CN106744973B - Method for preparing amorphous silicon nano material by ultrasonic chemistry - Google Patents
Method for preparing amorphous silicon nano material by ultrasonic chemistry Download PDFInfo
- Publication number
- CN106744973B CN106744973B CN201611023122.8A CN201611023122A CN106744973B CN 106744973 B CN106744973 B CN 106744973B CN 201611023122 A CN201611023122 A CN 201611023122A CN 106744973 B CN106744973 B CN 106744973B
- Authority
- CN
- China
- Prior art keywords
- silicon
- fluoride
- ultrasonic
- water
- nano material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 31
- 239000002086 nanomaterial Substances 0.000 title claims abstract description 25
- 229910021417 amorphous silicon Inorganic materials 0.000 title abstract description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 38
- 238000006243 chemical reaction Methods 0.000 claims abstract description 35
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 31
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 31
- 239000010703 silicon Substances 0.000 claims abstract description 31
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 21
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 19
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 claims abstract description 18
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 claims abstract description 9
- 235000013024 sodium fluoride Nutrition 0.000 claims abstract description 9
- 239000011775 sodium fluoride Substances 0.000 claims abstract description 9
- 238000002360 preparation method Methods 0.000 claims abstract description 7
- 239000003054 catalyst Substances 0.000 claims abstract description 5
- 238000002604 ultrasonography Methods 0.000 claims abstract description 4
- NROKBHXJSPEDAR-UHFFFAOYSA-M potassium fluoride Chemical compound [F-].[K+] NROKBHXJSPEDAR-UHFFFAOYSA-M 0.000 claims description 14
- 235000003270 potassium fluoride Nutrition 0.000 claims description 7
- 239000011698 potassium fluoride Substances 0.000 claims description 7
- 239000002904 solvent Substances 0.000 claims description 5
- 238000001035 drying Methods 0.000 claims description 2
- 150000004673 fluoride salts Chemical group 0.000 claims 1
- 238000000926 separation method Methods 0.000 claims 1
- 235000012239 silicon dioxide Nutrition 0.000 abstract description 18
- 239000000463 material Substances 0.000 abstract description 8
- 230000009471 action Effects 0.000 abstract description 7
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 6
- 239000001257 hydrogen Substances 0.000 abstract description 6
- 230000008569 process Effects 0.000 abstract description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 4
- 230000015572 biosynthetic process Effects 0.000 abstract description 4
- 229940104869 fluorosilicate Drugs 0.000 abstract description 4
- 150000002500 ions Chemical class 0.000 abstract description 4
- 239000007864 aqueous solution Substances 0.000 abstract description 3
- 230000000694 effects Effects 0.000 abstract description 2
- 238000005265 energy consumption Methods 0.000 abstract description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 abstract description 2
- 239000007787 solid Substances 0.000 abstract description 2
- 238000003786 synthesis reaction Methods 0.000 abstract description 2
- XJKVPKYVPCWHFO-UHFFFAOYSA-N silicon;hydrate Chemical compound O.[Si] XJKVPKYVPCWHFO-UHFFFAOYSA-N 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 34
- 238000002525 ultrasonication Methods 0.000 description 11
- 150000003254 radicals Chemical class 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 3
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 3
- 238000004070 electrodeposition Methods 0.000 description 3
- -1 hydrogen radicals Chemical class 0.000 description 3
- 229910001416 lithium ion Inorganic materials 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 150000001340 alkali metals Chemical class 0.000 description 2
- 239000010405 anode material Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 239000000543 intermediate Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 239000007773 negative electrode material Substances 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical group [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229910008045 Si-Si Inorganic materials 0.000 description 1
- 229910006411 Si—Si Inorganic materials 0.000 description 1
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 1
- 229910052910 alkali metal silicate Inorganic materials 0.000 description 1
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 1
- 229910052915 alkaline earth metal silicate Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 150000002222 fluorine compounds Chemical group 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/584—Recycling of catalysts
Landscapes
- Silicon Compounds (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
Abstract
本发明公开了一种超声化学制备无定型硅纳米材料的方法,该方法是用二氧化硅与氟化钠水溶液在超声作用下制备无定型硅纳米材料:首先,氟化物与固体二氧化硅反应生成可溶于水的氟硅酸离子;再利用水在超声波作用下产生的空化作用,分解出氢自由基和氢氧自由基;最后分解出的氢自由基还原水中的氟硅酸离子得到无定形单质硅纳米材料。在这个制备单质硅的过程中,氟化物发挥催化剂的作用,可以循环利用,参加反应的是二氧化硅与水。本发明采用一种较温和安全的超声化学的方法来合成单质硅纳米材料。该制备方法,设备简单,能源消耗低,合成快速并且过程安全。
The invention discloses a method for sonochemically preparing amorphous silicon nanomaterials. The method is to prepare amorphous silicon nanomaterials by using silicon dioxide and sodium fluoride aqueous solution under the action of ultrasound: first, the fluoride reacts with solid silicon dioxide Generate water-soluble fluorosilicate ions; then use the cavitation effect of water under the action of ultrasonic waves to decompose hydrogen free radicals and hydroxyl free radicals; finally decompose hydrogen free radicals to reduce fluorosilicate ions in water to obtain Amorphous elemental silicon nanomaterials. In the process of preparing elemental silicon, fluoride acts as a catalyst and can be recycled, and silicon dioxide and water participate in the reaction. The invention adopts a relatively mild and safe sonochemical method to synthesize elemental silicon nanometer material. The preparation method has simple equipment, low energy consumption, rapid synthesis and safe process.
Description
技术领域technical field
本发明属于电池材料技术领域,具体涉及一种超声化学制备无定型硅纳米材料的方法。The invention belongs to the technical field of battery materials, and in particular relates to a method for sonochemically preparing amorphous silicon nanometer materials.
背景技术Background technique
目前,单质硅在材料、信息和能源领域中有着非常重要的应用,随着太阳能光伏产业的发展其需求不断扩大。由于随着可移动电子设备对高容量、长寿命电池需求的日益增长,人们对锂离子电池的性能提出了更高的要求。锂离子电池容量偏低已成为制约电池工业发展的一个瓶颈,寻找更高比容量的负极材料已成为电池材料领域的一个重要发展方向。目前商业化负极材料是碳,自锂离子电池商业化以来,碳材料的研究获得了长足的进步,很难再有提升的空间。因而寻找替代碳的负极材料成为一个重要的发展方向。在众多可选择的负极材料中,硅因其具有较高的比容量(理论值:4200mAh/g)及较低的脱嵌锂电压而备受瞩目。At present, elemental silicon has very important applications in the fields of materials, information and energy, and its demand continues to expand with the development of the solar photovoltaic industry. Due to the increasing demand for high-capacity, long-life batteries for mobile electronic devices, people have put forward higher requirements for the performance of lithium-ion batteries. The low capacity of lithium-ion batteries has become a bottleneck restricting the development of the battery industry, and finding anode materials with higher specific capacity has become an important development direction in the field of battery materials. The current commercial negative electrode material is carbon. Since the commercialization of lithium-ion batteries, the research on carbon materials has made great progress, and it is difficult to have room for improvement. Therefore, finding alternative carbon anode materials has become an important development direction. Among the many alternative negative electrode materials, silicon has attracted much attention because of its high specific capacity (theoretical value: 4200mAh/g) and low lithium extraction and extraction voltage.
申请号为 201010567832.3的专利公开了一种单质硅的制备方法,将 SiO2溶于含有碱金属或碱土金属氧化物的氯化物熔盐中,或将碱金属或碱土金属的硅酸盐溶于氯化物熔盐中,所述氯化物熔盐的温度为 600-1000 o C,以石墨或硅或金属为阴极、以石墨或惰性材料为阳极进行电解,使得在阴极发生硅酸根的电沉积,电沉积产物分离得到单质硅。但是该发明还要通过电沉积提炼硅,方法复杂。The patent application number is 201010567832.3 discloses a preparation method of elemental silicon, dissolving SiO2 in chloride molten salt containing alkali metal or alkaline earth metal oxide, or dissolving alkali metal or alkaline earth metal silicate in chlorine In the chloride molten salt, the temperature of the chloride molten salt is 600-1000 o C, the electrolysis is performed with graphite or silicon or metal as the cathode and graphite or inert material as the anode, so that the electrodeposition of silicate occurs at the cathode, and the electrodeposition The deposited product is separated to obtain elemental silicon. However, this invention also needs to refine silicon by electrodeposition, which is a complicated method.
发明内容Contents of the invention
针对传统制备单质硅方法在实际应用中的缺陷,本发明提出了一种超声化学制备无定型硅纳米材料的方法,通过二氧化硅与氟化物水溶液反应,在超声的作用下生成单质硅纳米材料。相对于目前常用的硅单质制备方法,超声化学法是一种温和、安全、绿色的制备硅纳米材料的方法。Aiming at the defects in the practical application of the traditional method for preparing elemental silicon, the present invention proposes a method for the sonochemical preparation of amorphous silicon nanomaterials, through the reaction of silicon dioxide and fluoride aqueous solution, and the generation of elemental silicon nanomaterials under the action of ultrasound . Compared with the currently commonly used method for preparing silicon simple substance, sonochemical method is a mild, safe and green method for preparing silicon nanomaterials.
本发明具体公开了一种超声化学制备无定型硅纳米材料的方法,在超声波和催化剂的作用下,由硅源与水反应生成无定型硅纳米材料。超声化学是一种利用高强度的超声波(20k-10MHz)进行化学反应的方法。超声化学主要源于超声空化作用,液体空化气泡的形成、振荡、生长、收缩及崩溃所引发的物理和化学现象。液体超声空化过程是集中声场能量并迅速释放的过程,空化气泡崩溃时,在极短时间,产生5000K以上的高温和大约5.05×108Pa的高压。局部的高温高压可导致前躯体和溶剂的化学键重组,从而产生活性自由基,这种自由基作为形成最终稳定纳米材料的中间产物。这些自由基中间产物要么源于溶剂,要么源于加入的稳定剂分子,水作为溶剂,在超声的作用下,水被分解为氢自由基和氢氧自由基,氢自由基具有还原性,可以显示出独特的活性来还原前躯体,从而得到所需要的目标产物。The invention specifically discloses a method for ultrasonically preparing amorphous silicon nanometer materials. Under the action of ultrasonic waves and catalysts, silicon sources and water are reacted to generate amorphous silicon nanometer materials. Sonochemistry is a method of chemical reaction using high-intensity ultrasonic waves (20k-10MHz). Sonochemistry is mainly derived from ultrasonic cavitation, the physical and chemical phenomena caused by the formation, oscillation, growth, shrinkage and collapse of liquid cavitation bubbles. The liquid ultrasonic cavitation process is the process of concentrating the energy of the sound field and releasing it rapidly. When the cavitation bubble collapses, a high temperature above 5000K and a high pressure of about 5.05×10 8 Pa are generated in a very short time. Localized high temperature and high pressure can lead to the recombination of chemical bonds between precursors and solvents, thereby generating reactive free radicals, which serve as intermediates for the formation of final stable nanomaterials. These free radical intermediates are either derived from the solvent or from the added stabilizer molecules. Water is used as a solvent. Under the action of ultrasound, water is decomposed into hydrogen radicals and hydroxyl radicals. Hydrogen radicals are reductive and can Shows a unique activity to reduce the precursor, so as to obtain the desired target product.
优选的是,所述催化剂为氟化物。Preferably, the catalyst is a fluoride.
上述任一方案优选的是,包括下述步骤:Any of the above schemes preferably includes the following steps:
步骤(a)、反应溶液的制备:选择水作为溶剂,溶解氟化物,加入硅源,配置成溶液;Step (a), preparation of reaction solution: choose water as solvent, dissolve fluoride, add silicon source, and configure into a solution;
步骤(b)、生成无定型硅纳米材料:用超声法对上述配置的溶液进行超声后,进行离心分离,放置于60℃干燥箱即可得。离心10分钟,转速8000转/分钟。Step (b), generating amorphous silicon nanomaterials: ultrasonically sonicate the solution prepared above, then perform centrifugation, and place in a 60°C drying oven to obtain it. Centrifuge for 10 minutes at 8000 rpm.
上述任一方案优选的是,所述步骤(a)中的硅源为二氧化硅,氟化物为氟化钠和/或氟化钾。Preferably, in any of the above schemes, the silicon source in the step (a) is silicon dioxide, and the fluoride is sodium fluoride and/or potassium fluoride.
上述任一方案优选的是,所述步骤(a)中硅源与氟化物的摩尔比为1:6-1:24。Preferably, in any of the above schemes, the molar ratio of the silicon source to the fluoride in the step (a) is 1:6-1:24.
上述任一方案优选的是,所述步骤(b)中超声时的温度为50-90℃,超声时间为1-4h,超声频率为20-50 kHz,超声功率为100-800W。Preferably, in any of the above schemes, the temperature during ultrasonication in the step (b) is 50-90°C, the ultrasonic time is 1-4h, the ultrasonic frequency is 20-50 kHz, and the ultrasonic power is 100-800W.
本发明的有益效果如下:本发明公开了一种超声化学制备无定型硅纳米材料的方法,该方法是用二氧化硅与氟化钠水溶液在超声作用下制备无定型硅纳米材料:首先,氟化物与固体二氧化硅反应生成可溶于水的氟硅酸离子;再利用水在超声波作用下产生的空化作用,分解出氢自由基和氢氧自由基;最后分解出的氢自由基还原水中的氟硅酸离子得到无定形单质硅纳米材料:The beneficial effects of the present invention are as follows: The present invention discloses a method for preparing amorphous silicon nanomaterials by sonochemistry, which is to prepare amorphous silicon nanomaterials by using silicon dioxide and sodium fluoride aqueous solution under ultrasonic action: first, fluorine The compound reacts with solid silicon dioxide to generate water-soluble fluorosilicate ions; then, the cavitation generated by water under the action of ultrasonic waves is used to decompose hydrogen free radicals and hydroxyl free radicals; the final decomposed hydrogen free radicals are reduced to Fluorosilicate ions in water yield amorphous elemental silicon nanomaterials:
(1)、相对于传统的制备单质硅的水热还原法与高温还原法来说,本发明提供了一种新型的超声化学制备单质硅纳米材料的方法;(1) Compared with the traditional hydrothermal reduction method and high-temperature reduction method for preparing elemental silicon, the present invention provides a new method for sonochemically preparing elemental silicon nanomaterials;
(2)、本发明提供的制备方法是horn式超声化学法,该制备方法条件温和,绿色安全,设备简单,能源消耗低,合成快速并且过程安全。(2) The preparation method provided by the present invention is a horn-type sonochemical method, the preparation method has mild conditions, is green and safe, has simple equipment, low energy consumption, rapid synthesis and safe process.
附图说明Description of drawings
图1是按照本发明的超声化学制备无定型硅纳米材料的方法制备出的无定型硅纳米材料样品的红外光谱谱图。Fig. 1 is the infrared spectrogram of the amorphous silicon nano material sample prepared according to the method for preparing the amorphous silicon nano material by sonochemistry of the present invention.
图2是按照本发明的超声化学制备无定型硅纳米材料的方法制备出的无定型硅纳米材料样品的高分辨透射电镜图。Fig. 2 is a high-resolution transmission electron microscope image of an amorphous silicon nanomaterial sample prepared according to the method for preparing amorphous silicon nanomaterial by sonochemistry of the present invention.
具体实施方式Detailed ways
下述实施例是对于本发明内容的进一步说明以作为对本发明技术内容的阐释,但本发明的实质内容并不仅限于下述实施例所述,本领域的普通技术人员可以且应当知晓任何基于本发明实质精神的简单变化或替换均应属于本发明所要求的保护范围。The following examples are a further description of the content of the present invention as an explanation of the technical content of the present invention, but the essential content of the present invention is not limited to the following examples, those of ordinary skill in the art can and should know any Simple changes or replacements of the essential spirit of the invention shall fall within the scope of protection required by the present invention.
实施例1Example 1
(1)反应溶液的配置:称取0.01摩尔二氧化硅和0.06摩尔氟化钠于平底烧瓶中,加入90ml的水溶解;(1) Configuration of the reaction solution: Weigh 0.01 mole of silicon dioxide and 0.06 mole of sodium fluoride in a flat-bottomed flask, add 90ml of water to dissolve;
(2)超声反应溶液:将反应溶液置于horn式超声装置中,设置温度为60℃,超声功率为700W。超声4小时后,对产物进行离心分离,在60℃的烘箱里烘干即可得到黑色产物。如图1所示,图1是制备出的无定型硅纳米材料样品的红外光谱谱图;该图中,可明显看出在约500cm-1出现Si-Si键的特征峰,说明产物中有单质硅的存在。如图2所示,图2是制备出的无定型硅纳米材料样品的高分辨透射电镜图;该图中,可看出制得的样品没有明显晶格条纹,是无定形状态。(2) Ultrasonic reaction solution: put the reaction solution in a horn-type ultrasonic device, set the temperature at 60°C, and the ultrasonic power at 700W. After ultrasonication for 4 hours, the product was centrifuged and dried in an oven at 60° C. to obtain a black product. As shown in Figure 1, Fig. 1 is the infrared spectrogram of the prepared amorphous silicon nanomaterial sample; In this figure, it can be clearly seen that the characteristic peak of the Si-Si bond occurs at about 500cm -1 , indicating that there is the presence of elemental silicon. As shown in Figure 2, Figure 2 is a high-resolution transmission electron microscope image of the prepared amorphous silicon nanomaterial sample; in this figure, it can be seen that the prepared sample has no obvious lattice fringes and is in an amorphous state.
实施例2Example 2
(1)反应溶液的配置:称取0.01摩尔二氧化硅和0.06摩尔氟化钾于平底烧瓶中,加入90ml的水溶解;(1) Configuration of the reaction solution: weigh 0.01 mole of silicon dioxide and 0.06 mole of potassium fluoride in a flat-bottomed flask, add 90ml of water to dissolve;
(2)超声反应溶液:将反应溶液置于horn式超声装置中,设置温度为60℃,超声功率为700W。超声4小时后,对产物进行离心分离,在60℃的烘箱里烘干即可得到黑色产物。(2) Ultrasonic reaction solution: put the reaction solution in a horn-type ultrasonic device, set the temperature at 60°C, and the ultrasonic power at 700W. After ultrasonication for 4 hours, the product was centrifuged and dried in an oven at 60° C. to obtain a black product.
实施例3Example 3
(1)反应溶液的配置:称取0.005摩尔二氧化硅和0.06摩尔氟化钠于平底烧瓶中,加入90ml的水溶解;(1) Configuration of the reaction solution: Weigh 0.005 moles of silicon dioxide and 0.06 moles of sodium fluoride in a flat-bottomed flask, add 90ml of water to dissolve;
(2)超声反应溶液:将反应溶液置于horn式超声装置中,设置温度为80℃,超声功率为700W。超声2小时后,对产物进行离心分离,在60℃的烘箱里烘干即可得到黑色产物。(2) Ultrasonic reaction solution: put the reaction solution in a horn type ultrasonic device, set the temperature at 80°C, and the ultrasonic power at 700W. After ultrasonication for 2 hours, the product was centrifuged and dried in an oven at 60° C. to obtain a black product.
实施例4Example 4
(1)反应溶液的配置:称取0.005摩尔二氧化硅和0.06摩尔氟化钠于平底烧瓶中,加入90ml的水溶解;(1) Configuration of the reaction solution: Weigh 0.005 moles of silicon dioxide and 0.06 moles of sodium fluoride in a flat-bottomed flask, add 90ml of water to dissolve;
(2)超声反应溶液:将反应溶液置于horn式超声装置中,设置温度为50℃,超声功率为500W。超声3小时后,对产物进行离心分离,在60℃的烘箱里烘干即可得到黑色产物。(2) Ultrasonic reaction solution: put the reaction solution in a horn-type ultrasonic device, set the temperature at 50°C, and ultrasonic power at 500W. After ultrasonication for 3 hours, the product was centrifuged and dried in an oven at 60° C. to obtain a black product.
实施例5Example 5
(1)反应溶液的配置:称取0.005摩尔二氧化硅和0.12氟化钠于平底烧瓶中,加入90ml的水溶解;(1) Configuration of the reaction solution: Weigh 0.005 mole of silicon dioxide and 0.12 mole of sodium fluoride into a flat-bottomed flask, add 90ml of water to dissolve;
(2)超声反应溶液:将反应溶液置于horn式超声装置中,设置温度为60℃,超声功率为600W。超声2小时后,对产物进行离心分离,在60℃的烘箱里烘干即可得到黑色产物。(2) Ultrasonic reaction solution: put the reaction solution in a horn type ultrasonic device, set the temperature at 60°C, and the ultrasonic power at 600W. After ultrasonication for 2 hours, the product was centrifuged and dried in an oven at 60° C. to obtain a black product.
实施例6Example 6
(1)反应溶液的配置:称取0.005摩尔二氧化硅和0.06摩尔氟化钠于平底烧瓶中,加入90ml的水溶解;(1) Configuration of the reaction solution: Weigh 0.005 moles of silicon dioxide and 0.06 moles of sodium fluoride in a flat-bottomed flask, add 90ml of water to dissolve;
(2)超声反应溶液:将反应溶液置于horn式超声装置中,设置温度为90℃,超声功率为800W。超声1小时后,对产物进行离心分离,在60℃的烘箱里烘干即可得到黑色产物。(2) Ultrasonic reaction solution: put the reaction solution in a horn type ultrasonic device, set the temperature at 90°C, and the ultrasonic power at 800W. After ultrasonication for 1 hour, the product was centrifuged and dried in an oven at 60° C. to obtain a black product.
实施例7Example 7
(1)反应溶液的配置:称取0.005摩尔二氧化硅和0.06摩尔氟化钾于平底烧瓶中,加入90ml的水溶解;(1) Configuration of the reaction solution: Weigh 0.005 moles of silicon dioxide and 0.06 moles of potassium fluoride in a flat-bottomed flask, add 90ml of water to dissolve;
(2)超声反应溶液:将反应溶液置于horn式超声装置中,设置温度为80℃,超声功率为700W。超声2小时后,对产物进行离心分离,在60℃的烘箱里烘干即可得到黑色产物。(2) Ultrasonic reaction solution: put the reaction solution in a horn type ultrasonic device, set the temperature at 80°C, and the ultrasonic power at 700W. After ultrasonication for 2 hours, the product was centrifuged and dried in an oven at 60° C. to obtain a black product.
实施例8Example 8
(1)反应溶液的配置:称取0.005摩尔二氧化硅和0.06摩尔氟化钾于平底烧瓶中,加入90ml的水溶解;(1) Configuration of the reaction solution: Weigh 0.005 moles of silicon dioxide and 0.06 moles of potassium fluoride in a flat-bottomed flask, add 90ml of water to dissolve;
(2)超声反应溶液:将反应溶液置于horn式超声装置中,设置温度为50℃,超声功率为500W。超声3小时后,对产物进行离心分离,在60℃的烘箱里烘干即可得到黑色产物。(2) Ultrasonic reaction solution: put the reaction solution in a horn-type ultrasonic device, set the temperature at 50°C, and ultrasonic power at 500W. After ultrasonication for 3 hours, the product was centrifuged and dried in an oven at 60° C. to obtain a black product.
实施例9Example 9
(1)反应溶液的配置:称取0.005摩尔二氧化硅和0.12摩尔氟化钾于平底烧瓶中,加入90ml的水溶解;(1) Configuration of the reaction solution: Weigh 0.005 moles of silicon dioxide and 0.12 moles of potassium fluoride in a flat-bottomed flask, add 90ml of water to dissolve;
(2)超声反应溶液:将反应溶液置于horn式超声装置中,设置温度为60℃,超声功率为600W。超声2小时后,对产物进行离心分离,在60℃的烘箱里烘干即可得到黑色产物。(2) Ultrasonic reaction solution: put the reaction solution in a horn type ultrasonic device, set the temperature at 60°C, and the ultrasonic power at 600W. After ultrasonication for 2 hours, the product was centrifuged and dried in an oven at 60° C. to obtain a black product.
实施例10Example 10
(1)反应溶液的配置:称取0.005摩尔二氧化硅和0.06摩尔氟化钾于平底烧瓶中,加入90ml的水溶解;(1) Configuration of the reaction solution: Weigh 0.005 moles of silicon dioxide and 0.06 moles of potassium fluoride in a flat-bottomed flask, add 90ml of water to dissolve;
(2)超声反应溶液:将反应溶液置于horn式超声装置中,设置温度为90℃,超声功率为800W。超声1小时后,对产物进行离心分离,在60℃的烘箱里烘干即可得到黑色产物。(2) Ultrasonic reaction solution: put the reaction solution in a horn type ultrasonic device, set the temperature at 90°C, and the ultrasonic power at 800W. After ultrasonication for 1 hour, the product was centrifuged and dried in an oven at 60° C. to obtain a black product.
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。The preferred specific embodiments of the present invention have been described in detail above. It should be understood that those skilled in the art can make many modifications and changes according to the concept of the present invention without creative effort. Therefore, all technical solutions that can be obtained by those skilled in the art based on the concept of the present invention through logical analysis, reasoning or limited experiments on the basis of the prior art shall be within the scope of protection defined by the claims.
Claims (4)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201611023122.8A CN106744973B (en) | 2016-11-20 | 2016-11-20 | Method for preparing amorphous silicon nano material by ultrasonic chemistry |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201611023122.8A CN106744973B (en) | 2016-11-20 | 2016-11-20 | Method for preparing amorphous silicon nano material by ultrasonic chemistry |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN106744973A CN106744973A (en) | 2017-05-31 |
| CN106744973B true CN106744973B (en) | 2018-12-07 |
Family
ID=58969804
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201611023122.8A Active CN106744973B (en) | 2016-11-20 | 2016-11-20 | Method for preparing amorphous silicon nano material by ultrasonic chemistry |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN106744973B (en) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108751227A (en) * | 2018-05-28 | 2018-11-06 | 湖南工业大学 | A kind of production technology producing sodium fluoride co-producing white carbon black using prodan |
| CN113751031B (en) * | 2021-08-20 | 2022-12-27 | 中国科学院上海有机化学研究所 | Composite solid acid, preparation method and application thereof |
Family Cites Families (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2446961A (en) * | 1945-07-03 | 1948-08-10 | British Thermostat Co Ltd | Thermostatically operated electrical switching device |
| US7244513B2 (en) * | 2003-02-21 | 2007-07-17 | Nano-Proprietary, Inc. | Stain-etched silicon powder |
| CN101979712A (en) * | 2010-12-01 | 2011-02-23 | 武汉大学 | Preparation method of elemental silicon |
| CN102951642A (en) * | 2011-08-31 | 2013-03-06 | 常州诺瑞格纳米科技有限公司 | Water-soluble silicon nanoparticles and preparation method thereof |
| CN103288088B (en) * | 2012-02-23 | 2016-02-17 | 苏州宝时得电动工具有限公司 | A kind of preparation method of polysilicon |
| JP6057424B2 (en) * | 2013-03-06 | 2017-01-11 | 学校法人東京電機大学 | Method for producing silicon nanoparticles |
| US20150125601A1 (en) * | 2013-11-04 | 2015-05-07 | Systems And Materials Research Corporation | Method and apparatus for producing nanosilicon particles |
| CN105271239B (en) * | 2015-10-28 | 2017-10-03 | 内江师范学院 | A kind of method that using plasma method prepares nano-metal silicon |
| CN106044777A (en) * | 2016-06-01 | 2016-10-26 | 北京大学 | Novel method for preparing nanometer silicon from silicon dioxide |
-
2016
- 2016-11-20 CN CN201611023122.8A patent/CN106744973B/en active Active
Non-Patent Citations (1)
| Title |
|---|
| Optical properties of silicon nanoparticles by ultrasound-induced solution method;Lee, S et al;《JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS & EXPRESS LETTERS》;20040604;第43卷(第6B期);全文 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN106744973A (en) | 2017-05-31 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN102496700B (en) | Graphene-titanium dioxide nanotube composite material and preparation method thereof | |
| CN102923697B (en) | A method for preparing graphene energy storage materials by electrochemical cathodic stripping | |
| CN105271205B (en) | A kind of method that the controllable high-quality graphene of the number of plies is prepared using electrochemical process | |
| CN106129344A (en) | A kind of tin ash/Titanium dioxide spherical granule and the preparation method of graphene nano belt composite | |
| CN108598434A (en) | A kind of electrostatic self-assembled preparation method of graphene/silicon electrode material | |
| CN106356519A (en) | Preparation method of expanded graphite/silicon@carbon negative electrode material for lithium ion batteries | |
| CN104393268B (en) | The preparation method of the SnSb/ CNT composite negative pole material that a kind of aeroge is modified | |
| CN105406042A (en) | Preparation method for carbon-coated super-long titanium dioxide nanotube negative electrode material of lithium ion battery | |
| CN112044372B (en) | Hollow titanium dioxide @ carbon composite microsphere and preparation method thereof | |
| Salman et al. | Lysozyme-templated meso-macroporous hollow TiO2 for lithium ion battery anode | |
| CN107045948B (en) | NaxMnO2Positive electrode, preparation method and applications | |
| CN107681133A (en) | A kind of lithium ion battery negative material and preparation method | |
| CN106848276A (en) | A kind of titanium dioxide of core-shell structure cladding silicon lithium ion battery cathode material and preparation method thereof | |
| CN108539144A (en) | A kind of extra small metal organic frame is nanocrystalline and preparation method and application | |
| CN110098367A (en) | A kind of carbon nano-tube/titanic oxide nano lamella compound modified diaphragm and preparation method thereof | |
| CN104787740B (en) | A kind of preparation method of three-dimensional nitrating Graphene | |
| CN106744973B (en) | Method for preparing amorphous silicon nano material by ultrasonic chemistry | |
| CN103708552B (en) | A kind of preparation method of flower ball-shaped anode material for lithium-ion batteries | |
| CN105470485B (en) | A kind of efficient cryogenic preparation method of carbon-coated nano titanium dioxide | |
| CN114361411A (en) | Graphene-coated layered double hydroxide derivative composite material and preparation method and application thereof | |
| CN106784648A (en) | The preparation method of multi-walled carbon nano-tubes/titanium dioxide composite lithium ion battery cathode material | |
| CN105789628B (en) | A kind of azagraphene and manganese dioxide hybrid aerogel and its preparation method and use | |
| CN101814598B (en) | Novel titanium dioxide cathode material of power lithium ion cell and preparation method thereof | |
| CN103490066A (en) | A kind of preparation method of prismatic NH4V3O8 nanocrystal | |
| CN105217679A (en) | A kind of mesoporous TiO 2-B nano wire and preparation method thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |