[go: up one dir, main page]

CN106531622A - Preparation method of gallium arsenide-based MOSFET gate dielectric - Google Patents

Preparation method of gallium arsenide-based MOSFET gate dielectric Download PDF

Info

Publication number
CN106531622A
CN106531622A CN201611247710.XA CN201611247710A CN106531622A CN 106531622 A CN106531622 A CN 106531622A CN 201611247710 A CN201611247710 A CN 201611247710A CN 106531622 A CN106531622 A CN 106531622A
Authority
CN
China
Prior art keywords
gallium arsenide
oxygen plasma
substrate
oxide
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611247710.XA
Other languages
Chinese (zh)
Inventor
苏玉玉
孙兵
刘洪刚
王盛凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Microelectronics of CAS
Original Assignee
Institute of Microelectronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Microelectronics of CAS filed Critical Institute of Microelectronics of CAS
Priority to CN201611247710.XA priority Critical patent/CN106531622A/en
Publication of CN106531622A publication Critical patent/CN106531622A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明公开了一种砷化镓基MOSFET栅介质的制备方法,包括如下步骤:步骤1:清洗砷化镓衬底表面;步骤2:在清洗完成后的所述砷化镓衬底表面沉积阻挡层;步骤3:利用直接离化的氧等离子体或间接离化的氧等离子体处理步骤2获得的衬底表面,氧等离子扩散进入到所述阻挡层和砷化镓界面处,从而氧化砷化镓表面,在所述阻挡层与所述砷化镓衬底界面形成一薄层五氧化二砷和三氧化二镓的混合物层;步骤4:在氧等离子体氧化后的砷化镓衬底表面沉积高介电常数的栅氧化物层。本发明的制备方法能够在砷化镓表面形成热稳定高、界面态密度小、等效氧化层厚度薄的栅介质,从而提高砷化镓沟道MOSFET器件的电学特性。

The invention discloses a method for preparing a gallium arsenide-based MOSFET gate dielectric, which comprises the following steps: step 1: cleaning the surface of the gallium arsenide substrate; step 2: depositing a barrier on the surface of the gallium arsenide substrate after cleaning layer; step 3: using directly ionized oxygen plasma or indirect ionized oxygen plasma to treat the substrate surface obtained in step 2, oxygen plasma diffuses into the interface between the barrier layer and gallium arsenide, thereby oxidizing arsenide On the surface of gallium, a thin layer of mixture layer of diarsenic pentoxide and gallium trioxide is formed at the interface between the barrier layer and the gallium arsenide substrate; step 4: the surface of the gallium arsenide substrate after oxygen plasma oxidation A high dielectric constant gate oxide layer is deposited. The preparation method of the invention can form a gate dielectric with high thermal stability, low interface state density and thin equivalent oxide layer thickness on the gallium arsenide surface, thereby improving the electrical characteristics of the gallium arsenide channel MOSFET device.

Description

一种砷化镓基MOSFET栅介质的制备方法A preparation method of gallium arsenide-based MOSFET gate dielectric

技术领域technical field

本发明涉及半导体集成技术领域,尤其涉及一种砷化镓基MOSFET栅介质的制备方法。The invention relates to the technical field of semiconductor integration, in particular to a preparation method of a gallium arsenide-based MOSFET gate dielectric.

背景技术Background technique

半导体技术作为信息产业的核心和基础,被视为衡量一个国家科学技术进步和综合国力的重要标志。在过去的40多年中,以硅CMOS技术为基础的集成电路技术遵循摩尔定律通过缩小器件的特征尺寸来提高芯片的工作速度、增加集成度以及降低成本,集成电路的特征尺寸由微米尺度进化到纳米尺度。但是当MOS器件的栅长减小到90纳米后,栅氧化层的厚度只有1.2纳米,摩尔定律开始面临来自物理与技术方面的双重挑战。As the core and foundation of the information industry, semiconductor technology is regarded as an important symbol to measure a country's scientific and technological progress and comprehensive national strength. In the past 40 years, the integrated circuit technology based on silicon CMOS technology has followed Moore's law to increase the working speed of the chip, increase the integration level and reduce the cost by reducing the feature size of the device. The feature size of the integrated circuit has evolved from the micron scale to nanoscale. However, when the gate length of MOS devices is reduced to 90 nanometers, the thickness of the gate oxide layer is only 1.2 nanometers, and Moore's Law begins to face challenges from both physics and technology.

金属-氧化物半导体场效应晶体管,简称金氧半场效晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)。学术界与产业界普遍认为:采用高迁移率沟道材料替代传统硅材料将是CMOS技术的重要发展方向,其中砷化镓沟道材料最有可能在近期实现大规模应用。砷化镓的电子迁移率比硅要高,砷化镓沟道CMOS器件已经成为解决硅基CMOS遇到的问题的有效途径。然而砷化镓基MOSFET亟需获得热稳定高、界面态密度小、等效氧化层厚度薄的高介电常数的栅介质材料,这已经成为当前研究的重点与难点。Metal-Oxide-Semiconductor Field-Effect Transistor, referred to as Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET). Academia and industry generally believe that replacing traditional silicon materials with high-mobility channel materials will be an important development direction of CMOS technology, and gallium arsenide channel materials are most likely to achieve large-scale applications in the near future. Gallium arsenide has a higher electron mobility than silicon, and gallium arsenide channel CMOS devices have become an effective way to solve the problems encountered by silicon-based CMOS. However, gallium arsenide-based MOSFETs urgently need to obtain high dielectric constant gate dielectric materials with high thermal stability, low interface state density, and thin equivalent oxide layer thickness, which has become the focus and difficulty of current research.

发明内容Contents of the invention

有鉴于此,本发明的目的是在砷化镓表面形成热稳定高、界面态密度小、等效氧化层厚度薄的栅介质,因此,本发明提供一种砷化镓基MOSFET栅介质的制备方法,以期解决前述前有技术中存在的至少部分技术问题。In view of this, the object of the present invention is to form a gate dielectric with high thermal stability, low interface state density and thin equivalent oxide layer thickness on the surface of gallium arsenide. Therefore, the present invention provides a preparation of a gallium arsenide-based MOSFET gate dielectric method, in order to solve at least some of the technical problems in the aforementioned prior art.

为实现上述目的,本发明提供一种砷化镓基MOSFET栅介质的制备方法,包括如下步骤:In order to achieve the above object, the present invention provides a method for preparing a gallium arsenide-based MOSFET gate dielectric, comprising the following steps:

步骤1:清洗砷化镓衬底表面;Step 1: cleaning the surface of the gallium arsenide substrate;

步骤2:在清洗完成后的所述砷化镓衬底表面沉积阻挡层;Step 2: depositing a barrier layer on the surface of the gallium arsenide substrate after cleaning;

步骤3:利用直接离化的氧等离子体或间接离化的氧等离子体处理步骤2获得的衬底表面,氧等离子扩散进入到所述阻挡层和砷化镓界面处,从而氧化砷化镓表面,在所述阻挡层与所述砷化镓衬底界面形成一薄层五氧化二砷和三氧化二镓的混合物层;Step 3: treating the surface of the substrate obtained in step 2 with directly ionized oxygen plasma or indirectly ionized oxygen plasma, and oxygen plasma diffuses into the interface between the barrier layer and gallium arsenide, thereby oxidizing the surface of gallium arsenide , forming a thin mixture layer of diarsenic pentoxide and digallium trioxide at the interface between the barrier layer and the gallium arsenide substrate;

步骤4:在氧等离子体氧化后的砷化镓衬底表面沉积高介电常数的栅氧化物层。Step 4: Depositing a high dielectric constant gate oxide layer on the surface of the gallium arsenide substrate after oxygen plasma oxidation.

进一步地,所述步骤1中,所述砷化镓衬底包括砷化镓片、绝缘体上砷化镓片、硅上外延砷化镓片或化合物半导体上外延砷化镓片,所述砷化镓衬底首先用丙酮和乙醇各清洗1-10分钟,然后用去离子水冲洗干净,接着采用氢氟酸和/或盐酸与去离子水混合后的混合溶液去除砷化镓衬底表面的自然氧化物层。Further, in the step 1, the gallium arsenide substrate includes a gallium arsenide sheet, a gallium arsenide on insulator sheet, an epitaxial gallium arsenide on silicon sheet or an epitaxial gallium arsenide on a compound semiconductor sheet, and the arsenide The gallium substrate is first cleaned with acetone and ethanol for 1-10 minutes each, and then rinsed with deionized water, and then the mixed solution of hydrofluoric acid and/or hydrochloric acid mixed with deionized water is used to remove the natural particles on the surface of the gallium arsenide substrate. oxide layer.

进一步地,所述步骤2中,采用原子层沉积、化学气相沉积、脉冲激光溅射或分子束外延的方法沉积的三氧化二镧作为阻挡层,所述三氧化二镧的厚度在3埃-10纳米之间。Further, in the step 2, the lanthanum trioxide deposited by atomic layer deposition, chemical vapor deposition, pulsed laser sputtering or molecular beam epitaxy is used as a barrier layer, and the thickness of the lanthanum trioxide is between 3 Angstroms- between 10 nanometers.

进一步地,所述步骤3中,所述直接离化的氧等离子体是由氧气、臭氧、二氧化碳、一氧化二氮中的一种或多种,或氧气、臭氧、二氧化碳、一氧化二氮中的一种或多种与氮气、氦气、氩气中的一种或多种混合后的气体,经过等离子体发生器离化形成的等离子体,所述等离子体发生器工作功率在0-200瓦每平方厘米之间。Further, in the step 3, the directly ionized oxygen plasma is one or more of oxygen, ozone, carbon dioxide, nitrous oxide, or oxygen, ozone, carbon dioxide, nitrous oxide One or more gases mixed with one or more of nitrogen, helium, and argon are ionized by a plasma generator to form plasma, and the working power of the plasma generator is 0-200 between watts per square centimeter.

进一步地,所述步骤3中,所述间接离化的氧等离子体是由氮气、氦气、氩气中的一种或多种经过等离子体发生器离化形成等离子体源,所述等离子体源再与氧气、臭氧、二氧化碳、一氧化二氮中的一种或多种混合气体混合使其离化,所述等离子体发生器工作功率在0-200瓦每平方厘米之间。Further, in the step 3, the indirect ionized oxygen plasma is ionized by one or more of nitrogen, helium, and argon through a plasma generator to form a plasma source, and the plasma The source is then mixed with one or more mixed gases of oxygen, ozone, carbon dioxide, and nitrous oxide to make it ionized. The working power of the plasma generator is between 0-200 watts per square centimeter.

进一步地,所述步骤3中,所述直接离化的氧等离子体或间接离化的氧等离子体处理步骤2获得的衬底表面的时间在1毫秒-1小时之间。Further, in the step 3, the direct ionized oxygen plasma or the indirect ionized oxygen plasma treats the surface of the substrate obtained in step 2 within 1 millisecond to 1 hour.

进一步地,所述步骤3中,所述直接离化的氧等离子体或间接离化的氧等离子体处理步骤2获得的衬底表面的温度在20摄氏度-500摄氏度之间。Further, in the step 3, the temperature of the substrate surface obtained in the direct ionized oxygen plasma or indirect ionized oxygen plasma treatment step 2 is between 20 degrees Celsius and 500 degrees Celsius.

进一步地,所述步骤4中,采用原子层沉积、化学气相沉积、脉冲激光溅射、分子束外延的方法沉积高介电常数的氧化物作为栅氧化物层,所述氧化物包括铝基、锆基、铪基、钆基、镓基、镧基、钽基氧化物,氧化物中的掺杂元素可以为铝、锆、铪、钆、镓、镧、钽、氮、磷,氧化物中掺杂元素的原子数量与总的金属元素的原子数量的比值=x:(1-x),x的取值范围可设置为0≤x<1,栅氧化物层的厚度在3埃-10纳米之间。Further, in step 4, an oxide with a high dielectric constant is deposited as a gate oxide layer by means of atomic layer deposition, chemical vapor deposition, pulsed laser sputtering, and molecular beam epitaxy, and the oxide includes aluminum-based, Zirconium-based, hafnium-based, gadolinium-based, gallium-based, lanthanum-based, tantalum-based oxides, the doping element in the oxide can be aluminum, zirconium, hafnium, gadolinium, gallium, lanthanum, tantalum, nitrogen, phosphorus, in the oxide The ratio of the number of atoms of the doping element to the number of atoms of the total metal elements = x:(1-x), the value range of x can be set to 0≤x<1, and the thickness of the gate oxide layer is between 3 angstroms-10 between nanometers.

本发明的优点和技术效果如下:Advantage of the present invention and technical effect are as follows:

采用具有高介电常数的三氧化二镧作为阻挡层材料,三氧化二镧的介电常数在20以上,阻挡层等效氧化层厚度很小;三氧化二镧和砷化镓界面比较稳定,不易形成互扩散层;氧等离子体在氧化砷化镓表面时由于有阻挡层,砷化镓表面不易形成等离子表面损伤;通过控制氧等离子体表面处理时间,可以控制五氧化二砷和三氧化二镓混合物层厚度,且砷化镓-五氧化二砷和三氧化二镓混合物界面热稳定性高、界面态密度低;最上层栅介质层沉积后,整个复合栅介质的等效氧化层厚度可以达到小于1纳米,从而提高砷化镓沟道MOSFET器件的电学特性。Using lanthanum trioxide with a high dielectric constant as the barrier layer material, the dielectric constant of lanthanum trioxide is above 20, and the equivalent oxide layer thickness of the barrier layer is very small; the interface between lanthanum trioxide and gallium arsenide is relatively stable, It is not easy to form an interdiffusion layer; when oxygen plasma oxidizes the surface of gallium arsenide, due to the barrier layer, the surface of gallium arsenide is not easy to form plasma surface damage; by controlling the surface treatment time of oxygen plasma, it is possible to control the Gallium mixture layer thickness, and gallium arsenide - diarsenic pentoxide and gallium trioxide mixture interface thermal stability is high, the interface state density is low; after the uppermost gate dielectric layer is deposited, the equivalent oxide layer thickness of the entire composite gate dielectric can be Reach less than 1 nanometer, thereby improving the electrical characteristics of GaAs channel MOSFET devices.

附图说明Description of drawings

图1为本发明技术方案中砷化镓基MOSFET栅介质的制备流程示意图;Fig. 1 is a schematic diagram of the preparation process of the GaAs-based MOSFET gate dielectric in the technical solution of the present invention;

图2为本发明技术方案中砷化镓衬底结构示意图;Fig. 2 is a schematic structural diagram of a gallium arsenide substrate in the technical solution of the present invention;

图3为本发明技术方案中沉积完三氧化二镧后的结构示意图;Fig. 3 is the structural representation after depositing dilanthanum trioxide in the technical scheme of the present invention;

图4为本发明技术方案中氧等离子体氧化形成一薄层五氧化二砷和三氧化二镓混合物层后的结构示意图;Fig. 4 is the schematic diagram of the structure after forming a thin layer of arsenic pentoxide and gallium trioxide mixture layer by oxygen plasma oxidation in the technical solution of the present invention;

图5为本发明技术方案中在阻挡层上沉积栅氧化物层后的结构示意图;Fig. 5 is a structural schematic diagram after depositing a gate oxide layer on the barrier layer in the technical solution of the present invention;

其中,in,

201为砷化镓衬底;202为砷化镓;203为五氧化二砷和三氧化二镓混合物层;204为栅氧化物层。201 is a gallium arsenide substrate; 202 is a gallium arsenide; 203 is a mixture layer of diarsenic pentoxide and digallium trioxide; 204 is a gate oxide layer.

具体实施方式detailed description

为使本发明的目的、内容和优点更加清楚,下面结合附图和实施例,对本发明的具体实施方式作进一步的详细描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。In order to make the purpose, content and advantages of the present invention clearer, the specific implementation manners of the present invention will be further described in detail below in conjunction with the accompanying drawings and examples. The following examples are only used to illustrate the technical solution of the present invention more clearly, but not to limit the protection scope of the present invention.

实施例1Example 1

本实施例具体描述本发明所提供的一种砷化镓基MOSFET栅介质的制备方法。This embodiment specifically describes a method for preparing a gallium arsenide-based MOSFET gate dielectric provided by the present invention.

如图1所示,其显示本实施例提供的砷化镓基MOSFET栅介质的制备方法的流程示意图,所述制备方法,包括如下步骤:As shown in Figure 1, it shows a schematic flow chart of the preparation method of the gallium arsenide-based MOSFET gate dielectric provided in this embodiment. The preparation method includes the following steps:

步骤101:如图1所示,开始,准备砷化镓衬底201,砷化镓衬底为砷化镓锗片;Step 101: As shown in FIG. 1, start by preparing a gallium arsenide substrate 201, the gallium arsenide substrate being a gallium germanium arsenide wafer;

步骤102:如图1和图2所示,采用丙酮和乙醇各清洗5分钟,然后用去离子水冲洗1分钟;接着采用盐酸:水体积比等于1:2的溶液清洗砷化镓衬底表面1分钟,并用去离子水冲洗1分钟,重复溶液清洗和去离子水冲洗三次,氮气吹干。Step 102: As shown in Figure 1 and Figure 2, wash with acetone and ethanol for 5 minutes each, and then rinse with deionized water for 1 minute; then use a solution of hydrochloric acid:water volume ratio equal to 1:2 to clean the surface of the gallium arsenide substrate 1 minute, and rinse with deionized water for 1 minute, repeat the solution washing and deionized water rinse three times, and blow dry with nitrogen.

步骤103:如图1和图3所示,利用原子层沉积的方法,在热生长模式下,三(2,2,6,6-四甲基-3,5-庚二酮酸)镧作为镧源,臭氧作为氧源,镧源加热到200摄氏度,反应腔体温度350摄氏度,在步骤102获得的砷化镓衬底表面沉积1纳米的三氧化二镧作为阻挡层202。Step 103: As shown in Figure 1 and Figure 3, using atomic layer deposition method, in thermal growth mode, tris(2,2,6,6-tetramethyl-3,5-heptanedionate) lanthanum as The lanthanum source, ozone as the oxygen source, the lanthanum source heated to 200 degrees Celsius, the temperature of the reaction chamber 350 degrees Celsius, and 1 nanometer of lanthanum trioxide deposited on the surface of the gallium arsenide substrate obtained in step 102 as the barrier layer 202 .

步骤104:如图1和图4所示,利用原子层沉积系统,在等离子生长模式下,氧气:氮气体积比等于1:1的混合气体,混合气体流量300立方厘米每分钟,经过等离子发生器形成氧等离子体,等离子发生器功率设为100瓦每平方厘米,反应腔温度设定为350摄氏度,用氧等离子体处理步骤103获得的衬底表面8秒,在阻挡层202与砷化镓衬底201界面形成0.5纳米左右厚度的五氧化二砷和三氧化二镓混合物层203。Step 104: As shown in Figure 1 and Figure 4, using the atomic layer deposition system, in the plasma growth mode, the mixed gas with the volume ratio of oxygen:nitrogen equal to 1:1, the flow rate of the mixed gas is 300 cubic centimeters per minute, and passes through the plasma generator Oxygen plasma is formed, the power of the plasma generator is set to 100 watts per square centimeter, the temperature of the reaction chamber is set to 350 degrees Celsius, and the surface of the substrate obtained in step 103 is treated with oxygen plasma for 8 seconds. A mixture layer 203 of diarsenic pentoxide and digallium trioxide with a thickness of about 0.5 nm is formed on the interface of the bottom 201 .

步骤105:如图1和图5所示,利用原子层沉积的方法,在热生长模式下,三(2,2,6,6-四甲基-3,5-庚二酮酸)镧作为镧源,臭氧作为氧源,镧源加热到200摄氏度,反应腔体温度350摄氏度,在步骤104获得的砷化镓衬底表面沉积2纳米的三氧化二镧作为栅氧化物层204。Step 105: As shown in Figure 1 and Figure 5, using atomic layer deposition method, in thermal growth mode, tris(2,2,6,6-tetramethyl-3,5-heptanedionate) lanthanum as The lanthanum source, ozone as the oxygen source, the lanthanum source heated to 200 degrees Celsius, the temperature of the reaction chamber 350 degrees Celsius, and 2 nanometers of lanthanum trioxide deposited on the surface of the gallium arsenide substrate obtained in step 104 as the gate oxide layer 204 .

通过上述各步骤制得的砷化镓衬底201表面复合栅介质由0.5纳米五氧化二砷和三氧化二镓混合物层203、1纳米三氧化二镧阻挡层202和2纳米三氧化二镧栅氧化物层204组成,等效氧化层厚度小于1纳米。The composite gate dielectric on the surface of the gallium arsenide substrate 201 prepared through the above steps is composed of a 0.5 nanometer arsenic pentoxide and gallium trioxide mixture layer 203, a 1 nanometer lanthanum trioxide barrier layer 202 and a 2 nanometer lanthanum trioxide gate The oxide layer 204 is composed of an equivalent oxide layer thickness less than 1 nanometer.

以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步地详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.

Claims (10)

1. A preparation method of a gallium arsenide-based MOSFET gate dielectric is characterized by comprising the following steps:
step 1: cleaning the surface of the gallium arsenide substrate;
step 2: depositing a barrier layer on the surface of the cleaned gallium arsenide substrate;
and step 3: treating the substrate surface obtained in the step (2) by using directly ionized oxygen plasma or indirectly ionized oxygen plasma, wherein the oxygen plasma diffuses into the barrier layer and the gallium arsenide interface, so as to oxidize the gallium arsenide surface, and a thin layer of a mixture layer of arsenic pentoxide and gallium trioxide is formed on the barrier layer and the gallium arsenide substrate interface;
and 4, step 4: and depositing a gate oxide layer with high dielectric constant on the surface of the gallium arsenide substrate after the oxygen plasma oxidation.
2. The method according to claim 1, wherein in step 1, the gallium arsenide substrate comprises a gallium arsenide wafer, a gallium arsenide wafer on insulator, an epitaxial gallium arsenide wafer on silicon, or an epitaxial gallium arsenide wafer on compound semiconductor.
3. The method according to claim 1, wherein in step 1, the GaAs substrate is first cleaned with acetone and ethanol for 1-10 minutes, then cleaned with deionized water, and then a native oxide layer on the surface of the GaAs substrate is removed with a mixed solution of hydrofluoric acid and/or hydrochloric acid mixed with deionized water.
4. The preparation method according to claim 1, wherein in step 2, the barrier layer is lanthanum oxide deposited by atomic layer deposition, chemical vapor deposition, pulsed laser sputtering or molecular beam epitaxy, and the thickness of the lanthanum oxide is between 3 angstroms and 10 nanometers.
5. The method according to claim 1, wherein in step 3, the directly ionized oxygen plasma is plasma formed by ionizing one or more of oxygen, ozone, carbon dioxide and nitrous oxide or gas obtained by mixing one or more of oxygen, ozone, carbon dioxide and nitrous oxide with one or more of nitrogen, helium and argon by a plasma generator, and the working power of the plasma generator is 0-200 watts per square centimeter.
6. The method of claim 1, wherein in step 3, the indirectly ionized oxygen plasma is ionized from one or more of nitrogen, helium and argon by a plasma generator, and the plasma source is further mixed with one or more of oxygen, ozone, carbon dioxide and nitrous oxide to ionize the indirectly ionized oxygen plasma, and the operating power of the plasma generator is between 0 and 200 watts per square centimeter.
7. The method according to claim 1, wherein the time for treating the substrate surface obtained in step 2 with the directly ionized oxygen plasma or the indirectly ionized oxygen plasma in step 3 is between 1 millisecond and 1 hour.
8. The method according to claim 1, wherein the substrate surface obtained in step 3 by the directly ionized oxygen plasma or indirectly ionized oxygen plasma treatment step 2 has a temperature of 20-500 ℃.
9. The preparation method according to claim 1, wherein in step 4, the high dielectric constant oxide is deposited as the gate oxide layer by atomic layer deposition, chemical vapor deposition, pulsed laser sputtering, and molecular beam epitaxy.
10. The preparation method of claim 9, wherein the oxide comprises an aluminum-based, zirconium-based, hafnium-based, gadolinium-based, gallium-based, lanthanum-based or tantalum-based oxide, the doping element in the oxide is aluminum, zirconium, hafnium, gadolinium, gallium, lanthanum, tantalum, nitrogen or phosphorus, the ratio of the number of atoms of the doping element to the number of atoms of the total metal elements in the oxide is x (1-x), x is in the range of 0 to 1, and the thickness of the gate oxide layer is 3 angstroms to 10 nanometers.
CN201611247710.XA 2016-12-29 2016-12-29 Preparation method of gallium arsenide-based MOSFET gate dielectric Pending CN106531622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611247710.XA CN106531622A (en) 2016-12-29 2016-12-29 Preparation method of gallium arsenide-based MOSFET gate dielectric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611247710.XA CN106531622A (en) 2016-12-29 2016-12-29 Preparation method of gallium arsenide-based MOSFET gate dielectric

Publications (1)

Publication Number Publication Date
CN106531622A true CN106531622A (en) 2017-03-22

Family

ID=58339286

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611247710.XA Pending CN106531622A (en) 2016-12-29 2016-12-29 Preparation method of gallium arsenide-based MOSFET gate dielectric

Country Status (1)

Country Link
CN (1) CN106531622A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113097055A (en) * 2021-04-02 2021-07-09 吉林大学 High-quality p-type gallium oxide nano columnar structure film and preparation method thereof
CN115087767A (en) * 2020-03-02 2022-09-20 住友电气工业株式会社 Gallium arsenide single crystal substrate and method for producing gallium arsenide single crystal substrate

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4291327A (en) * 1978-08-28 1981-09-22 Bell Telephone Laboratories, Incorporated MOS Devices
US20040206979A1 (en) * 2002-06-06 2004-10-21 Braddock Walter David Metal oxide compound semiconductor integrated transistor devices
US20070069240A1 (en) * 2005-09-27 2007-03-29 Matthias Passlack III-V compound semiconductor heterostructure MOSFET device
US20070166931A1 (en) * 2005-12-07 2007-07-19 Park Hong-Bae Methods of Manufacturing A Semiconductor Device for Improving the Electrical Characteristics of A Dielectric Film
CN101218684A (en) * 2004-11-15 2008-07-09 国际商业机器公司 Nitrogen-containing field effect transistor gate stack comprising a threshold voltage control layer formed by depositing a metal oxide
CN102024707A (en) * 2010-11-03 2011-04-20 南京大学 Method for manufacturing GaAs-based metal oxide semiconductor (MOS) device
CN102324434A (en) * 2011-10-17 2012-01-18 北京大学 A kind of Schottky barrier MOS transistor and its preparation method
CN102664147A (en) * 2012-05-14 2012-09-12 中国科学院上海微系统与信息技术研究所 Method for preparing Hf-based high-K gate dielectric film on GaAs substrate
CN102931068A (en) * 2012-11-23 2013-02-13 中国科学院微电子研究所 Preparation method of germanium-based MOSFET gate dielectric
CN102945861A (en) * 2012-11-26 2013-02-27 北京大学 Strip bar modulation type tunneling field effect transistor and manufacture method thereof
CN102983168A (en) * 2012-11-29 2013-03-20 北京大学 Tunneling field effect transistor with double-diffused strip gate and preparation method thereof
CN103151391A (en) * 2013-03-18 2013-06-12 北京大学 Short gate tunneling field effect transistor of vertical non-uniform doping channel and preparation method thereof
CN104241397A (en) * 2014-08-27 2014-12-24 北京大学 Double-layer schottky barrier MOS transistor and manufacturing method thereof
CN104241374A (en) * 2014-08-29 2014-12-24 北京大学 Deep-energy-level impurity tunneling field-effect transistor (TFET) and preparation method thereof
CN104332409A (en) * 2014-11-05 2015-02-04 北京大学 Deep-N-well technology based production method capable of isolating tunneling field effect transistor (TFET)
CN104362095A (en) * 2014-11-05 2015-02-18 北京大学 Production method of tunneling field-effect transistor

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4291327A (en) * 1978-08-28 1981-09-22 Bell Telephone Laboratories, Incorporated MOS Devices
US20040206979A1 (en) * 2002-06-06 2004-10-21 Braddock Walter David Metal oxide compound semiconductor integrated transistor devices
CN101218684A (en) * 2004-11-15 2008-07-09 国际商业机器公司 Nitrogen-containing field effect transistor gate stack comprising a threshold voltage control layer formed by depositing a metal oxide
US20070069240A1 (en) * 2005-09-27 2007-03-29 Matthias Passlack III-V compound semiconductor heterostructure MOSFET device
US20070166931A1 (en) * 2005-12-07 2007-07-19 Park Hong-Bae Methods of Manufacturing A Semiconductor Device for Improving the Electrical Characteristics of A Dielectric Film
CN102024707A (en) * 2010-11-03 2011-04-20 南京大学 Method for manufacturing GaAs-based metal oxide semiconductor (MOS) device
CN102324434A (en) * 2011-10-17 2012-01-18 北京大学 A kind of Schottky barrier MOS transistor and its preparation method
CN102664147A (en) * 2012-05-14 2012-09-12 中国科学院上海微系统与信息技术研究所 Method for preparing Hf-based high-K gate dielectric film on GaAs substrate
CN102931068A (en) * 2012-11-23 2013-02-13 中国科学院微电子研究所 Preparation method of germanium-based MOSFET gate dielectric
CN102945861A (en) * 2012-11-26 2013-02-27 北京大学 Strip bar modulation type tunneling field effect transistor and manufacture method thereof
CN102983168A (en) * 2012-11-29 2013-03-20 北京大学 Tunneling field effect transistor with double-diffused strip gate and preparation method thereof
CN103151391A (en) * 2013-03-18 2013-06-12 北京大学 Short gate tunneling field effect transistor of vertical non-uniform doping channel and preparation method thereof
CN104241397A (en) * 2014-08-27 2014-12-24 北京大学 Double-layer schottky barrier MOS transistor and manufacturing method thereof
CN104241374A (en) * 2014-08-29 2014-12-24 北京大学 Deep-energy-level impurity tunneling field-effect transistor (TFET) and preparation method thereof
CN104332409A (en) * 2014-11-05 2015-02-04 北京大学 Deep-N-well technology based production method capable of isolating tunneling field effect transistor (TFET)
CN104362095A (en) * 2014-11-05 2015-02-18 北京大学 Production method of tunneling field-effect transistor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115087767A (en) * 2020-03-02 2022-09-20 住友电气工业株式会社 Gallium arsenide single crystal substrate and method for producing gallium arsenide single crystal substrate
CN115087767B (en) * 2020-03-02 2024-02-20 住友电气工业株式会社 Gallium arsenide single crystal substrate and method for manufacturing gallium arsenide single crystal substrate
CN113097055A (en) * 2021-04-02 2021-07-09 吉林大学 High-quality p-type gallium oxide nano columnar structure film and preparation method thereof
CN113097055B (en) * 2021-04-02 2022-04-29 吉林大学 A kind of high-quality p-type gallium oxide nano-columnar structure film and preparation method thereof

Similar Documents

Publication Publication Date Title
KR100715739B1 (en) A method for making a semiconductor device having a high-k gate dielectric
CN102931068A (en) Preparation method of germanium-based MOSFET gate dielectric
CN109003895B (en) Manufacturing method for improving performance stability of SiC MOSFET device
CN101789446B (en) A Double Heterojunction MOS-HEMT Device
TW200418185A (en) A method for making a semiconductor device having an ultra-thin high-k gate dielectric
CN111987169B (en) Transistor based on two-dimensional gallium oxide thin film and preparation method
CN102629559A (en) Manufacture method of stacked gate SiC-metal insulator semiconductor (MIS) capacitor
CN101838812B (en) Method for cleaning surface of passivated Ge substrate
CN107437498A (en) Silicon carbide mos structure grid oxygen preparation method and silicon carbide mos structure preparation method
CN108258043A (en) A kind of enhanced MOS HEMT devices of GaN base and preparation method thereof
CN115274404A (en) Modified tunnel oxide layer and preparation method, TOPCon structure and preparation method, and solar cell
CN102214563A (en) Preparation and forming method of metal gate/high-K gate dielectric laminated structure
CN103295890B (en) Be deposited on the processing method of the gate medium on germanium base or three or five compounds of group base substrates
CN106531622A (en) Preparation method of gallium arsenide-based MOSFET gate dielectric
CN102181833A (en) Method for epitaxially growing strontium titanate (STO) thin film on gallium arsenide (GaAs) substrate
CN107154338A (en) A kind of raising GaN HEMT passivation effects, the process for treating surface for reducing current collapse
CN103219381B (en) Ge base tri-gate devices and manufacture method
CN110571140B (en) Post-Oxidation Treatment Method of Oxygen-Containing Elements to Improve the Performance of SiC MOS Devices
CN108538850B (en) Ferroelectric grid field effect transistor memory with high fatigue resistance and preparation process
CN104716189A (en) Gallium-antimonide-based semiconductor device provided with interface passivation layer and preparation method thereof
CN102544103A (en) InP inversion n ditch field effect transistor and preparation method thereof
CN102655112A (en) Method for realizing isolation among active regions of germanium-based MOS (Metal Oxide Semiconductor) device
TW201330083A (en) A method for removing GeOx
CN104037240A (en) SiC MOS (metal oxide semiconductor) capacitor and manufacturing method
CN101807527B (en) Method for manufacturing SiC MESFET gate

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170322