[go: up one dir, main page]

CN106504535A - A Traffic Distribution Prediction Method Combining Gravity Model and Fratar Model - Google Patents

A Traffic Distribution Prediction Method Combining Gravity Model and Fratar Model Download PDF

Info

Publication number
CN106504535A
CN106504535A CN201611087603.5A CN201611087603A CN106504535A CN 106504535 A CN106504535 A CN 106504535A CN 201611087603 A CN201611087603 A CN 201611087603A CN 106504535 A CN106504535 A CN 106504535A
Authority
CN
China
Prior art keywords
distribution
model
traffic
fratar
traffic volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611087603.5A
Other languages
Chinese (zh)
Other versions
CN106504535B (en
Inventor
王炜
黄蓉
华雪东
王昊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201611087603.5A priority Critical patent/CN106504535B/en
Publication of CN106504535A publication Critical patent/CN106504535A/en
Application granted granted Critical
Publication of CN106504535B publication Critical patent/CN106504535B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0137Measuring and analyzing of parameters relative to traffic conditions for specific applications

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

The invention discloses a kind of combination Gravity Models and the trip distribution modeling method of Fratar models, comprise the steps:The generation for gathering each cell first attracts the volume of traffic and the distribution of present situation OD;Secondly demarcate the generation without constraint Gravity Models parameter and each cell of the prediction non-coming year and attract the volume of traffic;Then apply that both demarcated to calculate non-coming year OD distributions without constraint Gravity Models;Finally application Fratar model runnings once obtain new non-coming year prediction OD distributions;Convergence judgement is carried out with last time circulation result to operation result, the OD distributions for being met convergence criterion are each minizone OD forecast of distribution final results of the non-coming year.The distribution forecasting method combines the advantage of Gravity Models and Fratar models, both present situation trip distributed intelligence had been taken full advantage of, the impact that the change and Land_use change that road network can be considered simultaneously again is produced to people's trip, improves the applicability of the accuracy and forecast model for predicting the outcome.

Description

一种结合重力模型与Fratar模型的交通分布预测方法A Traffic Distribution Prediction Method Combining Gravity Model and Fratar Model

技术领域technical field

本发明涉及一种将重力模型与Fratar模型相结合的交通分布预测方法,属于交通需求与交通分布预测技术领域。The invention relates to a traffic distribution prediction method combining a gravity model and a Fratar model, and belongs to the technical field of traffic demand and traffic distribution prediction.

背景技术Background technique

交通项目的合理规划离不开准确的交通需求分析及预测。交通需求分析及预测作为交通规划的关键技术,决定了对未来交通发展趋势把握的准确度和可靠度,从而影响着交通部门以及规划者的决策。在城市化水平越来越高的今天,涌现出了大量的新建城市或城市规划新区(以下简称新城区),这就给城市交通规划带来了新的难题和挑战,特别是在交通需求分析与预测阶段。目前,在交通规划中进行交通需求分析与预测主要采用的是传统的程序性交通需求分析模式,即交通生成、交通分布、交通方式划分和交通分配的四阶段预测模式。针对四阶段法的第二个阶段交通分布预测,很多学者提出了不同的预测模型和方法。The rational planning of transportation projects is inseparable from accurate transportation demand analysis and forecasting. As the key technology of traffic planning, traffic demand analysis and forecasting determine the accuracy and reliability of grasping the future traffic development trend, thus affecting the decision-making of traffic departments and planners. Today, as the level of urbanization is getting higher and higher, a large number of new cities or new urban planning areas (hereinafter referred to as new urban areas) have emerged, which has brought new problems and challenges to urban transportation planning, especially in the analysis of traffic demand. and the prediction stage. At present, the traditional procedural traffic demand analysis model is mainly used in traffic demand analysis and forecasting in traffic planning, that is, the four-stage forecasting model of traffic generation, traffic distribution, traffic mode division and traffic allocation. For the second stage of the four-stage method traffic distribution prediction, many scholars have proposed different prediction models and methods.

目前,在公路可行性研究的交通分布预测中采用较多的是现在状态法(也称增长系数法),其中Fratar法由于收敛速度快而被规划管理者广泛使用。Fratar法的基本假设是:交通小区之间的出行量与路网结构的变化无关,或在预测年份内路网无大的改变。因而Fratar法有一个避免不了的明显缺陷,即:仅用增长率这种唯一指标来实现未来交通量,而没有考虑到网络中影响交通分布的诸多因素,因而在新的交通方式、新的道路、新的收费政策或新的小区生成时无法描述交通分布的变化。此外,现在状态法对基年出行分布精度的依赖性较大,且未来年出行分布的可信度不可能超过基年,而任何出现在基年出行分布中的误差均将在计算过程中被放大。与此相比,“重力模型”法,或称为“综合模型”法,认为区与区之间的交通分布受到地区间距离、运行时间、费用等所有交通阻抗的影响,即区与区之间的出行分布同各区对出行的吸引成正比,而同区之间的交通阻抗成反比,对于一些新建城区的交通分布预测具有更高的适用性和准确性。但是重力模型法完全基于对出行分布影响因素的考虑,缺乏对人的出行行为的分析,没有充分利用现状出行分布数据,预测结果可能会与实际情况存在一定偏差。At present, the current state method (also known as the growth coefficient method) is mostly used in the traffic distribution prediction of the highway feasibility study, and the Fratar method is widely used by planning managers because of its fast convergence speed. The basic assumption of the Fratar method is: the travel volume between traffic areas has nothing to do with the change of the road network structure, or there is no major change in the road network in the forecast year. Therefore, the Fratar method has an unavoidable obvious defect, that is, it only uses the growth rate as the only indicator to realize the future traffic volume, without taking into account many factors that affect the traffic distribution in the network, so in new traffic modes, new roads, etc. , new toll policies, or new cell generation cannot describe changes in traffic distribution. In addition, the current state method is highly dependent on the accuracy of the travel distribution in the base year, and the reliability of the travel distribution in the future year cannot exceed the base year, and any errors in the travel distribution in the base year will be eliminated in the calculation process. enlarge. In contrast, the "gravity model" method, or "comprehensive model" method, considers that the traffic distribution between districts is affected by all traffic impedances such as distance between districts, running time, and cost, that is, the distance between districts The travel distribution among the districts is directly proportional to the travel attraction of each district, while the traffic resistance between the same districts is inversely proportional. It has higher applicability and accuracy for the traffic distribution prediction of some new urban areas. However, the gravity model method is completely based on the consideration of factors affecting travel distribution, lacks the analysis of people's travel behavior, and does not make full use of the current travel distribution data, and the prediction results may have certain deviations from the actual situation.

发明内容Contents of the invention

发明目的:为了克服现有技术中存在的不足,本发明提供一种结合重力模型与Fratar模型的交通分布预测方法,该预测方法可综合重力模型法与Fratar模型的优点,既考虑到路网变化和土地利用对出行分布的影响,又充分结合现状出行分布实际情况,同时解决Fratar法增长模式单一、重力模型法相关影响因素难以获得的问题,可以对未来年的交通分布进行合理预测。Purpose of the invention: In order to overcome the deficiencies in the prior art, the present invention provides a traffic distribution prediction method combining the gravity model and the Fratar model. And the impact of land use on travel distribution, fully combined with the actual situation of the current travel distribution, and at the same time solve the problems of the single growth model of the Fratar method and the difficulty of obtaining relevant influencing factors of the gravity model method, it can make a reasonable prediction of the traffic distribution in the future year.

技术方案:为实现上述目的,本发明采用的技术方案为:Technical scheme: in order to achieve the above object, the technical scheme adopted in the present invention is:

一种结合重力模型与Fratar模型的交通分布预测方法,包括以下步骤:A traffic distribution prediction method combining gravity model and Fratar model, comprising the following steps:

步骤10)采集各小区的现状发生吸引交通量、现状OD分布以及相关基础数据,其中,所述各小区的现状发生吸引交通量包括小区i的出行发生量Oi和小区j的出行吸引量Dj,i=1、2…n,j=1、2…n,n表示小区个数。Step 10) collect the current situation of each community to attract traffic volume, current OD distribution and related basic data, wherein, the current situation of each community to attract traffic volume includes the trip generation volume Oi of the community i and the travel attraction volume D of the community j j , i=1, 2...n, j=1, 2...n, n represents the number of cells.

步骤20)标定无约束重力模型,包含步骤201)至步骤204):Step 20) Calibrate the unconstrained gravity model, including step 201) to step 204):

步骤201)确定无约束重力模型形式:qij表示小区i、j之间的交通量,cij表示小区i、j之间的阻抗,α,β,γ为无约束重力模型待标定参数。Step 201) determine the unconstrained gravity model form: q ij represents the traffic volume between cell i and j, c ij represents the impedance between cell i and j, α, β, γ are unconstrained gravity model parameters to be calibrated.

步骤202)对两边取对数,得ln(qij)=lnα+βln(OiDj)-γln(cij)。Step 202) to Take the logarithm on both sides, and get ln(q ij )=lnα+βln(O i D j )-γln(c ij ).

步骤203)令Y=ln(qij),a0=lnα,a1=β,a2=-γ,X1=ln(OiDj),X2=ln(cij),则Y=a0+a1X1+a2X2,其中a0,a1,a2为待标定系数,X1,X2,Y为包含样本数据集的向量。Step 203) Let Y=ln(q ij ), a 0 =lnα, a 1 =β, a 2 =-γ, X 1 =ln(O i D j ), X 2 =ln(c ij ), then Y =a 0 +a 1 X 1 +a 2 X 2 , where a 0 , a 1 , a 2 are coefficients to be calibrated, and X 1 , X 2 , Y are vectors containing sample data sets.

步骤204)通过各小区现状发生吸引交通量及现状OD分布确定样本数据集X1,X2,Y,采用最小二乘法对样本数据进行标定,确定无约束重力模型参数。Step 204) Determine the sample data sets X 1 , X 2 , Y according to the current situation of attracting traffic volume and current OD distribution in each district, use the least square method to calibrate the sample data, and determine the parameters of the unconstrained gravity model.

步骤30)以现状发生吸引交通量为基础预测各小区未来年的发生吸引交通量,所述各小区未来年的发生吸引交通量包括第i个小区未来年的出行发生量Pi和第i个小区未来年的出行吸引量AiStep 30) Based on the current situation of attracting traffic volume, predict the occurrence and attracting traffic volume of each district in the future year, and the occurrence and attracting traffic volume of each district in the future year includes the trip generation volume P i and the i-th district's future year The travel attraction A i of the community in the coming year.

步骤40)将步骤30)得到各小区未来年的发生吸引交通量代入步骤20)中既标定的无约束重力模型,计算得到未来年OD分布qijStep 40) Substitute the occurrence and attraction traffic volume of each district in the future year obtained in step 30) into the unconstrained gravity model calibrated in step 20), and calculate the future year OD distribution q ij .

步骤50):以步骤40)中应用无约束重力模型得到的OD分布qij作为初始OD,运行一次Fratar模型得到新的未来年预测OD分布qij 1,包含步骤501)至步骤503)。Step 50): Using the OD distribution q ij obtained by applying the unconstrained gravity model in step 40) as the initial OD, run the Fratar model once to obtain a new predicted OD distribution q ij 1 for the future year, including steps 501) to 503).

步骤501):依据无约束重力模型求解得到小区i、j之间OD分布qij,汇总得到各小区发生吸引交通量: Step 501): According to the unconstrained gravity model, the OD distribution q ij between the cells i and j is obtained, and the traffic volume generated and attracted by each cell is obtained by summarizing:

步骤502):计算Fratar模型相关系数 其中,FOi表示应用Fratar模型时第i个小区的出行发生收敛系数,FDj表示第j个小区的出行吸引收敛系数,Lij表示第i个小区的出行发生调整系数,Lji表示第j个小区的出行吸引调整系数。Step 502): Calculate Fratar model correlation coefficient Among them, F Oi represents the travel occurrence convergence coefficient of the i-th cell when the Fratar model is applied, F Dj represents the travel attraction convergence coefficient of the j-th cell, L ij represents the travel occurrence adjustment coefficient of the i-th cell, and L ji represents the j-th cell The travel attraction adjustment coefficient of a district.

步骤503):求解新的未来年OD分布预测qij 1=qij*FOi*FDj*(Lii+Ljj)/2。Step 503): Solve the new future year OD distribution prediction q ij 1 =q ij *F Oi *F Dj *(L ii +L jj )/2.

步骤60):收敛性判断:根据步骤50)中Fratar模型一次循环得到的OD分布qij 1,汇总得到各小区新的未来年预测发生吸引交通量作为 Step 60): Convergence Judgment: According to the OD distribution q ij 1 obtained in one cycle of the Fratar model in Step 50), the new future annual forecasted traffic attraction of each district is obtained as

若各小区发生吸引交通量误差均在可接受范围以内,即:If the traffic volume errors of each district are within the acceptable range, that is:

转入步骤70),否则令 转步骤40)。Go to step 70), otherwise let Go to step 40).

步骤70)预测结果满足收敛条件,结束循环,此时的OD分布即为未来年各小区间OD分布预测结果。Step 70) The prediction result satisfies the convergence condition, and the cycle ends, and the OD distribution at this time is the prediction result of the OD distribution among the cells in the future year.

优选的:所述步骤10)中相关基础数据包括小区人口、面积、土地利用、区位因素数据。Preferably: the relevant basic data in the step 10) includes data of community population, area, land use, and location factors.

优选的:所述步骤30)中以现状发生吸引交通量为基础预测各小区未来年的发生吸引交通量的方法包括原单位法、增长率法、交叉分类法、函数法。Preferably: in the step 30), the methods for predicting the traffic volume of each subdistrict in the future based on the current volume of traffic volume include the original unit method, the growth rate method, the cross classification method, and the function method.

有益效果:本发明相比现有技术,具有以下有益效果:Beneficial effects: Compared with the prior art, the present invention has the following beneficial effects:

1)继承了重力模型的优点,能综合考虑路网变化、土地利用等多种因素对于小区发生吸引交通量的影响。同时对于新建城市或城市规划新区的交通需求预测具有较高的准确性和适用性。1) Inheriting the advantages of the gravity model, it can comprehensively consider the impact of various factors such as road network changes and land use on the generation and attraction of traffic in the community. At the same time, it has high accuracy and applicability for traffic demand prediction of new cities or urban planning new areas.

2)吸收合并了Fratar增长模型的优点,充分利用可获得的现状小区出行分布信息,一定程度上控制了未来年出行分布预测结果与实际出行分布之间的偏差,保证预测结果的可信度。2) Absorbing and merging the advantages of the Fratar growth model, making full use of the available travel distribution information of the current community, to a certain extent, controlling the deviation between the predicted results of the travel distribution in the future and the actual travel distribution, and ensuring the credibility of the prediction results.

3)当现状OD分布难以获得或基年分布信息缺失时,仍然可以先利用重力模型初始化预测年OD,再利用Fratar模型对预测结果进行逐步调整。3) When the current OD distribution is difficult to obtain or the base year distribution information is missing, the gravity model can still be used to initialize the predicted year OD, and then the Fratar model can be used to gradually adjust the predicted results.

附图说明Description of drawings

图1为本发明的流程框图。Fig. 1 is a flowchart of the present invention.

具体实施方式detailed description

下面结合附图和具体实施例,进一步阐明本发明,应理解这些实例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定的范围。Below in conjunction with accompanying drawing and specific embodiment, further illustrate the present invention, should be understood that these examples are only for illustrating the present invention and are not intended to limit the scope of the present invention, after having read the present invention, those skilled in the art will understand various aspects of the present invention All modifications of the valence form fall within the scope defined by the appended claims of the present application.

一种结合重力模型与Fratar模型的交通分布预测方法,如图1所示,包括以下步骤:A traffic distribution prediction method combining the gravity model and the Fratar model, as shown in Figure 1, includes the following steps:

步骤10)采集各小区的现状发生吸引交通量Oi,Di,现状OD分布以及相关基础数据,其中,相关基础数据的采集包括:对交通小区发生吸引交通量产生直接或间接影响的包括小区人口、面积、土地利用、区位相关数据的采集。Step 10) Collect the current traffic volume O i , D i , current situation OD distribution and related basic data of each district, wherein the collection of relevant basic data includes: the districts that have a direct or indirect impact on the traffic traffic volume generated by the traffic district Collection of data related to population, area, land use, and location.

步骤20)标定无约束重力模型,包含步骤201)至步骤204):Step 20) Calibrate the unconstrained gravity model, including step 201) to step 204):

步骤201)确定无约束重力模型形式:其中,i=1、2…n,j=1、2…n,n表示小区个数,qij表示小区i、j之间的交通量,cij表示小区i、j之间的阻抗,Oi表示小区i的出行发生量,Dj表示小区j的出行吸引量,α,β,γ为无约束重力模型待标定参数。Step 201) determine the unconstrained gravity model form: Among them, i=1, 2...n, j=1, 2...n, n represents the number of cells, q ij represents the traffic volume between cells i and j, c ij represents the impedance between cells i and j, O i represents the amount of trips in cell i, D j represents the amount of travel attraction in cell j, and α, β, γ are the parameters to be calibrated in the unconstrained gravity model.

步骤202)对两边取对数,得ln(qij)=lnα+βln(OiDj)-γln(cij)Step 202) to Take the logarithm on both sides, get ln(q ij )=lnα+βln(O i D j )-γln(c ij )

步骤203)令Y=ln(qij),a0=lnα,a1=β,a2=-γ,X1=ln(OiDj),X2=ln(cij),则Y=a0+a1X1+a2X2,其中a0,a1,a2为待标定系数,X1,X2,Y为包含样本数据集的向量。Step 203) Let Y=ln(q ij ), a 0 =lnα, a 1 =β, a 2 =-γ, X 1 =ln(O i D j ), X 2 =ln(c ij ), then Y =a 0 +a 1 X 1 +a 2 X 2 , where a 0 , a 1 , a 2 are coefficients to be calibrated, and X 1 , X 2 , Y are vectors containing sample data sets.

步骤204)通过各小区现状发生吸引交通量及现状OD分布确定样本数据集X1,X2,Y,采用最小二乘法对样本数据进行标定,确定无约束重力模型参数。Step 204) Determine the sample data sets X 1 , X 2 , Y according to the current situation of attracting traffic volume and current OD distribution in each district, use the least square method to calibrate the sample data, and determine the parameters of the unconstrained gravity model.

步骤30)以现状发生吸引交通量为基础预测各小区未来年的发生吸引交通量,第i个小区的发生吸引交通量分别记为Pi、Ai。其中,小区未来年的发生吸引交通量预测方法包括原单位法、增长率法、交叉分类法、函数法等。Step 30) Based on the current generated and attracted traffic volume, predict the generated and attracted traffic volume of each district in the future year, and the generated and attracted traffic volume of the i-th district is denoted as P i and A i respectively. Among them, the predictive methods for the generation and attraction traffic volume of the community in the future include the original unit method, the growth rate method, the cross classification method, and the function method.

步骤40)应用步骤20)中既标定的无约束重力模型,代入未来年发生吸引交通量Pi、Ai,计算得到未来年OD分布。Step 40) Apply the unconstrained gravity model calibrated in step 20), substitute the traffic volumes P i and A i that will be attracted in the future year, and calculate the OD distribution in the future year.

步骤50):以步骤40)中应用无约束重力模型得到的OD分布作为初始OD,应用Fratar模型进行一次收敛得到新的未来年预测OD分布,包含步骤501)至步骤503):Step 50): Use the OD distribution obtained by applying the unconstrained gravity model in step 40) as the initial OD, and apply the Fratar model to perform a convergence to obtain a new forecasted OD distribution in the future, including steps 501) to 503):

步骤501):依据无约束重力模型求解得到小区i、j之间OD分布qij,根据OD表汇总各小区发生吸引交通量: Step 501): According to the unconstrained gravity model, the OD distribution q ij between the cells i and j is obtained, and the traffic volume generated and attracted by each cell is summarized according to the OD table:

步骤502):计算Fratar模型相关参数: Step 502): Calculate Fratar model related parameters:

步骤503):求解新的未来年OD分布预测 Step 503): Solve the new future year OD distribution forecast

步骤60):收敛性判断:根据步骤50)中Fratar模型一次循环得到的OD分布qij 1,汇总得到各小区新的未来年预测发生吸引交通量作为 Step 60): Convergence Judgment: According to the OD distribution q ij 1 obtained in one cycle of the Fratar model in Step 50), the new future annual forecasted traffic attraction of each district is obtained as

若各小区发生吸引交通量误差均在可接受范围以内,即:If the traffic volume errors of each district are within the acceptable range, that is:

转入步骤70),否则令 转步骤40)。Go to step 70), otherwise let Go to step 40).

步骤70)预测结果满足收敛条件,结束循环,此时的OD分布即为未来年各小区间OD分布预测结果。Step 70) The prediction result satisfies the convergence condition, and the cycle ends, and the OD distribution at this time is the prediction result of the OD distribution among the cells in the future year.

本发明提供一种结合重力模型与Fratar模型的交通分布预测方法,该预测方法可综合重力模型法与Fratar模型的优点,既考虑到路网变化和土地利用对出行分布的影响,又充分结合了现状出行分布实际情况,同时解决了Fratar法增长模式单一、重力模型法相关影响因素获准确性问题,对未来年的交通分布进行合理预测。The invention provides a traffic distribution prediction method combining the gravity model and the Fratar model. The prediction method can integrate the advantages of the gravity model method and the Fratar model, and not only considers the influence of road network changes and land use on travel distribution, but also fully combines the advantages of the gravity model and the Fratar model. The actual situation of the current travel distribution, at the same time solves the problems of the single growth mode of the Fratar method and the accuracy of the relevant influencing factors of the gravity model method, and makes a reasonable prediction of the traffic distribution in the next year.

本发明充分考虑了交通分布预测过程中可能出现的实际情况,将重力模型法与Fratar增长率法相结合,在最大程度利用现状出行分布可获得信息的前提下合理的预测未来年出行分布。本发明的方法首先采用重力模型对未来年交通分布进行初始化预测,通过Fratar模型对初始预测结果逐次收敛,循环上述两步骤直至满足最终收敛条件。本发明的方法对现有分布预测模型的基本原理没有实质改动,但其结合了重力模型与Fratar模型的优势,既充分利用了现状出行分布信息,同时又能考虑路网的变化和土地利用对人们出行产生的影响,提升了预测结果的准确性和预测模型的适用性。因此本发明的实用性强,可以适用于新旧城区的交通分布与交通需求预测中,具有重要的现实意义。The present invention fully considers the actual situation that may occur in the traffic distribution prediction process, combines the gravity model method and the Fratar growth rate method, and reasonably predicts the travel distribution in the future on the premise of utilizing the current travel distribution to obtain information to the greatest extent. The method of the present invention first uses the gravity model to initialize and predict the traffic distribution in the future, and then converges the initial prediction results successively through the Fratar model, and repeats the above two steps until the final convergence condition is met. The method of the present invention does not substantially change the basic principle of the existing distribution prediction model, but it combines the advantages of the gravity model and the Fratar model, which not only makes full use of the current travel distribution information, but also considers the impact of changes in the road network and land use. The impact of people's travel improves the accuracy of forecast results and the applicability of forecast models. Therefore, the present invention has strong practicability and can be applied to traffic distribution and traffic demand forecasting in new and old urban areas, and has important practical significance.

下面给出一个具体实施例。A specific embodiment is given below.

以江苏省某城市3个交通小区的出行分布预测为例,说明该发明方法的实用性与优势。Taking the travel distribution prediction of three traffic districts in a certain city in Jiangsu Province as an example, the practicability and advantages of the inventive method are illustrated.

步骤10)采集各小区的现状发生吸引交通量P、A,现状OD分布以及相关基础数据,统计各小区之间及小区内部现状行驶时间、预测未来行驶时间。Step 10) Collect the current generation and attraction traffic volume P and A of each district, the current OD distribution and related basic data, count the current travel time between each district and within the district, and predict the future travel time.

表1现状OD分布表Table 1 Status OD distribution table

表2现状行驶时间Table 2 Current driving time

表3未来行驶时间Table 3 Future travel time

步骤20)标定无约束重力模型:Step 20) Calibrate the unconstrained gravity model:

步骤201)确定无约束重力模型形式: Step 201) determine the unconstrained gravity model form:

步骤202)对两边取对数,得ln(qij)=lnα+βln(OiDj)-γln(cij)。Step 202) to Take the logarithm on both sides, and get ln(q ij )=lnα+βln(O i D j )-γln(c ij ).

步骤203)令Y=ln(qij),a0=lnα,a1=β,a2=-γ,X1=ln(OiDj),X2=ln(cij),则Y=a0+a1X1+a2X2,其中a0,a1,a2为待标定系数,cij取小区之间与小区内部行驶时间,X1,X2,Y为包含样本数据集的向量。Step 203) Let Y=ln(q ij ), a 0 =lnα, a 1 =β, a 2 =-γ, X 1 =ln(O i D j ), X 2 =ln(c ij ), then Y =a 0 +a 1 X 1 +a 2 X 2 , where a 0 , a 1 , a 2 are coefficients to be calibrated, c ij is the travel time between plots and inside plots, X 1 , X 2 , Y are included samples A vector of datasets.

步骤204)通过各小区现状发生吸引交通量及现状OD分布确定样本数据集X1,X2,Y,采用最小二乘法对样本数据进行标定,确定无约束重力模型参数。Step 204) Determine the sample data sets X 1 , X 2 , Y according to the current situation of attracting traffic volume and current OD distribution in each district, use the least square method to calibrate the sample data, and determine the parameters of the unconstrained gravity model.

表4重力模型标定样本数据Table 4 Gravity model calibration sample data

解得二元线性方程参数a0=-2.084,a1=1.173,a2=-1.455,进一步解得重力模型参数α=0.124,β=1.173,γ=1.455,即标定的重力模型为:Solve the binary linear equation parameters a 0 =-2.084, a 1 =1.173, a 2 =-1.455, further solve the gravity model parameters α=0.124, β=1.173, γ=1.455, that is, the calibrated gravity model is:

步骤30)以现状发生吸引交通量为基础预测各小区未来年的发生吸引交通量,第i个小区的发生吸引交通量分别记为Pi、AiStep 30) Based on the current generated and attracted traffic volume, predict the generated and attracted traffic volume of each district in the future year, and the generated and attracted traffic volume of the i-th district is denoted as P i and A i respectively.

表5未来年发生吸引交通量Table 5 Attracting traffic volume in the coming years

步骤40)应用步骤20)中既标定的无约束重力模型,代入未来年发生吸引交通量Pi、Ai,计算得到未来年OD分布。Step 40) Apply the unconstrained gravity model calibrated in step 20), substitute the traffic volumes P i and A i that will be attracted in the future year, and calculate the OD distribution in the future year.

表6未来年OD分布表Table 6 OD distribution table in the coming years

步骤50):以步骤40)中应用无约束重力模型得到的OD分布表作为初始OD,应用Fratar模型进行一次收敛得到新的未来年预测OD分布,包含步骤501)至步骤502):Step 50): Use the OD distribution table obtained by applying the unconstrained gravity model in step 40) as the initial OD, and apply the Fratar model to perform a convergence to obtain a new forecasted OD distribution in the future, including steps 501) to 502):

步骤501):依据无约束重力模型求解得到小区i、j之间OD分布qij,根据OD表汇总各小区发生吸引交通量: Step 501): According to the unconstrained gravity model, the OD distribution q ij between the cells i and j is obtained, and the traffic volume generated and attracted by each cell is summarized according to the OD table:

表7重力模型与实际预测下未来年发生吸引交通量Table 7. Gravity model and actual forecasts to attract traffic in future years

步骤502):求 Step 502): seek

表7 Fratar模型相关参数Table 7 Fratar model related parameters

步骤503):求新的未来年OD分布预测qij 1=qij*FOi*FDj*(Lii+Ljj)/2。Step 503): Calculate the new future year OD distribution prediction q ij 1 =q ij *F Oi *F Dj *(L ii +L jj )/2.

表8未来年OD分布表Table 8 OD distribution table in the coming years

步骤60):收敛性判断:Step 60): Convergence judgment:

根据步骤50)中Fratar模型一次循环得到的OD分布qij 1,汇总得到各小区新的未来年预测发生吸引交通量作为 According to the OD distribution q ij 1 obtained in one cycle of the Fratar model in step 50), the new forecasted traffic volume of each district in the future is obtained as

表9预测未来年发生吸引交通量统计Table 9 Forecasting traffic volume statistics in future years

判断本次循环后各小区发生吸引交通量与上次循环结果比值 是否满足可接受范围:Judging the ratio of the amount of traffic attracted by each community after this cycle to the result of the previous cycle Whether it meets the acceptable range:

表10两次循环误差统计Table 10 two cycle error statistics

收敛条件不满足,因此令 转步骤40)。The convergence condition is not satisfied, so let Go to step 40).

对步骤40)至步骤60)进行8次循环后,得到:Step 40) to step 60) after carrying out 8 cycles, obtain:

表11未来年OD分布表Table 11 OD distribution table in the coming years

表12两次循环误差统计Table 12 Statistics of two cycle errors

收敛条件满足,即: 转入步骤70),。The convergence condition is satisfied, namely: Go to step 70),.

步骤70)结束循环,此时的OD分布即为未来年各小区间OD分布预测最终结果。Step 70) ends the cycle, and the OD distribution at this time is the final result of OD distribution prediction among the cells in the future year.

表13未来年OD分布表Table 13 OD Distribution Table for Future Years

以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above is only a preferred embodiment of the present invention, it should be pointed out that for those of ordinary skill in the art, without departing from the principle of the present invention, some improvements and modifications can also be made. It should be regarded as the protection scope of the present invention.

Claims (3)

1.一种结合重力模型与Fratar模型的交通分布预测方法,其特征在于,包括以下步骤:1. a traffic distribution prediction method combining gravity model and Fratar model, is characterized in that, comprises the following steps: 步骤10)采集各小区的现状发生吸引交通量、现状OD分布以及相关基础数据,其中,所述各小区的现状发生吸引交通量包括小区i的出行发生量Oi和小区j的出行吸引量Dj,i=1、2...n,j=1、2...n,n表示小区个数;Step 10) collect the current situation of each community to attract traffic volume, current OD distribution and related basic data, wherein, the current situation of each community to attract traffic volume includes the trip generation volume Oi of the community i and the travel attraction volume D of the community j j , i=1, 2...n, j=1, 2...n, n represents the number of cells; 步骤20)标定无约束重力模型,包含步骤201)至步骤204):Step 20) Calibrate the unconstrained gravity model, including step 201) to step 204): 步骤201)确定无约束重力模型形式:qij表示小区i、j之间的交通量,cij表示小区i、j之间的阻抗,α,β,γ为无约束重力模型待标定参数;Step 201) determine the unconstrained gravity model form: q ij represents the traffic volume between cell i and j, c ij represents the impedance between cell i and j, α, β, γ are unconstrained gravity model parameters to be calibrated; 步骤202)对两边取对数,得ln(qij)=lnα+βln(OiDj)-γln(cij);Step 202) to Take the logarithm on both sides, get ln(q ij )=lnα+βln(O i D j )-γln(c ij ); 步骤203)令Y=ln(qij),a0=lnα,a1=β,a2=-γ,X1=ln(OiDj),X2=ln(cij),则Y=a0+a1X1+a2X2,其中a0,a1,a2为待标定系数,X1,X2,Y为包含样本数据集的向量;Step 203) Let Y=ln(q ij ), a 0 =lnα, a 1 =β, a 2 =-γ, X 1 =ln(O i D j ), X 2 =ln(c ij ), then Y =a 0 +a 1 X 1 +a 2 X 2 , where a 0 , a 1 , a 2 are coefficients to be calibrated, X 1 , X 2 , Y are vectors containing sample data sets; 步骤204)通过各小区现状发生吸引交通量及现状OD分布确定样本数据集X1,X2,Y,采用最小二乘法对样本数据进行标定,确定无约束重力模型参数;Step 204) Determine the sample data sets X 1 , X 2 , Y according to the current situation of each district to attract traffic and the current OD distribution, use the least square method to calibrate the sample data, and determine the parameters of the unconstrained gravity model; 步骤30)以现状发生吸引交通量为基础预测各小区未来年的发生吸引交通量,所述各小区未来年的发生吸引交通量包括第i个小区未来年的出行发生量Pi和第i个小区未来年的出行吸引量AiStep 30) Based on the current situation of attracting traffic volume, predict the occurrence and attracting traffic volume of each district in the future year, and the occurrence and attracting traffic volume of each district in the future year includes the trip generation volume P i and the i-th district's future year The travel attraction A i of the community in the coming year; 步骤40)将步骤30)得到各小区未来年的发生吸引交通量代入步骤20)中既标定的无约束重力模型,计算得到未来年OD分布qijStep 40) substituting the occurrence and attraction traffic volume of each subdistrict obtained in step 30) into the unconstrained gravity model calibrated in step 20), and calculating the future year OD distribution q ij ; 步骤50):以步骤40)中应用无约束重力模型得到的OD分布qij作为初始OD,运行一次Fratar模型得到新的未来年预测OD分布qij 1,包含步骤501)至步骤503);Step 50): Using the OD distribution q ij obtained by applying the unconstrained gravity model in step 40) as the initial OD, run the Fratar model once to obtain a new forecasted OD distribution q ij 1 for the future year, including steps 501) to 503); 步骤501):依据无约束重力模型求解得到小区i、j之间OD分布qij,汇总得到各小区发生吸引交通量: Step 501): According to the unconstrained gravity model, the OD distribution q ij between the cells i and j is obtained, and the traffic volume generated and attracted by each cell is obtained by summarizing: 步骤502):计算Fratar模型相关系数 其中,FOi表示应用Fratar模型时第i个小区的出行发生收敛系数,FDj表示第j个小区的出行吸引收敛系数,Lij表示第i个小区的出行发生调整系数,Lji表示第j个小区的出行吸引调整系数;Step 502): Calculate Fratar model correlation coefficient Among them, F Oi represents the travel occurrence convergence coefficient of the i-th cell when the Fratar model is applied, F Dj represents the travel attraction convergence coefficient of the j-th cell, L ij represents the travel occurrence adjustment coefficient of the i-th cell, and L ji represents the j-th cell The travel attraction adjustment coefficient of a community; 步骤503):求解新的未来年OD分布预测qij 1=qij*FOi*FDj*(Lii+Ljj)/2;Step 503): Solve the new future year OD distribution prediction q ij 1 =q ij *F Oi *F Dj *(L ii +L jj )/2; 步骤60):收敛性判断:根据步骤50)中Fratar模型一次循环得到的OD分布qij 1,汇总得到各小区新的未来年预测发生吸引交通量作为 Step 60): Convergence Judgment: According to the OD distribution q ij 1 obtained in one cycle of the Fratar model in Step 50), the new future annual forecasted traffic attraction of each district is obtained as PP ii 11 == &Sigma;&Sigma; jj == 11 nno qq ii jj 11 ,, AA ii 11 == &Sigma;&Sigma; ii == 11 nno qq ii jj 11 若各小区发生吸引交通量误差均在可接受范围以内,即:If the traffic volume errors of each district are within the acceptable range, that is: &Sigma;&Sigma; ii == 11 nno &lsqb;&lsqb; II Ff (( 0.990.99 << PP ii PP ii 11 << 1.011.01 )) &rsqb;&rsqb; ++ &Sigma;&Sigma; ii == 11 nno &lsqb;&lsqb; II Ff (( 0.990.99 << AA ii AA ii 11 << 1.011.01 )) &rsqb;&rsqb; == == 22 nno 转入步骤70),否则令转步骤40);Go to step 70), otherwise let Go to step 40); 步骤70)预测结果满足收敛条件,结束循环,此时的OD分布即为未来年各小区间OD分布预测结果。Step 70) The prediction result satisfies the convergence condition, and the cycle ends, and the OD distribution at this time is the prediction result of the OD distribution among the cells in the future year. 2.根据权利要求1所述的结合重力模型与Fratar模型的交通分布预测方法,其特征在于:所述步骤10)中相关基础数据包括小区人口、面积、土地利用、区位因素数据。2. the traffic distribution forecasting method combining gravity model and Fratar model according to claim 1, is characterized in that: in described step 10), relevant basic data comprises community population, area, land utilization, location factor data. 3.根据权利要求1所述的结合重力模型与Fratar模型的交通分布预测方法,其特征在于:所述步骤30)中以现状发生吸引交通量为基础预测各小区未来年的发生吸引交通量的方法包括原单位法、增长率法、交叉分类法、函数法。3. the traffic distribution forecasting method combining gravity model and Fratar model according to claim 1, it is characterized in that: in described step 30), attract the traffic volume that takes place in the present situation as the basis and predict the occurrence of attracting traffic volume in the future year of each subdistrict Methods include original unit method, growth rate method, cross classification method, and function method.
CN201611087603.5A 2016-11-30 2016-11-30 A kind of trip distribution modeling method of combination Gravity Models and Fratar models Active CN106504535B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611087603.5A CN106504535B (en) 2016-11-30 2016-11-30 A kind of trip distribution modeling method of combination Gravity Models and Fratar models

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611087603.5A CN106504535B (en) 2016-11-30 2016-11-30 A kind of trip distribution modeling method of combination Gravity Models and Fratar models

Publications (2)

Publication Number Publication Date
CN106504535A true CN106504535A (en) 2017-03-15
CN106504535B CN106504535B (en) 2018-10-12

Family

ID=58329476

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611087603.5A Active CN106504535B (en) 2016-11-30 2016-11-30 A kind of trip distribution modeling method of combination Gravity Models and Fratar models

Country Status (1)

Country Link
CN (1) CN106504535B (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107294794A (en) * 2017-07-31 2017-10-24 国网辽宁省电力有限公司 A kind of large-scale ip communication service matrix estimation method and system
CN108269399A (en) * 2018-01-24 2018-07-10 哈尔滨工业大学 A High-speed Railway Passenger Flow Demand Forecasting Method Based on Highway Network Passenger Flow OD Reversal Technology
CN108615360A (en) * 2018-05-08 2018-10-02 东南大学 Transport need based on neural network Evolution Forecast method day by day
CN109035112A (en) * 2018-08-02 2018-12-18 东南大学 Method and system are determined based on the urban construction and renewal model of multisource data fusion
CN112613662A (en) * 2020-12-23 2021-04-06 北京恒达时讯科技股份有限公司 Highway traffic volume analysis method and device, electronic equipment and storage medium
CN114639239A (en) * 2022-02-24 2022-06-17 东南大学 Improved gravity model traffic distribution prediction method
CN114694378A (en) * 2022-03-21 2022-07-01 东南大学 Two-stage traffic distribution prediction method
CN114741845A (en) * 2022-03-14 2022-07-12 北京工业大学 Interest-degree-based large-scale event activity traffic distribution prediction method
CN115099542A (en) * 2022-08-26 2022-09-23 深圳市城市交通规划设计研究中心股份有限公司 Cross-city commuting trip generation and distribution prediction method, electronic device and storage medium
CN115100849A (en) * 2022-05-24 2022-09-23 东南大学 A Combined Traffic Distribution Analysis Method for Integrated Traffic System
CN116050616A (en) * 2023-01-10 2023-05-02 中国城市规划设计研究院 Spatial Distribution Prediction Method and System for Commuting Trips

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101261768A (en) * 2007-03-23 2008-09-10 天津市国腾公路咨询监理有限公司 Highway Network Traffic Survey Data Acquisition and Analysis Application System and Its Working Method
CN101436345A (en) * 2008-12-19 2009-05-20 天津市市政工程设计研究院 System for forecasting harbor district road traffic requirement based on TransCAD macroscopic artificial platform
CN102024206A (en) * 2010-12-20 2011-04-20 江苏省交通科学研究院股份有限公司 Method for predicting suburban rail transit passenger flow
CN102609781A (en) * 2011-12-15 2012-07-25 东南大学 Road traffic predication system and method based on OD (Origin Destination) updating
US20130033385A1 (en) * 2002-03-05 2013-02-07 Andre Gueziec Generating visual information associated with traffic
CN104183119A (en) * 2014-08-19 2014-12-03 中山大学 Real-time traffic flow distribution prediction system based on road section OD backstepping
CN104899443A (en) * 2015-06-05 2015-09-09 陆化普 Method and system for evaluating current travel demand and predicting travel demand in future
US9171461B1 (en) * 2013-03-07 2015-10-27 Steve Dabell Method and apparatus for providing estimated patrol properties and historic patrol records

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130033385A1 (en) * 2002-03-05 2013-02-07 Andre Gueziec Generating visual information associated with traffic
CN101261768A (en) * 2007-03-23 2008-09-10 天津市国腾公路咨询监理有限公司 Highway Network Traffic Survey Data Acquisition and Analysis Application System and Its Working Method
CN101436345A (en) * 2008-12-19 2009-05-20 天津市市政工程设计研究院 System for forecasting harbor district road traffic requirement based on TransCAD macroscopic artificial platform
CN102024206A (en) * 2010-12-20 2011-04-20 江苏省交通科学研究院股份有限公司 Method for predicting suburban rail transit passenger flow
CN102609781A (en) * 2011-12-15 2012-07-25 东南大学 Road traffic predication system and method based on OD (Origin Destination) updating
US9171461B1 (en) * 2013-03-07 2015-10-27 Steve Dabell Method and apparatus for providing estimated patrol properties and historic patrol records
CN104183119A (en) * 2014-08-19 2014-12-03 中山大学 Real-time traffic flow distribution prediction system based on road section OD backstepping
CN104899443A (en) * 2015-06-05 2015-09-09 陆化普 Method and system for evaluating current travel demand and predicting travel demand in future

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
RAKHMAT CEHA: "Prediction of future origin-destination matrix of air passengers by fratar and gravity models", 《COMPUTERS&INDUSTRIAL ENGINEERING》 *
廖朝华: ""公路交通量预测研究"", 《中国优秀博硕士学位论文全文数据库 (硕士) 工程科技Ⅱ辑》 *
徐锦强 等: ""基于Fratar 模型的交通分布预测系统设计"", 《山东交通学院学报》 *
王炜: ""O-D矩阵的分类与推算"", 《中国公路学报》 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107294794A (en) * 2017-07-31 2017-10-24 国网辽宁省电力有限公司 A kind of large-scale ip communication service matrix estimation method and system
CN108269399A (en) * 2018-01-24 2018-07-10 哈尔滨工业大学 A High-speed Railway Passenger Flow Demand Forecasting Method Based on Highway Network Passenger Flow OD Reversal Technology
CN108615360A (en) * 2018-05-08 2018-10-02 东南大学 Transport need based on neural network Evolution Forecast method day by day
CN108615360B (en) * 2018-05-08 2022-02-11 东南大学 Prediction method of daily evolution of traffic demand based on neural network
CN109035112A (en) * 2018-08-02 2018-12-18 东南大学 Method and system are determined based on the urban construction and renewal model of multisource data fusion
CN112613662A (en) * 2020-12-23 2021-04-06 北京恒达时讯科技股份有限公司 Highway traffic volume analysis method and device, electronic equipment and storage medium
CN112613662B (en) * 2020-12-23 2023-11-17 北京恒达时讯科技股份有限公司 Highway traffic volume analysis method, device, electronic equipment and storage medium
CN114639239A (en) * 2022-02-24 2022-06-17 东南大学 Improved gravity model traffic distribution prediction method
CN114741845A (en) * 2022-03-14 2022-07-12 北京工业大学 Interest-degree-based large-scale event activity traffic distribution prediction method
CN114741845B (en) * 2022-03-14 2025-05-30 北京工业大学 A traffic distribution prediction method for large-scale events based on interest
CN114694378B (en) * 2022-03-21 2023-02-14 东南大学 Two-stage traffic distribution prediction method
CN114694378A (en) * 2022-03-21 2022-07-01 东南大学 Two-stage traffic distribution prediction method
CN115100849A (en) * 2022-05-24 2022-09-23 东南大学 A Combined Traffic Distribution Analysis Method for Integrated Traffic System
CN115100849B (en) * 2022-05-24 2023-04-18 东南大学 Combined traffic distribution analysis method for comprehensive traffic system
CN115099542A (en) * 2022-08-26 2022-09-23 深圳市城市交通规划设计研究中心股份有限公司 Cross-city commuting trip generation and distribution prediction method, electronic device and storage medium
CN115099542B (en) * 2022-08-26 2023-02-03 深圳市城市交通规划设计研究中心股份有限公司 Cross-city commuting trip generation and distribution prediction method, electronic device and storage medium
CN116050616A (en) * 2023-01-10 2023-05-02 中国城市规划设计研究院 Spatial Distribution Prediction Method and System for Commuting Trips
CN116050616B (en) * 2023-01-10 2025-03-18 中国城市规划设计研究院 Commuting travel spatial distribution prediction method and system

Also Published As

Publication number Publication date
CN106504535B (en) 2018-10-12

Similar Documents

Publication Publication Date Title
CN106504535B (en) A kind of trip distribution modeling method of combination Gravity Models and Fratar models
CN108596727B (en) A management and decision-making method for shared bicycles
CN103871246B (en) Based on the Short-time Traffic Flow Forecasting Methods of road network spatial relation constraint Lasso
Ziari et al. Prediction of pavement performance: Application of support vector regression with different kernels
CN110176141B (en) Traffic cell division method and system based on POI and traffic characteristics
WO2023056696A1 (en) Urban rail transit short-term passenger flow forecasting method based on recurrent neural network
CN113723659B (en) Urban rail transit full-scene passenger flow prediction method and system
CN101789176B (en) Forecasting method for port area short-time traffic flow under model of reservation cargo concentration in port
CN110956807B (en) Highway flow prediction method based on combination of multi-source data and sliding window
CN101706996A (en) Method for identifying traffic status of express way based on information fusion
CN114881356A (en) Prediction method of urban traffic carbon emission based on particle swarm optimization optimization of BP neural network
CN110400462B (en) Track traffic passenger flow monitoring and early warning method and system based on fuzzy theory
CN115359659B (en) A lane opening and closing configuration method and system
Shen et al. Prediction of entering percentage into expressway service areas based on wavelet neural networks and genetic algorithms
CN104574968A (en) Determining method for threshold traffic state parameter
CN111429166A (en) Spatial distribution prediction method of electric vehicle charging demand based on maximum contour clustering
Yang et al. Short-term prediction of airway congestion index using machine learning methods
CN119416627B (en) Large-scale urban network multi-agent traffic simulation prediction method, system and equipment
CN111967686B (en) Random load prediction method based on power utilization probability distribution function
CN106981204B (en) A kind of information processing method and device
CN110674990B (en) Method and system for instant delivery route selection with sliding window update mechanism
CN116612633A (en) Self-adaptive dynamic path planning method based on vehicle-road cooperative sensing
CN113554221B (en) Method for simulating and predicting town development boundary under view angle of&#39; flow space
CN110659774A (en) Parking demand forecasting method driven by big data method
CN114912669A (en) Public transport passenger flow combined graph neural network prediction method based on multi-source data

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant