CN106785002A - A kind of lithium sulfide system solid electrolyte material containing silver iodide and preparation method thereof - Google Patents
A kind of lithium sulfide system solid electrolyte material containing silver iodide and preparation method thereof Download PDFInfo
- Publication number
- CN106785002A CN106785002A CN201710077206.8A CN201710077206A CN106785002A CN 106785002 A CN106785002 A CN 106785002A CN 201710077206 A CN201710077206 A CN 201710077206A CN 106785002 A CN106785002 A CN 106785002A
- Authority
- CN
- China
- Prior art keywords
- lithium
- silver iodide
- solid electrolyte
- sulfide
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000007784 solid electrolyte Substances 0.000 title claims abstract description 54
- 229910021612 Silver iodide Inorganic materials 0.000 title claims abstract description 51
- JKFYKCYQEWQPTM-UHFFFAOYSA-N 2-azaniumyl-2-(4-fluorophenyl)acetate Chemical compound OC(=O)C(N)C1=CC=C(F)C=C1 JKFYKCYQEWQPTM-UHFFFAOYSA-N 0.000 title claims abstract description 50
- 229940045105 silver iodide Drugs 0.000 title claims abstract description 50
- GLNWILHOFOBOFD-UHFFFAOYSA-N lithium sulfide Chemical compound [Li+].[Li+].[S-2] GLNWILHOFOBOFD-UHFFFAOYSA-N 0.000 title claims abstract description 43
- 239000000463 material Substances 0.000 title claims abstract description 31
- 238000002360 preparation method Methods 0.000 title claims abstract description 21
- 239000000203 mixture Substances 0.000 claims abstract description 38
- 238000000498 ball milling Methods 0.000 claims abstract description 23
- 238000000034 method Methods 0.000 claims abstract description 22
- 239000012298 atmosphere Substances 0.000 claims abstract description 15
- FQBJEOBTOBNOOV-UHFFFAOYSA-N [S].[P].[Li] Chemical compound [S].[P].[Li] FQBJEOBTOBNOOV-UHFFFAOYSA-N 0.000 claims abstract description 12
- BLBVLMPUSLFQNF-UHFFFAOYSA-N S.P(O)(O)(O)=O Chemical compound S.P(O)(O)(O)=O BLBVLMPUSLFQNF-UHFFFAOYSA-N 0.000 claims abstract 4
- CYQAYERJWZKYML-UHFFFAOYSA-N phosphorus pentasulfide Chemical compound S1P(S2)(=S)SP3(=S)SP1(=S)SP2(=S)S3 CYQAYERJWZKYML-UHFFFAOYSA-N 0.000 claims abstract 2
- 238000010792 warming Methods 0.000 claims abstract 2
- 238000010438 heat treatment Methods 0.000 claims description 19
- 229910052709 silver Inorganic materials 0.000 claims description 8
- 239000004332 silver Substances 0.000 claims description 7
- 238000000227 grinding Methods 0.000 claims description 3
- ICIWUVCWSCSTAQ-UHFFFAOYSA-M iodate Chemical compound [O-]I(=O)=O ICIWUVCWSCSTAQ-UHFFFAOYSA-M 0.000 claims 1
- 230000001681 protective effect Effects 0.000 claims 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 abstract description 42
- 229910001416 lithium ion Inorganic materials 0.000 abstract description 42
- 238000009792 diffusion process Methods 0.000 abstract description 14
- 239000012467 final product Substances 0.000 abstract 1
- 239000000843 powder Substances 0.000 description 21
- VKCLPVFDVVKEKU-UHFFFAOYSA-N S=[P] Chemical compound S=[P] VKCLPVFDVVKEKU-UHFFFAOYSA-N 0.000 description 18
- 150000002500 ions Chemical class 0.000 description 16
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 12
- -1 silver ions Chemical class 0.000 description 12
- HSZCZNFXUDYRKD-UHFFFAOYSA-M lithium iodide Inorganic materials [Li+].[I-] HSZCZNFXUDYRKD-UHFFFAOYSA-M 0.000 description 11
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 10
- 229910052946 acanthite Inorganic materials 0.000 description 9
- 229940056910 silver sulfide Drugs 0.000 description 9
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 8
- 239000002245 particle Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 6
- 229910052786 argon Inorganic materials 0.000 description 6
- 239000012300 argon atmosphere Substances 0.000 description 6
- 239000011261 inert gas Substances 0.000 description 6
- 239000011159 matrix material Substances 0.000 description 6
- 229910052698 phosphorus Inorganic materials 0.000 description 6
- 239000011574 phosphorus Substances 0.000 description 6
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 5
- 238000000713 high-energy ball milling Methods 0.000 description 5
- 229910052744 lithium Inorganic materials 0.000 description 5
- 239000005486 organic electrolyte Substances 0.000 description 5
- 229910018091 Li 2 S Inorganic materials 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 238000011065 in-situ storage Methods 0.000 description 4
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- XUARKZBEFFVFRG-UHFFFAOYSA-N silver sulfide Chemical compound [S-2].[Ag+].[Ag+] XUARKZBEFFVFRG-UHFFFAOYSA-N 0.000 description 4
- 239000002203 sulfidic glass Substances 0.000 description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- JDZCKJOXGCMJGS-UHFFFAOYSA-N [Li].[S] Chemical compound [Li].[S] JDZCKJOXGCMJGS-UHFFFAOYSA-N 0.000 description 3
- 238000005280 amorphization Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000005012 migration Effects 0.000 description 3
- 238000013508 migration Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229910020346 SiS 2 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 229940021013 electrolyte solution Drugs 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 239000010416 ion conductor Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- 238000009461 vacuum packaging Methods 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- INUPMYXHUWTZTB-UHFFFAOYSA-N [I].[P].[S].[Li] Chemical compound [I].[P].[S].[Li] INUPMYXHUWTZTB-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- SMBQBQBNOXIFSF-UHFFFAOYSA-N dilithium Chemical compound [Li][Li] SMBQBQBNOXIFSF-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 239000002001 electrolyte material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000007847 structural defect Effects 0.000 description 1
- 238000005486 sulfidation Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Conductive Materials (AREA)
Abstract
Description
技术领域technical field
本发明涉及硫化锂系固体电解质材料,具体涉及一种含碘化银的硫化锂系固体电解质材料及其制备方法。The invention relates to a lithium sulfide-based solid electrolyte material, in particular to a silver iodide-containing lithium sulfide-based solid electrolyte material and a preparation method thereof.
背景技术Background technique
具有高电压和高能量密度的锂离子电池,已被广泛应用于笔记本电脑和手机等消费类电子产品。近年来,高能量密度的锂电池作为电动汽车的动力电池已显示出越来越重要的市场前景,已被认为是21世纪发展的理想能量转换装置。一般的锂离子电池由正极、负极、隔膜和有机电解液及密封用的壳体组成,其中的可燃性有机电解液导致的着火等重大安全事故时有发生。尽管众多的研究已在材料改性及电池结构改进方面大幅提升了传统锂离子电池的性能,但含有有机电解液的锂离子电池在使用中的安全问题没有根本解决。Lithium-ion batteries with high voltage and high energy density have been widely used in consumer electronics such as laptop computers and mobile phones. In recent years, lithium batteries with high energy density have shown more and more important market prospects as power batteries for electric vehicles, and have been considered as ideal energy conversion devices for the development of the 21st century. A general lithium-ion battery is composed of a positive electrode, a negative electrode, a diaphragm, an organic electrolyte, and a sealed casing. Major safety accidents such as fires caused by flammable organic electrolytes occur from time to time. Although many studies have greatly improved the performance of traditional lithium-ion batteries in terms of material modification and battery structure improvement, the safety problems of lithium-ion batteries containing organic electrolytes in use have not been fundamentally resolved.
利用固体电解质材料代替可燃性有机电解质溶液是解决锂离子电池在使用中的安全问题的最佳方法。全固体锂离子电池通常由正极膜、负极膜和在正负极层之间的固体电解质膜组合而成。由于不含可燃性有机电解质溶液而拥有高安全性,简单的层状结构能进一步降低制造成本,提高生产效率,同时能串联积层实现高电压化而提高全固体锂离子电池的能量密度,因此全固体锂离子电池近年来已受到了越来越多的关注。Using solid electrolyte materials instead of flammable organic electrolyte solutions is the best way to solve the safety problem of lithium-ion batteries in use. An all-solid lithium-ion battery is usually composed of a positive electrode film, a negative electrode film, and a solid electrolyte film between the positive and negative electrode layers. Because it does not contain flammable organic electrolyte solutions, it has high safety. The simple layered structure can further reduce manufacturing costs and improve production efficiency. At the same time, it can be stacked in series to achieve high voltage and increase the energy density of all solid lithium-ion batteries. Therefore, All-solid lithium-ion batteries have received increasing attention in recent years.
全固体锂离子电池的关键材料是高锂离子电导率的全固体电解质材料。2000年11月,在日本的第26届固态离子学研讨会摘要中(p174)报道了硫化锂(Li2S)和硫化磷P2S5混合物经200度热处理后可形成锂离子传导体的结果,由此,非晶态硫化锂系固体电解质逐步成为全固体锂电池研究开发的热点材料。The key material of all solid lithium ion batteries is the all solid electrolyte material with high lithium ion conductivity. In November 2000, in the abstract of the 26th Symposium on Solid State Ionics in Japan (p174), it was reported that a mixture of lithium sulfide (Li 2 S) and phosphorus sulfide P 2 S 5 could form a lithium ion conductor after heat treatment at 200 degrees. As a result, amorphous lithium sulfide-based solid electrolytes have gradually become a hot material in the research and development of all-solid lithium batteries.
锂离子固体电解质应具有如下特点:①锂离子载体化合物中的锂离子要容易极化,即束缚力比较小容易迁移;②锂离子固体电解质可迁移的锂离子密度要尽可能高,即对锂离子传导有贡献的锂离子要大量存在;③锂离子在固体电解质中的扩散是通过原子空位快速扩散,非晶态或准结晶态固体电解质基体中存在的结构弛豫和结构缺陷及其它方式导入的大量原子空位,将促进锂离子通过原子空位快速扩散,从而拥有高的锂离子电导率。具有高的锂离子电导率的硫化锂系材料适于用作全固体锂离子电池的固体电解质。The lithium ion solid electrolyte should have the following characteristics: ① the lithium ion in the lithium ion carrier compound should be easily polarized, that is, the binding force is relatively small and easy to migrate; ② the lithium ion density of the lithium ion solid electrolyte should be as high as possible, that is, for lithium Lithium ions that contribute to ion conduction must exist in large quantities; ③The diffusion of lithium ions in the solid electrolyte is through the rapid diffusion of atomic vacancies, structural relaxation and structural defects in the amorphous or quasi-crystalline solid electrolyte matrix, and other ways to introduce A large number of atomic vacancies will promote the rapid diffusion of lithium ions through atomic vacancies, thus possessing high lithium ion conductivity. Lithium sulfide-based materials with high lithium-ion conductivity are suitable for use as solid electrolytes for all-solid-state lithium-ion batteries.
已有的研究表明,在硫化锂系固体电解质材料添加其它成分可以提高离子传导率,如公开号为CN101013761A的发明专利,公开了三类用于全固态锂离子电池的固体电解质材料体系,分别为:(A)Li2S+A/I,式中A/I为AlI3、ZnI2、ZrI4或LaI3,0.5≤x≤1.5;(B)yLi2S-mA/I-zB/S,式中y+z=9,y从5.0到7.0,m从0.5到3,B/S为SiS2、0.5P2S5,CeS2或0.5B2S3;A/I为AlI3、ZnI2、ZrI4或LaI3;(C)yLi2S-mA/I-zB/S-nLiI,式中y+z=9,y从5.0到7.0,m从0.5到3.0,n从0.5到3.0,A/I为AlI3、ZnI2、ZrI4或LaI3;B/S为SiS2、0.5P2S5,CeS2或0.5B2S3。这三类固体电解质材料的制备方法为:在完成配料后,置于石英玻璃管中真空封装,之后在500-750℃的高温下反应10-14小时后淬冷至室温后研磨成粉末。按该发明所述技术方案制得的固体电解质结构为非晶态,该发明虽然可以使阳离子迁移能力得到提高,但所得材料离子传导率的提高并不理想,以6Li2S-0.5AlI3-3SiS2-LiI体系为例(y=6,m=0.5,z=3,n=1),该体系在室温及较高温度下(≤200℃)主要表现为锂离子导体,其室温总电导率最高仅为3.80×10-6S/cm。又如,CN101013753A也公开了一种用于全固态锂电池的锂硫体系固体电解质材料,该材料按Li2S:A/S:P2S5=6:0.1-4.0:1.5的摩尔比复合而成,式中A/S为Ag、Zn、Al或Zr的硫化物;其制备工艺为配料后,置于石英玻璃管中真空封装,慢速升温至450℃保温24小时,再升温至500-750℃反应10-14小时后淬冷至室温后研磨成粉末。该发明所得固体电解质的离子传导率的提高也不理想,其室温总电导率同样在10-6S/cm。本申请人分析认为,上述发明专利所得固体电解质的离子传导率的提高不理想的原因主要为:(1)添加的物质(如碘化物或硫化物等)是稳定的六方晶体或斜方晶体,不能与周围物质发生反应,且无法在体系内导入更多的原子空位,无法为锂离子的扩散提供较多的扩散通道;(2)添加的物质含量过高,一方面降低了作为锂离子载体的硫化锂组分的含量,另一方面,高含量的、性质稳定的添加物不仅没有增加固体电解质中的锂离子扩散通道,反而阻碍了锂离子的扩散。因此,上述发明专利中添加的成分没有起到明显改善硫化物系固体电解质离子传导性能的作用。Existing studies have shown that adding other components to lithium sulfide-based solid electrolyte materials can improve ion conductivity. For example, the invention patent with the publication number CN101013761A discloses three types of solid electrolyte material systems for all-solid-state lithium-ion batteries, which are respectively : (A) Li 2 S+A/I, where A/I is AlI 3 , ZnI 2 , ZrI 4 or LaI 3 , 0.5≤x≤1.5; (B)yLi 2 S-mA/I-zB/S , where y+z=9, y from 5.0 to 7.0, m from 0.5 to 3, B/S is SiS 2 , 0.5P 2 S 5 , CeS 2 or 0.5B 2 S 3 ; A/I is AlI 3 , ZnI 2 , ZrI 4 or LaI 3 ; (C)yLi 2 S-mA/I-zB/S-nLiI, where y+z=9, y from 5.0 to 7.0, m from 0.5 to 3.0, n from 0.5 to 3.0, A/I is AlI 3 , ZnI 2 , ZrI 4 or LaI 3 ; B/S is SiS 2 , 0.5P 2 S 5 , CeS 2 or 0.5B 2 S 3 . The preparation method of these three types of solid electrolyte materials is as follows: After the batching is completed, they are placed in a quartz glass tube for vacuum packaging, and then reacted at a high temperature of 500-750° C. for 10-14 hours, then quenched to room temperature, and ground into powder. The structure of the solid electrolyte prepared according to the technical scheme of the invention is amorphous. Although the invention can improve the cation migration ability, the improvement of the ion conductivity of the obtained material is not ideal. 6Li 2 S-0.5AlI 3 - Take the 3SiS 2 -LiI system as an example (y=6, m=0.5, z=3, n=1), this system is mainly a lithium ion conductor at room temperature and higher temperature (≤200°C), and its total conductance at room temperature The highest rate is only 3.80×10 -6 S/cm. As another example, CN101013753A also discloses a lithium-sulfur system solid electrolyte material for all-solid-state lithium batteries, which is compounded according to the molar ratio of Li 2 S:A/S:P 2 S 5 =6:0.1-4.0:1.5 In the formula, A/S is the sulfide of Ag, Zn, Al or Zr; the preparation process is to place the ingredients in a quartz glass tube for vacuum packaging, slowly raise the temperature to 450°C for 24 hours, and then raise the temperature to 500°C React at -750°C for 10-14 hours, then quench to room temperature and grind into powder. The improvement of the ionic conductivity of the solid electrolyte obtained by the invention is also not satisfactory, and the total conductivity at room temperature is also 10 -6 S/cm. According to the analysis of the applicant, the reasons for the unsatisfactory improvement of the ion conductivity of the solid electrolyte obtained by the above-mentioned invention patent are mainly: (1) the added substance (such as iodide or sulfide, etc.) is a stable hexagonal crystal or orthorhombic crystal, It cannot react with surrounding substances, and cannot introduce more atomic vacancies into the system, and cannot provide more diffusion channels for the diffusion of lithium ions; (2) The content of added substances is too high, on the one hand, it reduces the capacity of lithium ion carriers. On the other hand, high content and stable additives not only do not increase the lithium ion diffusion channels in the solid electrolyte, but hinder the diffusion of lithium ions. Therefore, the ingredients added in the above invention patents did not significantly improve the ion conductivity of the sulfide-based solid electrolyte.
公开号为CN104752756A的发明专利,公开了一种具有高离子电导率的碘化银系固体电解质材料的制备方法,该材料是按摩尔比为Ag2S:P2S5:AgI=3:1:14的比例,在碘化银中混入少量的硫化磷和硫化银后经高能球磨制成的利用银离子传导的固体电解质。按该发明所述方法制得的固体电解质虽然具有较高的室温离子电导率(可达10-3S/cm),但是,该发明制得的固体电解质是银离子快导体,利用的是碘化银的离子传导特性,通过添加少量的硫化磷并结合非晶化工艺以便于Ag+的迁移,从而提高了材料的银离子电导率。尽管如此,本申请人认为,该发明是一种不含锂离子而依靠Ag+导电的固体电解质,并不是通过产生大量新的原子空位以增加锂离子的扩散通道进而达到提升硫化物系固体电解质锂离子传导率的效果;按该发明所述方法制得的银离子传导性固体电解质不适宜用作全固体锂电池正极和负极之间固体电解质,这是因为:在充放电时的电场作用下Ag+迁移没有伴随着电化学反应的发生因而不能成为电池,而另一方面,充放电时Ag+迁移到低电势的界面会形成阻碍锂离子通过的壁垒,并导致大量锂离子滞留于碘化银系固体电解质中,大量锂离子的消耗将使得电池的初次循环的库伦效率很低,难以维持充放电循环。The invention patent with the publication number CN104752756A discloses a method for preparing a silver iodide-based solid electrolyte material with high ionic conductivity. The material is Ag 2 S:P 2 S 5 :AgI=3:1:14 by molar ratio The proportion of silver iodide mixed with a small amount of phosphorus sulfide and silver sulfide after high-energy ball milling made of solid electrolyte using silver ion conduction. Although the solid electrolyte prepared by the method described in the invention has a higher room temperature ion conductivity (up to 10 -3 S/cm), the solid electrolyte prepared in the invention is a fast conductor of silver ions, and silver iodide is utilized. By adding a small amount of phosphorus sulfide and combining the amorphization process to facilitate the migration of Ag + , the silver ion conductivity of the material is improved. Nevertheless, the applicant believes that this invention is a solid electrolyte that does not contain lithium ions but relies on Ag + to conduct electricity. It does not increase the diffusion channels of lithium ions by generating a large number of new atomic vacancies to improve the sulfide-based solid electrolyte. The effect of lithium ion conductivity; The silver ion conductive solid electrolyte that makes by the described method of this invention is not suitable as solid electrolyte between positive pole and negative pole of all-solid lithium battery, and this is because: under the electric field action when charging and discharging Ag + migration is not accompanied by electrochemical reactions and thus cannot become a battery. On the other hand, Ag + migrates to the low-potential interface during charging and discharging, which will form a barrier to the passage of lithium ions and cause a large amount of lithium ions to stay in the silver iodide system. In the solid electrolyte, the consumption of a large amount of lithium ions will make the coulombic efficiency of the battery's initial cycle very low, making it difficult to maintain the charge-discharge cycle.
发明内容Contents of the invention
本发明要解决的技术问题是提供一种能够形成大量可用于锂离子扩散的原子空位,进而有效提升硫化锂系固体电解质离子传导性能的含碘化银的硫化锂系固体电解质材料及其制备方法。The technical problem to be solved by the present invention is to provide a silver iodide-containing lithium sulfide solid electrolyte material and a preparation method thereof that can form a large number of atomic vacancies that can be used for lithium ion diffusion, thereby effectively improving the ion conductivity of the lithium sulfide solid electrolyte.
本发明所述的含碘化银的硫化锂系固体电解质材料的制备方法,包括以下步骤:The preparation method of the lithium sulfide series solid electrolyte material containing silver iodide of the present invention comprises the following steps:
1)在气氛保护条件下,按质量百分比计,称取35-50%的硫化锂和余量的硫化磷,混合均匀,得到锂硫磷三元混合物;1) Under atmosphere protection conditions, weigh 35-50% of lithium sulfide and the remainder of phosphorus sulfide by mass percentage, and mix them uniformly to obtain a lithium-sulfur-phosphorus ternary mixture;
2)在气氛保护及安全红光条件下,取锂硫磷三元混合物及相当于其质量2-10%的碘化银,置于球磨罐中球磨,得到含碘化银的非晶态锂硫磷混合物;2) Under the conditions of atmosphere protection and safe red light, take the lithium-thion-phosphorus ternary mixture and silver iodide equivalent to 2-10% of its mass, and place them in a ball mill jar for ball milling to obtain an amorphous lithium-thion-phosphorus mixture containing silver iodide;
3)所得碘化银的非晶态锂硫磷混合物在气氛保护及红光条件下密封后,于真空或气氛保护条件下升温至120-200℃进行热处理,即得到含碘化银的硫化锂系固体电解质材料。3) The obtained silver iodide amorphous lithium sulfur phosphorus mixture is sealed under atmosphere protection and red light conditions, and then heated to 120-200° C. for heat treatment under vacuum or atmosphere protection conditions to obtain a lithium sulfide-based solid electrolyte material containing silver iodide .
本发明以硫化锂和硫化磷作为基体,添加特定比例的碘化银经高能球磨后,在形成非晶态的硫化物混合物的同时,达到第三种成分碘化银均匀分布于基体中的效果;之后再经热处理工艺促使碘化银粉末转变成在较高温度下安定存在的由碘离子构成“刚性骨架”的体心立方晶体碘化银,在碘离子稳定立方骨架的同时,部分银离子与周围硫化锂中的硫结合形成纳米级硫化银,所形成的纳米级硫化银可起到稳定固体电解质基体的作用;同时以碘为主的体心立方结构中形成大量适宜锂离子扩散的原子空位,从而起到有效提升硫化锂系固体电解质离子传导率的效果,在形成原子空位的同时还形成部分碘化锂;另一方面,反应所形成的纳米硫化银和碘化锂也具有提高离子传导特性的效果。In the present invention, lithium sulfide and phosphorus sulfide are used as a matrix, and silver iodide in a specific proportion is added through high-energy ball milling to achieve the effect that the third component, silver iodide, is uniformly distributed in the matrix while forming an amorphous sulfide mixture; The heat treatment process promotes the silver iodide powder to transform into a body-centered cubic silver iodide with a "rigid skeleton" composed of iodide ions that exists stably at a higher temperature. While the iodide ions stabilize the cubic skeleton, part of the silver ions is combined with the sulfur in the surrounding lithium sulfide. Forming nano-scale silver sulfide, the formed nano-scale silver sulfide can stabilize the solid electrolyte matrix; at the same time, a large number of atomic vacancies suitable for lithium ion diffusion are formed in the body-centered cubic structure dominated by iodine, thereby effectively improving the sulfidation. The effect of lithium-based solid electrolyte ion conductivity is to form part of lithium iodide while forming atomic vacancies; on the other hand, the nano-silver sulfide and lithium iodide formed by the reaction also have the effect of improving ion conductivity.
上述制备方法的步骤1)中,所述的气氛保护通常是在惰性气体的保护下,如氩气、氮气等常规使用的惰性气体。具体操作时,通常是在具有氩气保护的手套箱中进行。In step 1) of the above preparation method, the atmosphere protection is usually under the protection of an inert gas, such as conventionally used inert gases such as argon and nitrogen. The specific operation is usually carried out in a glove box with argon protection.
上述制备方法的步骤1)中,可以采用现有常规技术使硫化锂和硫化磷混合均匀,通常采用球磨的方式使它们混合均匀,球磨时可以采用干式球磨或介质球磨,球磨时使用二氧化锆研磨球,球料比优选为2:0.5-1(质量比)。当使用常规的滚动球磨时,使硫化锂和硫化磷混合均匀通常需要6-10h,当使用行星式高能球磨时,使硫化锂和硫化磷混合均匀通常需要25h。In the step 1) of the above-mentioned preparation method, the existing conventional technology can be used to make lithium sulfide and phosphorus sulfide uniformly mixed, usually by ball milling to make them uniformly mixed, dry ball milling or medium ball milling can be used during ball milling, and carbon dioxide is used during ball milling. For zirconium grinding balls, the ball-to-material ratio is preferably 2:0.5-1 (mass ratio). When using a conventional rolling ball mill, it usually takes 6-10 hours to mix lithium sulfide and phosphorus sulfide uniformly, and it usually takes 25 hours to mix lithium sulfide and phosphorus sulfide uniformly when using a planetary high-energy ball mill.
上述制备方法的步骤2)中,所述的气氛保护通常是在惰性气体的保护下,如氩气、氮气等常规使用的惰性气体。具体操作时,通常是在具有氩气保护的手套箱中进行。In step 2) of the above preparation method, the atmosphere protection is usually under the protection of an inert gas, such as conventionally used inert gases such as argon and nitrogen. The specific operation is usually carried out in a glove box with argon protection.
上述制备方法的步骤2)中,所述的碘化银优选为粒度小于200目的碘化银粉末。球磨时,使用二氧化锆研磨球,球料比优选为2:0.5-1(质量比),更优选为2:0.7(质量比)。本步骤中,得到含碘化银的非晶态锂硫磷混合物球磨的时间通常为30-48h,为了更快地形成含碘化银的非晶态锂硫磷混合物,优选是将碘化银与锂硫磷三元混合物搅拌均匀后再置于球磨罐中球磨,此时,球磨时间控制在30-40h即可实现锂硫磷混合物的完全非晶化以及碘化银与非晶态锂硫磷混合物充分混合。In step 2) of the above preparation method, the silver iodide is preferably silver iodide powder with a particle size of less than 200 mesh. For ball milling, zirconia grinding balls are used, and the ball-to-material ratio is preferably 2:0.5-1 (mass ratio), more preferably 2:0.7 (mass ratio). In this step, the time for ball milling to obtain the amorphous lithium-thion-phosphorus mixture containing silver iodide is usually 30-48h. The mixture is stirred evenly and then placed in a ball milling tank for ball milling. At this time, the ball milling time is controlled at 30-40 hours to realize the complete amorphization of the lithium-thion phosphorus mixture and the full mixing of the silver iodide and the amorphous lithium-thion phosphorus mixture.
上述制备方法的步骤3)中,所述的气氛保护通常是在惰性气体的保护下,如氩气、氮气等常规使用的惰性气体。具体的密封操作,通常是在具有氩气保护的手套箱中进行。In step 3) of the above preparation method, the atmosphere protection is usually under the protection of an inert gas, such as conventionally used inert gases such as argon and nitrogen. The specific sealing operation is usually carried out in a glove box with argon protection.
上述制备方法的步骤3)中,进行热处理操作以促进碘化银转变成在较高温度下安定存在的由碘离子构成“刚性骨架”的体心立方晶体碘化银,与此同时部分银离子与周围硫化锂中的硫结合形成纳米级硫化银(原位析出),促使以碘为主的体心立方结构中形成大量可用作于锂离子的扩散通道的原子空位,同时形成部分碘化锂(原位析出),从而制备出有纳米硫化银颗粒形成的锂硫磷碘多元混合物固体电解质粉末。本步骤中,热处理的时间通常为大于或等于1h,优选为1-5h;热处理的温度进一步优选为150-180℃,在此温度条件下,热处理的时间优选为1-3h。In step 3) of the above-mentioned preparation method, a heat treatment operation is carried out to promote the transformation of silver iodide into body-centered cubic silver iodide with a "rigid skeleton" formed by iodide ions which is stable at a higher temperature, and at the same time part of the silver ions and the surrounding lithium sulfide The sulfur in the solution combines to form nano-scale silver sulfide (in situ precipitation), which promotes the formation of a large number of atomic vacancies in the body-centered cubic structure dominated by iodine, which can be used as diffusion channels for lithium ions, and at the same time forms part of lithium iodide (in situ Precipitation), so as to prepare lithium sulfur phosphorus iodine multi-component solid electrolyte powder formed by nano-silver sulfide particles. In this step, the heat treatment time is generally greater than or equal to 1 h, preferably 1-5 h; the heat treatment temperature is more preferably 150-180° C., and under this temperature condition, the heat treatment time is preferably 1-3 h.
本发明还包括上述方法制备得到的含碘化银的硫化锂系固体电解质材料。The present invention also includes the silver iodide-containing lithium sulfide solid electrolyte material prepared by the above method.
与现有技术相比,本发明的特点在于:Compared with prior art, the present invention is characterized in that:
1、本发明以硫化锂和硫化磷作为基体,添加特定比例的碘化银经高能球磨后,在形成非晶态的硫化物混合物的同时,达到第三种成分碘化银均匀分布于基体中的效果;之后再经热处理工艺促使碘化银粉末转变成在较高温度下安定存在的由碘离子构成“刚性骨架”的体心立方晶体碘化银,在碘离子稳定立方结构的同时,其中的部分银离子与周围硫化锂中的硫结合形成纳米级硫化银;同时以碘为主的体心立方结构中形成大量新的适宜锂离子扩散的原子空位,从而起到有效提升硫化锂系固体电解质离子传导率的效果,在形成原子空位的同时还形成部分碘化锂。1. In the present invention, lithium sulfide and phosphorus sulfide are used as the matrix, and silver iodide in a specific proportion is added through high-energy ball milling to achieve the effect that the third component, silver iodide, is evenly distributed in the matrix while forming an amorphous sulfide mixture; After the heat treatment process, the silver iodide powder is transformed into a body-centered cubic crystal silver iodide composed of iodide ions with a "rigid skeleton" that exists at a higher temperature. While the iodide ions stabilize the cubic structure, part of the silver ions and the surrounding lithium sulfide At the same time, a large number of new atomic vacancies suitable for the diffusion of lithium ions are formed in the body-centered cubic structure dominated by iodine, thereby effectively improving the ion conductivity of lithium sulfide-based solid electrolytes. Partial lithium iodide is also formed along with the formation of atomic vacancies.
2、本发明所述方法中热处理时原位析出反应的产物纳米硫化银和碘化锂,都具有离子传导性,可以起到进一步提高硫化锂系固体电解质锂离子传导性的效果;所形成的纳米硫化银颗粒,可获得弥散强化效果,而弥散分布于锂硫磷三元混合物中的纳米硫化银颗粒,可以稳定该硫化锂系固体电解质的微观组织,抑制充放电过程中的锂硫磷碘多元混合物固体电解质粉末的组织变化。2, the product nano-silver sulfide and lithium iodide of in-situ precipitation reaction during heat treatment in the method for the present invention, all have ion conductivity, can play the effect of further improving lithium ion conductivity of lithium sulfide series solid electrolyte; The formed Nano-silver sulfide particles can obtain a dispersion strengthening effect, and nano-silver sulfide particles dispersed in the lithium-sulfur-phosphorus ternary mixture can stabilize the microstructure of the lithium-sulfur-based solid electrolyte and inhibit the formation of lithium-sulfur-phosphorus-iodide during charge and discharge. Microstructural changes of multicomponent mixture solid electrolyte powders.
3、本发明所述方法中采用了三段工序组合方法,其中硫化锂和硫化磷作预备混合工序可以保证固体电解质的主成分硫化锂均匀混合于硫化磷中形成锂硫磷三元混合物;而添加第三种成分碘化银后进行第二次高能球磨混合,可在保证添加成分碘化银均匀分布的同时,实现锂硫磷三元混合物非晶化以保证硫化锂系固体电解质的高锂离子传导特性。3. In the method of the present invention, a three-stage process combination method is adopted, wherein lithium sulfide and phosphorus sulfide are used as a preliminary mixing process to ensure that the main component lithium sulfide of the solid electrolyte is evenly mixed in phosphorus sulfide to form a lithium-sulfur-phosphorus ternary mixture; and After adding the third component silver iodide, the second high-energy ball milling mixing can ensure the uniform distribution of the added component silver iodide and at the same time realize the amorphization of the lithium sulfur phosphorus ternary mixture to ensure the high lithium ion conductivity of the lithium sulfide solid electrolyte.
具体实施方式detailed description
下面结合具体实施例对本发明作进一步的详述,以更好地理解本发明的内容,但本发明并不限于以下实施例。The present invention will be described in further detail below in conjunction with specific examples to better understand the content of the present invention, but the present invention is not limited to the following examples.
以下各实施例中用到的试剂如硫化锂(Li2S)和硫化磷(P2S5)等,均为化学纯试剂,纯度为99.9%。The reagents used in the following examples, such as lithium sulfide (Li 2 S) and phosphorus sulfide (P 2 S 5 ), are chemically pure reagents with a purity of 99.9%.
实施例1Example 1
1)硫化物预备混合工序:1) Sulfide preparation mixing process:
按质量百分比计,称取40%的硫化锂和60%的硫化磷在低水分(≤1ppm)、低氧含量(≤1ppm)的具有氩气气氛保护的手套箱中配料混合,与二氧化锆球配合后封入球磨罐,罐内的二氧化锆球与混合料的球料质量比为2:0.7;密封后的球磨罐装在行星式高能球磨机中采用干式球磨预混合球磨,球磨时间为5小时,得到锂硫磷三元混合物(简称LiPS混合物);By mass percent, take by weighing 40% lithium sulfide and 60% phosphorus sulfide in the glove box with argon atmosphere protection of low moisture (≤1ppm), low oxygen content (≤1ppm), and mix with zirconium dioxide After the balls are matched, they are sealed into a ball mill jar, and the mass ratio of the zirconia balls in the jar to the mixture is 2:0.7; the sealed ball mill jars are packed in a planetary high-energy ball mill and pre-mixed by a dry ball mill, and the milling time is After 5 hours, a ternary mixture of lithium sulfur and phosphorus (LiPS mixture for short) was obtained;
2)二次高能球磨工序:2) Second high energy ball milling process:
在有安全灯光(如红光)的低水分(≤1ppm)、低氧含量(≤1ppm)的的具有氩气气氛保护的手套箱中,将相当于上述LiPS混合物质量2.5%的碘化银粉末(粒度为300目)与LiPS混合物手工搅拌混合,所得混合物料再按2:0.7的球料质量比,配合直径3-10mm的二氧化锆球后封入球磨罐,密封,并将密封后的球磨罐装入行星式高能球磨球磨机中进行高能干式球磨,球磨时间为36小时,得到含碘化银的非晶态锂硫磷混合物;In a glove box protected by an argon atmosphere with low moisture (≤1ppm) and low oxygen content (≤1ppm) with safe lights (such as red light), silver iodide powder (particle size) equivalent to 2.5% of the above LiPS mixture mass 300 mesh) mixed with LiPS mixture by hand, and the resulting mixed material is mixed with zirconia balls with a diameter of 3-10mm at a mass ratio of 2:0.7, and then sealed into a ball mill jar, sealed, and packed in the sealed ball mill jar Carry out high-energy dry ball milling in the planetary high-energy ball mill ball mill, the ball milling time is 36 hours, obtains the amorphous lithium sulfur phosphorus mixture containing silver iodide;
3)原位析出反应工序:3) In-situ precipitation reaction process:
将所得的含碘化银的非晶态锂硫磷混合物,在有安全灯光(如红光)的低水分(≤1ppm)、低氧含量(≤1ppm)的具有氩气气氛保护的手套箱中,密封,之后于真空条件下加热到150℃热处理2小时,即得到含碘化银的硫化锂系固体电解质材料。在热处理过程中,碘化银转变成在较高温度下安定存在的由碘离子构成“刚性骨架”的体心立方晶体碘化银,其结构中的部分银离子与周围硫化锂中的硫结合形成纳米级硫化银,同时在以碘为主的体心立方结构中形成大量可用于锂离子扩散通道的原子空位;另一方面,还形成具有离子传导性的反应产物硫化银和碘化锂,从而使所得固体电解质材料的离子传导特性得到进一步提高。The resulting silver iodide-containing amorphous lithium-sulfur phosphorus mixture is sealed in a glove box protected by an argon atmosphere with low moisture (≤1ppm) and low oxygen content (≤1ppm) with safe lights (such as red light) , and then heated to 150° C. for 2 hours under vacuum conditions to obtain a lithium sulfide-based solid electrolyte material containing silver iodide. During heat treatment, silver iodide transforms into a body-centered cubic crystal silver iodide that is stable at higher temperatures and consists of iodide ions with a "rigid skeleton". Part of the silver ions in its structure combine with sulfur in the surrounding lithium sulfide to form nano-scale sulfide Silver, while forming a large number of atomic vacancies in the body-centered cubic structure dominated by iodine, which can be used for lithium ion diffusion channels; The ion-conducting properties of the electrolyte material are further improved.
将本实施例制得的固体电解质粉末压制成标准样片后,利用CHI660电化学工作站,采用交流阻抗法,在室温25℃下,测得本实施例的样片的离子传导率为4.5×10-4S/cm。After the solid electrolyte powder prepared in this example was pressed into a standard sample, the ion conductivity of the sample in this example was measured to be 4.5×10 -4 at a room temperature of 25°C by using a CHI660 electrochemical workstation and using AC impedance method S/cm.
比较例comparative example
按质量百分比计,称取40%的硫化锂和60%的硫化磷在低水分(≤1ppm)、低氧含量(≤1ppm)的具有氩气气氛保护的手套箱中配料混合,与二氧化锆球配合后封入球磨罐,罐内的二氧化锆球与混合料的球料质量比为2:0.7;密封后的球磨罐装在行星式高能球磨机中采用干式球磨预混合球磨,球磨时间为36小时,得到锂硫磷三元混合物固体电解质粉末。By mass percent, take by weighing 40% lithium sulfide and 60% phosphorus sulfide in the glove box with argon atmosphere protection of low moisture (≤1ppm), low oxygen content (≤1ppm), and mix with zirconium dioxide After the balls are matched, they are sealed into a ball mill jar, and the mass ratio of the zirconia balls in the jar to the mixture is 2:0.7; the sealed ball mill jars are packed in a planetary high-energy ball mill and pre-mixed by a dry ball mill, and the milling time is After 36 hours, the lithium sulfur phosphorus ternary mixture solid electrolyte powder was obtained.
将本比较例制得的固体电解质粉末压制成标准样片后,利用CHI660电化学工作站,采用交流阻抗法,在室温25℃下,测得本比较例的样片的离子传导率为8.6×10-6S/cm。After the solid electrolyte powder prepared in this comparative example was pressed into a standard sample, the ionic conductivity of the sample of this comparative example was measured to be 8.6×10 -6 at a room temperature of 25° C. S/cm.
实施例2Example 2
重复实施例1,不同的是:Repeat Example 1, the difference is:
步骤1)中,硫化锂和硫化磷的质量百分比分别为50%和50%,球磨的时间为10小时。In step 1), the mass percentages of lithium sulfide and phosphorus sulfide are 50% and 50% respectively, and the ball milling time is 10 hours.
将本实施例制得的固体电解质粉末压制成标准样片后,利用CHI660电化学工作站,采用交流阻抗法,在室温25℃下,测得本实施例的样片的离子传导率为8.1×10-4S/cm。After the solid electrolyte powder prepared in this example was pressed into a standard sample, the ion conductivity of the sample in this example was measured to be 8.1×10 -4 at a room temperature of 25°C by using a CHI660 electrochemical workstation and using AC impedance method S/cm.
实施例3Example 3
重复实施例1,不同的是:Repeat Example 1, the difference is:
步骤1)中,硫化锂和硫化磷的质量百分比分别为50%和50%,球磨的时间为2小时;In step 1), the mass percentages of lithium sulfide and phosphorus sulfide are respectively 50% and 50%, and the time of ball milling is 2 hours;
步骤2)中,碘化银粉末的粒度为400目,碘化银粉末的加入量相当于LiPS混合物质量的5%;In step 2), the particle size of the silver iodide powder is 400 mesh, and the addition amount of the silver iodide powder is equivalent to 5% of the mass of the LiPS mixture;
将本实施例制得的固体电解质粉末压制成标准样片后,利用CHI660电化学工作站,采用交流阻抗法,在室温25℃下,测得本实施例的样片的离子传导率为8.7×10-4S/cm。After the solid electrolyte powder prepared in this example was pressed into a standard sample, the ion conductivity of the sample in this example was measured to be 8.7×10 -4 at a room temperature of 25°C by using a CHI660 electrochemical workstation and using AC impedance method S/cm.
实施例4Example 4
重复实施例1,不同的是:Repeat Example 1, the difference is:
步骤1)中,硫化锂和硫化磷的质量百分比分别为50%和50%,球磨的时间为4小时;In step 1), the mass percentages of lithium sulfide and phosphorus sulfide are respectively 50% and 50%, and the time of ball milling is 4 hours;
步骤2)中,碘化银粉末的粒度为220-260目,碘化银粉末的加入量相当于LiPS混合物质量的10%,球磨的时间为40小时;In step 2), the particle size of the silver iodide powder is 220-260 mesh, the amount of the silver iodide powder added is equivalent to 10% of the mass of the LiPS mixture, and the ball milling time is 40 hours;
步骤3)中,热处理在氩气气氛中进行,热处理的温度为200℃,热处理的时间为1小时。In step 3), the heat treatment is carried out in an argon atmosphere, the temperature of the heat treatment is 200° C., and the time of the heat treatment is 1 hour.
将本实施例制得的固体电解质粉末压制成标准样片后,利用CHI660电化学工作站,采用交流阻抗法,在室温25℃下,测得本实施例的样片的离子传导率为7.2×10-4S/cm。After the solid electrolyte powder prepared in this example was pressed into a standard sample, the ion conductivity of the sample in this example was measured to be 7.2×10 -4 at a room temperature of 25°C by using a CHI660 electrochemical workstation and using AC impedance method S/cm.
实施例5Example 5
重复实施例1,不同的是:Repeat Example 1, the difference is:
步骤1)中,硫化锂和硫化磷的质量百分比分别为35%和65%,球磨的时间为6小时;In step 1), the mass percentages of lithium sulfide and phosphorus sulfide are respectively 35% and 65%, and the time of ball milling is 6 hours;
步骤2)中,碘化银粉末的粒度为100-200目,碘化银粉末的加入量相当于LiPS混合物质量的2%,球磨的时间为30小时;In step 2), the particle size of the silver iodide powder is 100-200 mesh, the amount of the silver iodide powder added is equivalent to 2% of the mass of the LiPS mixture, and the ball milling time is 30 hours;
步骤3)中,热处理在氩气气氛中进行,热处理的温度为120℃,热处理的时间为5小时。In step 3), the heat treatment is carried out in an argon atmosphere, the heat treatment temperature is 120° C., and the heat treatment time is 5 hours.
将本实施例制得的固体电解质粉末压制成标准样片后,利用CHI660电化学工作站,采用交流阻抗法,在室温25℃下,测得本实施例的样片的离子传导率为2.7×10-4S/cm。After the solid electrolyte powder prepared in this example was pressed into a standard sample, the ion conductivity of the sample in this example was measured to be 2.7×10 -4 at a room temperature of 25°C by using a CHI660 electrochemical workstation and using an AC impedance method S/cm.
Claims (7)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201710077206.8A CN106785002A (en) | 2017-02-13 | 2017-02-13 | A kind of lithium sulfide system solid electrolyte material containing silver iodide and preparation method thereof |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201710077206.8A CN106785002A (en) | 2017-02-13 | 2017-02-13 | A kind of lithium sulfide system solid electrolyte material containing silver iodide and preparation method thereof |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN106785002A true CN106785002A (en) | 2017-05-31 |
Family
ID=58956054
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201710077206.8A Pending CN106785002A (en) | 2017-02-13 | 2017-02-13 | A kind of lithium sulfide system solid electrolyte material containing silver iodide and preparation method thereof |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN106785002A (en) |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101136496A (en) * | 2006-08-31 | 2008-03-05 | 精工爱普生株式会社 | Secondary battery and method for manufacturing the same |
| CN102334225A (en) * | 2009-02-27 | 2012-01-25 | 丰田自动车株式会社 | Sulfide solid electrolyte material |
| CN104393338A (en) * | 2014-11-21 | 2015-03-04 | 东南大学 | LiBH4-silver/silver halide compound fast-ion conductor and preparation method thereof |
| CN104752756A (en) * | 2015-04-23 | 2015-07-01 | 武汉理工大学 | A kind of preparation method of solid electrolyte material with high ion conductivity |
-
2017
- 2017-02-13 CN CN201710077206.8A patent/CN106785002A/en active Pending
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101136496A (en) * | 2006-08-31 | 2008-03-05 | 精工爱普生株式会社 | Secondary battery and method for manufacturing the same |
| CN102334225A (en) * | 2009-02-27 | 2012-01-25 | 丰田自动车株式会社 | Sulfide solid electrolyte material |
| CN104393338A (en) * | 2014-11-21 | 2015-03-04 | 东南大学 | LiBH4-silver/silver halide compound fast-ion conductor and preparation method thereof |
| CN104752756A (en) * | 2015-04-23 | 2015-07-01 | 武汉理工大学 | A kind of preparation method of solid electrolyte material with high ion conductivity |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN113471521B (en) | Inorganic sulfide solid electrolyte and preparation method thereof | |
| Sakuda et al. | All-solid-state lithium secondary batteries with oxide-coated LiCoO2 electrode and Li2S–P2S5 electrolyte | |
| CN113363569B (en) | High-stability inorganic sulfide solid electrolyte and preparation method thereof | |
| CN101572305B (en) | A preparation method of LiFePO4/C cathode material with high rate performance | |
| CN106099098B (en) | A high-voltage cathode material for lithium ion battery LiδCo1-xMgxO2@AlF3 and preparation method thereof | |
| CN102544580A (en) | Fully solid-state lithium secondary battery electrolyte material, preparation method thereof and fully solid-state lithium secondary battery | |
| CN113506911B (en) | Sulfide solid electrolyte material, preparation method and application thereof, and all-solid-state lithium battery | |
| CN103887510B (en) | A kind of preparation method of carbon coated ferrous silicate lithium composite positive pole | |
| CN106785016B (en) | A kind of lithium sulfide system solid electrolyte material for adding Li-Si alloy powder and preparation method thereof | |
| CN106611872A (en) | Lithium sulfide solid electrolyte material of silver-containing halogen compound composite powder and preparation method thereof | |
| CN104425799B (en) | A kind of iron borate lithium block type electrode and preparation method thereof | |
| CN106785003A (en) | A kind of lithium sulfide system solid electrolyte material for adding Li-Si alloy and silver iodide and preparation method thereof | |
| CN114914527B (en) | A bismuth-doped lithium germanium phosphorus-sulfur solid electrolyte material and preparation method thereof | |
| CN106684461A (en) | Lithium sulfide solid electrolyte material containing silver iodide and silver bromide and preparation method of lithium sulfide solid electrolyte material | |
| CN116613372A (en) | A kind of sulfide solid electrolyte mixed with each other and preparation method thereof | |
| CN115954536A (en) | Method for doping and coating synergistic modification of sulfide electrolyte and application | |
| CN106785001B (en) | A kind of lithium sulfide system solid electrolyte material of chloride containing silver and preparation method thereof | |
| CN106785000A (en) | A kind of lithium sulfide system solid electrolyte material for adding lithium-tin alloy, silver iodide and silver bromide and preparation method thereof | |
| CN108511722A (en) | A kind of cladding sulfur doping graphene ternary material and its preparation method and application | |
| CN106684442A (en) | Lithium sulfide solid electrolyte material with added lithium tin alloy and silver iodide and preparation method of lithium sulfide solid electrolyte material | |
| CN106785017A (en) | A kind of lithium sulfide system solid electrolyte material for adding lithium-tin alloy, silver iodide and silver chlorate and preparation method thereof | |
| CN106785002A (en) | A kind of lithium sulfide system solid electrolyte material containing silver iodide and preparation method thereof | |
| CN115224354A (en) | A kind of lanthanum-doped lithium-germanium-phosphorus-sulfur solid-state electrolyte and its preparation method and application | |
| CN106785006B (en) | A kind of lithium sulfide system solid electrolyte material for adding Li-Si alloy and silver chlorate and preparation method thereof | |
| CN106785018B (en) | A kind of lithium sulfide system solid electrolyte material for adding lithium-tin alloy, silver bromide and silver chlorate and preparation method thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication | ||
| RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170531 |