[go: up one dir, main page]

CN106547959B - One kind being based on the smallest CVC roller shape parameter optimized calculation method of roller diameter variance - Google Patents

One kind being based on the smallest CVC roller shape parameter optimized calculation method of roller diameter variance Download PDF

Info

Publication number
CN106547959B
CN106547959B CN201610912280.2A CN201610912280A CN106547959B CN 106547959 B CN106547959 B CN 106547959B CN 201610912280 A CN201610912280 A CN 201610912280A CN 106547959 B CN106547959 B CN 106547959B
Authority
CN
China
Prior art keywords
roll
roll shape
parameter
shape
strip steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610912280.2A
Other languages
Chinese (zh)
Other versions
CN106547959A (en
Inventor
周莲莲
崔亚亚
张岩岩
张君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanshan University
Original Assignee
Yanshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanshan University filed Critical Yanshan University
Priority to CN201610912280.2A priority Critical patent/CN106547959B/en
Publication of CN106547959A publication Critical patent/CN106547959A/en
Application granted granted Critical
Publication of CN106547959B publication Critical patent/CN106547959B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/18Manufacturability analysis or optimisation for manufacturability

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)

Abstract

一种基于辊径方差最小的CVC辊形参数优化计算方法,它包括以下由计算机执行的步骤:(1)收集基本设备参数;(2)收集生产记录中典型规格带钢的产品参数;(3)给定优化区间[A1min,A1max],以及优化步长ΔA;(4)定义最佳辊形参数寻优过程中间参数i,目标函数初始值F0;(5)计算出口带钢的前张应力分布数值;(6)计算该辊形参数Ai下典型规格带钢产品的宽度数值;(7)输出最优辊形一次项参数A1_best,绘制此辊形参数下的辊形曲线。本发明减小了上下工作辊的辊径方差数值,减轻了由于上下工作辊辊径差值超标导致的轧辊线速度差异引起的轧机异步轧制效应,保证了出口带钢的板形质量,解决了以往辊形参数设计计算过程中忽略带钢板形质量控制的问题。

A CVC roll shape parameter optimization calculation method based on the minimum roll diameter variance, which includes the following steps performed by a computer: (1) collecting basic equipment parameters; (2) collecting product parameters of typical specification strip steel in production records; (3) ) Given the optimization interval [A 1min , A 1max ], and the optimization step size ΔA; (4) Define the intermediate parameter i in the optimization process of the best roll shape parameters, and the initial value of the objective function F 0 ; (5) Calculate the outlet strip Pre-tension stress distribution value; (6) calculate the width value of the typical specification strip steel product under the roll shape parameter A i ; (7) output the optimal roll shape parameter A 1_best , and draw the roll shape curve under the roll shape parameter . The invention reduces the roll diameter variance value of the upper and lower work rolls, alleviates the asynchronous rolling effect of the rolling mill caused by the difference in roll line speed caused by the difference in roll diameter of the upper and lower work rolls exceeding the standard, ensures the strip shape quality of the export strip, and solves the problem of The problem of ignoring the quality control of strip steel plate shape in the design and calculation process of roll shape parameters in the past is solved.

Description

一种基于辊径方差最小的CVC辊形参数优化计算方法An Optimal Calculation Method of CVC Roll Shape Parameters Based on Minimum Roll Diameter Variance

技术领域technical field

本发明涉及冷轧带钢平整技术,特别涉及一种辊形参数优化的计算方法。The invention relates to the flattening technology of cold-rolled strip steel, in particular to a calculation method for optimizing roll shape parameters.

背景技术Background technique

目前,在带钢平整轧制领域,轧机的辊型配置类型越来越多样化,四辊CVC轧机因其可根据带钢的凸度控制要求而快速且连续地改变辊缝凸度、对带钢板形具有很强的控制能力,并且能够实现对于不同钢种与规格的来料带钢进行自由轧制而获得越来越广泛的应用。CVC轧机的上下工作辊按照反对称布置,轧机通过上下工作辊在轧辊轴向进行大小相等、方向相反的窜辊,对辊缝凸度进行调整,以适应不同规格及来料凸度的带钢,CVC轧机辊身曲线呈S型,常用曲线为三次多项式,上工作辊辊形曲线表达式为Rup(x)=A0+A1x+A2x2+A3x3,下工作辊辊形曲线表达式为Rdown(x)=Rup(L-x),在现场可以通过优化轧辊辊形参数来设计出合理的工作辊辊形曲线,利用上下工作辊窜辊过程中形成的辊缝凸度,对来料带钢的初始凸度进行控制。然而在实际生产中,不合理的辊身曲线会导致轧辊的不均匀磨损,很大程度上会降低轧机的板形控制精度,直接影响成品带钢的板形质量。因此,如何根据来料带钢的凸度及板形控制要求,优化计算出满足生产现场带钢平整工序的CVC辊身曲线进而改善带钢板形质量,已经成为现场技术攻关的重点。目前对于CVC轧机辊形参数一次项系数的设计计算主要是从轧辊的轴向受力、出口带钢横向厚度差以及轧辊辊身曲线的变化趋势等角度入手来确定的,并未考虑对出口带钢板形质量的影响,而板形是下游客户判定带钢产品质量的重要指标。At present, in the field of strip steel temper rolling, the configuration types of roll profiles of rolling mills are becoming more and more diverse. The four-high CVC mill can quickly and continuously change the roll gap crown and adjust the strip profile according to the strip crown control requirements. The shape of the steel plate has a strong control ability, and it can realize free rolling of incoming strip steel of different steel types and specifications, and has been widely used. The upper and lower work rolls of the CVC mill are arranged anti-symmetrically. The rolling mill uses the upper and lower work rolls to shift the rolls in the roll axial direction with the same size and opposite direction to adjust the roll gap convexity to adapt to strip steel with different specifications and incoming material crowns. , the roll body curve of a CVC mill is S - shaped , and the commonly used curve is a cubic polynomial . The expression of the roll shape curve is R down (x) = R up (Lx). On site, a reasonable roll shape curve of the work roll can be designed by optimizing the roll shape parameters of the roll. Seam convexity, to control the initial convexity of the incoming strip steel. However, in actual production, unreasonable roll body curves will lead to uneven wear of the rolls, which will greatly reduce the flatness control accuracy of the rolling mill and directly affect the flatness quality of the finished strip. Therefore, how to optimize and calculate the CVC roll body curve that satisfies the strip smoothing process on the production site according to the convexity and shape control requirements of the incoming strip steel, so as to improve the strip shape quality, has become the focus of on-site technical research. At present, the design calculation of the first-order coefficient of the roll shape parameters of the CVC mill is mainly determined from the angles of the axial force of the roll, the transverse thickness difference of the exit strip, and the change trend of the roll body curve, etc., without considering the influence of the exit strip. The influence of steel plate shape quality, and plate shape is an important indicator for downstream customers to judge the quality of strip steel products.

参考文献references

[1]连家创,刘宏民.板厚板形控制[M].北京:兵器工业出版社.1995:1-90.[1] Lian Jiachuang, Liu Hongmin. Plate Thickness and Shape Control [M]. Beijing: Ordnance Industry Press. 1995:1-90.

[2]白振华,刘宏民,李秀军,等.平整轧制工艺模型[M].北京:冶金工业出版社.2010:1-100.[2] Bai Zhenhua, Liu Hongmin, Li Xiujun, etc. Temper rolling process model [M]. Beijing: Metallurgical Industry Press. 2010: 1-100.

[3]刘光明,邸洪双,常安,等.CVC轧机辊形曲线设计及等效凸度探讨[J].东北大学学报(自然科学版),2008,29(10):1444-1446.[3] Liu Guangming, Di Hongshuang, Chang An, et al. Discussion on design of roll profile curve and equivalent convexity of CVC mill [J]. Journal of Northeastern University (Natural Science Edition), 2008, 29(10): 1444-1446.

发明内容Contents of the invention

本发明的目的在于提供一种能够改善带钢板形质量、减小上下工作辊辊径方差的基于辊径方差最小的CVC辊形参数优化计算方法。本发明充分考虑来料带钢规格的差异及不同规格带钢的凸度控制要求,针对生产现场所有典型规格的带钢,将CVC平整机组上下工作辊辊径方差设定为目标函数,以出口带钢板形良好为约束条件,通过对辊形参数进行优化计算得到满足生产实际的辊型磨削一次项系数,有利于减小轧机上下工作辊的辊径方差数值,同时可以保证出口带钢的板形质量。The object of the present invention is to provide a CVC roll shape parameter optimization calculation method based on the minimum roll diameter variance that can improve the strip shape quality and reduce the roll diameter variance of the upper and lower work rolls. The present invention fully considers the difference in the specifications of the incoming strip steel and the crown control requirements of the strip steel of different specifications, and sets the variance of the upper and lower work roll diameters of the CVC skin pass unit as the objective function for all typical specifications of the strip steel in the production site, and uses the output Good shape of the strip is the constraint condition. The first-order coefficient of roll shape grinding that satisfies the actual production is obtained by optimizing the calculation of the roll shape parameters. Shape quality.

本发明包括以下由计算机执行的步骤:The present invention comprises following computer-executed steps:

(a)收集基本设备参数,主要包括工作辊的辊径Dw、支撑辊的辊径Db、工作辊的辊身长度Lw、支撑辊的辊身长度Lb、工作辊弯辊缸距离lw、支撑辊压下螺丝中心距lb、轧机工作辊弯辊力SQj(j=1,2,3...)、CVC平整机组的窜辊量s的变化范围[smin,smax]辊型二次项系数A2、辊型三次项系数A3、轧辊初始半径参数A0,Q为带钢钢种代号,j为现场统计的典型规格带钢的序号;(a) Collect basic equipment parameters, mainly including work roll diameter D w , backup roll diameter D b , work roll body length L w , backup roll body length L b , work roll bending cylinder distance l w , screw center distance l b of back-up roll, work roll bending force S Qj (j=1,2,3...), variation range of roll shifting amount s of CVC skin pass unit [s min ,s max ] roll shape quadratic coefficient A 2 , roll shape cubic coefficient A 3 , roll initial radius parameter A 0 , Q is the steel type code of the strip, and j is the serial number of the typical specification strip in the field statistics;

(b)收集生产记录中典型规格带钢的产品及轧制工艺参数,主要包括典型规格带钢的宽度数值BQj,带钢厚度HQj,带钢屈服强度σQs,总延伸率εQj,平整机组机架的总轧制压力PQj;来料板形的横向分布值LQi,平整机组的前张力与后张力TQj_1、TQj_0,以及轧制速度vQj,其中,i为带钢宽度方向划分的条元序号i=1,2,3...;(b) Collect the products and rolling process parameters of typical strip steel in production records, mainly including the width value B Qj of typical specification strip steel, strip steel thickness H Qj , strip steel yield strength σ Qs , total elongation ε Qj , The total rolling pressure P Qj of the tempering unit frame; the lateral distribution value L Qi of the incoming plate shape, the front and rear tensions T Qj_1 and T Qj_0 of the tempering unit, and the rolling speed v Qj , where i is the strip Sequence number i=1,2,3... of bar element divided in the width direction;

(c)定义L为轧机的工作辊辊身长度,A1为需要优化计算的辊形参数,A1_best为优化得到的最佳辊形参数一次项系数;(c) define L as the work roll body length of the rolling mill, A 1 is the roll shape parameter that needs to be optimized, and A 1_best is the optimal roll shape parameter linear term coefficient obtained by optimization;

(d)给定辊形参数一次项系数A1的优化区间[A1min,A1max],以及优化步长ΔA;(d) The optimization interval [A 1min , A 1max ] of the first-order coefficient A 1 of the roll shape parameter is given, and the optimization step size ΔA;

(e)定义最佳辊形参数寻优过程中间参数i,目标函数初始值F0(e) define the intermediate parameter i of the optimal roll shape parameter optimization process, and the initial value of the objective function F 0 ;

(f)令i=0,取F0=1010(f) let i=0, get F 0 =10 10 ;

(g)令辊形参数寻优初始值为Ai=A1min+iΔA;(g) Let the initial value of roll shape parameter optimization be A i =A 1min +iΔA;

(h)利用辊系弹性变形模型及金属变形模型计算出口带钢的前张应力分布数值σ1i=f(Ai,HQi,LQi,BQj,TQj_0,TQj_1)(单位:MPa),Ai决定轧辊的辊型分布;(h) Using the elastic deformation model of the roll system and the metal deformation model to calculate the pre-tension stress distribution value of the exit strip σ 1i = f(A i , H Qi , L Qi , B Qj , T Qj_0 , T Qj_1 ) (unit: MPa ), A i determines the roll shape distribution of the roll;

(i)计算出以I-Unit为单位板形分布值 (i) Calculate the shape distribution value with I-Unit as the unit

(j)计算板形峰值指标g(X)=|max(αi)-min(αi)|(单位:I);(j) Calculate the plate shape peak index g(X)=|max(α i )-min(α i )|(unit: I);

(k)判断不等式g(X)≤g(X)max(g(X)max为板形质量控制参数)是否成立?如果不等式成立,则转入步骤(l)进行计算;如果不等式不成立,则转入步骤(g),重新确定辊型曲线参数,进行计算;(k) Determine if the inequality g(X)≤g(X) max (g(X) max is the shape quality control parameter) holds true? If the inequality is established, then proceed to step (1) for calculation; if the inequality is not established, then proceed to step (g), re-determine the roll profile parameters, and calculate;

(l)计算该辊形参数Ai下典型规格带钢产品的宽度数值BQj(j=1,2,3...)对应的辊径方差(单位:μm):(l) Calculate the roll diameter variance corresponding to the width value B Qj (j=1,2,3...) of a typical specification strip steel product under the roll shape parameter A i (unit: μm):

(m)将辊形参数Ai条件下的辊径方差最大值记为F(X)为辊形参数的优化计算目标函数;(m) The maximum value of the variance of the roll diameter under the condition of the roll shape parameter A i recorded as F (X) is the optimization calculation objective function of roll shape parameter;

(n)判断不等式F(X)<F0(X)是否成立?如果不等式成立,令F0=F(X),A1_best=Ai,转入步骤(o);如果不等式不成立,则直接转入步骤(o);(n) Determine whether the inequality F(X)<F 0 (X) holds true? If the inequality is established, set F 0 =F(X), A 1_best =A i , and turn to step (o); if the inequality is not established, then directly turn to step (o);

(o)判断不等式是否成立?如果不等式成立,令i=i+1,然后转入步骤(g),继续进行辊形参数的搜索;如果不等式不成立,则直接转入步骤(p);(o) Judgment inequality Is it established? If inequality is established, make i=i+1, then proceed to step (g), continue to carry out the search of roll shape parameter; If inequality is not established, then directly proceed to step (p);

(p)输出最优辊形一次项参数A1_best,绘制此辊形参数下的辊形曲线。(p) Output the first-order parameter A 1_best of the optimal roll shape, and draw the roll shape curve under this roll shape parameter.

本发明与现有技术相比具有如下优点:Compared with the prior art, the present invention has the following advantages:

充分考虑生产现场不同规格带钢的宽度变化范围,根据来料带钢的凸度及板形控制要求,以出口带钢板形良好为约束条件,通过对辊形参数进行优化计算得到满足生产实际的辊型磨削参数,在保证轧机等效凸度控制能力的基础上,改善出口带钢的板形数值,减小上下工作辊辊径方差数值,有助于减轻由于上下工作辊辊径差值超标导致的轧辊线速度差异引起的轧机异步轧制效应,使轧辊磨损更加均匀,解决了以往辊形参数设计计算过程中忽略带钢板形质量控制的问题,完善了CVC轧机的辊形参数设计计算体系,具有进一步推广使用的价值。Fully consider the width variation range of different specifications of the strip steel at the production site, according to the convexity and shape control requirements of the incoming strip steel, and take the good shape of the strip steel strip at the exit as the constraint condition, and optimize the calculation of the roll shape parameters to meet the actual production requirements. Roll shape grinding parameters, on the basis of ensuring the equivalent crown control ability of the rolling mill, improve the flatness value of the exit strip, reduce the variance value of the roll diameter of the upper and lower work rolls, and help reduce the roll diameter difference caused by the upper and lower work rolls. The asynchronous rolling effect of the rolling mill caused by the difference in the roll line speed caused by exceeding the standard makes the roll wear more uniform, solves the problem that the strip steel shape quality control was ignored in the previous roll shape parameter design and calculation process, and improves the roll shape parameter design calculation of the CVC rolling mill The system has the value of further promotion and use.

附图说明Description of drawings

图1是本发明的总计算流程图;Fig. 1 is a total calculation flowchart of the present invention;

图2是本发明实施例1中辊形参数优化过程中T-2.5MA钢种0.305mm*998mm规格带钢板形分布图;Fig. 2 is the T-2.5MA steel grade 0.305mm*998mm specification strip shape distribution diagram in the roll shape parameter optimization process in the embodiment 1 of the present invention;

图3是本发明实施例1中辊形参数优化之后的辊形曲线图;Fig. 3 is the roll shape graph after the roll shape parameter optimization in the embodiment 1 of the present invention;

图4是本发明实施例2中辊形参数优化过程中T-2MA钢种0.315mm*786mm规格带钢板形分布图;Fig. 4 is the shape distribution diagram of the strip steel plate of T-2MA steel type 0.315mm*786mm specification in the roll shape parameter optimization process in Example 2 of the present invention;

图5是本发明实施例2中辊形参数优化之后的辊形曲线图;Fig. 5 is the roll shape curve figure after the roll shape parameter optimization in the embodiment 2 of the present invention;

图6本发明实施例1和实施例2中辊形参数优化之后的辊型曲线对比图。Fig. 6 is a comparison chart of roll shape curves after optimization of roll shape parameters in Example 1 and Example 2 of the present invention.

具体实施方式Detailed ways

实施例1Example 1

一种基于辊径方差最小的CVC辊形参数优化计算方法,其计算流程如图1所示,包括如下步骤:A CVC roll shape parameter optimization calculation method based on the minimum roll diameter variance, the calculation process is shown in Figure 1, including the following steps:

(a)收集基本设备参数,主要包括工作辊的辊径Dw=450mm、支撑辊的辊径Db=1150mm、工作辊的辊身长度Lw=1620mm、支撑辊的辊身长度Lb=1380mm、工作辊弯辊缸距离lw=2300mm、支撑辊压下螺丝中心距lb=2300mm、轧机工作辊弯辊力S=200,80,120,110,110,100,50,60单位KN,CVC轧机窜辊量s变化范围[-120mm,120mm],二次项系数A2=-0.169563×10-5、辊型三次项系数A3=0.635066×10-9、轧辊初始半径参数A0=225,统计两种典型规格钢种MR T-3BA、MR T-2.5BA的轧制工艺参数,如表1所示。(a) Collect basic equipment parameters, mainly including the roll diameter of the working roll D w = 450mm, the roll diameter of the backup roll D b = 1150mm, the roll body length of the work roll L w = 1620mm, the roll body length of the backup roll L b = 1380mm, working roll bending cylinder distance l w = 2300mm, back-up roll pressing screw center distance l b = 2300mm, rolling mill working roll bending force S = 200, 80, 120, 110, 110, 100, 50, 60 unit KN, change of roll shifting amount s in CVC mill Range [-120mm, 120mm], quadratic term coefficient A 2 =-0.169563×10 -5 , roll shape cubic term coefficient A 3 =0.635066×10 -9 , initial roll radius parameter A 0 =225, statistics of two typical specifications The rolling process parameters of steel types MR T-3BA and MR T-2.5BA are shown in Table 1.

表1典型钢种的规格及轧制工艺参数Table 1 Specifications and rolling process parameters of typical steel grades

(b)收集生产记录中典型规格带钢的产品参数,主要包括根据典型规格带钢的宽度数值BQj(j=1,2,3...):(b) Collect the product parameters of typical strip steel in production records, mainly including the width value B Qj (j=1,2,3...) of typical strip steel according to:

BT3=780mm,875mm,994mm,1105mm,B T3 = 780mm, 875mm, 994mm, 1105mm,

BT2.5=725mm,785mm,870mm,998mm;B T2.5 = 725mm, 785mm, 870mm, 998mm;

带钢厚度数值:HT3=0.325mm,0.285mm,0.298mm,0.304mm,Strip thickness values: H T3 = 0.325mm, 0.285mm, 0.298mm, 0.304mm,

HT2.5=0.298mm,0.305mm,0.285mm,0.305mm;H T2.5 = 0.298mm, 0.305mm, 0.285mm, 0.305mm;

带钢屈服强度σs_T2.5=250MPa,σs_T3=270MPa,平整机组机架的总轧制压力:Strip yield strength σ s_T2.5 = 250MPa, σ s_T3 = 270MPa, the total rolling pressure of the skin pass stand:

PT3=2.2MN,1.9MN,2.0MN,2.1MN,P T3 = 2.2MN, 1.9MN, 2.0MN, 2.1MN,

PT2.5=1.9MN,2.4MN,2.0MN,1.8MN;P T2.5 = 1.9MN, 2.4MN, 2.0MN, 1.8MN;

总延伸率εQj=0.9%,1.0%,1.05%,1.1%,0.9%,1.0%,1.05%,1.1%;来料板形的横向分布值LQi=0、平整机组的后张力与前张力:Total elongation ε Qj = 0.9%, 1.0%, 1.05%, 1.1%, 0.9%, 1.0%, 1.05%, 1.1%; the lateral distribution value L Qi = 0 of incoming plate tension:

TT3_0=85N·mm-2,70N·mm-2,94N·mm-2,85N·mm-2T T3_0 =85N·mm -2 ,70N·mm -2 ,94N·mm -2 ,85N·mm -2 ,

TT3_1=100N·mm-2,90N·mm-2,105N·mm-2,98N·mm-2T T3_1 =100N·mm -2 ,90N·mm -2 ,105N·mm -2 ,98N·mm -2 ,

TT2.5_0=90N·mm-2,75N·mm-2,85N·mm-2,85N·mm-2T T2.5_0 =90N·mm -2 ,75N·mm -2 ,85N·mm -2 ,85N·mm -2 ,

TT2.5_1=105N·mm-2,85N·mm-2,85N·mm-2,100N·mm-2T T2.5_1 = 105N·mm -2 , 85N·mm -2 , 85N·mm -2 , 100N·mm -2 ;

以及轧制速度:and the rolling speed:

vT3=500m·min-1,498m·min-1,576m·min-1,480m·min-1v T3 = 500m·min -1 , 498m·min -1 , 576m·min -1 , 480m·min -1 ,

vT2.5=520m·min-1,510m·min-1,480m·min-1,476m·min-1v T2.5 = 520m·min -1 , 510m·min -1 , 480m·min -1 , 476m·min -1 .

(c)定义L为轧机的工作辊辊身长度,A1为需要优化计算的辊形参数,A1_best为优化得到的最佳辊形参数一次项系数;(c) define L as the work roll body length of the rolling mill, A 1 is the roll shape parameter that needs to be optimized, and A 1_best is the optimal roll shape parameter linear term coefficient obtained by optimization;

(d)给定辊形参数一次项系数A1的优化区间[0.126427×10-2,0.146427×10-2],以及优化步长ΔA=0.0002;(d) The optimization interval [0.126427×10 -2 ,0.146427×10 -2 ] of the first-order coefficient A 1 of the given roll shape parameter, and the optimization step size ΔA=0.0002;

(e)定义最佳辊形参数寻优过程中间参数i,目标函数初始值F0(e) define the intermediate parameter i of the optimal roll shape parameter optimization process, and the initial value of the objective function F 0 ;

(f)令i=0,取F0=1010(f) let i=0, get F 0 =10 10 ;

(g)令辊形参数寻优初始值为Ai=A1min+iΔA=0.126427×10-2(g) Let the initial value of roll shape parameter optimization be A i =A 1min +iΔA=0.126427×10 -2 ;

(h)利用辊系弹性变形模型及金属变形模型计算出口带钢的前张应力分布数值σ1i(i=1,2,3...)(单位:MPa);(h) Using the elastic deformation model of the roll system and the metal deformation model to calculate the pre-tension stress distribution value σ 1i (i=1,2,3...) (unit: MPa) of the export strip;

σ1i={13.64,10.06,6.99,4.47,2.50,1.10,0.27,0,0.30,1.17,2.60,σ 1i ={13.64,10.06,6.99,4.47,2.50,1.10,0.27,0,0.30,1.17,2.60,

4.59,7.15,10.24,13.84}; 4.59,7.15,10.24,13.84};

(i)计算出以I-Unit为单位板形分布值 (i) Calculate the shape distribution value with I-Unit as the unit

αi={3.64,2.09,0.75,-0.35,-1.2,-1.81,-2.17,-2.28,-2.16,-1.78,-1.15,α i ={3.64, 2.09, 0.75, -0.35, -1.2, -1.81, -2.17, -2.28, -2.16, -1.78, -1.15,

-0.29,0.82,2.16,3.73}; -0.29, 0.82, 2.16, 3.73};

(j)计算板形峰值指标g(X)=|max(αi)-min(αi)|=6.01(单位:I)(j) Calculate the plate shape peak index g(X)=|max(α i )-min(α i )|=6.01 (unit: I)

(k)判断不等式g(X)≤g(X)max(g(X)max为板形质量控制参数峰值,取其数值为g(X)max=10)是否成立,6.01I<10I,不等式成立,转入步骤(l);(k) Judging whether the inequality g(X)≤g(X) max (g(X) max is the peak value of the shape quality control parameter, which is taken as g(X) max = 10) is true, 6.01I<10I, the inequality Established, go to step (l);

(l)计算该辊形参数Ai下的所有典型规格的带钢产品宽度数值BQj(j=1,2,3...)对应的辊径方差数值 (l) Calculate the roll diameter variance value corresponding to the strip product width value B Qj (j=1,2,3...) of all typical specifications under the roll shape parameter A i

其中, (单位:μm)in, (unit: μm)

(m)将辊形参数Ai下的辊径方差最大值记为此时的辊径方差最大值为F(X)=154.464μm;(m) The maximum variance of the roll diameter under the roll shape parameter A i recorded as At this time, the maximum variance of the roll diameter is F(X)=154.464μm;

(n)不等式F(X)<1010成立,令F0=F(X),A1_best=0.126427×10-2,转入步骤(o);(n) The inequality F(X)<10 10 is established, let F 0 =F(X), A 1_best =0.126427×10 -2 , and turn to step (o);

(o)不等式成立,令i=i+1=1,然后转入步骤(g);如果不等式不成立则直接转入步骤(p);(o) Inequality Established, make i=i+1=1, then proceed to step (g); if the inequality is not established, then directly proceed to step (p);

(p)输出最优辊形一次项参数A1_best=0.130623×10-2,绘制此辊形参数下的辊形曲线;(p) Output the optimal roll shape parameter A 1_best = 0.130623×10 -2 , and draw the roll shape curve under this roll shape parameter;

为了方便对比,分别列出采用本发明所述的辊形参数优化后的辊径方差数值与优化前的辊径方差数值进行对比,如表2所示,优化之后的辊径方差数值由149.889μm减小为113.073μm;如图2所示,给出了辊形参数优化计算过程中T-2.5MA钢种0.305mm*998mm规格带钢的板形计算分布情况,其板形数值为6.01I;如图3所示,给出了辊形参数优化之后的辊形曲线;其它钢种规格带钢的板形统计数值如表3所示,出口带钢的板形数值最大值为7.36I,平均板形数值为5.595I,板形质量能够控制在较高水平。For the convenience of comparison, the roll diameter variance value after adopting the roll shape parameter optimization of the present invention is listed respectively to compare with the roll diameter variance value before optimization, as shown in table 2, the roll diameter variance value after optimization is by 149.889 μ m Reduced to 113.073μm; as shown in Figure 2, the calculated distribution of the flatness of the T-2.5MA steel grade 0.305mm*998mm strip steel in the optimization calculation process of the roll shape parameters is given, and the flatness value is 6.01I; As shown in Figure 3, the roll shape curve after the roll shape parameter optimization is given; the flatness statistics of other steel types and specifications are shown in Table 3, the maximum value of the flatness value of the exported strip is 7.36I, and the average The shape value is 5.595I, and the shape quality can be controlled at a relatively high level.

表2辊形参数优化前后的辊径方差值Table 2 Roll diameter variance before and after optimization of roll shape parameters

表3辊形参数优化过程中带钢板形统计数值Table 3 Statistical values of strip shape during the optimization process of roll shape parameters

如图6所示,可以看出,优化之后的新的辊型曲线在轧辊轴向的变化趋势更平缓,在保证出口带钢板形质量的前提下,减轻轧机的异步轧制效果,同时更有利于轧辊的均匀磨损,提高轧辊的使用寿命。As shown in Figure 6, it can be seen that the optimized new roll shape curve has a more gentle change trend in the roll axial direction. On the premise of ensuring the shape quality of the export strip, the asynchronous rolling effect of the rolling mill is reduced, and more It is beneficial to the uniform wear of the roll and improves the service life of the roll.

实施例2Example 2

一种基于辊径方差最小的CVC辊形参数优化计算方法,其包括以下有计算机执行的步骤:A CVC roll shape parameter optimization calculation method based on the minimum roll diameter variance, which includes the following computer-executed steps:

(a)收集基本设备参数,主要包括工作辊的辊径Dw=450mm、支撑辊的辊径Db=1150mm、工作辊的辊身长度Lw=1620mm、支撑辊的辊身长度Lb=1380mm、工作辊弯辊缸距离lw=2300mm、支撑辊压下螺丝中心距lb=2300mm、轧机工作辊弯辊力S=200,80,120,110,105,40,70,80单位KN,CVC轧机窜辊量s变化范围[-120mm,120mm],二次项系数A2=-0.169563×10-5、辊型三次项系数A3=0.635066×10-9、轧辊初始半径参数A0=224.5,统计两种典型规格钢种MR T-3BA、MR T-2BA的轧制工艺参数,如表4所示。(a) Collect basic equipment parameters, mainly including the roll diameter of the working roll D w = 450mm, the roll diameter of the backup roll D b = 1150mm, the roll body length of the work roll L w = 1620mm, the roll body length of the backup roll L b = 1380mm, working roll bending cylinder distance l w = 2300mm, back-up roll pressing screw center distance l b = 2300mm, rolling mill working roll bending force S = 200, 80, 120, 110, 105, 40, 70, 80 units KN, roll shifting amount of CVC rolling mill s change range [-120mm, 120mm], quadratic term coefficient A 2 =-0.169563×10 -5 , roll shape cubic term coefficient A 3 =0.635066×10 -9 , roll initial radius parameter A 0 =224.5, two kinds of statistics The rolling process parameters of typical steel types MR T-3BA and MR T-2BA are shown in Table 4.

表4典型钢种的规格及轧制工艺参数Table 4 Specifications and rolling process parameters of typical steel grades

(b)收集生产记录中典型规格带钢的产品参数,主要包括根据典型规格带钢的宽度数值BQj(j=1,2,3...):(b) Collect the product parameters of typical strip steel in production records, mainly including the width value B Qj (j=1,2,3...) of typical strip steel according to:

BT3=780mm,875mm,994mm,1105mm,B T3 = 780mm, 875mm, 994mm, 1105mm,

BT2=735mm,786mm,870mm,934mm;B T2 = 735mm, 786mm, 870mm, 934mm;

带钢厚度数值:HT3=0.325mm,0.285mm,0.298mm,0.304mm,Strip thickness values: H T3 = 0.325mm, 0.285mm, 0.298mm, 0.304mm,

HT2=0.278mm,0.315mm,0.275mm,0.285mm;H T2 = 0.278mm, 0.315mm, 0.275mm, 0.285mm;

带钢屈服强度σs_T2=240MPa,σs_T3=270MPa,平整机组机架的总轧制压力:Strip yield strength σ s_T2 = 240MPa, σ s_T3 = 270MPa, the total rolling pressure of the skin pass stand:

PT3=2.2MN,1.9MN,2.0MN,2.1MN,P T3 = 2.2MN, 1.9MN, 2.0MN, 2.1MN,

PT2=1.7MN,2.3MN,2.1MN,1.9MN;P T2 = 1.7MN, 2.3MN, 2.1MN, 1.9MN;

总延伸率εQj=0.9%,1.0%,1.05%,1.1%,0.8%,0.9%,1.0%,1.05%,来料板形的横向分布值LQi=0、平整机组的后张力与前张力:Total elongation ε Qj =0.9%, 1.0%, 1.05%, 1.1%, 0.8%, 0.9%, 1.0%, 1.05%, transverse distribution value L Qi =0 of incoming plate shape, back tension of skin pass unit and front tension:

TT3_0=85N·mm-2,70N·mm-2,94N·mm-2,85N·mm-2T T3_0 =85N·mm -2 ,70N·mm -2 ,94N·mm -2 ,85N·mm -2 ,

TT3_1=100N·mm-2,90N·mm-2,105N·mm-2,98N·mm-2T T3_1 =100N·mm -2 ,90N·mm -2 ,105N·mm -2 ,98N·mm -2 ,

TT2_0=85N·mm-2,75N·mm-2,80N·mm-2,95N·mm-2T T2_0 =85N·mm -2 ,75N·mm -2 ,80N·mm -2 ,95N·mm -2 ,

TT2_1=100N·mm-2,95N·mm-2,85N·mm-2,105N·mm-2T T2_1 = 100N·mm -2 , 95N·mm -2 , 85N·mm -2 , 105N·mm -2 ;

以及轧制速度:and the rolling speed:

vT3=500m·min-1,498m·min-1,576m·min-1,480m·min-1v T3 = 500m·min -1 , 498m·min -1 , 576m·min -1 , 480m·min -1 ,

vT2=510m·min-1,510m·min-1,498m·min-1,486m·min-1v T2 =510m·min -1 , 510m·min -1 , 498m·min -1 , 486m·min -1 .

(c)定义L为轧机的工作辊辊身长度,A1为需要优化计算的辊形参数,A1_best为优化得到的最佳辊形参数一次项系数;(c) define L as the work roll body length of the rolling mill, A 1 is the roll shape parameter that needs to be optimized, and A 1_best is the optimal roll shape parameter linear term coefficient obtained by optimization;

(d)给定辊形参数一次项系数A1的优化区间[0.126427×10-2,0.146427×10-2],以及优化步长ΔA=0.0002;(d) The optimization interval [0.126427×10 -2 ,0.146427×10 -2 ] of the first-order coefficient A 1 of the given roll shape parameter, and the optimization step size ΔA=0.0002;

(e)定义最佳辊形参数寻优过程中间参数i,目标函数初始值F0(e) define the intermediate parameter i of the optimal roll shape parameter optimization process, and the initial value of the objective function F 0 ;

(f)令i=0,取F0=1010(f) let i=0, get F 0 =10 10 ;

(g)令辊形参数寻优初始值为Ai=A1min+iΔA=0.126427×10-2(g) Let the initial value of roll shape parameter optimization be A i =A 1min +iΔA=0.126427×10 -2 ;

(h)利用辊系弹性变形模型及金属变形模型计算出口带钢的前张应力分布数值σ1i(i=1,2,3...)(单位:MPa);(h) Using the elastic deformation model of the roll system and the metal deformation model to calculate the pre-tension stress distribution value σ 1i (i=1,2,3...) (unit: MPa) of the export strip;

σ1i={11.56,8.53,5.92,3.79,2.12,0.93,0.23,0,0.25,0.99,2.2,σ 1i ={11.56,8.53,5.92,3.79,2.12,0.93,0.23,0,0.25,0.99,2.2,

3.89,6.06,8.68,11.73}; 3.89,6.06,8.68,11.73};

(i)计算出以I-Unit为单位板形分布值 (i) Calculate the shape distribution value with I-Unit as the unit

αi={3.08,1.77,0.64,-0.30,-1.02,-1.53,-1.83,-1.93,-1.83,-1.51,-0.97,α i ={3.08,1.77,0.64,-0.30,-1.02,-1.53,-1.83,-1.93,-1.83,-1.51,-0.97,

-0.25,0.69,1.83,3.16}; -0.25,0.69,1.83,3.16};

(j)计算板形峰值指标g(X)=|max(αi)-min(αi)|=5.09(单位:I)(j) Calculate the plate shape peak index g(X)=|max(α i )-min(α i )|=5.09 (unit: I)

(k)判断不等式g(X)≤g(X)max(g(X)max为板形质量控制参数峰值,取其数值为g(X)max=10)是否成立,5.09I<10I,不等式成立,转入步骤(l);(k) Judging whether the inequality g(X)≤g(X) max (g(X) max is the peak value of the shape quality control parameter, which is taken as g(X) max = 10) is true, 5.09I<10I, the inequality Established, go to step (l);

(l)计算该辊形参数Ai下的所有典型规格的带钢产品宽度数值BQj(j=1,2,3...)对应的辊径方差数值 (l) Calculate the roll diameter variance value corresponding to the strip product width value B Qj (j=1,2,3...) of all typical specifications under the roll shape parameter A i

其中, (单位:μm)in, (unit: μm)

(m)将辊形参数Ai下的辊径方差最大值记为此时的辊径方差最大值为F(X)=153.409μm;(m) The maximum variance of the roll diameter under the roll shape parameter A i recorded as At this time, the maximum variance of the roll diameter is F(X)=153.409μm;

(n)不等式F(X)<1010成立,令F0=F(X),A1_best=0.126427×10-2,转入步骤(o);(n) The inequality F(X)<10 10 is established, let F 0 =F(X), A 1_best =0.126427×10 -2 , and turn to step (o);

(o)不等式成立,令i=i+1=1,然后转入步骤(g);如果不等式不成立则直接转入步骤(p);(o) Inequality Established, make i=i+1=1, then proceed to step (g); if the inequality is not established, then directly proceed to step (p);

(p)输出最优辊形一次项参数A1_best=0.129337×10-2,绘制此辊形参数下的辊形曲线;(p) Output the optimal roll shape parameter A 1_best = 0.129337×10 -2 , and draw the roll shape curve under this roll shape parameter;

为了方便对比,分别列出采用本发明所述的辊形参数优化后的辊径方差数值与优化前的辊径方差数值进行对比,如表5所示,优化之后的辊径方差数值由149.889μm减小为111.376μm;如图4所示,给出了辊形参数优化计算过程中T-2MA钢种0.315mm*786mm规格带钢的板形计算分布情况,其板形数值为5.09I;如图5所示,给出了辊形参数优化之后的辊形曲线;其它钢种规格带钢的板形统计数值如表6所示,出口带钢的板形数值最大值为7.65I,平均板形数值为5.726I,板形质量能够控制在较高水平。For convenience of comparison, the roll diameter variance value after adopting the roll shape parameter optimization of the present invention is listed respectively to compare with the roll diameter variance value before optimization, as shown in table 5, the roll diameter variance value after optimization is by 149.889 μ m It is reduced to 111.376μm; as shown in Figure 4, the calculated distribution of the strip shape of the T-2MA steel grade 0.315mm*786mm in the process of optimizing the calculation of the roll shape parameters is given, and the shape value is 5.09I; As shown in Figure 5, the roll shape curve after the optimization of the roll shape parameters is given; the statistical values of the flatness of other steel types and specifications are shown in Table 6, the maximum value of the flatness of the exported strip is 7.65I, and the average flatness The shape value is 5.726I, and the shape quality can be controlled at a relatively high level.

如图6所示,可以看出,优化之后的新的辊型曲线在轧辊轴向的变化趋势更平缓,在保证出口带钢板形质量的前提下,减轻轧机的异步轧制效果,同时更有利于轧辊的均匀磨损,提高轧辊的使用寿命。As shown in Figure 6, it can be seen that the optimized new roll shape curve has a more gentle change trend in the roll axial direction. On the premise of ensuring the shape quality of the export strip, the asynchronous rolling effect of the rolling mill is reduced, and more It is beneficial to the uniform wear of the roll and improves the service life of the roll.

表5辊形参数优化前后的辊径方差值Table 5 Roll diameter variance before and after optimization of roll shape parameters

表6辊形参数优化过程中带钢板形统计数值Table 6 Statistical values of strip shape during the optimization process of roll shape parameters

Claims (1)

1. A CVC roll forming parameter optimization calculation method based on minimum roll diameter variance is characterized in that: it includes the following steps executed by computer:
(a) collecting basic equipment parameters, mainly including roll diameter D of working rollwRoll diameter D of the support rollbLength L of working roll bodywLength L of the body of the support rollbDistance l between the working roll and the roll bending cylinderwCenter distance l of screw pressed by support rollerbBending force S of working roll of rolling millQjVariation range of roll shifting quantity s of CVC leveling unitmin,smax]Coefficient of quadratic term A of roll form2Coefficient of cubic term of roller type A3Initial radius parameter A of roller0Q is the steel type code of the strip steel, and j is the serial number of the typical specification strip steel counted on site;
(b) collecting the products of typical specification strip steel and rolling process parameters in production record, mainly including width value B of typical specification strip steelQjThickness H of strip steelQjStrip steel yield strength sigmaQsTotal elongation epsilonQjTotal rolling pressure P of the frame of the temper millQj(ii) a Transverse distribution value L of incoming material plate shapeQiFront and rear tension T of levelling machine setQj_1、TQj_0And rolling speed vQjWherein, i is a serial number i of strip elements divided in the width direction of the strip steel, which is 1,2 and 3;
(c) l is defined as the length of the working roll barrel of the rolling mill, A1As a roll shape parameter, A1_bestThe optimal roll shape parameter primary term coefficient obtained for optimization:
(d) first order coefficient A of given roll shape parameter1Optimized interval of [ A ]1min,A1max]And an optimization step Δ a;
(e) defining intermediate parameter i and initial value F of target function in optimum roll shape parameter optimizing process0
(f) Let i equal to 0, take F0=1010
(g) Let the initial value of the optimization of the roll shape parameter be Ai=A1min+iΔA;
(h) Calculating the distribution value sigma of the tensile stress of the outlet strip steel by using the elastic deformation model and the metal deformation model of the roller system1i=f(Ai,HQi,LQi,BQj,TQj_0,TQj_1),AiDetermining the roll profile distribution of the roll;
(i) calculating the distribution value of the plate shape by taking I-Unit as a Unit
(j) Calculating the sheet shape peak index g (X) ═ max (α)i)-min(αi)|;
(k) Judgment inequality g (X) is less than or equal to g (X)maxWhether or not it holds, wherein, g (X)maxIf the inequality is established, the step (l) is carried out for calculation; if the inequality is not true, the step (g) is carried out, the roll shape curve parameters are determined again, and calculation is carried out;
(l) Calculating the roll shape parameter AiWidth value B of lower typical specification strip steel productQjCorresponding variance of roll diameter
(m) applying a roll shape parameter AiMaximum value of variance of roll diameter under the conditionIs marked as(x) calculating an objective function for optimization of roll shape parameters;
(n) judgment inequality F (X)<F0(X) if true, if the inequality is true, let F0=F(X),A1_best=AiAnd (f) turning to the step (o); if the inequality is not true, directly turning to the step (o);
(o) judgment inequalityIf the inequality is true, making i equal to i +1, then turning to the step (g), and continuing to search the roll forming parameters; if the inequality is not true, directly turning to the step (p);
(p) outputting the optimal roll shape first order term parameter A1_bestAnd drawing a roll shape curve under the roll shape parameters.
CN201610912280.2A 2016-10-20 2016-10-20 One kind being based on the smallest CVC roller shape parameter optimized calculation method of roller diameter variance Active CN106547959B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610912280.2A CN106547959B (en) 2016-10-20 2016-10-20 One kind being based on the smallest CVC roller shape parameter optimized calculation method of roller diameter variance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610912280.2A CN106547959B (en) 2016-10-20 2016-10-20 One kind being based on the smallest CVC roller shape parameter optimized calculation method of roller diameter variance

Publications (2)

Publication Number Publication Date
CN106547959A CN106547959A (en) 2017-03-29
CN106547959B true CN106547959B (en) 2019-08-23

Family

ID=58369266

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610912280.2A Active CN106547959B (en) 2016-10-20 2016-10-20 One kind being based on the smallest CVC roller shape parameter optimized calculation method of roller diameter variance

Country Status (1)

Country Link
CN (1) CN106547959B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107537858A (en) * 2017-09-18 2018-01-05 攀钢集团攀枝花钢钒有限公司 Utilize the production method of small roll neck roll rolling ultra-wide strip
CN108580558A (en) * 2018-04-10 2018-09-28 燕山大学 Roller technology parameter optimization setting method under the conditions of secondary cold-rolling unit small deformation
CN108647451B (en) * 2018-05-15 2022-05-20 首钢集团有限公司 A continuous annealing furnace, its furnace roll, and its roll shape design method
CN110093492B (en) * 2019-06-05 2020-07-03 燕山大学 A method and system for setting the roll profile curve of furnace rolls in the whole furnace section of a continuous withdrawal unit
CN113553702B (en) * 2021-07-07 2023-07-21 南京工程学院 A Roll Shape Design Method for Effectively Controlling High-Order Wave Shape in High-Strength Steel Cold Rolling Process
CN115351095A (en) * 2022-06-14 2022-11-18 唐山钢铁集团有限责任公司 Roller consumption control method for roller

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1838131A (en) * 2006-02-24 2006-09-27 燕山大学 Design method of roll diameter of four-roll high-strength steel pass mill
CN102819637A (en) * 2012-07-31 2012-12-12 燕山大学 Method for designing inner roller type curve of sleeve of variable crown (VC) roller

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7765844B2 (en) * 2007-12-20 2010-08-03 Intergrated Industrial Systems, Inc. Prestressed rolling mill housing assembly with improved operational features

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1838131A (en) * 2006-02-24 2006-09-27 燕山大学 Design method of roll diameter of four-roll high-strength steel pass mill
CN102819637A (en) * 2012-07-31 2012-12-12 燕山大学 Method for designing inner roller type curve of sleeve of variable crown (VC) roller

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
带钢冷轧过程轧辊热变形参数的智能优化;刘涛;《燕山大学学报》;20110930;第402-406页

Also Published As

Publication number Publication date
CN106547959A (en) 2017-03-29

Similar Documents

Publication Publication Date Title
CN106547959B (en) One kind being based on the smallest CVC roller shape parameter optimized calculation method of roller diameter variance
CN106909723B (en) Method for optimally setting relation curve between emulsion flow and rolling speed in cold rolling process
CN101491814B (en) Synthetic setting technology of roll-bending force of five-frame four-roll cold continuous rolling device
CN101739514B (en) Method for comprehensively optimizing rolling technological parameter of dual UCM type secondary cold mill train
CN106345817B (en) The six-high cluster mill prediction of plate shape method that working roll draw ratio is big and diameter absolute value is small
CN103978043B (en) Method applicable to rolling force and tension force coordinated control of dual-rack four-roller leveling unit
CN105032945B (en) A kind of hot tandem plate shape and plate convexity Comprehensive Control merit rating method
CN101477579B (en) Roll-shaped curve design method of high-strength steel temper mill
CN104070070B (en) Control method for improving rolling force of precisely rolled strip steel and thickness precision through tension compensation
CN101301659A (en) On-line setting method of plate shape parameters based on mechanism model for double UCM skin pass unit
CN103544340A (en) Method for setting concentration of emulsion in rolling of five-rack cold continuous rolling unit extremely thin band
CN107127214B (en) Cold-rolled silicon steel convexity wedge dynamic setting control method
CN110385343A (en) A kind of hot rolling and leveling machine warpage control method
CN102553945A (en) Abnormal shape forecasting method suitable for four-high rolling mill
CN102266869A (en) Roll system parameter setting method for temper mill unit through strip shape and surface quality control
CN110976524A (en) A method for configuring the crown of work rolls in a hot tandem mill
CN109877167A (en) A kind of tension influence Coefficient Analysis method improving freedom degree rolling stability
CN102819637A (en) Method for designing inner roller type curve of sleeve of variable crown (VC) roller
CN106180209B (en) Four-high mill considers prediction of plate shape method during working roll horizontal displacement
CN104525579A (en) Roller taper defect treatment method for four-high rolling mill
CN108704939A (en) A kind of draught pressure setting method that double skin pass mill groups are controlled based on finished product roughness
CN103537488B (en) Method for compensating residual pressing force in process of rolling six-roller mill extremely thin strip
JP4623738B2 (en) Shape control method in cold rolling
CN114918258B (en) Roll shifting compensation method for cross section shape of incoming material of cold tandem mill based on big data
CN107999546A (en) The method for the edge broken sea for administering paper-thin strip is pressed against based on roller end

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant