phrases in most instances.

在开始以下具体实施方式之前,阐述在本专利文献全文中所使用的某些词汇和短于的定义可能是有利的。术语“耦合(couple)”及其派生词表示两个或更多元件之间的任何直接或间接通信,而不管这些元件是否互相物理接触。措辞“发送”、“接收”和“通信”及其派生词包括直接通信和间接通信。措辞“包括(include)”和“包括(comprise)”及其派生词表示没有限制的包括。措辞“或”是可兼的,表示和/或。短语“与……相关(associated with)”及其派生词表示包括(include)、包括在……中(be included within)、与……互连(interconnect with)、包含(contain)、包含在……中(be contained within)、连接至……或者与……连接(connect to or with)、耦合至……或与……耦合(couple to orwith)、可与……通信(be communicable with)、与……配合(cooperate with)、交叉(interleave)、并列(juxtapose)、与……接近(be proximate to)、结合至……或与……结合(be bound to or with)、具有……性质(have a property of)、与……有关系或和……有关系(have a relationship to or with)等。术语“控制器”表示控制至少一个操作的任何装置、系统或其部分。这种控制器可在硬件中实现或可在硬件和软件和/或固件的组合中实现。与任一特定控制器相关的功能都可以为集中式或分布式,无论是本地还是远程。当短语“中的至少一个”与项目的列表一起使用时,表示可使用所列项目中一个或多个的不同组合,并且可需要列表中的仅一个项目。例如“A、B和C中的至少一个”包括以下组合中的任一个:A、B、C、A和B、A和C、B和C、以及A和B和C。Before beginning the Detailed Description that follows, it may be advantageous to set forth certain terms and definitions of terms used throughout this patent document. The term "couple" and its derivatives mean any direct or indirect communication between two or more elements, whether or not those elements are in physical contact with each other. The terms "send", "receive" and "communicate" and their derivatives include direct and indirect communications. The words "include" and "comprise" and their derivatives mean inclusion without limitation. The word "or" is inclusive, meaning and/or. The phrase "associated with" and its derivatives mean include, be included within, interconnect with, contain, contained within be contained within, connect to or with, couple to or with, be communicable with, Cooperate with, interleave, juxtapose, be proximate to, be bound to or with, have the nature of (have a property of), have a relationship with ... or have a relationship with ... (have a relationship to or with), etc. The term "controller" means any device, system or part thereof that controls at least one operation. Such a controller may be implemented in hardware or in a combination of hardware and software and/or firmware. The functionality associated with any particular controller can be centralized or distributed, whether locally or remotely. When the phrase "at least one of" is used with a list of items, it means that different combinations of one or more of the listed items may be used and that only one of the listed items may be required. For example, "at least one of A, B, and C" includes any of the following combinations: A, B, C, A and B, A and C, B and C, and A and B and C.

附图说明Description of drawings

为了更完全理解本公开及其优点,现参考结合附图所作出的以下描述,其中,相同的附图标记表示相同的部件:For a more complete understanding of the present disclosure and its advantages, reference is now made to the following description taken in conjunction with the accompanying drawings, wherein like reference numerals indicate like parts:

图1示出了根据本公开的示例性无线网络;Figure 1 illustrates an exemplary wireless network according to the present disclosure;

图2A和图2B示出了根据本公开的示例性无线发送与接收路径;2A and 2B illustrate exemplary wireless transmit and receive paths according to the present disclosure;

图3A示出了根据本公开的示例性用户设备(UE);FIG. 3A shows an exemplary user equipment (UE) according to the present disclosure;

图3B示出了根据本公开的示例性演进型Node B(eNB);Figure 3B shows an exemplary evolved Node B (eNB) according to the present disclosure;

图4示出了使用缝隙耦合微带的贴片天线馈电器;Figure 4 shows a patch antenna feed using a slot-coupled microstrip;

图5示出了多层印刷电路板(PCB)贴片天线馈电器;Figure 5 shows a multilayer printed circuit board (PCB) patch antenna feeder;

图6示出了图4中典型的缝隙馈电器与图5中多层PCB缝隙馈电器的史密斯圆图天线阻抗;Figure 6 shows the Smith chart antenna impedance of the typical slot feeder in Figure 4 and the multilayer PCB slot feeder in Figure 5;

图7示出了使用连接件附接至多层PCB的天线馈电电路的图示;Figure 7 shows a diagram of an antenna feed circuit attached to a multi-layer PCB using connectors;

图8示出了根据本公开集成到多层PCB中的天线馈电电路;Figure 8 shows an antenna feed circuit integrated into a multi-layer PCB according to the present disclosure;

图9示出了根据本公开集成有天线馈电设备的多层PCB板;Fig. 9 shows a multi-layer PCB board integrated with an antenna feeding device according to the present disclosure;

图10示出了根据本公开位于所提出的天线馈电多层PCB之上的双极化天线贴片板;Figure 10 shows a dual polarized antenna patch board on top of the proposed antenna feed multilayer PCB according to the present disclosure;

图11示出了根据本公开的偶极天线组件;以及Figure 11 illustrates a dipole antenna assembly according to the present disclosure; and

图12和图13示出了根据本公开从图11的偶极天线PCB板到多层PCB的过渡。12 and 13 illustrate the transition from the dipole antenna PCB board of FIG. 11 to a multi-layer PCB according to the present disclosure.

具体实施方式detailed description

在本专利文献中,以下讨论的图1至图13以及用来描述本公开的原理的多个实施方式仅用作示例,并且不应以任何限制本公开的范围的方式解释。本领域技术人员将理解的是,本公开的原理可以在任何适当布置的无线通信装置中实施。1 through 13 , discussed below, and the various embodiments used to describe the principles of the disclosure in this patent document are by way of example only and should not be construed in any way to limit the scope of the disclosure. Those skilled in the art will understand that the principles of the present disclosure may be implemented in any suitably arranged wireless communication device.

图1示出了根据本公开的示例性无线网络100。图1中示出的无线网络100的实施方式仅用作示例。在不脱离本公开的范围的情况下,可使用无线网络100的其他实施方式。FIG. 1 illustrates an exemplary wireless network 100 according to the present disclosure. The implementation of wireless network 100 shown in FIG. 1 is used as an example only. Other implementations of wireless network 100 may be used without departing from the scope of this disclosure.

如图1所示,无线网络100包括eNodeB(eNB)101、eNB 102和eNB 103。eNB 101与eNB102和eNB 103通信。eNB 101还与至少一个网间协议(IP)网络130(诸如因特网、专有IP网络或其他数据网络)通信。As shown in FIG. 1 , a wireless network 100 includes an eNodeB (eNB) 101 , an eNB 102 and an eNB 103 . eNB 101 communicates with eNB 102 and eNB 103 . The eNB 101 is also in communication with at least one Internet Protocol (IP) network 130, such as the Internet, a proprietary IP network, or other data network.

根据网络类型,也可使用其他公知的术语代替“eNodeB“或“eNB”,诸如使用“基站“或“接入点”。为方便起见,在本专利文件中使用术语“eNodeB”和“eNB”来表示向远程终端提供无线接入的网络基础设施构件。此外,根据网络类型,可使用其他公知的术语(诸如,“移动电台”、“用户服务站”、“远程终端”、“无线终端”或“用户装置”)来代替“用户设备”或“UE”。为方便起见,无论UE是移动装置(诸如,移动电话或智能电话)还是通常被认为是固定装置(例如,台式计算机或自动售货机),在本专利文献中都使用术语“用户设备”和“UE”来表示无线地接入eNB的远程无线设备。Depending on the network type, other well-known terms may also be used instead of "eNodeB" or "eNB", such as using "base station" or "access point". For convenience, the terms "eNodeB" and "eNB" are used in this patent document to denote network infrastructure components that provide wireless access to remote terminals. Also, other well-known terms such as "mobile station", "subscriber service station", "remote terminal", "wireless terminal" or "user equipment" may be used instead of "user equipment" or "UE" depending on the type of network. ". For convenience the terms "user equipment" and " UE" to denote a remote wireless device wirelessly accessing an eNB.

eNB 102为在eNB 102的覆盖区120内的第一多个用户设备(UE)提供向网络130的无线宽带接入。第一多个UE包括:可位于小型企业(SB)内的UE 111;可位于企业(E)内的UE112;可位于WiFi热点(HS)内的UE 113;可位于第一住宅(R)的UE 114;可位于第二住宅(R)中的UE 115;以及可以是如手机、无线膝上计算机、无线PDA等的移动装置(M)的UE 116。eNB103为eNB 103的覆盖区125内的第二多个UE提供向网络130的无线宽带接入。第二多个UE包括UE 115和UE 116。在一些实施方式中,eNB 101-103中的一个或多个可使用5G、LTE、LTE-A、WiMAX或其他先进无线通信技术来互相通信并且与UE 111-116通信。The eNB 102 provides wireless broadband access to a network 130 for a first plurality of user equipments (UEs) within the coverage area 120 of the eNB 102 . The first plurality of UEs includes: UE 111, which may be located in a small business (SB); UE 112, which may be located in an enterprise (E); UE 113, which may be located in a WiFi hotspot (HS); UE 113, which may be located in a first residence (R) UE 114; UE 115, which may be located in a second residence (R); and UE 116, which may be a mobile device (M) such as a cell phone, wireless laptop, wireless PDA, or the like. The eNB 103 provides wireless broadband access to the network 130 for a second plurality of UEs within the coverage area 125 of the eNB 103 . The second plurality of UEs includes UE 115 and UE 116 . In some embodiments, one or more of the eNBs 101-103 may communicate with each other and with the UEs 111-116 using 5G, LTE, LTE-A, WiMAX, or other advanced wireless communication technologies.

虚线示出了覆盖区120和125的大概范围,仅为了图示和说明的目的,将覆盖区120和125示出成近似圆形。应清楚地理解,与eNB相关的覆盖区(诸如覆盖区120和125)可根据eNB的配置以及与自然和人为干扰相关的无线电环境变化而具有包括不规则形状的其他形状。Dashed lines show the approximate extent of coverage areas 120 and 125, which are shown as approximately circular for purposes of illustration and description only. It should be clearly understood that coverage areas associated with an eNB, such as coverage areas 120 and 125, may have other shapes, including irregular shapes, depending on the configuration of the eNB and radio environment variations related to natural and man-made interference.

如以下更详细地描述的,eNB 101-103中的一个或多个包括用于将天线馈电器集成到包括多个导电层和介电层的多层PCB中的设备。天线馈电板被集成到多层PCB板上,该多层PCB板包括其余关键的电信系统构件(诸如,收发器单元和基带单元中的至少一个)。所集成的板的总体厚度小于2.54毫米(0.100”),并且可以以低成本和高可靠性进行大量生产。As described in more detail below, one or more of the eNBs 101-103 includes equipment for integrating the antenna feed into a multi-layer PCB including multiple conductive and dielectric layers. The antenna feed board is integrated onto a multi-layer PCB board including the remaining key telecommunication system components such as at least one of the transceiver unit and the baseband unit. The overall thickness of the integrated board is less than 2.54 mm (0.100") and can be mass-produced at low cost and with high reliability.

虽然图1示出了无线网络100的一个示例,但是可对图1进行各种改变。例如,在任一适当的布置中,无线网络100可包括任何数量的eNB和任何数量的UE。此外,eNB 101可以与任何数量的UE直接通信,并且向这些UE提供向网络130的无线宽带接入。同样地,每个eNB102-103可以与网络130直接通信,并且为UE提供向网络130的直接无线宽带接入。而且,eNB101、102和/或103可提供向其它或附加的外部网络(诸如,外部电话网络或其它类型的数据网络)的接入。Although FIG. 1 shows one example of a wireless network 100, various changes may be made to FIG. 1 . For example, wireless network 100 may include any number of eNBs and any number of UEs in any suitable arrangement. Furthermore, eNB 101 can communicate directly with any number of UEs and provide wireless broadband access to network 130 to these UEs. Likewise, each eNB 102-103 can communicate directly with the network 130 and provide direct wireless broadband access to the network 130 for UEs. Also, eNB 101, 102 and/or 103 may provide access to other or additional external networks, such as external telephone networks or other types of data networks.

图2A和图2B示出了根据本公开的示例性无线发送与接收路径。在以下描述中,发送路径200可描述成在eNB(诸如eNB 102)中实施,而接收路径250可描述为在UE(例如UE116)中实施。然而,将理解的是,接收路径250可在eNB中实施,并且发送路径200可在UE中实施。在一些实施方式中,发送路径200和接收路径250包括用于将天线馈电器集成到包括多个导电层和介电层的多层PCB中的设备。2A and 2B illustrate example wireless transmit and receive paths according to the present disclosure. In the following description, transmit path 200 may be described as being implemented in an eNB (such as eNB 102 ), while receive path 250 may be described as being implemented in a UE (eg, UE 116 ). However, it will be appreciated that receive path 250 may be implemented in the eNB and transmit path 200 may be implemented in the UE. In some embodiments, the transmit path 200 and the receive path 250 include devices for integrating the antenna feed into a multi-layer PCB including multiple conductive and dielectric layers.

发送路径200包括信道编码与调制块205、串行到并行(S到P)块210、采样数为N的快速傅里叶逆变换(IFFT)块215、并行到串行(P到S)块220、添加循环前缀块225和上转换器(UC)230。接收路径250包括下转换器(DC)255、去循环前缀块260、串行到并行(S到P)块265、采样数为N的快速傅里叶变换(FFT)块270、并行到串行(P到S)块275和信道解码与调制块280。The transmit path 200 includes a channel coding and modulation block 205, a serial-to-parallel (S-to-P) block 210, an N-sample inverse fast Fourier transform (IFFT) block 215, a parallel-to-serial (P-to-S) block 220 . Add a cyclic prefix block 225 and an up-converter (UC) 230 . Receive path 250 includes down converter (DC) 255, decyclic prefix block 260, serial to parallel (S to P) block 265, fast Fourier transform (FFT) block with N samples 270, parallel to serial (P to S) block 275 and channel decoding and modulation block 280 .

在发送路径200中,信道编码与调制块205接收信息位的集合、实施编码(诸如低密度奇偶校验(LDPC)编码),并且对输入位进行调制(例如四相移相键控(QPSK)或正交幅度调制(QAM))以产生频域调制符号的序列。串行到并行块210将串行调制符号转换(例如,解复用)成并行数据来产生N个并行符号流,其中,N是eNB 102和UE 116中使用的IFFT/FFT采样数。采样数为N的IFFT块215对N个并行符号流执行IFFT操作以产生时域输出信号。并行到串行块220转换(例如,复用)来自采样数为N的IFFT块215的并行时域输出符号以产生串行时域信号。添加循环前缀块225将循环前缀插入到时域信号。上转换器230将添加循环前缀块225的输出调制(例如,上转换)成用于通过无线信道传输的RF频率。信号在转换为RF频率之前还可在基带处滤波。In transmit path 200, channel coding and modulation block 205 receives a set of information bits, performs coding (such as low density parity check (LDPC) coding), and modulates the input bits (such as quadrature phase shift keying (QPSK) or Quadrature Amplitude Modulation (QAM)) to generate a sequence of frequency-domain modulation symbols. Serial-to-parallel block 210 converts (eg, demultiplexes) serial modulation symbols into parallel data to generate N parallel symbol streams, where N is the number of IFFT/FFT samples used in eNB 102 and UE 116 . The N-sample IFFT block 215 performs an IFFT operation on the N parallel symbol streams to produce a time-domain output signal. Parallel-to-serial block 220 converts (eg, multiplexes) the parallel time-domain output symbols from N-samples IFFT block 215 to produce a serial time-domain signal. Add cyclic prefix block 225 inserts a cyclic prefix to the time domain signal. Upconverter 230 modulates (eg, upconverts) the output of add cyclic prefix block 225 to an RF frequency for transmission over a wireless channel. The signal can also be filtered at baseband before conversion to RF frequency.

来自eNB 102的所发送的RF信号在穿过无线信道之后到达UE 116,并且在UE 116处执行与在eNB 102处执行的那些操作相逆的操作。下转换器255将所接收的信号下转换成基带频率,并且去循环前缀块260去除循环前缀,以产生串行时域基带信号。串行到并行块265将时域基带信号转换成并行时域信号。采样数为N的FFT块270执行FFT算法来产生N个并行频域信号。并行到串行块275将并行频域信号转换成经调制的数据符号的序列。信道解码与解调块280解调并解码经调制的符号,以恢复初始输入数据流。The transmitted RF signal from eNB 102 reaches UE 116 after traversing the wireless channel, and operations performed at UE 116 are inverse to those performed at eNB 102 . Downconverter 255 downconverts the received signal to baseband frequency, and decyclic prefix block 260 removes the cyclic prefix to produce a serial time domain baseband signal. Serial to parallel block 265 converts the time domain baseband signal to parallel time domain signal. The N-sample FFT block 270 performs an FFT algorithm to generate N parallel frequency-domain signals. Parallel-to-serial block 275 converts the parallel frequency domain signal into a sequence of modulated data symbols. Channel decoding and demodulation block 280 demodulates and decodes the modulated symbols to recover the original input data stream.

eNB 101-103中的每个可实现与下行链路中向UE 111-116的发送相似的发送路径200,并且可实现与上行链路中从UE 111-116的接收相似的接收路径250。同样地,UE 111-116中的每个可实现用于在上行链路中向eNB101-103的发送的发送路径200,并且可实现用于在下行链路中从eNB 101-103的接收的接收路径250。Each of the eNBs 101-103 may implement a transmit path 200 similar to transmission in the downlink to UEs 111-116, and may implement a receive path 250 similar to reception in the uplink from UEs 111-116. Likewise, each of the UEs 111-116 may implement a transmit path 200 for transmissions in the uplink to the eNBs 101-103 and may enable reception for receptions in the downlink from the eNBs 101-103 Path 250.

图2A和图2B中的每个构件可仅使用硬件或使用硬件与软件/固件的组合实现。作为具体示例,图2A和图2B中的至少一部分构件可通过软件实现,而其他构件可通过可配置硬件或软件与可配置硬件的结合实现。例如,FFT块270和IFFT块215可实现为可配置的软件算法,其中,采样数N的值可根据实施例而进行修改。Each of the components in FIGS. 2A and 2B can be implemented using hardware only or using a combination of hardware and software/firmware. As a specific example, at least some components in FIG. 2A and FIG. 2B may be realized by software, while other components may be realized by configurable hardware or a combination of software and configurable hardware. For example, FFT block 270 and IFFT block 215 may be implemented as configurable software algorithms, wherein the value of the number of samples N may be modified according to the embodiment.

此外,虽然本公开被描述为使用FFT和IFFT,但是,这仅用作示例并且不应被解释为限制本公开的范围。可使用其他类型的变换式(诸如离散傅里叶变换(DFT)方程和离散傅里叶逆变换(IDFT)方程)。将理解的是,对于DFT方程和IDFT方程,变量N的值可以是任何整数(诸如1、2、3、4等),而对于FFT方程和IFFT方程,变量N的值可以是为2的幂的任何整数(例如,1、2、4、8、16等)。Furthermore, although the present disclosure is described as using FFT and IFFT, this is used as an example only and should not be construed as limiting the scope of the present disclosure. Other types of transforms such as discrete Fourier transform (DFT) equations and inverse discrete Fourier transform (IDFT) equations may be used. It will be appreciated that the value of the variable N may be any integer (such as 1, 2, 3, 4, etc.) for the DFT equation and the IDFT equation, while the value of the variable N may be a power of 2 for the FFT equation and the IFFT equation Any integer (eg, 1, 2, 4, 8, 16, etc.) of .

虽然图2A和图2B示出了无线发送与接收路径的示例,但是可对图2A和图2B作出各种改变。例如,图2A和图2B中的各种构件可结合、进一步再分或省略,并且可根据特定需要添加其他构件。此外,图2A和图2B旨在示出可用于无线网络的发送与接收路径的类型的示例。可使用任何其他适当的架构来支持无线网络中的无线通信。Although Figures 2A and 2B illustrate examples of wireless transmission and reception paths, various changes may be made to Figures 2A and 2B. For example, various components in FIGS. 2A and 2B may be combined, further subdivided, or omitted, and other components may be added according to specific needs. Additionally, Figures 2A and 2B are intended to illustrate examples of the types of transmit and receive paths that may be used in a wireless network. Any other suitable architecture may be used to support wireless communications in a wireless network.

图3A示出了根据本公开的示例性UE 116。图3中示出的UE 116的实施方式仅用作示例,并且图1A的UE 111-115可具有相同或类似的配置。然而,UE以多种配置出现,并且图3A不将本公开的范围限制到UE的任何具体实施例。FIG. 3A illustrates an exemplary UE 116 in accordance with the present disclosure. The implementation of UE 116 shown in FIG. 3 is used as an example only, and UEs 111-115 of FIG. 1A may have the same or similar configuration. However, UEs come in a variety of configurations, and Figure 3A does not limit the scope of this disclosure to any particular embodiment of the UE.

UE 116包括多个天线305a-305n、射频(RF)收发器310a-310n、发送(TX)处理电路315、扩音器320以及接收(RX)处理电路325。TX处理电路315和RX处理电路325分别耦合至RF收发器310a-310n中的每个,例如,分别耦合至与天线305a、天线305b和第N个天线305n耦合的RF收发器310a、RF收发器210b至第N个RF收发器310n。在某些实施方式中,UE 116包括单个天线305a和单个RF收发器310a。在某些实施方式中,天线305中的一个或多个包括用于将天线馈电器集成到包括多个导电层和介电层的多层PCB的设备。UE 116还包括扬声器330、主处理器340、输入/输出(I/O)接口(IF)345、键盘350、显示器355和存储器360。存储器360包括基本操作系统(OS)程序361和一或多个应用362。UE 116 includes multiple antennas 305a-305n, radio frequency (RF) transceivers 310a-310n, transmit (TX) processing circuitry 315, microphone 320, and receive (RX) processing circuitry 325. TX processing circuitry 315 and RX processing circuitry 325 are coupled to each of RF transceivers 310a-310n, respectively, e.g., RF transceiver 310a, RF transceiver 310a, RF transceiver 210b to the Nth RF transceiver 310n. In some implementations, UE 116 includes a single antenna 305a and a single RF transceiver 310a. In certain embodiments, one or more of the antennas 305 includes a device for integrating the antenna feed into a multi-layer PCB including a plurality of conductive and dielectric layers. UE 116 also includes speaker 330 , main processor 340 , input/output (I/O) interface (IF) 345 , keyboard 350 , display 355 and memory 360 . Memory 360 includes a base operating system (OS) program 361 and one or more applications 362 .

RF收发器310a-310n从相应的天线305a-305n接收由网络100的eNB或AP发送的输入RF信号。在某些实施方式中,RF收发器310a-310n中的每个与相应的天线305a-305n被配置用于特定的频率波段或技术类型。例如,第一RF收发器310a和天线305a可配置为通过近场通信(诸如蓝牙)来进行通信,而第二RF收发器310b和天线305b可配置为通过IEEE 802.11通信(诸如Wi-Fi)来进行通信,并且另一RF收发器310n和天线305n可配置为通过蜂窝式通信(诸如3G、4G、5G、LTE、LET-A或WiMAX)进行通信。在某些实施方式中,RF收发器310a-310n中的一个或多个与相应的天线305a-305n被配置用于特定的频率波段或相同的技术类型。RF收发器310a-310n对输入RF信号进行下转换来产生中频(IF)信号或基带信号。IF信号或基带信号被发送至RX处理电路325,RX处理电路325通过对基带信号或IF信号进行滤波、解码和/或数字化来产生经处理的基带信号。RX处理电路325将经处理的基带信号发送至扬声器330(诸如对于语音数据)或发送至主处理器340以供进一步处理(诸如对于网页浏览数据)。RF transceivers 310a-310n receive incoming RF signals transmitted by eNBs or APs of network 100 from respective antennas 305a-305n. In certain embodiments, each of the RF transceivers 310a-310n and corresponding antennas 305a-305n are configured for a particular frequency band or technology type. For example, the first RF transceiver 310a and antenna 305a may be configured to ), while the second RF transceiver 310b and antenna 305b may be configured to communicate via IEEE 802.11 communication (such as Wi-Fi), and the other RF transceiver 310n and antenna 305n may be configured to communicate via cellular communication ( such as 3G, 4G, 5G, LTE, LTE-A or WiMAX) for communication. In certain embodiments, one or more of the RF transceivers 310a-310n and corresponding antennas 305a-305n are configured for a specific frequency band or the same technology type. RF transceivers 310a-310n down-convert input RF signals to generate intermediate frequency (IF) signals or baseband signals. The IF or baseband signal is sent to RX processing circuitry 325, which generates a processed baseband signal by filtering, decoding and/or digitizing the baseband or IF signal. RX processing circuit 325 sends the processed baseband signal to speaker 330 (such as for voice data) or to main processor 340 for further processing (such as for web browsing data).

TX处理电路315从扩音器320接收模拟语音或数字语音,或者从主处理器340接收其他输出基带数据(诸如网页数据、电子邮件或交互式视频游戏数据)。TX处理电路315对输出基带数据进行编码、复用和/或数字化,以产生经处理的基带信号或IF信号。RF收发器310a-310n从TX处理电路315接收输出的经处理的基带信号或IF信号,并且将基带信号或IF信号上转换成通过天线305a-305n中的一个或多个发送的RF信号。TX processing circuitry 315 receives analog or digital voice from microphone 320 , or other output baseband data (such as web page data, email, or interactive video game data) from main processor 340 . TX processing circuitry 315 encodes, multiplexes, and/or digitizes the output baseband data to produce a processed baseband signal or IF signal. RF transceivers 310a-310n receive output processed baseband or IF signals from TX processing circuitry 315 and upconvert the baseband or IF signals to RF signals for transmission via one or more of antennas 305a-305n.

主处理器340可包括一个或多个处理器或其他处理装置,并且执行存储在存储器360中的基本OS程序361来控制UE 116的总体操作。例如,根据公知的原理,主处理器340可通过RF收发器310a-310n、RX处理电路325和TX处理电路315来控制正向信道信号的接收和反向信道信号的发送。在一些实施方式中,主处理器340包括至少一个微处理器或微控制器。Main processor 340 may include one or more processors or other processing devices, and executes a basic OS program 361 stored in memory 360 to control the overall operation of UE 116 . For example, main processor 340 may control the reception of forward channel signals and the transmission of reverse channel signals through RF transceivers 310a-310n, RX processing circuit 325 and TX processing circuit 315 according to known principles. In some implementations, main processor 340 includes at least one microprocessor or microcontroller.

主处理器340还能够执行存储器360中存在的其他处理和程序。主处理器340可根据执行过程的需要将数据移动到存储器360中或从存储器360中移出。在一些实施方式中,主处理器340配置为基于OS程序361或响应于从eNB或操作员接收到的信号来执行应用362。主处理器340还耦合至I/O接口345,I/O接口345使UE 116能够连接至其他装置(诸如,膝上型计算机和便携计算机)。I/O接口345是这些配件与主控制器340之间的通信路径。The main processor 340 is also capable of executing other processes and programs present in the memory 360 . Main processor 340 may move data into and out of memory 360 as required by the execution process. In some embodiments, the main processor 340 is configured to execute an application 362 based on an OS program 361 or in response to a signal received from an eNB or an operator. The main processor 340 is also coupled to an I/O interface 345 that enables the UE 116 to connect to other devices such as laptops and portable computers. I/O interface 345 is the communication path between these accessories and main controller 340 .

主处理器340还耦合至键盘350和显示单元355。UE 116的用户可使用键盘350来将数据输入到UE 116中。显示器355可以是液晶显示器或能够呈现文本或至少有限图形(诸如来自网站)或者文本和有限图形的组合的其他显示器。The main processor 340 is also coupled to a keyboard 350 and a display unit 355 . A user of UE 116 may use keyboard 350 to enter data into UE 116 . Display 355 may be a liquid crystal display or other display capable of presenting text or at least limited graphics, such as from a website, or a combination of text and limited graphics.

存储器360耦合至主处理器340。存储器360的一部分可包括随机存取存储器(RAM),并且存储器360的另一部分可包括闪速存储器或其它只读存储器(ROM)。Memory 360 is coupled to main processor 340 . A portion of memory 360 may include random access memory (RAM), and another portion of memory 360 may include flash memory or other read-only memory (ROM).

虽然图3A示出了UE 116的一个示例,但是可对图3作出各种改变。例如,图3A中的各种构件可结合、进一步再分或省略,并且可根据特定需要添加其他构件。作为具体示例,主处理器340可划分为多个处理器,诸如一个或多个中央处理器(CPU)和一个或多个图形处理单元(GPU)。此外,虽然图3示出了配置成移动电话或智能电话的UE 116,但是UE可配置成如其他类型的移动装置或固定装置那样工作。Although FIG. 3A shows one example of UE 116, various changes may be made to FIG. For example, various components in FIG. 3A may be combined, further subdivided, or omitted, and other components may be added according to particular needs. As a specific example, the main processor 340 may be divided into a plurality of processors, such as one or more central processing units (CPUs) and one or more graphics processing units (GPUs). Furthermore, while FIG. 3 shows the UE 116 configured as a mobile phone or a smartphone, the UE may be configured to function as other types of mobile or stationary devices.

图3B示出了根据本公开的示例性eNB 102。图3B中所示的eNB 102的实施方式仅用作示例,并且图1的其他eNB可具有相同或类似的配置。然而,eNB以多种配置出现,并且图3B不将本公开的范围限制到eNB的任何具体的实施例。Figure 3B illustrates an example eNB 102 according to the present disclosure. The implementation of eNB 102 shown in FIG. 3B is used as an example only, and other eNBs of FIG. 1 may have the same or similar configuration. However, eNBs come in a variety of configurations, and Figure 3B does not limit the scope of this disclosure to any particular embodiment of an eNB.

eNB 102包括多个天线365a-365n、多个RF收发器370a-370n、发送(TX)处理电路375和接收(RX)处理电路380。eNB 102还包括控制器/处理器385、存储器390和回程或网络接口395。The eNB 102 includes a plurality of antennas 365a - 365n , a plurality of RF transceivers 370a - 370n , transmit (TX) processing circuitry 375 and receive (RX) processing circuitry 380 . The eNB 102 also includes a controller/processor 385 , memory 390 and a backhaul or network interface 395 .

RF收发器370a-370n从天线365a-365n接收输入RF信号(诸如,由UE或其他eNB发送的信号)。RF收发器370a-370n对输入RF信号进行下转换以产生IF信号或基带信号。IF信号或基带信号被发送至RX处理电路380,RX处理电路380通过对基带信号或IF信号进行滤波、解码和/或数字化来产生经处理的基带信号。RX处理电路320将经处理的基带信号发送至控制器/处理器385以供进一步处理。在某些实施方式中,天线370或RF收发器370a-370n中的一个或多个包括用于将天线馈电器集成到包括多个导电层和介电层的多层PCB中的设备。RF transceivers 370a-370n receive input RF signals (such as signals transmitted by UEs or other eNBs) from antennas 365a-365n. RF transceivers 370a-370n down-convert input RF signals to generate IF signals or baseband signals. The IF or baseband signal is sent to RX processing circuitry 380, which generates a processed baseband signal by filtering, decoding and/or digitizing the baseband or IF signal. RX processing circuit 320 sends the processed baseband signal to controller/processor 385 for further processing. In certain embodiments, one or more of the antenna 370 or the RF transceivers 370a-370n includes a device for integrating the antenna feed into a multi-layer PCB including multiple conductive and dielectric layers.

TX处理电路375从控制器/处理器385接收模拟数据或数字数据(诸如,语音数据、网页数据、电子邮件或交互式视频游戏数据)。TX处理电路375对输出的基带数据进行解码、复合和/或数字化,以产生经处理的基带信号或IF信号。RF收发器370a-370n从TX处理电路385接收输出的经处理的基带信号或IF信号,并且将基带信号或IF信号上转换成通过天线365a-365n发送的RF信号。TX processing circuitry 375 receives analog data or digital data (such as voice data, web page data, email, or interactive video game data) from controller/processor 385 . TX processing circuitry 375 decodes, multiplexes, and/or digitizes the output baseband data to produce a processed baseband signal or IF signal. RF transceivers 370a-370n receive output processed baseband or IF signals from TX processing circuitry 385 and upconvert the baseband or IF signals to RF signals for transmission via antennas 365a-365n.

控制器/处理器385可包括控制eNB 102的总体操作的一个或多个处理器或其他处理装置。例如,根据公知原理,控制器/处理器385可通过RF收发器370a-370n、RX处理电路380和TX处理电路375来控制正向信道信号的接收和反向信道信号的发送。控制器/处理器385也可支持其他功能,诸如更先进的无线通信功能。例如,控制器/处理器385可支持波束成形操作或方向性路由操作,在方向性路由操作中,来自多个天线365a-365n的输出信号被不同地加权,以将输出的信号有效地转向到期望的方向上。在eNB 102中,控制器/处理器385可支持各种其他功能。在一些实施方式中,控制器/处理器385包括至少一个微处理器或微控制器。Controller/processor 385 may include one or more processors or other processing devices that control the overall operation of eNB 102 . For example, controller/processor 385 may control reception of forward channel signals and transmission of reverse channel signals via RF transceivers 370a-370n, RX processing circuit 380, and TX processing circuit 375 according to well-known principles. Controller/processor 385 may also support other functions, such as more advanced wireless communication functions. For example, controller/processor 385 may support beamforming operations or directional routing operations in which output signals from multiple antennas 365a-365n are weighted differently to effectively steer the output signals to in the desired direction. In eNB 102, a controller/processor 385 may support various other functions. In some embodiments, the controller/processor 385 includes at least one microprocessor or microcontroller.

控制器/处理器385还能够执行存储器390中存在的程序以及其他进程,诸如基本OS。控制器/处理器385可根据执行过程的需要而将数据移动到存储器390中或从存储器390中移出。Controller/processor 385 is also capable of executing programs present in memory 390 as well as other processes, such as a basic OS. Controller/processor 385 can move data into and out of memory 390 as required by the execution process.

控制器/处理器325还耦合至回程或网络接口395。回程或网络接口395允许eNB102通过回程连接或通过网络与其他装置或系统通信。接口395可支持借助于任何适当的有线或无线连接的通信。例如,当eNB 102实现为蜂窝式通信系统的一部分(诸如支持5G、LTE或LTE-A的那部分)时,接口395可允许eNB 102通过有线或无线回程连接与其他eNB通信。当eNB 102实现为接入点时,接口395可允许eNB 102通过有线或无线局域网络或者通过与更大型的网络(诸如因特网)的有线或无线连接进行通信。接口395包括支持借助于有线或无线连接的通信的任何适当的结构,诸如以太网或RF收发器。The controller/processor 325 is also coupled to a backhaul or network interface 395 . A backhaul or network interface 395 allows the eNB 102 to communicate with other devices or systems over a backhaul connection or over a network. Interface 395 may support communication via any suitable wired or wireless connection. For example, when eNB 102 is implemented as part of a cellular communication system, such as that supporting 5G, LTE or LTE-A, interface 395 may allow eNB 102 to communicate with other eNBs over wired or wireless backhaul connections. When the eNB 102 is implemented as an access point, the interface 395 may allow the eNB 102 to communicate through a wired or wireless local area network, or through a wired or wireless connection to a larger network, such as the Internet. Interface 395 includes any suitable structure that supports communication via wired or wireless connections, such as Ethernet or RF transceivers.

存储器390耦合至控制器/处理器385。存储器390的一部分可包括RAM,并且存储器390的另一部分可包括闪速存储器或其他ROM。Memory 390 is coupled to controller/processor 385 . A portion of memory 390 may include RAM, and another portion of memory 390 may include flash memory or other ROM.

如以下更详细地描述的,eNB 102的发送与接收路径(使用RF收发器370a-370n、TX处理电路375和/或RX处理电路380实现)支持与FDD小区和TDD小区的集合体的通信。As described in more detail below, the transmit and receive paths of the eNB 102 (implemented using RF transceivers 370a-370n, TX processing circuitry 375, and/or RX processing circuitry 380) support communication with aggregates of FDD and TDD cells.

虽然图3B示出了eNB 102的一个示例,但是可对图3B作出各种改变。例如,eNB 102可包括任何数量的图3B所示的每个构件。作为具体示例,接入点可包括多个接口395,并且控制器/处理器385可支持在不同网络地址之间路由数据的路由功能。作为另一具体示例,虽然eNB 102被示出为包括单个实例的TX处理电路375和单个实例的RX处理电路380,但是eNB 102可每个都包括多个实例(诸如每个RF收发器对应一个TX处理电路375和RX处理电路380)。Although FIG. 3B shows one example of an eNB 102, various changes may be made to FIG. 3B. For example, eNB 102 may include any number of each of the components shown in FIG. 3B. As a specific example, an access point may include multiple interfaces 395, and controller/processor 385 may support a routing function that routes data between different network addresses. As another specific example, while eNB 102 is shown as including a single instance of TX processing circuitry 375 and a single instance of RX processing circuitry 380, eNBs 102 may each include multiple instances (such as one for each RF transceiver). TX processing circuit 375 and RX processing circuit 380).

图4示出了使用缝隙耦合微带的贴片天线馈电器400。FD-MIMO BS阵列中使用的两种普及的天线元件(贴片天线和偶极天线)在试图与其它RF构件集成时均会受到性能劣化的困扰。具体地,为使印刷微带贴片天线覆盖如LTE TDD#41、#42波段和FDD#7、#22波段中操作所需的频带宽度的约10%的频带宽度,必须使用约1-5毫米的空气间隙405来代替介电基底。空气间隙405可通过使用塑料间隔件410将贴片天线板415以所需距离固定在具有接地面425和缝隙430开口的板420之上来建立。在这种情况下,通过直接电接触(诸如使用某种探针馈电技术)来给贴片天线馈电不是良好的实践,因为这样会增大机械复杂性、降低可靠性、增加总成本并且需要会妨碍组装和生产的定制。因此,贴片天线馈电器400使用孔径耦合馈电技术,其中,缝隙430在贴片天线435之下的区域中的天线接地面425上开口,并且将RF信号从横跨缝隙430开口的印刷传输线440耦合至贴片天线415。Figure 4 shows a patch antenna feed 400 using a slot-coupled microstrip. Two popular antenna elements used in FD-MIMO BS arrays (patch antenna and dipole antenna) both suffer from performance degradation when trying to integrate with other RF building blocks. Specifically, in order for a printed microstrip patch antenna to cover a frequency bandwidth of approximately 10% of that required for operation in bands such as LTE TDD #41, #42 and FDD #7, #22, approximately 1-5 mm air gap 405 in place of the dielectric substrate. The air gap 405 can be established by using plastic spacers 410 to fix the patch antenna board 415 at the desired distance above the board 420 with the ground plane 425 and slot 430 opening. In this case, it is not good practice to feed the patch antenna through direct electrical contact (such as using some kind of probe feeding technique), as this increases mechanical complexity, reduces reliability, increases overall cost, and Requires customization that would hinder assembly and production. Therefore, the patch antenna feeder 400 uses an aperture-coupled feeding technique in which a slot 430 is opened on the antenna ground plane 425 in the area below the patch antenna 435, and the RF signal is routed from the printed transmission line across the slot 430 opening. 440 is coupled to patch antenna 415 .

这是馈电孔径耦合贴片天线的典型形式。然而,该技术要求缝隙430和印刷微带440馈电线从下方与金属表面相距至少λ/8。如果例如为了屏蔽目的而将导电层505在缝隙430的下方放平或者作为多层PCB层叠的导电层的一部分,如图5中所示的多层印刷电路板(PCB)贴片天线馈电器500中那样,则缝隙430实际上被金属层短接,或者相当于其品质因数Q变得很高并且天线带宽和阻抗受到严重影响。例如,在波段#41(2.496-2.69GHz)处的λ/8相当于14.4毫米(0.567”)的距离。这是多层PCB中馈电线必须与任何铜信号布线或接地面/布线相距的最短距离,否则,如图6所示,天线阻抗远远偏离期望的50欧姆(Ω)的目标。该λ/8间隔的要求的不利影响是其不能将缝隙馈电的微带天线馈电线路由到多层PCB上,这是因为现代PCB的最大厚度限于<5.08毫米(0.200”)。This is a typical form of a fed aperture coupled patch antenna. However, this technique requires that the slot 430 and the printed microstrip 440 feed line be at least λ/8 from below from the metal surface. A multilayer printed circuit board (PCB) patch antenna feed 500 as shown in FIG. As in the above, the slot 430 is actually short-circuited by the metal layer, or its quality factor Q becomes very high and the antenna bandwidth and impedance are seriously affected. For example, λ/8 at band #41 (2.496-2.69GHz) equates to a distance of 14.4mm (0.567”). This is the shortest distance a feedline must be from any copper signal routing or ground plane/routing in a multilayer PCB Otherwise, the antenna impedance deviates far from the desired 50 ohm (Ω) target, as shown in Figure 6. The adverse effect of this λ/8 spacing requirement is that it cannot route the slot-fed microstrip antenna feed line to On multilayer PCBs, this is because the maximum thickness of modern PCBs is limited to <5.08 mm (0.200").

为了避免这个缺点,如图7所示天线馈电电路700中所示,先前的方法将多层PCB板的屏蔽层或顶部导电层505以大于λ/8的距离与天线馈电板分离开,使用RF连接件705将来自收发器的RF信号传送至天线馈电板,其中,收发器通常被包括在多层PCB上。In order to avoid this shortcoming, as shown in the antenna feed circuit 700 shown in FIG. 7, the previous method separates the shielding layer or top conductive layer 505 of the multi-layer PCB board from the antenna feed board by a distance greater than λ/8, An RF connection 705 is used to carry the RF signal from the transceiver, which is typically included on a multi-layer PCB, to the antenna feed board.

在蜂窝频率下,RF连接件705的长度通常为约18毫米。图7的天线馈电电路700的配置不是很有实用性,因为天线馈电电路700的配置增大了总体的天线形状因数、由于昂贵的RF连接件和适配器而增加了成本,而RF连接件和适配器导致系统的额外损耗、增加组件的复杂性并且降低可靠性(尤其在进行大量生产时)、增加了总重量(考虑到具有约几百个天线连接件的实际天线系统)并且最终对两个板与RF连接件之间的错位误差敏感。At cellular frequencies, the length of the RF link 705 is typically about 18 millimeters. The configuration of the antenna feed circuit 700 of FIG. 7 is not very practical because the configuration of the antenna feed circuit 700 increases the overall antenna form factor, increases cost due to expensive RF connectors and adapters, and the RF connectors and adapters cause extra losses in the system, increase component complexity and reduce reliability (especially when doing mass production), increase overall weight (considering a practical antenna system with about a few hundred Sensitive to misalignment errors between individual boards and RF connectors.

本公开的实施方式阐明了将天线馈电板集成到多层PCB板上的方法和设备,该多层PCB板包括其余关键的电信系统构件(诸如,至少一个收发器单元和基带单元)。该集成板的总厚度小于2.54毫米(0.100”),并且该集成板可以以低成本和高可靠性进行大规模生产。Embodiments of the present disclosure illustrate methods and apparatus for integrating an antenna feed board onto a multi-layer PCB board including the remaining key telecommunication system components such as at least one transceiver unit and a baseband unit. The overall thickness of the integrated board is less than 2.54 millimeters (0.100"), and the integrated board can be mass-produced at low cost and high reliability.

图8示出了根据本公开集成到多层PCB中的天线馈电电路。图8中示出的天线馈电电路800的实施方式仅用作示例。在某些实施方式中,eNB 102的天线365或收发器370中的一个或多个可具有相同或类似的配置。在不脱离本公开的范围的情况下,可使用天线馈电电路800的其他实施方式。Fig. 8 shows an antenna feed circuit integrated into a multi-layer PCB according to the present disclosure. The implementation of the antenna feed circuit 800 shown in FIG. 8 is used as an example only. In some embodiments, one or more of the antenna 365 or transceiver 370 of the eNB 102 may have the same or similar configuration. Other implementations of the antenna feed circuit 800 may be used without departing from the scope of the present disclosure.

天线馈电电路800被集成到多层PCB 805中。为了避免阻挡天线接地面810层上的缝隙开口815a,在主天线馈电缝隙815之下在多层PCB 805板上的所有连续导电层820上提供缝隙815b开口。为了保证导电层820的部分与系统和天线接地面810层的电连接,根据需要加入互连导电通孔825。通孔825跨多层PCB 805的区域的实质部分分布,但是在所有导电层820上的缝隙815开口之外并且远离所有导电层820上的缝隙815开口。天线馈电电路800包括贴片天线835。在某些实施方式中,贴片天线835是天线365。传播待耦合至贴片天线835的RF信号的微带线830放置在顶部导电层820之上,并且部分地放置在贴片天线835之下。空气间隙840通过将贴片天线板850以所需距离固定在具有接地面810的板855之上的塑料间隔件845建立。The antenna feed circuit 800 is integrated into a multi-layer PCB 805 . To avoid blocking the slot opening 815a on the antenna ground plane 810 layer, slot 815b openings are provided on all continuous conductive layers 820 on the multilayer PCB 805 board below the main antenna feed slot 815 . In order to ensure the electrical connection between the part of the conductive layer 820 and the system and antenna ground plane 810 layer, interconnecting conductive vias 825 are added as needed. Vias 825 are distributed across a substantial portion of the area of multilayer PCB 805 , but outside and away from openings of slots 815 on all conductive layers 820 . Antenna feed circuit 800 includes patch antenna 835 . In some embodiments, patch antenna 835 is antenna 365 . A microstrip line 830 propagating an RF signal to be coupled to a patch antenna 835 is placed above the top conductive layer 820 and partially below the patch antenna 835 . The air gap 840 is established by plastic spacers 845 securing the patch antenna board 850 at the desired distance above the board 855 with the ground plane 810 .

图9示出了根据本公开集成有天线馈电设备的多层PCB板。图9所示的集成有天线馈电设备900的多层PCB板的实施方式仅用作示例。在某些实施方式中,eNB 102的天线365或收发器370中的一个或多个可具有相同或类似的配置。在不脱离本公开范围的情况下,可使用天线馈电电路900的其他实施方式。Fig. 9 shows a multi-layer PCB board integrated with an antenna feeding device according to the present disclosure. The implementation of the multilayer PCB board integrated with the antenna feeding device 900 shown in FIG. 9 is only used as an example. In some embodiments, one or more of the antenna 365 or transceiver 370 of the eNB 102 may have the same or similar configuration. Other implementations of the antenna feed circuit 900 may be used without departing from the scope of the present disclosure.

集成有天线馈电设备900的多层PCB板包括收发器905。收发器905和基带910包括收发器370的部分。收发器905包括功率放大器、滤波器、发送与接收(TRX)开关、双工器、混合器、摸拟-数字转换器(ADC)/数字-模拟转换器(DAC)。收发器905的电构件主要耦合至多层PCB 805板的底侧处的导电层820a,与天线馈电线915的电连接用互连通孔825实现,天线馈电线915可以是在多层PCB 805板的顶侧处的导电层820之上的印刷微带线830。印刷定向耦合器920和功率分配器925也放置在多层PCB板855的顶侧处的导电层820之上,并且电连接至天线馈电线915。基带910被包括在PCB板855的顶侧之上,并且通过互连通孔825电连接至收发器单元905。基带910包括诸如ASIC、FPGA、DSP、存储器等处理电路。The multilayer PCB board integrated with the antenna feeding device 900 includes a transceiver 905 . Transceiver 905 and baseband 910 comprise part of transceiver 370 . The transceiver 905 includes power amplifiers, filters, transmit and receive (TRX) switches, duplexers, mixers, analog-to-digital converters (ADC)/digital-to-analog converters (DAC). The electrical components of the transceiver 905 are primarily coupled to the conductive layer 820a at the bottom side of the multilayer PCB 805 board, and the electrical connection to the antenna feed line 915 is achieved with interconnect vias 825, which may be on the multilayer PCB 805 board. Printed microstrip lines 830 on top of conductive layer 820 at the top side. A printed directional coupler 920 and a power splitter 925 are also placed over the conductive layer 820 at the top side of the multilayer PCB board 855 and are electrically connected to the antenna feed 915 . Baseband 910 is included on the top side of PCB board 855 and is electrically connected to transceiver unit 905 through interconnection vias 825 . Baseband 910 includes processing circuits such as ASICs, FPGAs, DSPs, memories, and the like.

图10示出了根据本公开位于所提出的天线馈电多层PCB之上的双极化天线贴片板。图10中示出的双极化天线贴片板1000的实施方式仅用作示例。在图10所示的示例中,仅示出了两个元件。在不脱离本公开范围的情况下,可使用其他实施方式。Fig. 10 shows a dual polarized antenna patch board on top of the proposed antenna feed multilayer PCB according to the present disclosure. The embodiment of a dual polarized antenna patch panel 1000 shown in FIG. 10 is used as an example only. In the example shown in Figure 10, only two elements are shown. Other embodiments may be used without departing from the scope of the present disclosure.

图10示出了以短距离位于包括参照图8所描述的馈电设备的多层PCB之上的双极化的贴片天线阵列板的俯视图,示出的两个元件1005a和1005b仅用作示例。通孔825的阵列布置成穿过多层PCB 805并且以约λ/10均匀地间隔开。通孔825配置为用作补偿较差的馈电线阻抗的调谐元件,即根据图6使较差的馈电线阻抗旋转成接近50Ω,其中,较差的馈电线阻抗是由天线接地面层上的缝隙元件与多层PCB的底层上的屏蔽层之间缺乏垂直间隔而引起的。在没有补偿通孔阵列的情况下,由于图8中指出的阻抗,而不能将天线馈电结构集成到多层PCB中。虽然对于通孔阵列间隔不存在精确的公式,但是经验数据指示λ/10-λ/12在大多数情况下都会产生最优的阻抗,不过这些经验数据不是硬性限制。Figure 10 shows a top view of a dual polarized patch antenna array board positioned at a short distance above a multilayer PCB including the feed device described with reference to Figure 8, with two elements 1005a and 1005b shown serving only as example. The array of vias 825 are arranged through the multilayer PCB 805 and are evenly spaced about λ/10. The via 825 is configured to act as a tuning element to compensate for the poorer feedline impedance, i.e. to rotate the poorer feedline impedance to approximately 50Ω according to FIG. Caused by the lack of vertical separation between the slotted component and the shielding layer on the bottom layer of the multilayer PCB. Without a compensating via array, it is not possible to integrate the antenna feed structure into a multilayer PCB due to the impedance indicated in Figure 8. While there is no exact formula for via array spacing, empirical data indicates that λ/10 - λ/12 yields optimal impedance in most cases, although these empirical data are not hard limits.

除贴片天线835之外,这种集成馈电设备在给偶极天线馈电时也可用作平衡-不平衡转换器。已知偶极天线比贴片天线提供更大的频带宽度,并且还提供低得多的交叉极化场。这种特征使得偶极天线适于使天线阵列(诸如在现代MIMO无线通信系统中使用的天线阵列)波束成形。偶极天线的一个缺点是它们需要平衡的馈电和阻抗匹配。这通常通过外部平衡-不平衡转换器和阻抗转化器来提供。平衡-不平衡转换器将单端RF信号(诸如由微带线830传播的信号)转换成可在差分模式中用于给偶极天线馈电的差分RF信号或平衡RF信号(诸如通过一对共面带传播的RF信号)。需要阻抗转化器将系统阻抗(通常为50Ω)转化成偶极天线阻抗(通常为约200Ω)。这种阻抗变换比(4:1)需要过长的传输线阻抗转化器(>λ/4),而过长的传输线阻抗转化器需要PCB板上额外的空间,从而致使集成困难。总之,为了最佳性能,偶极天线需要放置在接地面之上约λ/4处。In addition to the patch antenna 835, this integrated feed device can also be used as a balun when feeding a dipole antenna. Dipole antennas are known to provide greater frequency bandwidth than patch antennas, and also provide a much lower cross-polarization field. This feature makes dipole antennas suitable for beamforming antenna arrays such as those used in modern MIMO wireless communication systems. A disadvantage of dipole antennas is that they require balanced feeds and impedance matching. This is usually provided by external baluns and impedance converters. The balun converts a single-ended RF signal, such as that propagated by microstrip line 830, to a differential or balanced RF signal that can be used in differential mode to feed a dipole antenna, such as through a pair of coplanar band propagating RF signal). An impedance converter is required to convert the system impedance (typically 50Ω) to the dipole antenna impedance (typically about 200Ω). This impedance transformation ratio (4:1) requires an overly long transmission line impedance converter (>λ/4), which requires extra space on the PCB, making integration difficult. In summary, for best performance, the dipole antenna needs to be placed approximately λ/4 above the ground plane.

图11示出了根据本公开的偶极天线组件。图11中示出的偶极天线组件1110的实施方式仅用作示例。在不脱离本公开的范围的情况下,可使用其他实施方式。Figure 11 illustrates a dipole antenna assembly according to the present disclosure. The implementation of dipole antenna assembly 1110 shown in FIG. 11 is used as an example only. Other embodiments may be used without departing from the scope of the present disclosure.

如图11中所示的示例所示,RF信号从平坦的多层PCB板向偶极天线PCB板1105的传递不是直接的,其中,平坦的多层PCB板通常在顶部两层上具有天线接地面和馈电线,偶极天线PCB板1105与多层PCB 805成直角放置。偶极天线1100包括布置在偶极天线PCB板1105上的偶极天线元件1110。偶极天线PCB板1105通过紧固装置1115耦合至多层PCB 805,紧固装置1115诸如具有螺钉的直角连接件、具有粘合剂的直角连接件、塑料焊接件、其他化学结合件或它们的组合。偶极天线PCB板1105如传播RF信号的微带线830那样布置在缝隙815的至少一部分之上。As shown in the example shown in Figure 11, the transfer of the RF signal from a flat multilayer PCB board, which typically has the antenna ground on the top two layers, to the dipole antenna PCB board 1105 is not direct. The ground and feed lines, the dipole antenna PCB 1105 are placed at right angles to the multilayer PCB 805 . Dipole antenna 1100 includes dipole antenna element 1110 arranged on dipole antenna PCB board 1105 . The dipole antenna PCB board 1105 is coupled to the multi-layer PCB 805 by fastening means 1115 such as right angle connectors with screws, right angle connectors with adhesive, plastic welds, other chemical bonds, or combinations thereof . The dipole antenna PCB 1105 is arranged over at least a portion of the slot 815 like a microstrip line 830 propagating RF signals.

在图11、图12和图13中,本公开的实施方式中公开的集成馈电设备进行了修改,以用作给偶极天线馈电的平衡-不平衡转换器和阻抗转化器。从偶极天线PCB板1105向多层PCB 805的过渡也在图12和图13中公开。图11、图12和图13示出了图8中公开的用于给贴片天线馈电的设备、适于给偶极天线馈电。In FIGS. 11 , 12 and 13 , the integrated feed device disclosed in the embodiments of the present disclosure is modified for use as a balun and impedance converter for feeding a dipole antenna. The transition from the dipole antenna PCB 1105 to the multilayer PCB 805 is also disclosed in FIGS. 12 and 13 . Figures 11, 12 and 13 show the apparatus disclosed in Figure 8 for feeding a patch antenna, suitable for feeding a dipole antenna.

在图12和图13中所示的示例中,约λ/2长的偶极天线元件印刷在具有两个导电层820和一个介电层1205的天线PCB板1105上。然后,将天线PCB板1105与多层PCB 805成直角放置,多层PCB 805在其上部的两个层上具有天线馈线(即传播RF信号的微带线830)和接地面810。在某些实施方式中,天线PCB板1105在操作的中心频率下为约λ/4高。偶极天线PCB板1105使用紧固装置1115固定至多层PCB 805,紧固装置1115诸如具有螺钉的塑料直角连接件、具有粘合剂的直角连接件、塑料焊接件、其他化学结合件或它们的组合。在某些实施方式中,沿着天线PCB板1105与多层PCB板805物理接触的边缘1210在多层PCB板805上打开窄浅凹槽。凹槽的宽度和长度分别等于天线PCB板1105的厚度和长度。凹槽的深度1215小于多层PCB板805的第一介电层1205的厚度。通过该配置,天线PCB板1105可稍微凹进到多层PCB板805中,使得用于天线PCB板1105上的天线元件1110的两个平衡带与通孔垫1220实质接触并有效地电接触,其中,通孔垫1220位于多层PCB板805上,并且通过在缝隙815开口的两侧的通孔825与多层PCB接地面短接。通过这种方式,通过微带线830传播的RF信号可从微带线830并且通过缝隙815开口耦合到成对的平衡带(即,天线元件1110),从而通过偶极天线1100辐射出去,其中,微带线830在多层PCB 805的顶部导电层820b之上并且在天线接地面上横跨缝隙815开口的一部分,而天线接地面位于多层PCB的第二导电层820上。本技术可以在给偶极阵列馈电的多个位置处进行复制。In the example shown in FIGS. 12 and 13 , an approximately λ/2 long dipole antenna element is printed on an antenna PCB 1105 having two conductive layers 820 and one dielectric layer 1205 . Then, the antenna PCB 1105 is placed at right angles to the multilayer PCB 805, which has an antenna feeder (ie, a microstrip line 830 for propagating RF signals) and a ground plane 810 on its upper two layers. In certain embodiments, the antenna PCB 1105 is about λ/4 high at the center frequency of operation. The dipole antenna PCB board 1105 is secured to the multi-layer PCB 805 using fastening means 1115 such as plastic right angle connectors with screws, right angle connectors with adhesive, plastic welds, other chemical bonds, or their combination. In some embodiments, a narrow shallow groove is opened in the multilayer PCB 805 along the edge 1210 where the antenna PCB 1105 is in physical contact with the multilayer PCB 805 . The width and length of the groove are respectively equal to the thickness and length of the antenna PCB 1105 . The depth 1215 of the groove is less than the thickness of the first dielectric layer 1205 of the multilayer PCB board 805 . With this configuration, the antenna PCB 1105 can be slightly recessed into the multilayer PCB 805 such that the two balance strips for the antenna element 1110 on the antenna PCB 1105 are in substantial and effective electrical contact with the via pad 1220, Wherein, the through hole pad 1220 is located on the multilayer PCB board 805 , and is short-circuited to the ground plane of the multilayer PCB through the through holes 825 on both sides of the opening of the gap 815 . In this manner, RF signals propagating through microstrip line 830 may be coupled from microstrip line 830 and through slot 815 openings to the pair of balanced strips (i.e., antenna elements 1110) to radiate out through dipole antenna 1100, where , the microstrip line 830 is above the top conductive layer 820b of the multilayer PCB 805 and spans a portion of the slot 815 opening on the antenna ground plane, which is on the second conductive layer 820 of the multilayer PCB. This technique can be replicated at multiple locations where the dipole array is fed.

虽然通过示例性实施方式描述了本公开,但是可给本领域技术人员各种改变和修改的启示。其意图是本公开如同这些改变和修改落入所附权利要求的范围内那样包括这些改变和修改。Although the present disclosure has been described through exemplary embodiments, various changes and modifications may be suggested to those skilled in the art. It is intended that the present disclosure embrace such changes and modifications as they fall within the scope of the appended claims.

Claims (15)

1.一种天线,包括:1. An antenna, comprising: 天线元件,布置成与多层印刷电路板(PCB)层叠接近;以及an antenna element arranged in close proximity to a multilayer printed circuit board (PCB) stack; and 所述多层PCB层叠,包括:The multi-layer PCB stacking includes: 多个交替的导电层和介电层,其中,第一导电层配置为用作天线接地面层并且包括缝隙开口,所述缝隙开口的横向尺寸小于所述天线元件的横向尺寸,第二导电层配置为用作屏蔽层,第三导电层配置为用作系统接地面层,a plurality of alternating conductive and dielectric layers, wherein a first conductive layer is configured to serve as an antenna ground plane and includes a slot opening having a lateral dimension smaller than the lateral dimension of the antenna element, and a second conductive layer configured to serve as a shield, the third conductive layer is configured to serve as a system ground plane, 至少两个第一缝隙开口,所述至少两个第一缝隙开口的横向尺寸小于所述天线元件的横向尺寸,所述至少两个第一缝隙开口布置在类似的横向位置处并且穿过至少两个连续的导电层,使得所述第一缝隙开口基本上互相重叠,At least two first slot openings having a lateral dimension smaller than the lateral dimension of the antenna element, the at least two first slot openings being arranged at similar lateral positions and passing through at least two a continuous conductive layer such that the first slot openings substantially overlap each other, 传输线,印刷在至少一个导电层上,所述传输线配置为传播射频(RF)信号并且配置为通过所述至少两个第一缝隙开口中的至少一个耦合至所述天线元件,a transmission line printed on at least one conductive layer, the transmission line configured to propagate a radio frequency (RF) signal and configured to couple to the antenna element through at least one of the at least two first slot openings, 至少一个导电层,具有配置为传播直流(DC)信号的部分,at least one conductive layer having a portion configured to propagate a direct current (DC) signal, 至少一个收发器单元,电连接至所述传输线,at least one transceiver unit electrically connected to the transmission line, 至少一个基带处理单元,电连接至所述收发器单元;以及at least one baseband processing unit electrically connected to the transceiver unit; and 多个导电层互连通孔,配置为使得所述多层PCB层叠中的所述接地面层与所述天线接地面层的部分之间、所述屏蔽层与部分导电层之间能够导电连接,所述通孔布置成穿过所有导电层、跨所述多层PCB层叠的不包括所述第一缝隙开口的区域的实质部分分布。A plurality of conductive layer interconnection vias configured to enable conductive connection between the ground plane layer and part of the antenna ground plane layer, and between the shielding layer and part of the conductive layer in the multilayer PCB stack-up , the vias are arranged to be distributed through all conductive layers, across a substantial portion of an area of the multilayer PCB stackup that does not include the first slot opening. 2.如权利要求1所述的天线,其中,所述天线元件印刷在天线PCB板上,所述天线PCB板布置在所述多层PCB层叠之上,并且位于与所述多层PCB层叠的平面基本平行且成一定距离的平面上,所述距离通过塑料间隔件保持,所述塑料间隔件配置为在所述天线PCB板与所述多层PCB层叠之间形成空气间隙而不在所述天线PCB板与所述多层PCB层叠之间建立电连接,所述塑料间隔件的高度为约2-5毫米。2. The antenna according to claim 1, wherein the antenna element is printed on an antenna PCB, the antenna PCB is arranged on the multilayer PCB stack, and is located on the side of the multilayer PCB stack. The planes are substantially parallel and at a certain distance, and the distance is maintained by a plastic spacer configured to form an air gap between the antenna PCB board and the multilayer PCB stack without forming an air gap between the antenna PCB board and the multilayer PCB stack. An electrical connection is established between the PCB board and the multi-layer PCB stack, and the height of the plastic spacer is about 2-5 mm. 3.如权利要求2所述的天线,其中,所述天线元件包括:3. The antenna of claim 2, wherein the antenna element comprises: 贴片天线,印刷在两层天线PCB板的底部导电层的一部分上,所述两层天线PCB板的厚度为约10-150密耳,并且所述两层天线PCB板具有在1.1-5.5的范围内的介电常数,并且使得导体完全从所述两层PCB板的顶层移除,并且所述天线PCB板的底层是与所述多层PCB层叠最接近的层;或者A patch antenna printed on a portion of the bottom conductive layer of a two-layer antenna PCB having a thickness of about 10-150 mils and having a thickness between 1.1-5.5 range and such that conductors are completely removed from the top layer of the two-layer PCB and the bottom layer of the antenna PCB is the closest layer to the multi-layer PCB stackup; or 矩形贴片天线,具有窄缝隙切口,所述窄缝隙切口沿着所述矩形贴片天线的两个对角线从角延伸到角。A rectangular patch antenna having a narrow slot cut extending from corner to corner along two diagonals of the rectangular patch antenna. 4.如权利要求1所述的天线,其中,所述传输线印刷在所述多层PCB的顶部导电层上,所述顶部导电层是与所述天线元件最接近的层,以及其中,所述传输线包括微带线、共平面波导线或成对的共平面带中的一个。4. The antenna of claim 1, wherein the transmission line is printed on a top conductive layer of the multilayer PCB, the top conductive layer being the layer closest to the antenna element, and wherein the The transmission line includes one of a microstrip line, a coplanar waveguide, or a pair of coplanar strips. 5.如权利要求4所述的天线,其中,布置在所述多层PCB层叠的顶部导电层之下的所述第二导电层配置成所述天线接地面并且包括横向尺寸比所述天线元件的横向尺寸小的所述至少一个第一缝隙开口,所述至少一个第一缝隙开口配置为将所述RF信号从所述传输线耦合至所述天线元件。5. The antenna of claim 4, wherein the second conductive layer disposed below the top conductive layer of the multilayer PCB stack-up is configured as the antenna ground plane and comprises a lateral dimension larger than that of the antenna element. The at least one first slot opening having a small lateral dimension, the at least one first slot opening configured to couple the RF signal from the transmission line to the antenna element. 6.如权利要求4所述的天线,其中,印刷在顶部导电层上的传输线横跨穿过不同层的所述缝隙开口的实质部分。6. The antenna of claim 4, wherein the transmission line printed on the top conductive layer spans a substantial portion of the slot opening through a different layer. 7.如权利要求4所述的天线,其中,所述第三导电层、第四导电层、第五导电层、第六导电层、第七导电层和第八连续导电层均包括具有类似几何形状并且具有比所述天线元件的横向尺寸小的横向尺寸的缝隙开口,所述缝隙开口在每个导电层上的类似横向位置处形成并且布置为使得所述开口基本上互相重叠并且与所述第二导电层上的缝隙开口基本上重叠。7. The antenna according to claim 4, wherein the third conductive layer, the fourth conductive layer, the fifth conductive layer, the sixth conductive layer, the seventh conductive layer and the eighth continuous conductive layer each comprise shape and having a lateral dimension smaller than that of the antenna element, the slot openings are formed at similar lateral positions on each conductive layer and are arranged such that the openings substantially overlap each other and with the The slot openings on the second conductive layer substantially overlap. 8.如权利要求1所述的天线,其中,所述屏蔽层基本上用铜覆盖且不包括缝隙开口,并且配置为将所述屏蔽层之下的空间与所述屏蔽层之上的空间电学上屏蔽开。8. The antenna of claim 1 , wherein the shield is substantially covered with copper and does not include a slot opening, and is configured to electrically connect a space below the shield with a space above the shield. Shield off. 9.如权利要求1所述的天线,其中,第二缝隙开口在具有所述第一缝隙开口的所有导电层上形成为靠近并且邻近每个所述第一缝隙开口,所述第二缝隙开口配置为将第二RF信号以垂直偏振的模式耦合至所述天线元件,使得所述天线系统是双极化天线。9. The antenna according to claim 1, wherein a second slit opening is formed close to and adjacent to each of said first slit openings on all conductive layers having said first slit opening, said second slit opening configured to couple a second RF signal to the antenna element in a vertically polarized mode such that the antenna system is a dual polarized antenna. 10.如权利要求9所述的天线,其中,所述RF信号和所述第二RF信号通过所述第一缝隙开口和所述第二缝隙开口耦合至双极化天线元件。10. The antenna of claim 9, wherein the RF signal and the second RF signal are coupled to a dual polarized antenna element through the first slot opening and the second slot opening. 11.如权利要求1所述的天线,其中:11. The antenna of claim 1, wherein: 所述至少一个收发器单元包括功率放大器、滤波器、发送与接收(TRX)开关、双工器、混合器、音频到数字转换器(ADC)/数字到音频转换器(DAC),所述至少一个收发器单元电连接至所述第六连续导电层并且通过所述互连通孔电连接至传播所述RF信号的所述微带传输线,The at least one transceiver unit includes a power amplifier, a filter, a transmit and receive (TRX) switch, a duplexer, a mixer, an audio-to-digital converter (ADC)/digital-to-audio converter (DAC), the at least a transceiver unit electrically connected to said sixth continuous conductive layer and through said interconnect via to said microstrip transmission line propagating said RF signal, 所述基带单元包括处理电路、存储器,并且电连接至所述第一导电层以及通过所述互连通孔电连接至所述收发器单元。The baseband unit includes processing circuitry, memory, and is electrically connected to the first conductive layer and to the transceiver unit through the interconnect vias. 12.如权利要求1所述的天线,其中,所述天线元件是偶极天线元件,所述偶极天线元件印刷在两层天线PCB板的导电层的一部分上并且具有两个成对的对称窄导电带传输线,所述两个成对的对称窄导电带传输线以小间隙分离开并且在一侧附接至一个偶极馈电端子,并且配置为将所述RF信号传送至所述偶极天线,所述带印刷在所述天线PCB板的导电层的一部分上,所述天线PCB板在与所述多层PCB层叠垂直的平面上布置并且使得所述两个导电馈电带线的另一侧在所述缝隙开口的基本上相对侧上的两个位置处与所述天线接地面电接触,使得RF信号通过所述缝隙开口耦合至所述偶极天线馈电带线,其中,所述缝隙开口在所述多层PCB层叠的天线接地面导电层上形成。12. The antenna according to claim 1, wherein the antenna element is a dipole antenna element printed on a part of the conductive layer of the two-layer antenna PCB board and has two pairs of symmetrical narrow conductive strip transmission lines, the two pairs of symmetrical narrow conductive strip transmission lines separated by a small gap and attached to one dipole feed terminal on one side, and configured to carry the RF signal to the dipole Antenna, the strip is printed on a part of the conductive layer of the antenna PCB board, the antenna PCB board is arranged on a plane perpendicular to the multilayer PCB stack and makes the other of the two conductive feed strip lines One side is in electrical contact with the antenna ground plane at two locations on substantially opposite sides of the slot opening such that an RF signal is coupled to the dipole antenna feed stripline through the slot opening, wherein the The slot opening is formed on the conductive layer of the antenna ground plane stacked on the multi-layer PCB. 13.如权利要求12所述的天线,其中,所述天线PCB板上的所述两个成对的对称窄导电带传输线延伸至所述天线PCB板的底部边缘,并且其中,所述天线PCB板固定成与所述多层PCB层叠成直角,并且通过紧固装置固定,其中,所述天线PCB板和多层PCB板物理接触。13. The antenna of claim 12, wherein the two paired symmetrical narrow conductive strip transmission lines on the antenna PCB extend to the bottom edge of the antenna PCB, and wherein the antenna PCB The board is secured at right angles to the multilayer PCB stack and is secured by fastening means, wherein the antenna PCB board and the multilayer PCB board are in physical contact. 14.如权利要求13所述的天线,其中,所述天线PCB上的所述导电带传输线中的每个电连接至所述多层PCB层叠的表面上的通孔垫,其中,所述通孔垫的横向尺寸与每个带线的宽度近似相等,并且每个垫通过导电的通孔电连接至所述天线接地面,所述通孔垫和所述通孔均位于在所述多层PCB的所述天线接地面层上的所述缝隙开口的基本上相对侧上。14. The antenna of claim 13, wherein each of the conductive tape transmission lines on the antenna PCB is electrically connected to a via pad on the surface of the multilayer PCB stack-up, wherein the via The lateral dimension of the via pad is approximately equal to the width of each stripline, and each pad is electrically connected to the antenna ground plane through a conductive via, the via pad and the via are located in the multilayer On a substantially opposite side of the slot opening on the antenna ground plane layer of the PCB. 15.如权利要求1所述的天线,其中,所述天线和所述多层PCB包括在外壳中,所述外壳具有平面金属部分,所述平面金属部分与所述多层PCB层叠的系统接地面层电连接并且与所述收发器单元和所述基带单元的散热器热连接。15. The antenna of claim 1, wherein the antenna and the multilayer PCB are included in a housing having a planar metal portion that is grounded to a system where the multilayer PCB is stacked The face layer is electrically and thermally connected to the transceiver unit and the heat sink of the baseband unit.
CN201580035709.8A 2014-06-30 2015-06-30 Antenna feeder integrated on a multilayer printed circuit board Expired - Fee Related CN106471671B (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201462019129P 2014-06-30 2014-06-30
US62/019,129 2014-06-30
US14/752,531 2015-06-26
US14/752,531 US9391370B2 (en) 2014-06-30 2015-06-26 Antenna feed integrated on multi-layer PCB
PCT/KR2015/006729 WO2016003173A1 (en) 2014-06-30 2015-06-30 Antenna feed integrated on multi-layer printed circuit board

Publications (2)

Publication Number Publication Date
CN106471671A true CN106471671A (en) 2017-03-01
CN106471671B CN106471671B (en) 2019-09-13

Family

ID=54931654

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580035709.8A Expired - Fee Related CN106471671B (en) 2014-06-30 2015-06-30 Antenna feeder integrated on a multilayer printed circuit board

Country Status (6)

Country Link
US (1) US9391370B2 (en)
EP (2) EP3761445A1 (en)
KR (1) KR102278563B1 (en)
CN (1) CN106471671B (en)
ES (1) ES2815378T3 (en)
WO (1) WO2016003173A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107634307A (en) * 2017-08-31 2018-01-26 广东欧珀移动通信有限公司 Housing components and electronics
CN109597467A (en) * 2018-12-29 2019-04-09 联想(北京)有限公司 A kind of electronic equipment
CN109889184A (en) * 2018-12-28 2019-06-14 安徽中瑞通信科技股份有限公司 A kind of 5G filtering system based on Fourier transformation
CN110364807A (en) * 2018-03-26 2019-10-22 浙江海康科技有限公司 An improved double-sided directional RFID bookend antenna
CN110504554A (en) * 2018-05-17 2019-11-26 通用汽车环球科技运作有限责任公司 For eliminating the component in the position gap between the antenna being located on printed circuit board
CN111052509A (en) * 2017-08-30 2020-04-21 株式会社村田制作所 Antenna module
CN111344898A (en) * 2017-09-30 2020-06-26 高通股份有限公司 Antenna module configuration
CN111782067A (en) * 2019-04-03 2020-10-16 敦泰电子有限公司 Touch pad device and notebook computer comprising same
CN111818728A (en) * 2019-04-12 2020-10-23 三星电子株式会社 Antenna module including printed circuit board and base station including the same
CN111816997A (en) * 2019-04-12 2020-10-23 三星电子株式会社 Antenna module and electronic equipment including antenna module
CN111883909A (en) * 2019-05-03 2020-11-03 三星电子株式会社 Connection structure for radio frequency components and electronic device including the same
CN112956080A (en) * 2018-10-23 2021-06-11 三星电子株式会社 Antenna formed by overlapping antenna elements transmitting and receiving multi-band signals and electronic device including the same
CN113594648A (en) * 2021-07-23 2021-11-02 合肥联宝信息技术有限公司 Noise reduction patch manufacturing method and device and noise reduction patch
CN114156654A (en) * 2020-09-07 2022-03-08 讯芯电子科技(中山)有限公司 Antenna device and antenna device manufacturing method
WO2022056655A1 (en) * 2020-09-15 2022-03-24 Telefonaktiebolaget Lm Ericsson (Publ) Base station
WO2024168897A1 (en) * 2023-02-17 2024-08-22 深圳市虎一科技有限公司 Temperature measurement device for food ingredient

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104377449A (en) * 2013-08-15 2015-02-25 同方威视技术股份有限公司 Broadband microstrip antenna and antenna array
JP5931937B2 (en) * 2014-02-04 2016-06-08 原田工業株式会社 Patch antenna device
KR101609665B1 (en) * 2014-11-11 2016-04-06 주식회사 케이엠더블유 Antenna of mobile communication station
US10074900B2 (en) * 2016-02-08 2018-09-11 The Boeing Company Scalable planar packaging architecture for actively scanned phased array antenna system
PL3465752T3 (en) * 2016-05-31 2022-06-13 Telefonaktiebolaget Lm Ericsson (Publ) A multi-layer printed circuit board and a wireless communication node
TWI628860B (en) * 2016-07-06 2018-07-01 新加坡商雲網科技新加坡有限公司 Tri-polarization mimo antenna system
WO2018019357A1 (en) * 2016-07-25 2018-02-01 Telefonaktiebolaget Lm Ericsson (Publ) Aperture coupled patch antenna arrangement
WO2018027539A1 (en) * 2016-08-09 2018-02-15 广东通宇通讯股份有限公司 Electricity-feeding network
KR102501935B1 (en) 2016-08-31 2023-02-21 삼성전자 주식회사 Antenna device and electronic device comprising the same
KR102681310B1 (en) 2016-11-23 2024-07-04 삼성전자주식회사 Antenna apparatus and electronic device including the same
US11101550B2 (en) * 2017-02-21 2021-08-24 Ace Technologies Corporation Base station antenna
US10297928B2 (en) 2017-02-21 2019-05-21 King Fahd University Of Petroleum And Minerals Multi-port, multi-band, single connected multiple-input, multiple-output antenna
CN113346221B (en) * 2017-03-30 2024-03-19 住友电气工业株式会社 Wireless module
CN210074170U (en) * 2017-04-03 2020-02-14 株式会社村田制作所 High frequency module
EP3583657A4 (en) * 2017-04-13 2020-11-11 Hewlett-Packard Development Company, L.P. ANTENNA FOR AN ELECTRONIC DEVICE
US10659151B2 (en) 2017-04-21 2020-05-19 Apple Inc. Apparatus, system and method for utilizing a flexible slot format indicator
US10673605B2 (en) 2017-06-15 2020-06-02 Apple Inc. Semi-static and dynamic TDD configuration for 5G-NR
KR102423296B1 (en) * 2017-09-14 2022-07-21 삼성전자주식회사 Electronic device for including printed circuit board
US10903566B2 (en) * 2017-09-28 2021-01-26 Apple Inc. Electronic device antennas for performing angle of arrival detection
KR102424866B1 (en) 2017-09-29 2022-07-26 삼성전자주식회사 PCB, manufacturing method thereof and method for measuring quality of PCB
CN111149255B (en) * 2017-10-04 2021-06-29 华为技术有限公司 Multiband Antenna System
KR102469571B1 (en) * 2018-01-25 2022-11-22 삼성전자주식회사 Electronic device including loop type antenna
TW201937808A (en) * 2018-02-15 2019-09-16 美商太空探索科技公司 Antenna modules for phased array antennas
US11063344B2 (en) 2018-02-20 2021-07-13 Samsung Electronics Co., Ltd. High gain and large bandwidth antenna incorporating a built-in differential feeding scheme
US20190260110A1 (en) * 2018-02-20 2019-08-22 Intel Corporation Antenna modules and communication devices
CN110278004B (en) * 2018-03-14 2023-07-25 深圳科润视讯技术有限公司 Intelligent wireless transmission base
US11336015B2 (en) 2018-03-28 2022-05-17 Intel Corporation Antenna boards and communication devices
US11380979B2 (en) 2018-03-29 2022-07-05 Intel Corporation Antenna modules and communication devices
US11011827B2 (en) 2018-05-11 2021-05-18 Intel IP Corporation Antenna boards and communication devices
US11509037B2 (en) 2018-05-29 2022-11-22 Intel Corporation Integrated circuit packages, antenna modules, and communication devices
US10797394B2 (en) 2018-06-05 2020-10-06 Intel Corporation Antenna modules and communication devices
US10880917B2 (en) 2018-06-11 2020-12-29 Apple Inc. TDD single Tx switched UL solution
US10931014B2 (en) * 2018-08-29 2021-02-23 Samsung Electronics Co., Ltd. High gain and large bandwidth antenna incorporating a built-in differential feeding scheme
US10957985B2 (en) 2018-09-28 2021-03-23 Apple Inc. Electronic devices having antenna module isolation structures
IL263546B2 (en) 2018-12-06 2023-11-01 Nimrod Rospsha Multilyered cavity structers, and methods of manufacture thereof
KR102647883B1 (en) 2019-01-25 2024-03-15 삼성전자주식회사 Electronic device comprising antenna module
CN111725607B (en) * 2019-03-20 2021-09-14 Oppo广东移动通信有限公司 Millimeter wave antenna module and electronic equipment
CN110323553B (en) * 2019-04-01 2021-07-16 深圳三星通信技术研究有限公司 Antenna radiation unit and antenna
CN110061352A (en) * 2019-04-19 2019-07-26 深圳迈睿智能科技有限公司 Antenna and its manufacturing method and disturbance restraining method
US11309638B1 (en) 2019-05-09 2022-04-19 Space Exploration Technolgies Corp. Antenna modules in phased array antennas
FR3096837B1 (en) * 2019-06-03 2022-06-17 St Microelectronics Grenoble 2 Electronic device comprising an integrated electromagnetic antenna
US11296670B2 (en) * 2020-01-23 2022-04-05 Qualcomm Incorporated Impedance matching transceiver
US11984647B2 (en) 2020-02-04 2024-05-14 Lg Electronics Inc. Electronic device including antenna
CN113784458B (en) * 2020-06-09 2023-01-06 华为技术有限公司 Assembling method and AP equipment
KR20220017131A (en) * 2020-08-04 2022-02-11 삼성전자주식회사 UWB antenna and electronic device having the same
WO2022065994A1 (en) * 2020-09-28 2022-03-31 Samsung Electronics Co., Ltd. Non-galvanic interconnect for planar rf devices
US11544517B2 (en) * 2020-10-03 2023-01-03 MHG IP Holdings, LLC RFID antenna
KR20220096120A (en) 2020-12-30 2022-07-07 삼성전자주식회사 Trasnmission line structure for low insertion loss and electronic device including the same
KR102856153B1 (en) 2021-05-11 2025-09-08 삼성전자 주식회사 wiring structure for power and millimeter wave band signal transmission
US12074360B2 (en) 2021-10-22 2024-08-27 Sensorview Co., Ltd. RFIC assembled antenna
KR102571790B1 (en) * 2022-01-27 2023-08-29 주식회사 센서뷰 RFIC Assembled Antenna
CN216391527U (en) * 2021-12-02 2022-04-26 瑞典爱立信有限公司 Printed circuit board assembly, radio unit and base station
CN118104067A (en) 2021-12-02 2024-05-28 三星电子株式会社 Integrated printed circuit board antenna for sending/receiving data
EP4573624A1 (en) * 2022-12-07 2025-06-25 Samsung Electronics Co., Ltd. Antenna array element with dual polarization, antenna array including antenna array element and electronic device including antenna array
TWI884417B (en) 2023-02-15 2025-05-21 繁晶科技股份有限公司 Circuit structure for multiple antenna radio unit, base station, and satellite communications

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040185811A1 (en) * 2003-01-29 2004-09-23 Samsung Electronics Co., Ltd. Single chip direct conversion transceiver for reducing DC offset and method of manufacturing the same
JP2007189152A (en) * 2006-01-16 2007-07-26 Toshiba Corp Dielectric multilayer substrate structure and method for adjusting characteristic impedance of wiring pattern
JP2009081423A (en) * 2007-09-05 2009-04-16 Taiyo Yuden Co Ltd Multilayer board with built-in electronic component and its manufacturing method
CN101501927A (en) * 2006-04-27 2009-08-05 雷斯潘公司 Antenna, equipment and system based on anisotropic material structure
US20140104801A1 (en) * 2011-05-27 2014-04-17 Taiyo Yuden Co., Ltd. Multilayer substrate
US20140145883A1 (en) * 2012-11-26 2014-05-29 International Business Machines Corporation Millimeter-wave radio frequency integrated circuit packages with integrated antennas

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3472430B2 (en) * 1997-03-21 2003-12-02 シャープ株式会社 Antenna integrated high frequency circuit
SE515832C2 (en) * 1999-12-16 2001-10-15 Allgon Ab Slot antenna arrangement
US7362273B2 (en) * 2005-09-23 2008-04-22 University Of South Florida Dual-polarized feed antenna apparatus and method of use
KR100988909B1 (en) * 2008-09-23 2010-10-20 한국전자통신연구원 Microstrip Patch Antenna with High Gain and Wideband Characteristics
US8256685B2 (en) * 2009-06-30 2012-09-04 International Business Machines Corporation Compact millimeter wave packages with integrated antennas
US9774076B2 (en) * 2010-08-31 2017-09-26 Siklu Communication ltd. Compact millimeter-wave radio systems and methods
US20120218156A1 (en) * 2010-09-01 2012-08-30 Qualcomm Incorporated On-frequency repeater

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040185811A1 (en) * 2003-01-29 2004-09-23 Samsung Electronics Co., Ltd. Single chip direct conversion transceiver for reducing DC offset and method of manufacturing the same
JP2007189152A (en) * 2006-01-16 2007-07-26 Toshiba Corp Dielectric multilayer substrate structure and method for adjusting characteristic impedance of wiring pattern
CN101501927A (en) * 2006-04-27 2009-08-05 雷斯潘公司 Antenna, equipment and system based on anisotropic material structure
JP2009081423A (en) * 2007-09-05 2009-04-16 Taiyo Yuden Co Ltd Multilayer board with built-in electronic component and its manufacturing method
US20140104801A1 (en) * 2011-05-27 2014-04-17 Taiyo Yuden Co., Ltd. Multilayer substrate
US20140145883A1 (en) * 2012-11-26 2014-05-29 International Business Machines Corporation Millimeter-wave radio frequency integrated circuit packages with integrated antennas

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111052509A (en) * 2017-08-30 2020-04-21 株式会社村田制作所 Antenna module
CN107634307A (en) * 2017-08-31 2018-01-26 广东欧珀移动通信有限公司 Housing components and electronics
US11245175B2 (en) 2017-09-30 2022-02-08 Qualcomm Incorporated Antenna module configurations
CN111344898A (en) * 2017-09-30 2020-06-26 高通股份有限公司 Antenna module configuration
US12315986B2 (en) 2017-09-30 2025-05-27 Qualcomm Incorporated Antenna and device configurations
CN111344898B (en) * 2017-09-30 2022-05-06 高通股份有限公司 Antenna Module Configuration
CN110364807A (en) * 2018-03-26 2019-10-22 浙江海康科技有限公司 An improved double-sided directional RFID bookend antenna
CN110504554A (en) * 2018-05-17 2019-11-26 通用汽车环球科技运作有限责任公司 For eliminating the component in the position gap between the antenna being located on printed circuit board
CN112956080A (en) * 2018-10-23 2021-06-11 三星电子株式会社 Antenna formed by overlapping antenna elements transmitting and receiving multi-band signals and electronic device including the same
CN112956080B (en) * 2018-10-23 2023-08-08 三星电子株式会社 Antenna formed by overlapping antenna elements for transmitting and receiving multi-band signals, and electronic device including the same
CN109889184A (en) * 2018-12-28 2019-06-14 安徽中瑞通信科技股份有限公司 A kind of 5G filtering system based on Fourier transformation
CN109597467B (en) * 2018-12-29 2021-07-16 联想(北京)有限公司 Electronic equipment
US10951244B2 (en) 2018-12-29 2021-03-16 Lenovo (Beijing) Co., Ltd. Electronic device
CN109597467A (en) * 2018-12-29 2019-04-09 联想(北京)有限公司 A kind of electronic equipment
CN111782067B (en) * 2019-04-03 2023-04-25 敦泰电子有限公司 Touch panel device and notebook computer comprising same
CN111782067A (en) * 2019-04-03 2020-10-16 敦泰电子有限公司 Touch pad device and notebook computer comprising same
CN111816997A (en) * 2019-04-12 2020-10-23 三星电子株式会社 Antenna module and electronic equipment including antenna module
CN111818728A (en) * 2019-04-12 2020-10-23 三星电子株式会社 Antenna module including printed circuit board and base station including the same
CN111883909A (en) * 2019-05-03 2020-11-03 三星电子株式会社 Connection structure for radio frequency components and electronic device including the same
CN114156654A (en) * 2020-09-07 2022-03-08 讯芯电子科技(中山)有限公司 Antenna device and antenna device manufacturing method
WO2022056655A1 (en) * 2020-09-15 2022-03-24 Telefonaktiebolaget Lm Ericsson (Publ) Base station
CN113594648A (en) * 2021-07-23 2021-11-02 合肥联宝信息技术有限公司 Noise reduction patch manufacturing method and device and noise reduction patch
WO2024168897A1 (en) * 2023-02-17 2024-08-22 深圳市虎一科技有限公司 Temperature measurement device for food ingredient

Also Published As

Publication number Publication date
EP3161901B1 (en) 2020-06-17
EP3761445A1 (en) 2021-01-06
EP3161901A1 (en) 2017-05-03
US9391370B2 (en) 2016-07-12
KR102278563B1 (en) 2021-07-16
CN106471671B (en) 2019-09-13
WO2016003173A1 (en) 2016-01-07
KR20170016377A (en) 2017-02-13
EP3161901A4 (en) 2018-08-15
US20150381229A1 (en) 2015-12-31
ES2815378T3 (en) 2021-03-29

Similar Documents

Publication Publication Date Title
CN106471671B (en) Antenna feeder integrated on a multilayer printed circuit board
CN107078379B (en) Integrated two-dimensional active antenna array communication system
US10297927B2 (en) Antenna package for large-scale millimeter wave phased arrays
CN102884731B (en) Apparatus and method for space division duplexing in millimeter wave communication systems
TWI497824B (en) Decoupling circuit and antenna device
US8436776B2 (en) Near-horizon antenna structure and flat panel display with integrated antenna structure
EP3357167B1 (en) In-band full-duplex complementary antenna
CN111656611A (en) High gain and wide bandwidth antenna with built-in differential feeding scheme
US20240258701A1 (en) Dual polarized base station and user equipment antenna for upper mid-band x-mimo
US20230299491A1 (en) Antenna module and manufacturing method thereof
EP2688146B1 (en) Dual-band LTE MIMO antenna
CN204497364U (en) A kind of multi-input/output antenna and terminal
US12191949B2 (en) Method and apparatus for antenna port switching in near field LoS MIMO
CN103915685A (en) Small-size and wide-bandwidth four-unit MIMO antenna based on printed circuit board
TW202245327A (en) Phase shifters with switched transmission line loads
CN117121294A (en) Antenna structure and electronic device comprising same
US12224493B2 (en) Low-profile high-efficiency wide-scanning antenna array
US20250030176A1 (en) Low-cost high-gain dual polarized base station and user equipment antenna array
KR102815800B1 (en) Transformer and apparatus including thereof for low loss
CN117296204A (en) Antenna and electronic device including the same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190913

CF01 Termination of patent right due to non-payment of annual fee