CN106532277A - Wireless sensor adopting multi-port tag antenna and solar energy collection function - Google Patents
Wireless sensor adopting multi-port tag antenna and solar energy collection function Download PDFInfo
- Publication number
- CN106532277A CN106532277A CN201610969469.5A CN201610969469A CN106532277A CN 106532277 A CN106532277 A CN 106532277A CN 201610969469 A CN201610969469 A CN 201610969469A CN 106532277 A CN106532277 A CN 106532277A
- Authority
- CN
- China
- Prior art keywords
- port
- radio frequency
- sensor
- antenna
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q23/00—Antennas with active circuits or circuit elements integrated within them or attached to them
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K19/00—Record carriers for use with machines and with at least a part designed to carry digital markings
- G06K19/06—Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
- G06K19/067—Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
- G06K19/07—Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
- G06K19/0723—Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips the record carrier comprising an arrangement for non-contact communication, e.g. wireless communication circuits on transponder cards, non-contact smart cards or RFIDs
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K19/00—Record carriers for use with machines and with at least a part designed to carry digital markings
- G06K19/06—Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
- G06K19/067—Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
- G06K19/07—Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
- G06K19/077—Constructional details, e.g. mounting of circuits in the carrier
- G06K19/07749—Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
Abstract
一种采用多端口标签天线以及太阳能能量收集的无线传感器,包括用于采集信号的传感器,接收传感器所采集的信号的控制芯片,还设置有与所述控制芯片进行通信的射频识别芯片,以及双端口的贴片天线、用于供电的太阳能电池和能够从周围环境中的射频信号中获取能量进行供电的电源管理单元,其中,所述贴片天线的第一端口连接射频识别芯片,所述贴片天线的第二端口连接电源管理单元的输入端,所述电源管理单元的输出端和太阳能电池的输出端分别连接传感器、控制芯片和射频识别芯片的电源输入端。本发明利用多端口标签天线以及太阳能能量收集解决RFID标签传感器的能源供应、工作距离近等问题。RFID标签传感器实现了远距离通信,增强了传感精度并且极大的优化了传感器的寿命。
A wireless sensor using a multi-port tag antenna and solar energy collection, including a sensor for collecting signals, a control chip for receiving the signals collected by the sensor, a radio frequency identification chip for communicating with the control chip, and a dual port patch antenna, a solar battery for power supply, and a power management unit capable of obtaining energy from radio frequency signals in the surrounding environment for power supply, wherein the first port of the patch antenna is connected to a radio frequency identification chip, and the patch antenna The second port of the chip antenna is connected to the input end of the power management unit, and the output end of the power management unit and the output end of the solar cell are respectively connected to the power input ends of the sensor, the control chip and the radio frequency identification chip. The invention utilizes the multi-port tag antenna and solar energy collection to solve the problems of energy supply and short working distance of the RFID tag sensor. The RFID tag sensor realizes long-distance communication, enhances the sensing accuracy and greatly optimizes the life of the sensor.
Description
技术领域technical field
本发明涉及一种无线传感器。特别是涉及一种采用多端口标签天线以及太阳能能量收集的无线传感器。The invention relates to a wireless sensor. In particular, it relates to a wireless sensor using a multi-port tag antenna and solar energy harvesting.
背景技术Background technique
RFID技术是一种依靠无线射频信号进行识别以及信息传递的技术,它能够以无接触传递的方式交换信息并通过所传递的信息达到识别目标,RFID中的核心部分是标签(tag)。RFID综合了众多技术,包括天线技术、集成电路技术、电磁场传播技术、编码解码技术和数据信息交换等。在众多的工业和商业流程中,射频识别(RFID)已经变成了一个关键元素。当前出现的关于RFID的应用中,范围扩展到安全访问、物流库存和供应链管理、医疗、智能空间分配、物联网(IOT)以及无线传感器网络(WSN)。由于其低成本和易部署的特点,RFID技术最近被用到了传感器应用当中。在这些基于RFID标签的传感器中,一般通过两种方案来实现传感功能。第一种方案中,就是利用标签天线实现传感器功能以及数据传输,在这种方案里,最简单的实现方法是利用标签天线作为传感器或者集成一个无源传感器作为标签天线版图的一部分。简单并且消除了对电池和电源供给的需要是这些基于RFID标签传感器的优点,但这是以缩短了读写距离为代价的。由于这些传感器的低精准度,它们通常用作阈值传感器。RFID technology is a technology that relies on radio frequency signals for identification and information transmission. It can exchange information in a non-contact manner and achieve identification goals through the transmitted information. The core part of RFID is the tag. RFID integrates many technologies, including antenna technology, integrated circuit technology, electromagnetic field propagation technology, encoding and decoding technology and data information exchange. Radio Frequency Identification (RFID) has become a key element in numerous industrial and commercial processes. Among the currently emerging applications for RFID, the scope extends to secure access, logistics inventory and supply chain management, medical care, smart space allocation, Internet of Things (IOT) and wireless sensor networks (WSN). Due to its low cost and ease of deployment, RFID technology has recently been used in sensor applications. In these RFID tag-based sensors, there are generally two schemes to realize the sensing function. In the first solution, the tag antenna is used to realize the sensor function and data transmission. In this solution, the simplest implementation method is to use the tag antenna as a sensor or integrate a passive sensor as a part of the tag antenna layout. Simplicity and the elimination of the need for batteries and power supplies are advantages of these RFID tag-based sensors, but this comes at the expense of reduced read and write distances. Due to the low accuracy of these sensors, they are often used as threshold sensors.
第二种方案是利用一个独立的传感器收集读出数据,再通过RFID标签和阅读器进行通信。这种方案能够提高读写距离以及传感的精度,其中RFID标签的数据是由独立的传感器提供的。但是我们很难将传感器集成在RFID芯片内部,因为传感器需要充足的能量供应并且芯片需要可嵌入。只有少部分的传感器满足这些苛刻的条件,像温度、光以及压力传感器。给传感器以及微处理器供电的能量收集单元在RFID标签传感器的性能、探测范围以及寿命当中扮演着重要的角色。本发明采用第二种传感器方案,标签天线的创新设计以及多端口、多天线的安排是一种有前途的技术,这为解决基于RFID标签传感器的能源以及成本限制问题提供了一种新的可能。The second option is to use an independent sensor to collect the readout data, and then communicate with the reader through the RFID tag. This solution can improve the reading and writing distance and the accuracy of sensing, in which the data of the RFID tag is provided by an independent sensor. But it is difficult for us to integrate the sensor inside the RFID chip, because the sensor needs sufficient energy supply and the chip needs to be embeddable. Only a small number of sensors meet these stringent conditions, such as temperature, light and pressure sensors. The energy harvesting unit that powers the sensor and the microprocessor plays an important role in the performance, detection range and lifetime of the RFID tag sensor. The present invention adopts the second sensor scheme, the innovative design of the tag antenna and the arrangement of multi-port and multi-antenna is a promising technology, which provides a new possibility for solving the energy and cost constraints of RFID-based tag sensors .
发明内容Contents of the invention
本发明所要解决的技术问题是,提供一种能够实现远距离通信,增强传感精度并且极大的提高传感器寿命的采用多端口标签天线以及太阳能能量收集的无线传感器。The technical problem to be solved by the present invention is to provide a wireless sensor using a multi-port tag antenna and solar energy collection that can realize long-distance communication, enhance sensing accuracy and greatly improve the life of the sensor.
本发明所采用的技术方案是:一种采用多端口标签天线以及太阳能能量收集的无线传感器,包括用于采集信号的传感器,接收传感器所采集的信号的控制芯片,还设置有与所述控制芯片进行通信的射频识别芯片,以及双端口的贴片天线、用于供电的太阳能电池和能够从周围环境中的射频信号中获取能量进行供电的电源管理单元,其中,所述贴片天线的第一端口连接射频识别芯片,所述贴片天线的第二端口连接电源管理单元的输入端,所述电源管理单元的输出端和太阳能电池的输出端分别连接传感器、控制芯片和射频识别芯片的电源输入端。The technical solution adopted by the present invention is: a wireless sensor adopting multi-port tag antenna and solar energy collection, including a sensor for collecting signals, a control chip for receiving signals collected by the sensor, and a control chip connected to the control chip A radio frequency identification chip for communication, a dual-port patch antenna, a solar cell for power supply, and a power management unit capable of obtaining energy from radio frequency signals in the surrounding environment for power supply, wherein the first of the patch antenna The port is connected to the radio frequency identification chip, the second port of the patch antenna is connected to the input end of the power management unit, and the output end of the power management unit and the output end of the solar cell are respectively connected to the power input of the sensor, the control chip and the radio frequency identification chip end.
所述的贴片天线包括有金属片,与所述金属片相连作为与所述的射频识别芯片相连的第一端口的第一线圈,以及与所述金属片相连作为与所述的电源管理单元相连的第二端口的第二线圈。The patch antenna includes a metal sheet, a first coil connected to the metal sheet as a first port connected to the radio frequency identification chip, and connected to the metal sheet as a first coil connected to the power management unit Connect the second coil to the second port.
所述的电源管理单元包括有:依次相连的用于从周围环境中的射频信号中获取能量的RF-DC整流电路、电荷泵以及稳压电路,其中,所述RF-DC整流电路的输入端连接所述贴片天线的第二端口,所述稳压电路的输出分别连接传感器、控制芯片和射频识别芯片的电源输入端,所述RF-DC整流电路的输出端还通过第一电容接地,所述电荷泵还通过第二电容接地。The power management unit includes: an RF-DC rectifier circuit, a charge pump, and a voltage regulator circuit connected in sequence for obtaining energy from radio frequency signals in the surrounding environment, wherein the input terminal of the RF-DC rectifier circuit Connect the second port of the patch antenna, the output of the voltage stabilizing circuit is respectively connected to the power input terminals of the sensor, the control chip and the radio frequency identification chip, and the output terminal of the RF-DC rectifier circuit is also grounded through the first capacitor, The charge pump is also grounded through the second capacitor.
所述的射频识别芯片包括有依次串接的匹配网络、解调电路、数字基带电路和调制电路,其中,所述的匹配网络的输入端连接所述贴片天线的第一端口,所述调制电路的输出端连接所述匹配网络的输入端。The radio frequency identification chip includes a matching network, a demodulation circuit, a digital baseband circuit and a modulation circuit sequentially connected in series, wherein the input end of the matching network is connected to the first port of the patch antenna, and the modulation The output end of the circuit is connected to the input end of the matching network.
所述的解调电路包括有:依次串接的包络检波器、低通滤波器和迟滞比较器,所述包络检波器的输入端连接所述贴片天线的第一端口,所述迟滞比较器的输出端连接所述数字基带电路的输入端。The demodulation circuit includes: an envelope detector, a low-pass filter and a hysteresis comparator connected in series in sequence, the input end of the envelope detector is connected to the first port of the patch antenna, and the hysteresis The output end of the comparator is connected to the input end of the digital baseband circuit.
本发明的采用多端口标签天线以及太阳能能量收集的无线传感器,利用多端口标签天线以及太阳能能量收集解决RFID标签传感器的能源供应、工作距离近等问题。RFID标签采用CMOS工艺,标签天线是多端口的patch天线,覆盖着收集能量的太阳能电池薄膜。与其他的电池供电的RFID传感器相比,该RFID标签传感器实现了远距离通信,增强了传感精度并且极大的优化了传感器的寿命。发明具有以下优点:The wireless sensor using the multi-port tag antenna and solar energy collection of the present invention solves the problems of energy supply and short working distance of the RFID tag sensor by using the multi-port tag antenna and solar energy collection. The RFID tag uses a CMOS process, and the tag antenna is a multi-port patch antenna covered with a solar cell film that collects energy. Compared with other battery-operated RFID sensors, the RFID tag sensor realizes long-distance communication, enhances sensing accuracy and greatly optimizes the life of the sensor. The invention has the following advantages:
1.双端口天线的设计与其他RFID标签传感器所用的偶极子天线相比,显著降低了标签面积以及成本,本发明所采用的双端口patch天线不仅能够达到较高的增益,并且具有良好的单向辐射性。1. Compared with the dipole antennas used in other RFID tag sensors, the design of the dual-port antenna significantly reduces the area and cost of the tag. The dual-port patch antenna used in the present invention can not only achieve higher gain, but also has good Unidirectional radiation.
2.太阳能电池能源供给以及标签天线能源获取的双能源获取模式,为整个标签电路提供了充足的能源,不仅提升了标签传感器的性能,极大的增加了RFID标签的工作距离,并且扩展了RFID标签传感器的应用范围,延长了RFID标签传感器的寿命。2. The dual energy acquisition mode of solar battery energy supply and tag antenna energy acquisition provides sufficient energy for the entire tag circuit, which not only improves the performance of the tag sensor, greatly increases the working distance of the RFID tag, and expands the RFID The application range of the label sensor prolongs the life of the RFID label sensor.
综上所述,本发明的采用多端口标签天线以及太阳能能量收集的无线传感器具有良好的应用前景。To sum up, the wireless sensor using the multi-port tag antenna and solar energy collection of the present invention has a good application prospect.
附图说明Description of drawings
图1是本发明采用多端口标签天线以及太阳能能量收集的无线传感器的整体框图;Fig. 1 is the whole block diagram that the present invention adopts the wireless sensor of multi-port tag antenna and solar energy collection;
图2是本发明中贴片天线的结构示意图;Fig. 2 is the structural representation of patch antenna among the present invention;
图3是本发明中射频识别芯片的电路框图;Fig. 3 is the circuit block diagram of radio frequency identification chip among the present invention;
图4是本发明射频识别芯片中解调电路的电路原理图。Fig. 4 is a schematic circuit diagram of the demodulation circuit in the radio frequency identification chip of the present invention.
图中in the picture
1:射频识别芯片 2:控制芯片1: RFID chip 2: Control chip
3:传感器 4:RF-DC整流电路3: Sensor 4: RF-DC rectifier circuit
5:电荷泵 6:稳压电路5: Charge pump 6: Regulator circuit
7:太阳能电池 8:贴片天线7: Solar cell 8: Patch antenna
11:匹配网络 12:解调电路11: Matching network 12: Demodulation circuit
13:数字基带电路 14:调制电路13: Digital baseband circuit 14: Modulation circuit
81:金属片 82:第一端口81: metal sheet 82: first port
83:第二端口83 121:包络检波器83: Second port 83 121: Envelope detector
122:低通滤波器 123:迟滞比较器122: Low-pass filter 123: Hysteresis comparator
具体实施方式detailed description
下面结合实施例和附图对本发明的采用多端口标签天线以及太阳能能量收集的无线传感器做出详细说明。The wireless sensor adopting the multi-port tag antenna and the solar energy collection of the present invention will be described in detail below in combination with the embodiments and the accompanying drawings.
本发明的采用多端口标签天线以及太阳能能量收集的无线传感器,The wireless sensor adopting multi-port tag antenna and solar energy collection of the present invention,
如图1所示,本发明的采用多端口标签天线以及太阳能能量收集的无线传感器,包括用于采集信号的传感器3,接收传感器3所采集的信号的控制芯片2,还设置有与所述控制芯片2进行通信的射频识别芯片1,以及双端口的贴片天线8、用于供电的太阳能电池7和能够从周围环境中的射频信号中获取能量进行供电的电源管理单元,其中,所述贴片天线8的第一端口82用来进行射频通信,连接射频识别芯片1,所述贴片天线8的第二端口83用来从阅读器或者周围射频辐射环境中接收射频信号,并产生直流电压,为数字电路供电,第二端口83连接电源管理单元的输入端,所述电源管理单元的输出端和太阳能电池7的输出端分别连接传感器3、控制芯片2和射频识别芯片1的电源输入端。As shown in Figure 1, the wireless sensor adopting multi-port tag antenna and solar energy collection of the present invention includes a sensor 3 for collecting signals, a control chip 2 for receiving signals collected by the sensor 3, and is also provided with a A radio frequency identification chip 1 for communication with the chip 2, a dual-port patch antenna 8, a solar cell 7 for power supply, and a power management unit capable of obtaining energy from radio frequency signals in the surrounding environment for power supply, wherein the patch The first port 82 of the patch antenna 8 is used for radio frequency communication and connected to the radio frequency identification chip 1, and the second port 83 of the patch antenna 8 is used for receiving radio frequency signals from the reader or the surrounding radio frequency radiation environment, and generating a DC voltage , to supply power for the digital circuit, the second port 83 is connected to the input end of the power management unit, and the output end of the power management unit and the output end of the solar battery 7 are respectively connected to the power input ends of the sensor 3, the control chip 2 and the radio frequency identification chip 1 .
本发明中,将太阳能电池作为主要能源。太阳能电池选择太阳能柔性薄膜来获取能量为数字模块以及传感器供电。太阳能薄膜和贴片天线共享一个区域,太阳能薄膜被粘附在贴片天线的表面,此方式可实现紧凑的封装。In the present invention, solar cells are used as the main energy source. Solar cells choose solar flexible films to harvest energy to power digital modules and sensors. The solar film and the patch antenna share an area, and the solar film is adhered to the surface of the patch antenna, which enables compact packaging.
在本发明实施例中,所述的控制芯片是一个16位的低功耗微处理器(MCU)MSP430,在工作模式下,该处理器的功耗为230uA/MHz,在待机模式下为0.5uA/MHz。为了尽可能的减少系统硬件接口的数量,我们用单条I2C总线实现微处理器与射频识别芯片和数字传感器的通信。在太阳能供电模式下,传感器可以使用14位的模数转换器(ADC),以提高位分辨率。在工作模式下的MCU的操作包括从传感器中查询新数据,并将格式数据传送到射频识别芯片的EPC存储器中。通过MCU从传感器中读取的新的温度和湿度数据是原始格式的数据,将原始数据转换成摄氏度和相对湿度需要利用与传感器有关的转换公式。In the embodiment of the present invention, the control chip is a 16-bit low-power microprocessor (MCU) MSP430. In the working mode, the power consumption of the processor is 230uA/MHz, and in the standby mode is 0.5 uA/MHz. In order to reduce the number of system hardware interfaces as much as possible, we use a single I 2 C bus to realize the communication between the microprocessor, the radio frequency identification chip and the digital sensor. In solar-powered mode, the sensor can use a 14-bit analog-to-digital converter (ADC) for increased bit resolution. The operation of the MCU in the working mode includes querying new data from the sensor and transferring the formatted data to the EPC memory of the RFID chip. The new temperature and humidity data read from the sensor by the MCU are data in the original format, and converting the raw data into Celsius and relative humidity requires the use of sensor-related conversion formulas.
传感器是温度和湿度传感器,其可以在-40℃至125℃的范围内进行测量,精度可以达到±0.25℃,湿度测量范围是0至100%。The sensor is a temperature and humidity sensor, which can measure in the range of -40°C to 125°C, the accuracy can reach ±0.25°C, and the humidity measurement range is 0 to 100%.
如图2所示,所述的贴片天线8包括有金属片81,与所述金属片81相连作为与所述的射频识别芯片1相连的第一端口82的第一线圈,以及与所述金属片81相连作为与所述的电源管理单元相连的第二端口83的第二线圈。As shown in Figure 2, the patch antenna 8 includes a metal sheet 81, connected to the metal sheet 81 as the first coil of the first port 82 connected to the radio frequency identification chip 1, and connected to the The metal sheet 81 is connected as the second coil of the second port 83 connected to the power management unit.
贴片天线的宽长比以达到共轭阻抗匹配以及在915MHz中心频率实现最大功率传输。本发明中,所述传感器3控制芯片2的射频识别芯片1构成一个集成电路,所述电源管理单元成一个集成电路,双端口的贴片天线与两个集成电路相连,端口1与射频识别芯片相连,端口2与电源管理单元相连接,射频识别芯片与电源管理单元均具有复数输入阻抗。因此,可以利用感应线圈匹配技术对贴片天线端口进行匹配,感应线圈的尺寸通过HFSS优化已达到共轭匹配的效果。贴片天线的第二个端口在本发明中是用来从RFID阅读器以及其他周围环境中的RF辐射中接收RF信号,以产生可供数字模块使用的直流电压,为传感器、控制芯片以及射频识别芯片测量温度和湿度以及更新射频识别芯片存储器中的传感数据提供能量。通过这种方式实现的能量收集,本发明可以在不依赖电池的情况下工作,并使传感器的寿命达到了传统无源RFID标签的水平。The width-to-length ratio of the patch antenna achieves conjugate impedance matching and achieves maximum power transmission at a center frequency of 915MHz. In the present invention, the radio frequency identification chip 1 of the sensor 3 control chip 2 constitutes an integrated circuit, the power management unit forms an integrated circuit, the patch antenna with two ports is connected to the two integrated circuits, and the port 1 is connected to the radio frequency identification chip The port 2 is connected to the power management unit, and both the radio frequency identification chip and the power management unit have complex input impedances. Therefore, the induction coil matching technology can be used to match the patch antenna port, and the size of the induction coil has been optimized by HFSS to achieve the effect of conjugate matching. The second port of the patch antenna is used in the present invention to receive the RF signal from the RFID reader and other RF radiation in the surrounding environment to generate a DC voltage that can be used by the digital module for the sensor, control chip and radio frequency The identification chip provides energy for measuring temperature and humidity and updating the sensing data in the memory of the RFID chip. Through the energy harvesting achieved in this way, the invention can work without relying on batteries, and make the life of the sensor reach the level of traditional passive RFID tags.
如图1所示,所述的电源管理单元包括有:依次相连的用于从周围环境中的射频信号中获取能量的RF-DC整流电路4、电荷泵5以及稳压电路6,其中,所述RF-DC整流电路4的输入端连接所述贴片天线8的第二端口83,所述稳压电路6的输出分别连接传感器3、控制芯片2和射频识别芯片1的电源输入端,所述RF-DC整流电路4的输出端还通过第一电容C1接地,所述电荷泵5还通过第二电容C2接地。As shown in Figure 1, the power management unit includes: an RF-DC rectifier circuit 4, a charge pump 5 and a voltage stabilizing circuit 6 connected in sequence for obtaining energy from radio frequency signals in the surrounding environment, wherein the The input end of the RF-DC rectifier circuit 4 is connected to the second port 83 of the patch antenna 8, and the output of the voltage stabilizing circuit 6 is respectively connected to the power input ends of the sensor 3, the control chip 2 and the radio frequency identification chip 1, so The output end of the RF-DC rectifier circuit 4 is also grounded through the first capacitor C1, and the charge pump 5 is also grounded through the second capacitor C2.
电源管理单元是为了从周围环境中的RF信号中获取能量,电源管理单元包括一个工作在915MHz的整流二极管即RF-DC整流电路,一个电荷泵以及稳压电路,能够将射频信号转换成直流电压。电荷泵适用于超低电压应用,其振荡的起始电压低至0.35V。一旦震荡开始,存储电容开始充电,当电容充电至2.4V时,内部监控电路调整电容至负载。电荷泵充电的所需的时间周期取决于输入电压以及存储电容值。The power management unit is to obtain energy from the RF signal in the surrounding environment. The power management unit includes a rectifier diode operating at 915MHz, that is, an RF-DC rectifier circuit, a charge pump and a voltage regulator circuit, which can convert the radio frequency signal into a DC voltage. . The charge pump is suitable for ultra-low voltage applications, and its oscillation start voltage is as low as 0.35V. Once the oscillation starts, the storage capacitor starts charging. When the capacitor is charged to 2.4V, the internal monitoring circuit adjusts the capacitor to the load. The time period required for the charge pump to charge depends on the input voltage and the value of the storage capacitor.
如图3所示,所述的射频识别芯片1包括有依次串接的匹配网络11、解调电路12、数字基带电路13和调制电路14,其中,所述的匹配网络11的输入端连接所述贴片天线8的第一端口82,所述调制电路14的输出端连接所述匹配网络11的输入端。As shown in Figure 3, the radio frequency identification chip 1 includes a matching network 11, a demodulation circuit 12, a digital baseband circuit 13 and a modulation circuit 14 connected in series, wherein the input end of the matching network 11 is connected to the The first port 82 of the patch antenna 8, the output end of the modulation circuit 14 is connected to the input end of the matching network 11.
如图4所示,所述的解调电路12包括有:依次串接的包络检波器121、低通滤波器122和迟滞比较器123,所述包络检波器121的输入端连接所述贴片天线8的第一端口82,所述迟滞比较器123的输出端连接所述数字基带电路13的输入端。As shown in Figure 4, the demodulation circuit 12 includes: an envelope detector 121, a low-pass filter 122 and a hysteresis comparator 123 connected in series in sequence, and the input end of the envelope detector 121 is connected to the The first port 82 of the patch antenna 8 , the output terminal of the hysteresis comparator 123 is connected to the input terminal of the digital baseband circuit 13 .
射频识别芯片1中没有内部电源,它所需的能源是利用RF-DC整流电路将阅读器所发射的射频信号转换成直流信号。解调电路用来对从阅读器接收到的命令进行解调,数字基带电路作为标签的核心部分,对阅读器的命令进行解码,并根据EPC-G-2空间接口协议作出相应的反应。调制电路被用来将标签的反应通过反向散射的方式发射给阅读器。There is no internal power supply in the radio frequency identification chip 1, and the energy it needs is to use the RF-DC rectifier circuit to convert the radio frequency signal emitted by the reader into a direct current signal. The demodulation circuit is used to demodulate the command received from the reader, and the digital baseband circuit is the core part of the tag, which decodes the command of the reader and responds accordingly according to the EPC-G-2 space interface protocol. A modulation circuit is used to backscatter the tag's response to the reader.
Claims (5)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610969469.5A CN106532277A (en) | 2016-10-27 | 2016-10-27 | Wireless sensor adopting multi-port tag antenna and solar energy collection function |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610969469.5A CN106532277A (en) | 2016-10-27 | 2016-10-27 | Wireless sensor adopting multi-port tag antenna and solar energy collection function |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN106532277A true CN106532277A (en) | 2017-03-22 |
Family
ID=58326663
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201610969469.5A Pending CN106532277A (en) | 2016-10-27 | 2016-10-27 | Wireless sensor adopting multi-port tag antenna and solar energy collection function |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN106532277A (en) |
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108021966A (en) * | 2017-12-22 | 2018-05-11 | 电子科技大学 | Wireless energy collection type GB/T29768 national standard internet labels |
| CN109253704A (en) * | 2018-10-29 | 2019-01-22 | 西南交通大学 | Monitoring device for fragment-free track slab deformation |
| CN110033073A (en) * | 2019-04-15 | 2019-07-19 | 西安电子科技大学 | Radio frequency energy based on Meta Materials collects RFID tag system |
| CN111812549A (en) * | 2020-07-17 | 2020-10-23 | 国网山东省电力公司电力科学研究院 | Self-powered RFID sensor system for power transformer condition monitoring |
| CN111950677A (en) * | 2019-05-15 | 2020-11-17 | 深圳市物联锁科技有限公司 | Electronic tag chip and electronic tag |
| CN112649047A (en) * | 2020-12-24 | 2021-04-13 | 福建中电合创电力科技有限公司 | Outdoor high-voltage live display device |
| CN113205168A (en) * | 2021-04-30 | 2021-08-03 | 深圳供电局有限公司 | Asset management multidimensional sensing tag based on RFID technology |
| CN113988233A (en) * | 2021-10-28 | 2022-01-28 | 武汉华宇云创智能技术有限公司 | A system and method for chip-level integrated radio frequency transmission of sensor information |
| CN114018420A (en) * | 2020-07-16 | 2022-02-08 | 浙江悦和科技有限公司 | Temperature measuring device for cable connector |
| CN114282634A (en) * | 2020-09-28 | 2022-04-05 | 宁波物芯微电子有限公司 | A high-power wireless energy extraction near field communication tag |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101819650A (en) * | 2010-04-23 | 2010-09-01 | 天津大学 | RFID electronic label |
| CN101901367A (en) * | 2010-07-29 | 2010-12-01 | 苏州盖娅智能科技有限公司 | Dual-power active RFID tag and control and implementation method thereof |
| CN101939757A (en) * | 2007-12-11 | 2011-01-05 | 艾利丹尼森公司 | RFID device with multiple passive operation modes |
| CN203870655U (en) * | 2014-04-30 | 2014-10-08 | 广西电网公司电力科学研究院 | Photoelectric automatically-transforming passive RFID tag |
-
2016
- 2016-10-27 CN CN201610969469.5A patent/CN106532277A/en active Pending
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101939757A (en) * | 2007-12-11 | 2011-01-05 | 艾利丹尼森公司 | RFID device with multiple passive operation modes |
| CN101819650A (en) * | 2010-04-23 | 2010-09-01 | 天津大学 | RFID electronic label |
| CN101901367A (en) * | 2010-07-29 | 2010-12-01 | 苏州盖娅智能科技有限公司 | Dual-power active RFID tag and control and implementation method thereof |
| CN203870655U (en) * | 2014-04-30 | 2014-10-08 | 广西电网公司电力科学研究院 | Photoelectric automatically-transforming passive RFID tag |
Non-Patent Citations (1)
| Title |
|---|
| 李美苓: ""新型无源UHF RFID双端口标签设计"", 《传感器与微系统》 * |
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108021966A (en) * | 2017-12-22 | 2018-05-11 | 电子科技大学 | Wireless energy collection type GB/T29768 national standard internet labels |
| CN109253704A (en) * | 2018-10-29 | 2019-01-22 | 西南交通大学 | Monitoring device for fragment-free track slab deformation |
| CN110033073A (en) * | 2019-04-15 | 2019-07-19 | 西安电子科技大学 | Radio frequency energy based on Meta Materials collects RFID tag system |
| CN111950677A (en) * | 2019-05-15 | 2020-11-17 | 深圳市物联锁科技有限公司 | Electronic tag chip and electronic tag |
| CN111950677B (en) * | 2019-05-15 | 2023-05-09 | 深圳市每开创新科技有限公司 | Electronic tag chip and electronic tag |
| CN114018420A (en) * | 2020-07-16 | 2022-02-08 | 浙江悦和科技有限公司 | Temperature measuring device for cable connector |
| CN111812549A (en) * | 2020-07-17 | 2020-10-23 | 国网山东省电力公司电力科学研究院 | Self-powered RFID sensor system for power transformer condition monitoring |
| CN114282634A (en) * | 2020-09-28 | 2022-04-05 | 宁波物芯微电子有限公司 | A high-power wireless energy extraction near field communication tag |
| CN112649047A (en) * | 2020-12-24 | 2021-04-13 | 福建中电合创电力科技有限公司 | Outdoor high-voltage live display device |
| CN113205168A (en) * | 2021-04-30 | 2021-08-03 | 深圳供电局有限公司 | Asset management multidimensional sensing tag based on RFID technology |
| CN113988233A (en) * | 2021-10-28 | 2022-01-28 | 武汉华宇云创智能技术有限公司 | A system and method for chip-level integrated radio frequency transmission of sensor information |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN106532277A (en) | Wireless sensor adopting multi-port tag antenna and solar energy collection function | |
| CN109766980B (en) | Circuit and method for improving energy collection of passive radio frequency identification tag of temperature sensor | |
| Sanislav et al. | Wireless energy harvesting: Empirical results and practical considerations for Internet of Things | |
| Sample et al. | Photovoltaic enhanced UHF RFID tag antennas for dual purpose energy harvesting | |
| CN110070165B (en) | An active RFID system with wireless charging | |
| CN101937519A (en) | RFID electronic tags that can be charged wirelessly | |
| CN104361388A (en) | Ultrahigh-frequency wireless sensing tag | |
| WO2003010711A1 (en) | Rfid tag having combined battery and passive power source | |
| CN103839092B (en) | A kind of ultrahigh frequency radio frequency identification (RFID) reader | |
| Duong et al. | A battery-assisted passive EPC Gen-2 RFID sensor tag IC with efficient battery power management and RF energy harvesting | |
| Fabbri et al. | Long range battery-less UHF-RFID platform for sensor applications | |
| TW200530934A (en) | Radio frequency identification and communication device | |
| CN101833686A (en) | a semi-active tag | |
| CN114386539B (en) | Zero-power-consumption node equipment, working method and zero-power-consumption system | |
| WO2019119773A1 (en) | Container positioning system, container positioning method, and electronic tag | |
| CN110610111A (en) | Long distance passive wireless magnetic field sensing system | |
| Shan et al. | The RFID connection: RFID technology for sensing and the Internet of Things | |
| CN102142100A (en) | High-frequency passive RFID (Radio Frequency Identification) analog front end circuit | |
| CN106656245A (en) | WiFi data transmission system and WiFi data transmission method capable of acquiring energy by means of back scattering | |
| CN106503775A (en) | Being taken based on the television tower of RFID can energy supplying system | |
| Nadeem et al. | UHF IoT humidity and temperature sensor for smart agriculture applications powered from an energy harvesting system | |
| CN102346869A (en) | Ultrahigh-frequency sensor tag chip | |
| CN106874984A (en) | A kind of semi-active label electric power management circuit | |
| CN102184627A (en) | Sensor data acquisition device used for severe environment | |
| CN112949809B (en) | RFID electronic tag and tag power-on communication method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication | ||
| RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170322 |