CN106797215B - Synchronous rectification control unit and method - Google Patents
Synchronous rectification control unit and method Download PDFInfo
- Publication number
- CN106797215B CN106797215B CN201480079770.8A CN201480079770A CN106797215B CN 106797215 B CN106797215 B CN 106797215B CN 201480079770 A CN201480079770 A CN 201480079770A CN 106797215 B CN106797215 B CN 106797215B
- Authority
- CN
- China
- Prior art keywords
- pwm control
- control signal
- voltage
- value
- synchronous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/13—Modifications for switching at zero crossing
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/22—Conversion of DC power input into DC power output with intermediate conversion into AC
- H02M3/24—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters
- H02M3/28—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC
- H02M3/325—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33569—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
- H02M3/33576—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
- H02M3/33584—Bidirectional converters
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K5/00—Manipulating of pulses not covered by one of the other main groups of this subclass
- H03K5/153—Arrangements in which a pulse is delivered at the instant when a predetermined characteristic of an input signal is present or at a fixed time interval after this instant
- H03K5/1534—Transition or edge detectors
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K5/00—Manipulating of pulses not covered by one of the other main groups of this subclass
- H03K5/153—Arrangements in which a pulse is delivered at the instant when a predetermined characteristic of an input signal is present or at a fixed time interval after this instant
- H03K5/1536—Zero-crossing detectors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0009—Devices or circuits for detecting current in a converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0048—Circuits or arrangements for reducing losses
- H02M1/0054—Transistor switching losses
- H02M1/0058—Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0064—Magnetic structures combining different functions, e.g. storage, filtering or transformation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/38—Means for preventing simultaneous conduction of switches
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/30—Modifications for providing a predetermined threshold before switching
- H03K2017/307—Modifications for providing a predetermined threshold before switching circuits simulating a diode, e.g. threshold zero
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Rectifiers (AREA)
Abstract
Description
技术领域technical field
本文描述的实施方式大体上涉及一种同步整流控制单元和一种同步整流控制方法。本文尤其描述了一种生成有用于控制开关电源开关的第一和第二同步脉冲宽度调制(pulse width modulation,PWM)控制信号的机制。Embodiments described herein generally relate to a synchronous rectification control unit and a synchronous rectification control method. In particular, described herein is a mechanism for generating first and second synchronized pulse width modulation (PWM) control signals for controlling switching power switches.
背景技术Background technique
电源开关,例如使用金属氧化物半导体场效应管(Metal Oxide SemiconductorField Effect Transistor,MOSFET)或其它合适类型的晶体管实现的开关,如今用于大量电路中。例如,这类电源开关用作功率转换器,它们可以作为半桥功率转换器或全桥功率转换器来实现。例如,全桥功率转换器电路可包括同步侧和非同步侧。在这样的电路中,非同步侧是输入原始/非转换信号/功率的一侧,而同步侧是输出被控/转换后信号/功率的一侧。这还可以表示为,将同步整流侧限定为电路的一侧,同步整流电源开关位于这一侧。相应地,将非同步整流侧限定为电路的另一侧,主电源开关位于这一侧。Power switches, such as those implemented using Metal Oxide Semiconductor Field Effect Transistors (MOSFETs) or other suitable types of transistors, are used in a large number of circuits today. For example, such power switches are used as power converters, and they can be implemented as half-bridge power converters or full-bridge power converters. For example, a full-bridge power converter circuit may include a synchronous side and an asynchronous side. In such a circuit, the non-synchronized side is the side that inputs the original/unconverted signal/power, and the synchronous side is the side that outputs the controlled/transformed signal/power. This can also be expressed as defining the synchronous rectification side as the side of the circuit where the synchronous rectification power switch is located. Accordingly, the asynchronous rectification side is defined as the other side of the circuit where the main power switch is located.
因此,对于双向电路,电路的非同步侧可对应于电路的不同物理侧,这取决于信号/功率应向哪个方向操控/转换,因为原始信号/功率被输入到非同步侧。相应地,电路的同步侧可对应于电路的不同物理侧,这取决于信号/功率应向哪个方向操控/转换,因为被控/转换后信号/功率从同步侧输出。Thus, for a bidirectional circuit, the asynchronous side of the circuit may correspond to a different physical side of the circuit, depending on which direction the signal/power should be steered/translated, since the original signal/power is input to the asynchronous side. Correspondingly, the synchronous side of the circuit may correspond to different physical sides of the circuit, depending on which direction the signal/power should be steered/converted, since the steered/converted signal/power is output from the synchronous side.
含有这些电源开关的电路,例如功率变换电路等,可以在诸如用户设备(UserEquipment,UE)之类的各种各样的单元中使用,UE还被称为能够在无线通信网络中以无线方式通信的移动台、无线终端和/或移动终端,无线通信网络有时还称为蜂窝无线电系统。这类电路还可在无线电网络节点或诸如无线基站(Radio Base Station,RBS)之类的基站中使用,基站在一些网络中可称为“eNB”、“eNodeB”、“NodeB”或“B node”,这取决于所用的技术和/或术语。Circuits containing these power switches, such as power conversion circuits, etc., can be used in a variety of units such as User Equipment (UE), which is also known to be capable of communicating wirelessly in a wireless communication network A wireless communication network is also sometimes referred to as a cellular radio system for mobile stations, wireless terminals and/or mobile terminals. Such circuits may also be used in radio network nodes or base stations such as Radio Base Stations (RBSs), which in some networks may be referred to as "eNB", "eNodeB", "NodeB" or "B node" ”, depending on the technology and/or terminology used.
开关这类电路中的功率转换器的目的是尽可能地节能。MOSFET和用于实现电源开关的其它晶体管的电阻在开关闭合/导通时一般比在开关打开/不导通时要低。作为非限制性示例,可以提及的是,当开关打开时,MOSFET开关具有对应于MOSFET的体二极管电压的通过开关的电压降,其可以为0.7伏特。当MOSFET开关关闭时,根据非限制性示例,通过开关的电压降要低很多,例如0.01伏特。因此,为了实现尽可能高的电源效率,应该有尽可能多的功率流过闭合开关,这会产生较低的电压降。The purpose of switching power converters in such circuits is to save as much energy as possible. The resistance of MOSFETs and other transistors used to implement power switches is generally lower when the switch is closed/conducting than when the switch is open/non-conducting. As a non-limiting example, it may be mentioned that when the switch is open, the MOSFET switch has a voltage drop across the switch corresponding to the body diode voltage of the MOSFET, which may be 0.7 volts. When the MOSFET switch is off, according to a non-limiting example, the voltage drop across the switch is much lower, such as 0.01 volts. Therefore, to achieve the highest possible power efficiency, as much power as possible should flow through the closed switch, which results in a lower voltage drop.
已经提出了传统同步整流用于通过控制电路中包含的电源开关的开关来提高电路的电源效率。如今,已近提出了许多传统的同步整流控制方案。一种这样的方案利用电流互感器,其置于电路的同步整流侧。测量电流互感器上的电压降。基于测量出的电压降信号,控制电路产生适当的脉冲来接通和关闭电路的同步整流侧上的电源开关。Conventional synchronous rectification has been proposed for improving the power efficiency of a circuit by controlling the switching of power switches contained in the circuit. Today, many conventional synchronous rectification control schemes have been proposed recently. One such solution utilizes current transformers, which are placed on the synchronous rectification side of the circuit. Measure the voltage drop across the current transformer. Based on the measured voltage drop signal, the control circuit generates appropriate pulses to turn on and off the power switch on the synchronous rectification side of the circuit.
然而,传统方案一般效率较低,因为在开关打开时相当大一部分功率流过电源开关的体二极管。此外,传统方案的实施复杂度较高,这增加了电路的生产成本。However, conventional solutions are generally less efficient because a significant portion of the power flows through the body diode of the power switch when the switch is turned on. In addition, the implementation complexity of the conventional solution is high, which increases the production cost of the circuit.
发明内容SUMMARY OF THE INVENTION
因此,本发明的目标是解决上面所述的至少一些缺点、提高电源效率以及降低包括同步侧和非同步侧的电路的实施复杂度。Accordingly, it is an object of the present invention to address at least some of the disadvantages described above, to improve power supply efficiency, and to reduce the complexity of implementation of a circuit including a synchronous side and an asynchronous side.
根据第一方面,所述目标通过一种同步整流控制单元来实现,所述同步整流控制单元包括:According to a first aspect, the object is achieved by a synchronous rectification control unit, the synchronous rectification control unit comprising:
电压脉冲生成单元,用于Voltage pulse generation unit for
测量包括电源开关的电路中的电流I;measure the current I in a circuit including a power switch;
如果所述电流I的正向变化率接近所述电流I的值0,则输出第一电压V1的逻辑高值;以及If the positive rate of change of the current I is close to the value 0 of the current I, outputting a logic high value of the first voltage V1; and
如果所述电流I的负向变化率接近所述电流I的值0,则输出第二电压V2的逻辑高值;If the negative change rate of the current I is close to the value 0 of the current I, a logic high value of the second voltage V2 is output;
控制算法电路,用于:基于第一和第二非同步脉冲宽度调制(pulse widthmodulation,PWM)控制信号Q1和Q2,以及基于所述第一电压V1和所述第二电压V2,生成第一和第二同步PWM控制信号SQ1和SQ2,所述第一和第二同步PWM控制信号SQ1和SQ2可用于控制所述电源开关的开关。a control algorithm circuit for: generating first and second voltages based on first and second asynchronous pulse width modulation (PWM) control signals Q1 and Q2, and based on said first voltage V1 and said second voltage V2 Second synchronous PWM control signals SQ1 and SQ2, the first and second synchronous PWM control signals SQ1 and SQ2 may be used to control the switching of the power switch.
所述同步整流控制单元能够提供高电源效率和低功耗损失。所述同步整流控制单元可以基于连续或非连续AC电流波形,或者基于整流后的连续或非连续AC电流波形,生成所述第一和第二同步PWM控制信号SQ1和SQ2,这使得电流测量更灵活。所述同步整流控制单元可以在电路复杂度增加很小的情况下实现。The synchronous rectification control unit can provide high power efficiency and low power loss. The synchronous rectification control unit may generate the first and second synchronous PWM control signals SQ1 and SQ2 based on a continuous or discontinuous AC current waveform, or based on a rectified continuous or discontinuous AC current waveform, which makes the current measurement more efficient. flexible. The synchronous rectification control unit can be implemented with little increase in circuit complexity.
所述同步整流控制单元还提供固有的电流击穿保护、快速瞬态响应和低功耗。此外,所述同步整流控制单元使对PWM资源的需求减到最少。The synchronous rectification control unit also provides inherent current breakdown protection, fast transient response and low power consumption. Furthermore, the synchronous rectification control unit minimizes the need for PWM resources.
根据所述第一方面,在所述同步整流控制单元的第一可能实施形式中,所述电流I是整流后交流电IAC_rect,以及所述控制算法电路用于:如果所述第一电压V1具有逻辑高值且所述第一非同步PWM控制信号Q1具有逻辑高值,则生成所述第一同步PWM控制信号SQ1的逻辑高值。According to the first aspect, in a first possible implementation form of the synchronous rectification control unit, the current I is the rectified alternating current I AC_rect , and the control algorithm circuit is configured to: if the first voltage V1 has A logic high value and the first asynchronous PWM control signal Q1 has a logic high value, a logic high value of the first synchronous PWM control signal SQ1 is generated.
第一电压V1的逻辑高值指示同步整流侧电源开关的体二极管开始导通。所以,第一电压V1的逻辑高值是接通同步整流侧电源开关以避免二极管导通并提高效率的指示符。另外,将第一非同步PWM控制信号Q1考虑进去以保证选择的是第一同步PWM控制信号SQ1(而不是第二同步PWM控制信号SQ2)。The logic high value of the first voltage V1 indicates that the body diode of the synchronous rectification side power switch starts to conduct. Therefore, a logic high value of the first voltage V1 is an indicator to turn on the synchronous rectification side power switch to avoid diode conduction and improve efficiency. Additionally, the first asynchronous PWM control signal Q1 is taken into account to ensure that the first synchronous PWM control signal SQ1 (and not the second synchronous PWM control signal SQ2) is selected.
根据如上所述第一方面或根据所述第一方面的任一前述实施形式,在所述同步整流控制单元的第二可能实施形式中,所述电流I是整流后交流电IAC_rect,以及所述控制算法电路用于:如果所述第一电压V1和所述第一非同步PWM控制信号Q1中的至少一个具有逻辑低值,以及如果所述第二电压V2具有逻辑高值或者如果所述第二非同步PWM控制信号Q2具有逻辑高值,则生成所述第一同步PWM控制信号SQ1的逻辑低值。According to the first aspect as described above or according to any preceding implementation form of the first aspect, in a second possible implementation form of the synchronous rectification control unit, the current I is the rectified alternating current I AC_rect , and the A control algorithm circuit for: if at least one of the first voltage V1 and the first asynchronous PWM control signal Q1 has a logic low value, and if the second voltage V2 has a logic high value or if the first The two asynchronous PWM control signals Q2 have a logic high value, and then generate a logic low value of the first synchronous PWM control signal SQ1.
第二电压V2的逻辑高值指示同步整流侧电源开关的体二极管停止导通。所以,第二电压V2的逻辑高值是关闭同步整流侧电源开关以避免电流击穿的指示符。此外,将第二非同步PWM控制信号Q2考虑以保证电流击穿将不会发生。所以,第二非同步PWM控制信号Q2的使用产生了电流击穿保护,这保证了适当的电路操作。The logic high value of the second voltage V2 indicates that the body diode of the synchronous rectification side power switch stops conducting. Therefore, the logic high value of the second voltage V2 is an indicator to turn off the power switch of the synchronous rectification side to avoid current breakdown. Furthermore, the second asynchronous PWM control signal Q2 is taken into account to ensure that current breakdown will not occur. Therefore, the use of the second asynchronous PWM control signal Q2 produces current breakdown protection, which ensures proper circuit operation.
根据如上所述第一方面或根据所述第一方面的任一前述实施形式,在所述同步整流控制单元的第三可能实施形式中,所述电流I是整流后交流电IAC_rect,以及所述控制算法电路用于:如果所述第一电压V1和所述第一非同步PWM控制信号Q1中的至少一个具有逻辑低值,以及如果所述第二电压V2和所述第二非同步PWM控制信号Q2都具有逻辑低值,则生成所述第一同步PWM控制信号SQ1的前一值。According to the first aspect as described above or according to any preceding implementation form of the first aspect, in a third possible implementation form of the synchronous rectification control unit, the current I is a rectified alternating current I AC_rect , and the a control algorithm circuit for: if at least one of the first voltage V1 and the first asynchronous PWM control signal Q1 has a logic low value, and if the second voltage V2 and the second asynchronous PWM control Signals Q2 all have a logic low value, then the previous value of the first synchronous PWM control signal SQ1 is generated.
由此,将第一同步PWM控制信号SQ1设置为正确的前一值,即逻辑高值或逻辑低值,这使得系统稳健且对电路干扰不敏感。另外,在执行本实施形式的时间段内,电路中信号的值,即Q1、V1、Q2和V2的值,可以是逻辑低值,这意味着所消耗的能量要减到最少。Thereby, the first synchronous PWM control signal SQ1 is set to the correct previous value, ie a logic high value or a logic low value, which makes the system robust and insensitive to circuit disturbances. In addition, the values of the signals in the circuit, ie the values of Q1, V1, Q2 and V2, may be logic low during the time period in which this embodiment is implemented, which means that the energy consumed is minimized.
根据如上所述第一方面或根据所述第一方面的任一前述实施形式,在所述同步整流控制单元的第四可能实施形式中,所述电流I是整流后交流电IAC_rect,以及所述控制算法电路用于:如果所述第一电压V1具有逻辑高值且所述第二非同步PWM控制信号Q2具有逻辑高值,则生成所述第二同步PWM控制信号SQ2的逻辑高值。According to the first aspect as described above or according to any preceding implementation form of the first aspect, in a fourth possible implementation form of the synchronous rectification control unit, the current I is a rectified alternating current I AC_rect , and the The control algorithm circuit is configured to generate a logic high value of the second synchronous PWM control signal SQ2 if the first voltage V1 has a logic high value and the second asynchronous PWM control signal Q2 has a logic high value.
第一电压V1的逻辑高值指示同步整流侧电源开关的体二极管开始导通。所以,第一电压V1的逻辑高值是接通同步整流侧电源开关以避免二极管导通并提高效率的指示符。另外,将第二非同步PWM控制信号Q2考虑进去以保证选择的是第二同步PWM控制信号SQ2(而不是第一同步PWM控制信号SQ1)。The logic high value of the first voltage V1 indicates that the body diode of the synchronous rectification side power switch starts to conduct. Therefore, a logic high value of the first voltage V1 is an indicator to turn on the synchronous rectification side power switch to avoid diode conduction and improve efficiency. In addition, the second asynchronous PWM control signal Q2 is taken into account to ensure that the second synchronous PWM control signal SQ2 (and not the first synchronous PWM control signal SQ1) is selected.
根据如上所述第一方面或根据所述第一方面的任一前述实施形式,在所述同步整流控制单元的第五可能实施形式中,所述电流I是整流后交流电IAC_rect,以及所述控制算法电路用于:如果所述第一电压V1和所述第二非同步PWM控制信号Q2中的至少一个具有逻辑低值,以及如果所述第二电压V2具有逻辑高值或者如果所述第一非同步PWM控制信号Q1具有逻辑高值,则生成所述第二同步PWM控制信号SQ2的逻辑低值。According to the first aspect as described above or according to any preceding implementation form of the first aspect, in a fifth possible implementation form of the synchronous rectification control unit, the current I is a rectified alternating current I AC_rect , and the A control algorithm circuit for: if at least one of the first voltage V1 and the second asynchronous PWM control signal Q2 has a logic low value, and if the second voltage V2 has a logic high value or if the first When an asynchronous PWM control signal Q1 has a logic high value, a logic low value of the second synchronous PWM control signal SQ2 is generated.
第二电压V2的逻辑高值指示同步整流侧电源开关的体二极管停止导通。所以,第二电压V2的逻辑高值是关闭同步整流侧电源开关以避免电流击穿的指示符。另外,将第一非同步PWM控制信号Q1考虑进去以保证电流击穿将不会发生。因此,第一非同步PWM控制信号Q1的使用产生了保护,这样保证了适当的电路操作。The logic high value of the second voltage V2 indicates that the body diode of the synchronous rectification side power switch stops conducting. Therefore, the logic high value of the second voltage V2 is an indicator to turn off the power switch of the synchronous rectification side to avoid current breakdown. Additionally, the first asynchronous PWM control signal Q1 is taken into account to ensure that current breakdown will not occur. Therefore, the use of the first asynchronous PWM control signal Q1 creates protection, which ensures proper circuit operation.
根据如上所述第一方面或根据所述第一方面的任一前述实施形式,在所述同步整流控制单元的第六可能实施形式中,所述电流I是整流后交流电IAC_rect,以及所述控制算法电路用于:如果所述第一电压V1和所述第二非同步PWM控制信号Q2中的至少一个具有逻辑低值,以及如果所述第二电压V2和所述第一非同步PWM控制信号Q1都具有逻辑低值,则生成第二同步PWM控制信号SQ2的前一值。According to the first aspect as described above or according to any preceding implementation form of the first aspect, in a sixth possible implementation form of the synchronous rectification control unit, the current I is a rectified alternating current I AC_rect , and the a control algorithm circuit for: if at least one of the first voltage V1 and the second asynchronous PWM control signal Q2 has a logic low value, and if the second voltage V2 and the first asynchronous PWM control Signals Q1 both have a logic low value, generating the previous value of the second synchronous PWM control signal SQ2.
由此,保证将第二同步PWM控制信号SQ2设置为正确值,例如逻辑高值或逻辑低值,这使得系统稳健且对电路干扰不敏感。另外,在执行本实施形式的时间段内,电路中信号的逻辑值,即Q1、V1、Q2和V2的值,可以是低值,这意味着使所消耗的能量尽量减到最少。Thereby, it is ensured that the second synchronous PWM control signal SQ2 is set to the correct value, eg a logic high value or a logic low value, which makes the system robust and insensitive to circuit disturbances. In addition, the logic values of the signals in the circuit, ie the values of Q1, V1, Q2 and V2, may be low during the time period in which this embodiment is implemented, which means that the energy consumed is minimized.
根据如上所述第一方面,在所述同步整流控制单元的第七可能实施形式中,所述电流I是交流电IAC,以及所述控制算法电路用于:如果所述第一电压V1具有逻辑高值且所述第一非同步PWM控制信号Q1具有逻辑高值,则生成所述第一同步PWM控制信号SQ1的逻辑高值。According to the first aspect as described above, in a seventh possible implementation form of the synchronous rectification control unit, the current I is an alternating current I AC , and the control algorithm circuit is configured to: if the first voltage V1 has a logic A high value and the first asynchronous PWM control signal Q1 has a logic high value, then a logic high value of the first synchronous PWM control signal SQ1 is generated.
这里,将第一非同步PWM控制信号Q1考虑进去以保证选择的是第一同步PWM控制信号SQ1,而不是第二同步PWM控制信号SQ2。那么第一电压V1的逻辑高值指示同步整流侧电源开关的体二极管开始导通。所以,第一电压V1的逻辑高值是接通同步整流侧电源开关SQ1以避免二极管导通并提高电源效率的指示符。Here, the first asynchronous PWM control signal Q1 is taken into account to ensure that the first synchronous PWM control signal SQ1 is selected instead of the second synchronous PWM control signal SQ2. Then the logic high value of the first voltage V1 indicates that the body diode of the power switch on the synchronous rectification side starts to conduct. Therefore, the logic high value of the first voltage V1 is an indicator that the synchronous rectification side power switch SQ1 is turned on to avoid diode conduction and improve power efficiency.
根据如上所述第一方面或根据所述第一方面的第七可能实施形式,在所述同步整流控制单元的第八可能实施形式中,所述电流I是交流电IAC,以及所述控制算法电路用于:如果所述第一电压V1和所述第一非同步PWM控制信号Q1中的至少一个具有逻辑低值,以及如果所述第二电压V2具有逻辑高值或者如果所述第二非同步PWM控制信号Q2具有逻辑高值,则生成所述第一同步PWM控制信号SQ1的逻辑低值。According to the first aspect as described above or according to a seventh possible implementation form of the first aspect, in an eighth possible implementation form of the synchronous rectification control unit, the current I is an alternating current I AC , and the control algorithm The circuit is configured to: if at least one of the first voltage V1 and the first non-synchronous PWM control signal Q1 has a logic low value, and if the second voltage V2 has a logic high value or if the second non-synchronous PWM control signal Q1 has a logic low value When the synchronous PWM control signal Q2 has a logic high value, a logic low value of the first synchronous PWM control signal SQ1 is generated.
第二电压V2的逻辑高值指示同步整流侧电源开关的体二极管停止导通。所以,第二电压V2的逻辑高值是关闭同步整流侧电源开关SQ1以避免电流击穿的指示符。因此,第二非同步PWM控制信号Q2的使用产生了电路保护并保证电流击穿将不会发生。由此,保证了适当的电路操作。The logic high value of the second voltage V2 indicates that the body diode of the synchronous rectification side power switch stops conducting. Therefore, the logic high value of the second voltage V2 is an indicator to turn off the synchronous rectification side power switch SQ1 to avoid current breakdown. Therefore, the use of the second asynchronous PWM control signal Q2 creates circuit protection and ensures that current breakdown will not occur. Thereby, proper circuit operation is ensured.
根据如上所述第一方面或根据所述第一方面的第七或第八可能实施形式中的任一种,在所述同步整流控制单元的第九可能实施形式中,所述电流I是交流电IAC,以及所述控制算法电路用于:如果所述第一电压V1和所述第一非同步PWM控制信号Q1中的至少一个具有逻辑低值,以及如果所述第二电压V2和所述第二非同步PWM控制信号Q2都具有逻辑低值,则生成所述第一同步PWM控制信号SQ1的前一值。According to the first aspect as described above or according to any one of the seventh or eighth possible implementation forms of the first aspect, in a ninth possible implementation form of the synchronous rectification control unit, the current I is an alternating current I AC , and the control algorithm circuit for: if at least one of the first voltage V1 and the first asynchronous PWM control signal Q1 has a logic low value, and if the second voltage V2 and the Both the second asynchronous PWM control signals Q2 have a logic low value, and the previous value of the first synchronous PWM control signal SQ1 is generated.
由此,保证将第一同步PWM控制信号SQ1设置为正确的前一值,即逻辑高值或逻辑低值,这使得系统稳健且对电路干扰不敏感。此外,在执行本实施形式的时间段内,电路中信号的值,例如,Q1、V1、Q2和V2的值,可以是低值,这意味着使所消耗的能量尽量减到最少。Thereby, it is ensured that the first synchronous PWM control signal SQ1 is set to the correct previous value, ie a logic high value or a logic low value, which makes the system robust and insensitive to circuit disturbances. Furthermore, the values of the signals in the circuit, eg, the values of Q1, V1, Q2, and V2, may be low during the time period in which this embodiment is implemented, which means that the energy consumed is minimized.
根据如上所述第一方面或根据所述第一方面的第七、第八或第九可能实施形式中的任一种,在所述同步整流控制单元的第十可能实施形式中,所述电流I是交流电IAC,以及所述控制算法电路用于:如果所述第二电压V2具有逻辑高值且所述第二非同步PWM控制信号Q2具有逻辑高值,则生成所述第二同步PWM控制信号SQ2的逻辑高值。According to the first aspect as described above or according to any one of the seventh, eighth or ninth possible implementation forms of the first aspect, in a tenth possible implementation form of the synchronous rectification control unit, the current I is the alternating current I AC , and the control algorithm circuit is configured to generate the second synchronous PWM if the second voltage V2 has a logic high value and the second asynchronous PWM control signal Q2 has a logic high value Logic high value of control signal SQ2.
这里,将第二非同步PWM控制信号Q2考虑进去以保证选择第一同步PWM控制信号SQ1,且保证不选择第二同步PWM控制信号SQ2。第二电压V2的逻辑高值指示同步整流侧电源开关SQ2的体二极管开始导通。所以,第二电压V2的逻辑高值是接通同步整流侧电源开关SQ2以避免二极管导通并提高电源效率的指示符。Here, the second asynchronous PWM control signal Q2 is taken into account to ensure that the first synchronous PWM control signal SQ1 is selected, and that the second synchronous PWM control signal SQ2 is not selected. The logic high value of the second voltage V2 indicates that the body diode of the synchronous rectification side power switch SQ2 starts to conduct. Therefore, the logic high value of the second voltage V2 is an indicator that the synchronous rectification side power switch SQ2 is turned on to avoid diode conduction and improve the power efficiency.
根据如上所述第一方面或根据所述第一方面的第七、第八、第九或第十可能实施形式中的任一种,在所述同步整流控制单元的第十一可能实施形式中,所述电流I是交流电IAC,以及所述控制算法电路用于:如果所述第二电压V2和所述第二非同步PWM控制信号Q2中的至少一个具有逻辑低值,以及如果所述第一电压V1具有逻辑高值或者如果所述第一非同步PWM控制信号Q1具有逻辑高值,则生成所述第二同步PWM控制信号SQ2的逻辑低值。According to the first aspect as described above or according to any one of the seventh, eighth, ninth or tenth possible implementation forms of the first aspect, in an eleventh possible implementation form of the synchronous rectification control unit , the current I is an alternating current I AC , and the control algorithm circuit is adapted to: if at least one of the second voltage V2 and the second asynchronous PWM control signal Q2 has a logic low value, and if the The first voltage V1 has a logic high value or a logic low value of the second synchronous PWM control signal SQ2 is generated if the first asynchronous PWM control signal Q1 has a logic high value.
第一电压V1的逻辑高值指示同步整流侧电源开关SQ2的体二极管停止导通。所以,第一电压V1的逻辑高值是关闭同步整流侧电源开关SQ2以避免电流击穿的指示符。此外,将第一非同步PWM控制信号Q1考虑进去以保证电流击穿将不会发生。因此,第二非同步PWM控制信号Q2的使用在这里充当保护,这样保证了适当的电路操作。The logic high value of the first voltage V1 indicates that the body diode of the synchronous rectification side power switch SQ2 stops conducting. Therefore, the logic high value of the first voltage V1 is an indicator to turn off the synchronous rectification side power switch SQ2 to avoid current breakdown. Furthermore, the first asynchronous PWM control signal Q1 is taken into account to ensure that current breakdown will not occur. Therefore, the use of the second asynchronous PWM control signal Q2 acts here as a protection, which ensures proper circuit operation.
根据如上所述第一方面或根据所述第一方面的所述第七、第八、第九、第十或第十一可能实施形式中的任一种,在所述同步整流控制单元的第十二可能实施形式中,所述电流I是交流电IAC,以及所述控制算法电路用于:如果所述第二电压V2和所述第二非同步PWM控制信号Q2中的至少一个具有逻辑低值,以及如果所述第一电压V1和所述第一非同步PWM控制信号Q1都具有逻辑低值,则生成所述第二同步PWM控制信号SQ2的前一值。According to the first aspect as described above or according to any one of the seventh, eighth, ninth, tenth or eleventh possible implementation forms of the first aspect, in the first aspect of the synchronous rectification control unit In twelve possible implementation forms, the current I is an alternating current I AC , and the control algorithm circuit is configured to: if at least one of the second voltage V2 and the second asynchronous PWM control signal Q2 has a logic low value, and if both the first voltage V1 and the first asynchronous PWM control signal Q1 have a logic low value, the previous value of the second synchronous PWM control signal SQ2 is generated.
由此,保证将第二同步PWM控制信号SQ2设置为正确的前一值,即逻辑高值或逻辑低值,这使得系统稳健且对电路干扰不敏感。此外,在执行本实施形式的时间段内,电路中信号的值Q1、V1、Q2和V2可以是低值,这意味着使所消耗的能量尽量地少。Thereby, it is ensured that the second synchronous PWM control signal SQ2 is set to the correct previous value, ie a logic high value or a logic low value, which makes the system robust and insensitive to circuit disturbances. Furthermore, the values Q1 , V1 , Q2 and V2 of the signals in the circuit may be low values during the time period in which this embodiment is implemented, which means that as little energy as possible is consumed.
根据第二方面,该目标通过一种同步整流控制方法来实现,所述方法包括:According to a second aspect, the object is achieved by a synchronous rectification control method, the method comprising:
测量包括电源开关的电路中的电流I;measure the current I in a circuit including a power switch;
如果所述电流I的正向变化率接近所述电流I的值0,输出第一电压V1的逻辑高值,或If the positive rate of change of the current I is close to the value 0 of the current I, a logic high value of the first voltage V1 is output, or
如果所述电流I的负向变化率接近所述电流I的值0,输出第二电压V2的逻辑高值;以及If the negative rate of change of the current I is close to the value 0 of the current I, outputting a logic high value of the second voltage V2; and
基于第一和第二非同步脉冲宽度调制(pulse width modulation,PWM)控制信号Q1和Q2,以及基于所述第一电压V1和所述第二电压V2,生成生第一和第二同步PWM控制信号SQ1和SQ2,所述第一和第二同步PWM控制信号SQ1和SQ2可用于控制所述电源开关的开关。Based on first and second asynchronous pulse width modulation (PWM) control signals Q1 and Q2, and based on said first voltage V1 and said second voltage V2, first and second synchronous PWM control signals are generated Signals SQ1 and SQ2, the first and second synchronous PWM control signals SQ1 and SQ2 may be used to control the switching of the power switch.
所述同步整流控制方法能够提供高电源效率和低功耗损失。所述同步整流控制方法可以基于连续或非连续AC电流波形,或者基于整流后的连续或非连续AC电流波形生成第一和第二同步PWM控制信号SQ1和SQ2,这使得电流测量更灵活。所述同步整流控制方法可以在电路复杂度增加很小的情况下实施。The synchronous rectification control method can provide high power efficiency and low power loss. The synchronous rectification control method may generate the first and second synchronous PWM control signals SQ1 and SQ2 based on a continuous or discontinuous AC current waveform, or based on a rectified continuous or discontinuous AC current waveform, which makes current measurement more flexible. The synchronous rectification control method can be implemented with little increase in circuit complexity.
所述同步整流控制方法还提供电流击穿保护、快速瞬态响应和低功耗。另外,所述同步整流控制方法使对PWM资源的需求减到最少。The synchronous rectification control method also provides current breakdown protection, fast transient response and low power consumption. Additionally, the synchronous rectification control method minimizes the need for PWM resources.
根据所述第二方面,在所述同步整流控制方法的第一可能实施形式中,所述电流I是整流后交流电IAC_rect,以及如果所述第一电压V1具有逻辑高值且所述第一非同步PWM控制信号Q1具有逻辑高值,则所述控制算法电路生成所述第一同步PWM控制信号SQ1的逻辑高值。According to the second aspect, in a first possible implementation form of the synchronous rectification control method, the current I is the rectified alternating current I AC_rect , and if the first voltage V1 has a logic high value and the first If the asynchronous PWM control signal Q1 has a logic high value, the control algorithm circuit generates a logic high value of the first synchronous PWM control signal SQ1.
第一电压V1的逻辑高值指示同步整流侧电源开关的体二极管开始导通。所以,第一电压V1的逻辑高值是接通同步整流侧电源开关以避免二极管导通并提高效率的指示符。另外,将第一非同步PWM控制信号Q1考虑进去以保证选择的是第一同步PWM控制信号SQ1(而不是第二同步PWM控制信号SQ2)。The logic high value of the first voltage V1 indicates that the body diode of the synchronous rectification side power switch starts to conduct. Therefore, a logic high value of the first voltage V1 is an indicator to turn on the synchronous rectification side power switch to avoid diode conduction and improve efficiency. Additionally, the first asynchronous PWM control signal Q1 is taken into account to ensure that the first synchronous PWM control signal SQ1 (and not the second synchronous PWM control signal SQ2) is selected.
根据如上所述第二方面或根据所述第二方面的任一前述实施形式,在所述同步整流控制方法的第二可能实施形式中,所述电流I是整流后交流电IAC_rect,以及如果所述第一电压V1和所述第一非同步PWM控制信号Q1中的至少一个具有逻辑低值,以及如果所述第二电压V2具有逻辑高值或者如果所述第二非同步PWM控制信号Q2具有逻辑高值,则所述控制算法电路生成所述第一同步PWM控制信号SQ1的逻辑低值。According to the second aspect as described above or according to any preceding implementation form of the second aspect, in a second possible implementation form of the synchronous rectification control method, the current I is the rectified alternating current I AC_rect , and if all at least one of the first voltage V1 and the first asynchronous PWM control signal Q1 has a logic low value, and if the second voltage V2 has a logic high value or if the second asynchronous PWM control signal Q2 has a logic high value A logic high value, the control algorithm circuit generates a logic low value of the first synchronous PWM control signal SQ1.
第二电压V2的逻辑高值指示同步整流侧电源开关的体二极管停止导通。所以,第二电压V2的逻辑高值是关闭同步整流侧电源开关以避免电流击穿的指示符。另外,将第二非同步PWM控制信号Q2考虑进去以保证电流击穿将不会发生。因此,第二非同步PWM控制信号Q2的使用产生了电流击穿保护,这保证了适当的电路操作。The logic high value of the second voltage V2 indicates that the body diode of the synchronous rectification side power switch stops conducting. Therefore, the logic high value of the second voltage V2 is an indicator to turn off the power switch of the synchronous rectification side to avoid current breakdown. Additionally, the second asynchronous PWM control signal Q2 is taken into account to ensure that current breakdown will not occur. Therefore, the use of the second asynchronous PWM control signal Q2 creates a current breakdown protection, which ensures proper circuit operation.
根据如上所述第二方面或根据所述第一方面的任一前述实施形式,在所述同步整流控制方法的第三可能实施形式中,所述电流I是整流后交流电IAC_rect,以及如果所述第一电压V1和所述第一非同步PWM控制信号Q1中的至少一个具有逻辑低值,以及如果所述第二电压V2和所述第二非同步PWM控制信号Q2都具有逻辑低值,则所述控制算法电路生成所述第一同步PWM控制信号SQ1的前一值。According to the second aspect as described above or according to any preceding implementation form of the first aspect, in a third possible implementation form of the synchronous rectification control method, the current I is the rectified alternating current I AC_rect , and if all at least one of the first voltage V1 and the first asynchronous PWM control signal Q1 has a logic low value, and if both the second voltage V2 and the second asynchronous PWM control signal Q2 have a logic low value, The control algorithm circuit then generates the previous value of the first synchronous PWM control signal SQ1.
由此,将第一同步PWM控制信号SQ1设置为正确的前一值,即逻辑高值或逻辑低值,这使得系统稳健且对电路干扰不敏感。另外,在执行本实施形式的时间段内,电路中信号的值,即Q1、V1、Q2和V2的值,可以是逻辑低值,这意味着所消耗的能量要减到最少。Thereby, the first synchronous PWM control signal SQ1 is set to the correct previous value, ie a logic high value or a logic low value, which makes the system robust and insensitive to circuit disturbances. In addition, the values of the signals in the circuit, ie the values of Q1, V1, Q2 and V2, may be logic low during the time period in which this embodiment is implemented, which means that the energy consumed is minimized.
根据如上所述第二方面或根据所述第一方面的任一前述实施形式,在所述同步整流控制方法的第四可能实施形式中,所述电流I是整流后交流电IAC_rect,以及如果所述第一电压V1具有逻辑高值且所述第二非同步PWM控制信号Q2具有逻辑高值,则所述控制算法电路生成所述第二同步PWM控制信号SQ2的逻辑高值。According to the second aspect as described above or according to any preceding implementation form of the first aspect, in a fourth possible implementation form of the synchronous rectification control method, the current I is the rectified alternating current I AC_rect , and if all If the first voltage V1 has a logic high value and the second asynchronous PWM control signal Q2 has a logic high value, the control algorithm circuit generates a logic high value of the second synchronous PWM control signal SQ2.
第一电压V1的逻辑高值指示同步整流侧电源开关的体二极管开始导通。所以,第一电压V1的逻辑高值是接通同步整流侧电源开关以避免二极管导通并提高效率的指示符。另外,将第二非同步PWM控制信号Q2考虑进去以保证选择的是第二同步PWM控制信号SQ2(而不是第一同步PWM控制信号SQ1)。The logic high value of the first voltage V1 indicates that the body diode of the synchronous rectification side power switch starts to conduct. Therefore, a logic high value of the first voltage V1 is an indicator to turn on the synchronous rectification side power switch to avoid diode conduction and improve efficiency. In addition, the second asynchronous PWM control signal Q2 is taken into account to ensure that the second synchronous PWM control signal SQ2 (and not the first synchronous PWM control signal SQ1) is selected.
根据如上所述第二方面或根据所述第一方面的任一前述实施形式,在所述同步整流控制方法的第五可能实施形式中,所述电流I是整流后交流电IAC_rect,以及如果所述第一电压V1和所述第二非同步PWM控制信号Q2中的至少一个具有逻辑低值,以及如果所述第二电压V2具有逻辑高值或者如果所述第一非同步PWM控制信号Q1具有逻辑高值,则所述控制算法电路生成所述第二同步PWM控制信号SQ2的逻辑低值。According to the second aspect as described above or according to any preceding implementation form of the first aspect, in a fifth possible implementation form of the synchronous rectification control method, the current I is the rectified alternating current I AC_rect , and if all at least one of the first voltage V1 and the second asynchronous PWM control signal Q2 has a logic low value, and if the second voltage V2 has a logic high value or if the first asynchronous PWM control signal Q1 has a logic high value A logic high value, the control algorithm circuit generates a logic low value of the second synchronous PWM control signal SQ2.
第二电压V2的逻辑高值指示同步整流侧电源开关的体二极管停止导通。所以,第二电压V2的逻辑高值是关闭同步整流侧电源开关以避免电流击穿的指示符。另外,将第一非同步PWM控制信号Q1考虑进去以保证电流击穿将不会发生。所以,第一非同步PWM控制信号Q1的使用产生了保护,这样保证了适当的电路操作。The logic high value of the second voltage V2 indicates that the body diode of the synchronous rectification side power switch stops conducting. Therefore, the logic high value of the second voltage V2 is an indicator to turn off the power switch of the synchronous rectification side to avoid current breakdown. Additionally, the first asynchronous PWM control signal Q1 is taken into account to ensure that current breakdown will not occur. Therefore, the use of the first asynchronous PWM control signal Q1 creates protection, which ensures proper circuit operation.
根据如上所述第二方面或根据所述第一方面的任一前述实施形式,在所述同步整流控制方法的第六可能实施形式中,所述电流I是整流后交流电IAC_rect,以及如果所述第一电压V1和所述第二非同步PWM控制信号Q2中的至少一个具有逻辑低值,以及如果所述第二电压V2和所述第一非同步PWM控制信号Q1都具有逻辑低值,则所述控制算法电路生成第二同步PWM控制信号SQ2的前一值。According to the second aspect as described above or according to any preceding implementation form of the first aspect, in a sixth possible implementation form of the synchronous rectification control method, the current I is the rectified alternating current I AC_rect , and if all at least one of the first voltage V1 and the second asynchronous PWM control signal Q2 has a logic low value, and if both the second voltage V2 and the first asynchronous PWM control signal Q1 have a logic low value, The control algorithm circuit then generates the previous value of the second synchronous PWM control signal SQ2.
由此,保证将第二同步PWM控制信号SQ2设置为正确的前一值,例如逻辑高值或逻辑低值,这使得系统稳健且对电路干扰不敏感。另外,在执行本实施形式的时间段内,电路中信号的逻辑值,即Q1、V1、Q2和V2的值,可以是低值,这意味着使所消耗的能量减到最少。Thereby, it is ensured that the second synchronous PWM control signal SQ2 is set to the correct previous value, eg a logic high value or a logic low value, which makes the system robust and insensitive to circuit disturbances. In addition, the logic values of the signals in the circuit, ie the values of Q1, V1, Q2 and V2, may be low during the time period in which this embodiment is implemented, which means that the energy consumed is minimized.
根据如上所述第二方面,在所述同步整流控制方法的第七可能实施形式中,所述电流I是交流电IAC,以及如果所述第一电压V1具有逻辑高值且所述第一非同步PWM控制信号Q1具有逻辑高值,则所述控制算法电路生成所述第一同步PWM控制信号SQ1的逻辑高值。According to the second aspect as described above, in a seventh possible implementation form of the synchronous rectification control method, the current I is an alternating current I AC , and if the first voltage V1 has a logic high value and the first non- If the synchronous PWM control signal Q1 has a logic high value, the control algorithm circuit generates a logic high value of the first synchronous PWM control signal SQ1.
这里,将第一非同步PWM控制信号Q1考虑进去以保证选择的是第一同步PWM控制信号SQ1,而不是第二同步PWM控制信号SQ2。那么第一电压V1的逻辑高值指示同步整流侧电源开关的体二极管开始导通。所以,第一电压V1的逻辑高值是接通同步整流侧电源开关SQ1以避免二极管导通并提高电源效率的指示符。Here, the first asynchronous PWM control signal Q1 is taken into account to ensure that the first synchronous PWM control signal SQ1 is selected instead of the second synchronous PWM control signal SQ2. Then the logic high value of the first voltage V1 indicates that the body diode of the power switch on the synchronous rectification side starts to conduct. Therefore, the logic high value of the first voltage V1 is an indicator that the synchronous rectification side power switch SQ1 is turned on to avoid diode conduction and improve power efficiency.
根据如上所述第二方面或根据所述第一方面的第七可能实施形式,在所述同步整流控制方法的第八可能实施形式中,所述电流I是交流电IAC,以及如果所述第一电压V1和所述第一非同步PWM控制信号Q1中的至少一个具有逻辑低值,以及如果所述第二电压V2具有逻辑高值或者如果所述第二非同步PWM控制信号Q2具有逻辑高值,则所述控制算法电路生成所述第一同步PWM控制信号SQ1的逻辑低值。According to the second aspect as described above or according to the seventh possible implementation form of the first aspect, in the eighth possible implementation form of the synchronous rectification control method, the current I is an alternating current I AC , and if the first At least one of a voltage V1 and the first asynchronous PWM control signal Q1 has a logic low value, and if the second voltage V2 has a logic high value or if the second asynchronous PWM control signal Q2 has a logic high value, the control algorithm circuit generates a logic low value of the first synchronous PWM control signal SQ1.
第二电压V2的逻辑高值指示同步整流侧电源开关的体二极管停止导通。所以,第二电压V2的逻辑高值是关闭同步整流侧电源开关SQ1以避免电流击穿的指示符。因此,第二非同步PWM控制信号Q2的使用产生了电路保护并保证电流击穿将不会发生。由此,保证了适当的电路操作。The logic high value of the second voltage V2 indicates that the body diode of the synchronous rectification side power switch stops conducting. Therefore, the logic high value of the second voltage V2 is an indicator to turn off the synchronous rectification side power switch SQ1 to avoid current breakdown. Therefore, the use of the second asynchronous PWM control signal Q2 creates circuit protection and ensures that current breakdown will not occur. Thereby, proper circuit operation is ensured.
根据如上所述第二方面或根据所述第一方面的第七或第八可能实施形式中的任一种,在所述同步整流控制方法的第九可能实施形式中,所述电流I是交流电IAC,以及如果所述第一电压V1和所述第一非同步PWM控制信号Q1中的至少一个具有逻辑低值,以及如果所述第二电压V2和所述第二非同步PWM控制信号Q2都具有逻辑低值,则所述控制算法电路生成所述第一同步PWM控制信号SQ1的前一值。According to the second aspect as described above or according to any one of the seventh or eighth possible implementation forms of the first aspect, in a ninth possible implementation form of the synchronous rectification control method, the current I is an alternating current I AC , and if at least one of the first voltage V1 and the first asynchronous PWM control signal Q1 has a logic low value, and if the second voltage V2 and the second asynchronous PWM control signal Q2 both have a logic low value, the control algorithm circuit generates the previous value of the first synchronous PWM control signal SQ1.
由此,保证将第一同步PWM控制信号SQ1设置为正确的前一值,即逻辑高值或逻辑低值,这使得系统稳健且对电路干扰不敏感。此外,在执行本实施形式的时间段内,电路中信号的值,例如,Q1、V1、Q2和V2的值,可以是低值,这意味着使所消耗的能量减到最少。Thereby, it is ensured that the first synchronous PWM control signal SQ1 is set to the correct previous value, ie a logic high value or a logic low value, which makes the system robust and insensitive to circuit disturbances. Furthermore, the values of the signals in the circuit, eg, the values of Q1, V1, Q2 and V2, may be low during the time period in which this embodiment is implemented, which means that the energy consumed is minimized.
根据如上所述第一方面或根据所述第一方面的第七、第八或第九可能实施形式中任一种,在所述同步整流控制方法的第十可能实施形式中,所述电流I是交流电IAC,以及如果所述第二电压V2具有逻辑高值且所述第二非同步PWM控制信号Q2具有逻辑高值,则所述控制算法电路生成所述第二同步PWM控制信号SQ2的逻辑高值。According to the first aspect as described above or according to any one of the seventh, eighth or ninth possible implementation forms of the first aspect, in the tenth possible implementation form of the synchronous rectification control method, the current I is the alternating current I AC , and if the second voltage V2 has a logic high value and the second asynchronous PWM control signal Q2 has a logic high value, the control algorithm circuit generates the second synchronous PWM control signal SQ2 logical high value.
这里,将第二非同步PWM控制信号Q2考虑进去以保证选择第一同步PWM控制信号SQ1,且保证不选择第二同步PWM控制信号SQ2。第二电压V2的逻辑高值指示同步整流侧电源开关的体二极管开始导通。所以,第二电压V2的逻辑高值是接通同步整流侧电源开关SQ2以避免二极管导通并提高电源效率的指示符。Here, the second asynchronous PWM control signal Q2 is taken into account to ensure that the first synchronous PWM control signal SQ1 is selected, and that the second synchronous PWM control signal SQ2 is not selected. The logic high value of the second voltage V2 indicates that the body diode of the synchronous rectification side power switch starts to conduct. Therefore, the logic high value of the second voltage V2 is an indicator that the synchronous rectification side power switch SQ2 is turned on to avoid diode conduction and improve the power efficiency.
根据如上所述第二方面或根据所述第一方面的第七、第八、第九或第十可能实施形式中的任一种,在所述同步整流控制方法的第十一可能实施形式中,所述电流I是交流电IAC,以及如果所述第二电压V2和所述第二非同步PWM控制信号Q2中的至少一个具有逻辑低值,以及如果所述第一电压V1具有逻辑高值或者如果所述第一非同步PWM控制信号Q1具有逻辑高值,则所述控制算法电路生成所述第二同步PWM控制信号SQ2的逻辑低值。According to the second aspect as described above or according to any one of the seventh, eighth, ninth or tenth possible implementation forms of the first aspect, in an eleventh possible implementation form of the synchronous rectification control method , the current I is the alternating current I AC , and if at least one of the second voltage V2 and the second asynchronous PWM control signal Q2 has a logic low value, and if the first voltage V1 has a logic high value Alternatively, the control algorithm circuit generates a logic low value of the second synchronous PWM control signal SQ2 if the first asynchronous PWM control signal Q1 has a logic high value.
第一电压V1的逻辑高值指示同步整流侧电源开关SQ2的体二极管停止导通。所以,第一电压V1的逻辑高值是关闭同步整流侧电源开关SQ2以避免电流击穿的指示符。此外,将第一非同步PWM控制信号Q1考虑进去以保证电流击穿将不会发生。因此,第二非同步PWM控制信号Q2的使用在这里充当保护,这样保证了适当的电路操作。The logic high value of the first voltage V1 indicates that the body diode of the synchronous rectification side power switch SQ2 stops conducting. Therefore, the logic high value of the first voltage V1 is an indicator to turn off the synchronous rectification side power switch SQ2 to avoid current breakdown. Furthermore, the first asynchronous PWM control signal Q1 is taken into account to ensure that current breakdown will not occur. Therefore, the use of the second asynchronous PWM control signal Q2 acts here as a protection, which ensures proper circuit operation.
根据如上所述第二方面或根据所述第一方面的第七、第八、第九、第十或第十一可能实施形式中的任一种,在所述控制同步整流的方法的第十二可能实施形式中,所述电流I是交流电IAC,以及如果所述第二电压V2和所述第二非同步PWM控制信号Q2中的至少一个具有逻辑低值,以及如果所述第一电压V1和所述第一非同步PWM控制信号Q1都具有逻辑低值,则所述控制算法电路生成所述第二同步PWM控制信号SQ2的前一值。According to the second aspect as described above or according to any one of the seventh, eighth, ninth, tenth or eleventh possible implementation forms of the first aspect, in the tenth aspect of the method for controlling synchronous rectification In two possible implementations, the current I is an alternating current I AC , and if at least one of the second voltage V2 and the second asynchronous PWM control signal Q2 has a logic low value, and if the first voltage Both V1 and the first asynchronous PWM control signal Q1 have a logic low value, and the control algorithm circuit generates the previous value of the second synchronous PWM control signal SQ2.
由此,保证将第二同步PWM控制信号SQ2设置为正确的前一值,即逻辑高值或逻辑低值,这使得系统稳健且对电路干扰不敏感。另外,在执行本实施形式的时间段内,电路中信号的值,即Q1、V1、Q2和V2的值,可以是低值,这意味着使所消耗的能量尽量减到最少。Thereby, it is ensured that the second synchronous PWM control signal SQ2 is set to the correct previous value, ie a logic high value or a logic low value, which makes the system robust and insensitive to circuit disturbances. Additionally, the values of the signals in the circuit, ie the values of Q1, V1, Q2 and V2, may be low during the time period in which this embodiment is implemented, which means that the energy consumed is minimized.
根据第三方面,该目的通过一种具有程序代码的计算机程序来实现,当计算机程序运行在计算机上时,所述程序代码用于执行一种根据所述第二方面的方法。According to a third aspect, the object is achieved by a computer program having program code for carrying out a method according to the second aspect when the computer program is run on a computer.
根据所述第三方面的计算机程序的优点对应于上文所述第二方面的优点。此外,一种具有程序代码的计算机程序使环境条件更灵活、准确和稳健。另外,程序代码很容易修改和更新。The advantages of the computer program according to the third aspect correspond to the advantages of the second aspect described above. Furthermore, a computer program with program code makes environmental conditions more flexible, accurate and robust. In addition, the program code is easy to modify and update.
根据第四方面,该目标通过集成电路来实现,所述集成电路包括根据如上所述第一方面或根据所述第一方面的任一前述实施形式的至少一个同步整流控制单元。According to a fourth aspect, this object is achieved by an integrated circuit comprising at least one synchronous rectification control unit according to the first aspect as described above or according to any preceding implementation form of the first aspect.
根据所述第四方面的集成电路的优点对应于上文所述第一方面的优点。The advantages of the integrated circuit according to the fourth aspect correspond to the advantages of the first aspect described above.
根据第五方面,该目标通过具有功率转换器的功率电子设备来实现,所述功率转换器包括根据如上所述第一方面或根据所述第一方面的任一前述实施形式的同步整流控制单元。According to a fifth aspect, this object is achieved by a power electronic device having a power converter comprising a synchronous rectification control unit according to the first aspect as described above or according to any preceding implementation form of the first aspect .
根据所述第五方面的功率转换器的优点对应于上文所述第一方面的优点。The advantages of the power converter according to the fifth aspect correspond to the advantages of the first aspect described above.
上文所描述的实施例能够实现包括一个或多个电源开关的电路的高电源效率。这些电路可包括功率转换器,诸如谐振开关功率转换器。The embodiments described above enable high power efficiency for circuits that include one or more power switches. These circuits may include power converters, such as resonant switching power converters.
所述同步整流控制单元可通过使用整流后AC电流或AC电流的方式连接至包括一个或多个电源开关的电路。The synchronous rectification control unit may be connected to a circuit including one or more power switches by using rectified AC current or AC current.
所述同步整流控制算法可通过模拟控制电路或数字控制电路来实施。The synchronous rectification control algorithm can be implemented by an analog control circuit or a digital control circuit.
此外,所提出的同步整流控制方法可应用于双向谐振开关功率转换器上等。In addition, the proposed synchronous rectification control method can be applied to bidirectional resonant switching power converters, etc.
本发明实施例的其它目标、优点和新颖特征将从下面详细描述中显而易见。Other objects, advantages and novel features of embodiments of the present invention will become apparent from the following detailed description.
附图说明Description of drawings
附图图示出本发明实施例的实例,结合这些附图对各实施例进行更详细地描述,在附图中:Examples of embodiments of the invention are illustrated in the accompanying drawings, which are described in greater detail in conjunction with the accompanying drawings, in which:
图1为根据一些实施例的同步整流控制单元的示意方框图。FIG. 1 is a schematic block diagram of a synchronous rectification control unit according to some embodiments.
图2为图示一些实施例的流程图。Figure 2 is a flow diagram illustrating some embodiments.
图3a至图3b为图示一些实施例的方框图。3a-3b are block diagrams illustrating some embodiments.
图4为图示一些实施例的流程图。4 is a flow diagram illustrating some embodiments.
图5a至图5b为图示一些实施例的方框图。5a-5b are block diagrams illustrating some embodiments.
图6示出了根据一些实施例的输入和输出信号值的示例。Figure 6 shows examples of input and output signal values in accordance with some embodiments.
图7示出了根据一些实施例的输入和输出信号值的示例。Figure 7 shows examples of input and output signal values in accordance with some embodiments.
图8示出了根据一些实施例的输入和输出信号值的示例。Figure 8 shows examples of input and output signal values in accordance with some embodiments.
图9示出了根据一些实施例的输入和输出信号值的示例。FIG. 9 shows examples of input and output signal values in accordance with some embodiments.
图10为根据一些实施例的包括同步整流控制单元的功率转换器的示意方框图。10 is a schematic block diagram of a power converter including a synchronous rectification control unit according to some embodiments.
图11为根据一些实施例的同步整流控制方法的流程图。FIG. 11 is a flowchart of a synchronous rectification control method according to some embodiments.
图12为根据一些实施例的图示实施同步整流控制方法的处理电路的示意方框图。12 is a schematic block diagram illustrating a processing circuit implementing a synchronous rectification control method according to some embodiments.
具体实施方式Detailed ways
本发明描述的实施例被限定为一种同步整流控制单元以及一种控制同步整流的方法,它们将在下面描述的实施例中付诸实施。然而,这些实施例可为示例性的并且可采取多种不同的形式实现,且不应视为限于本文所提出的实施例;实际上,这些实施例的提供使得本发明将变得透彻且完整。The embodiments described in the present invention are defined as a synchronous rectification control unit and a method for controlling synchronous rectification, which will be implemented in the embodiments described below. These embodiments may, however, be exemplary and may take many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete .
从以下结合附图考虑的详细说明中,还可清楚地了解其它目标和特征。然而,应当理解的是附图仅仅为了说明,而不能作为对实施例的限制;对于实施例,应参考所附权利要求。进一步地,附图不一定按照比例绘制,除非另有说明,否则它们仅仅是对结构和流程的概念性说明。Other objects and features will also become apparent from the following detailed description considered in conjunction with the accompanying drawings. It should be understood, however, that the drawings are for illustration only, and not as limitations on the embodiments; for embodiments, reference should be made to the appended claims. Further, the drawings are not necessarily to scale, and unless otherwise indicated, they are merely conceptual illustrations of structures and flows.
图1示意地示出了实施本发明实施例的同步整流控制单元100的内部结构。FIG. 1 schematically shows the internal structure of a synchronous
同步整流控制单元100包括电压脉冲生成电路26和控制算法电路27。同步整流控制单元100在包括电源开关50的电路200中具有电流I,并且有第一和第二非同步PWM控制信号Q1 30和Q2 31作为输入。同步整流控制单元100输出第一和第二同步PWM控制信号SQ1 32和SQ2 33,它们可用于控制电源开关50的开关。The synchronous
电压脉冲生成电路26用于测量/检测电流I。电压脉冲生成电路26还用于输出两个电压脉冲。The voltage
如果所测量/检测的电流I存在正向变化率、dI/dt>0、接近/靠近电流I的值0,则输出第一电压V1 28的逻辑高值。在本文档中,dI/dt对应于电流I的时间导数,这显然表示电流的变化率,即电流I不断增加(正值)还是不断减少(负值)。If the measured/detected current I has a positive rate of change, dI/dt>0, near/close to the value 0 of the current I, a logic high value of the
如果电流I存在负向变化率、dI/dt<0、接近/靠近电流I的值0,则输出第二电压V229的逻辑高值。If the current I has a negative rate of change, dI/dt<0, and is close to/close to the value 0 of the current I, a logic high value of the second voltage V229 is output.
第一和第二电压脉冲V1 28和V2 29,以及第一和第二非同步PWM控制信号Q1 30和Q2 31是控制算法电路27的输入。控制算法电路27用于生成第一和第二同步PWM控制信号SQ1 32和SQ2 33。这些第一和第二同步PWM控制信号SQ1 32和SQ2 33可用于控制电路200中的电源开关50的开关。The first and second
控制算法电路27用于:基于第一和第二非同步PWM控制信号Q1 30和Q2 31,以及基于电压脉冲生成电路26输出的第一电压V1 28和第二电压V229,生成第一和第二同步PWM控制信号SQ1 32和SQ2 33。因此,在控制算法电路27中实施的控制逻辑/算法基于第一和第二电压脉冲V1 28和V2 29以及基于第一和第二非同步PWM控制信号Q1 30和Q2 31生成第一和第二同步PWM控制信号SQ1 32和SQ2 33并确定它们的值。下文详细阐释了用于生成第一和第二同步PWM控制信号SQ1 32和SQ2 33的控制逻辑/算法。The
然后通过使用这些生成的第一和第二同步PWM控制信号SQ1 32和SQ233执行电路200中的电源开关50的开关。The switching of the
根据本发明实施例的同步整流控制单元100具有多个优点。同步整流控制单元能够提供高电源效率。同步整流控制单元100还可基于AC电流波形和整流后AC电流波形中的任一者提供第一和第二同步PWM控制信号SQ132和SQ2 33,而传统方案仅限于AC电流波形。由于同步整流控制单元100可以使用AC和整流后AC两者,所以电流测量获得更大的灵活性。The synchronous
另外,根据本发明实施例的同步整流控制单元100对上述问题提出了一个简单、复杂度很低且还稳健的方案。In addition, the synchronous
同步整流控制单元100因此利用一种简单的控制算法进行同步整流,其利用电源开关接通和关闭时间点的指示的窄脉冲。同步整流控制单元100还提供固有的电流击穿保护、快速瞬态响应和低功耗。The synchronous
本发明利用一种在电压脉冲生成电路26中生成电压脉冲的饱和电流互感器,例如包括饱和比较器的电流传感电路,结合一种用于在控制算法电路27中实施的同步整流控制的智能控制方法/算法/逻辑。饱和电流互感器的使用具有减少功耗损失的效果。The present invention utilizes a saturable current transformer that generates voltage pulses in the voltage
第一和第二同步PWM控制信号SQ1和SQ2在这里是基于第一和第二非同步控制信号Q1和Q2生成的。由此,使同步整流控制单元100中的PWM资源减到最少。The first and second synchronous PWM control signals SQ1 and SQ2 are here generated based on the first and second non-synchronous control signals Q1 and Q2. Thereby, the PWM resources in the synchronous
图2为图示用于控制算法电路27的方法/算法/逻辑的两个实施例的流程图。FIG. 2 is a flow chart illustrating two embodiments of a method/algorithm/logic for controlling the
根据图2左支示出的实施例,输入到同步整流控制单元100的电流I是整流后交流电IAC_rect。对应于图2左支的控制算法电路27的方法/算法/逻辑同样在图3a的触发器电路中示出,触发器电路用于执行控制算法电路27的方法/算法/逻辑。According to the embodiment shown in the left branch of FIG. 2 , the current I input to the synchronous
如上所述,电压脉冲生成单元26用于测量整流后交流电IAC_rect并输出第一和第二电压V1 28和V2 29。As described above, the voltage
根据一实施例,如果第一电压V1 28和第一非同步PWM控制信号Q1 30都具有逻辑高值,则控制算法电路27,基于所输入的第一和第二非同步PWM控制信号Q1 30和31以及基于第一和第二电压V1 28和V2 29,用于生成第一同步PWM控制信号SQ1 32的逻辑高值。然后将所生成和输出的第一同步PWM控制信号SQ1 32的逻辑高值锁定到该逻辑高值。According to an embodiment, if both the
根据一实施例,如果第一电压V1 28和第一非同步PWM控制信号Q1 30中的至少一个具有逻辑低值,以及如果第二电压V2 29具有逻辑高值或者如果第二非同步PWM控制信号Q2 31具有逻辑高值,则控制算法电路27,基于所输入的第一和第二非同步PWM控制信号Q130和Q2 31以及基于第一和第二电压V1 28和V2 29,用于生成和输出第一同步PWM控制信号SQ1 32的逻辑低值。然后将所输出的第一同步PWM控制信号SQ1 32的逻辑低值锁定到该逻辑低值。According to an embodiment, if at least one of the
根据一实施例,如果第一电压V1 28和第一非同步PWM控制信号Q1 30中的至少一个具有逻辑低值,以及如果第二电压V2 29和第二非同步PWM控制信号Q2 31都具有逻辑低值,则控制算法电路27,基于所输入的第一和第二非同步PWM控制信号Q1 30和Q2 31以及基于第一和第二电压V1 28和V2 29,用于输出第一同步PWM控制信号SQ1 32的前一值。然后将所输出的第一同步PWM控制信号SQ1 32的前一值锁定到这些前一值。According to an embodiment, if at least one of the
根据图2右支示出的实施例,输入到同步整流控制单元100的电流I是整流后交流电IAC_rect。对应于图2右支的控制算法电路27的方法/算法/逻辑同样在图3b的触发器电路中示出,触发器电路用于执行控制算法电路27的方法/算法/逻辑。According to the embodiment shown in the right branch of FIG. 2 , the current I input to the synchronous
根据一实施例,如果第一电压V1 28具有逻辑高值且第二非同步PWM控制信号Q231具有逻辑高值,则控制算法电路27,基于所输入的第一和第二非同步PWM控制信号Q1 30和Q2 31以及基于第一和第二电压V1 28和V2 29,用于生成和输出第二同步PWM控制信号SQ2 33的逻辑高值。然后将所输出的第二同步PWM控制信号SQ2 33的逻辑高值锁定到该逻辑高值。According to an embodiment, if the
根据一实施例,如果第一电压V1 28和第二非同步PWM控制信号Q2 31中的至少一个具有逻辑低值,以及如果第二电压V2 29具有逻辑高值或者如果第一非同步PWM控制信号Q1 30具有逻辑高值,则控制算法电路27,基于所输入的第一和第二非同步PWM控制信号Q130和Q2 31以及基于第一和第二电压V1 28和V2 29,用于生成和输出第二同步PWM控制信号SQ2 33的逻辑低值。然后将所输出的第二同步PWM控制信号SQ2 33的逻辑低值锁定到该逻辑低值。According to an embodiment, if at least one of the
根据一实施例,如果第一电压V1 28和第二非同步PWM控制信号Q2 31中的至少一个具有逻辑低值,以及如果第二电压V2 29和第一非同步PWM控制信号Q1 30都具有逻辑低值,则控制算法电路27,基于所输入的第一和第二非同步PWM控制信号Q1 30和Q2 31以及基于第一和第二电压V1 28和V2 29,用于生成和输出第二同步PWM控制信号SQ2 33的前一值。然后将第二同步PWM控制信号SQ2 33的前一值相应地锁定到这些前一值。According to an embodiment, if at least one of the
图4为图示用于控制算法电路27的方法/算法/逻辑的两个实施例的流程图。FIG. 4 is a flowchart illustrating two embodiments of a method/algorithm/logic for controlling the
根据图4左支示出的实施例,输入到同步整流控制单元100的电流I是交流电IAC_rect,即非整流电流。对应于图4左支的控制算法电路27的方法/算法/逻辑同样在图5a的触发器电路中示出,触发器电路用于执行控制算法电路27的方法/算法/逻辑。According to the embodiment shown in the left branch of FIG. 4 , the current I input to the synchronous
如果交流电IAC在这里是测量后的同步整流侧电流IAC_sec 35,那么同步整流控制单元是连接至同步整流侧220的AC部分的同步整流侧单元2,如下文图10所图示。If the alternating current I AC is here the measured synchronous rectification side current I AC_sec 35 , then the synchronous rectification control unit is the synchronous
相应地,如果交流电IAC在这里是测量后的非同步整交流电AC IAC,prim36,那么同步整流控制单元100是连接至非同步整流侧210的AC部分的非同步整流侧单元3,如下文图10所图示。Correspondingly, if the alternating current I AC is here the measured asynchronous whole alternating current AC I AC,prim 36, then the synchronous
根据一实施例,如果第一电压V1 28具有逻辑高值且第一非同步PWM控制信号Q130具有逻辑高值,则控制算法电路27,基于所输入的第一和第二非同步PWM控制信号Q1 30和Q2 31以及基于第一和第二电压V1 28和V2 29,用于生成和输出第一同步PWM控制信号SQ1 32的逻辑高值。然后将所输出的第一同步PWM控制信号SQ1 32的逻辑高值锁定到该逻辑高值。According to an embodiment, if the
根据一实施例,如果第一电压V1 28和第一非同步PWM控制信号Q1 30中的至少一个具有逻辑低值,以及如果第二电压V2 29具有逻辑高值或者如果第二非同步PWM控制信号Q2 31具有逻辑高值,则控制算法电路27,基于所输入的第一和第二非同步PWM控制信号Q130和Q2 31以及基于第一和第二电压V1 28和V2 29,用于生成和输出第一同步PWM控制信号SQ1 32的逻辑低值。然后将所输出的第一同步PWM控制信号SQ1 32的逻辑低值锁定到该逻辑低值。According to an embodiment, if at least one of the
根据一实施例,如果第一电压V1 28和第一非同步PWM控制信号Q1 30中的至少一个具有逻辑低值,以及如果第二电压V2 29和第二非同步PWM控制信号Q2 31都具有逻辑低值,则控制算法电路27,基于所输入的第一和第二非同步PWM控制信号Q1 30和Q2 31以及基于第一和第二电压V1 28和V2 29,用于生成和输出第一同步PWM控制信号SQ1 32的前一值。然后将第一同步PWM控制信号SQ1 32的前一值相应地锁定到这些前一值。According to an embodiment, if at least one of the
根据图4右支示出的实施例,输入到同步整流控制单元100的电流I是交流电IAC,即非整流电流。对应于图4右支的控制算法电路27的方法/算法/逻辑同样在图5b的触发器电路中示出,触发器电路用于执行控制算法电路27的方法/算法/逻辑。According to the embodiment shown in the right branch of FIG. 4 , the current I input to the synchronous
如果交流电IAC在这里是测量后的同步整流侧电路IAC,sec 35,那么同步整流控制单元是连接至同步整流侧220的AC部分的同步整流侧单元2,如下文图10所图示。If the alternating current I AC is here the measured synchronous rectification side circuit I AC,sec 35 , then the synchronous rectification control unit is the synchronous
相应地,如果交流电IAC在这里是测量后的非同步整交流电AC IAC,prim36,那么同步整流控制单元100是连接至非同步整流侧210的AC部分的非同步整流侧单元3,如下文图10所图示。Correspondingly, if the alternating current I AC is here the measured asynchronous whole alternating current AC I AC,prim 36, then the synchronous
根据一实施例,如果第二电压V2 29具有逻辑高值且第二非同步PWM控制信号Q231具有逻辑高值,则控制算法电路27,基于所输入的第一和第二非同步PWM控制信号Q1 30和Q2 31以及基于第一和第二电压V1 28和V2 29,用于生成和输出第二同步PWM控制信号SQ2 33的逻辑高值。然后将所输出的第二同步PWM控制信号SQ2 33的逻辑高值锁定到该逻辑高值。According to an embodiment, if the
根据一实施例,如果第二电压V2 29和第二非同步PWM控制信号Q2 31中的至少一个具有逻辑低值,以及如果第一电压V1 28具有逻辑高值或者如果第一非同步PWM控制信号Q1 30具有逻辑高值,则控制算法电路27,基于所输入的第一和第二非同步PWM控制信号Q130和Q2 31以及基于第一和第二电压V1 28和V2 29,用于生成和输出第二同步PWM控制信号SQ2 33的逻辑低值。然后将所输出的第二同步PWM控制信号SQ2 33的逻辑低值锁定到该逻辑低值。According to an embodiment, if at least one of the
根据一实施例,如果第二电压V2 29和第二非同步PWM控制信号Q2 31中的至少一个具有逻辑低值,以及如果第一电压V1 28和第一非同步PWM控制信号Q1 30都具有逻辑低值,则控制算法电路27,基于所输入的第一和第二非同步PWM控制信号Q1 30和Q2 31以及基于第一和第二电压V1 28和V2 29,用于生成和输出第二同步PWM控制信号SQ2 33的前一值。然后将第二同步PWM控制信号SQ2 33的前一值相应地锁定到这些前一值。According to an embodiment, if at least one of the
图6为含有多个曲线的图,这些曲线示出了以下项的示例值和波形:第一和第二非同步PWM控制信号Q1 30和Q2 31、为交流电IAC_rect的电流、第一和第二电压脉冲V1 28和V229以及所生成的可用于控制电源开关的开关的第一和第二同步PWM控制信号SQ1 32和SQ233。第一和第二同步PWM控制信号SQ1 32和SQ2 33在这里根据上文图2的流程图生成。6 is a graph containing curves showing example values and waveforms of the first and second asynchronous PWM control signals
图6示出了整流后交流电IAC_rect连续时的操作条件。根据图6所示的操作条件,如果整流后的连续交流电IAC_rect接近/靠近零并具有正向变化率,则电压脉冲生成电路26产生第一电压脉冲V1 28。或者,如果整流后的连续交流电IAC_rect接近/靠近零并具有负向变化率,则电压脉冲生成电路26产生第二电压脉冲V2 29。如上文结合图2中流程图所描述,同步整流控制算法用于生成第一和第二同步PWM控制信号SQ1 32和SQ2 33以便接通或关闭电源开关。FIG. 6 shows the operating conditions when the rectified alternating current I AC_rect is continuous. According to the operating conditions shown in FIG. 6 , if the rectified continuous alternating current I AC_rect is close to/close to zero and has a positive rate of change, the voltage
图7为含有多条曲线的图,这些曲线示出了以下项的示例值和波形:第一和第二非同步PWM控制信号Q1 30和Q2 31、为整流后交流电IAC_rect的电流、第一和第二电压脉冲V128和V2 29以及所生成的可用于控制电源开关的开关的第一和第二同步PWM控制信号SQ132和SQ2 33。第一和第二同步PWM控制信号SQ1 32和SQ2 33在这里根据上文图2的流程图生成。FIG. 7 is a graph containing curves showing example values and waveforms of first and second asynchronous PWM control signals
图7示出了整流后交流电IAC_rect非连续时的操作条件。根据图7所示的操作条件,如果整流后的非连续交流电IAC_rect接近/靠近零并具有正向变化率,则电压脉冲生成电路26产生第一电压脉冲V1 28。或者,如果整流后的非连续交流电IAC_rect接近/靠近零并具有负向变化率,则电压脉冲生成电路26产生第二电压脉冲V2 29。如上文结合图2中的流程图所描述,同步整流控制算法用于生成第一和第二同步PWM控制信号SQ1 32和SQ2 33以便接通或关闭电源开关。FIG. 7 shows the operating conditions when the rectified alternating current I AC_rect is discontinuous. According to the operating conditions shown in FIG. 7 , if the rectified discontinuous alternating current I AC_rect is close to/close to zero and has a positive rate of change, the voltage
图8为含有多条曲线的图,这些绘图示出了以下项的示例值和波形:第一和第二非同步PWM控制信号Q1 30和Q2 31、为交流电IAC_rect的电流、第一和第二电压脉冲V1 28和V2 29以及所生成的可用于控制电源开关的开关的第一和第二同步PWM控制信号SQ1 32和SQ2 33。第一和第二同步PWM控制信号SQ1 32和SQ2 33在这里根据上文图4中流程图生成。FIG. 8 is a graph containing curves showing example values and waveforms of first and second asynchronous PWM control signals
图8示出了交流电IAC连续时的操作条件。根据图8展现出的操作条件,如果连续的交流电IAC_rect接近/靠近零并具有正向变化率,则电压脉冲生成电路26产生第一电压脉冲V1 28。可选地,如果连续的交流电IAC接近/靠近零并具有负向变化率,则电压脉冲生成电路26产生第二电压脉冲V2 29。如上文结合图4中流程图所描述,同步整流控制算法用于生成第一和第二同步PWM控制信号SQ1 32和SQ2 33以便接通或关闭电源开关。Figure 8 shows the operating conditions when the alternating current IAC is continuous. According to the operating conditions presented in FIG. 8 , if the continuous alternating current IAC_rect is close to/close to zero and has a positive rate of change, the voltage
图9为含有多条曲线的图,这些曲线示出了以下项的示例值和波形:第一和第二非同步PWM控制信号Q1 30和Q2 31、为交流电IAC的电流、第一和第二电压脉冲V1 28和V2 29以及所生成的可用于控制电源开关的开关的第一和第二同步PWM控制信号SQ1 32和SQ2 33。第一和第二同步PWM控制信号SQ1 32和SQ2 33在这里根据上文图4的流程图生成。9 is a graph containing curves showing example values and waveforms of first and second asynchronous PWM control signals
图9示出了交流电IAC不连续时的操作条件。根据图9所示的操作条件,如果非连续的交流电IAC接近/靠近零并具有正向变化率,则电压脉冲生成电路26产生第一电压脉冲V128。可选地,如果非连续的交流电IAC接近/靠近零并具有负向变化率,则电压脉冲生成电路26产生第二电压脉冲V2 29。如上文结合图4中流程图所描述,同步整流控制算法用于生成第一和第二同步PWM控制信号SQ1 32和SQ2 33以便接通或关闭电源开关。Figure 9 shows the operating conditions when the alternating current I AC is discontinuous. According to the operating conditions shown in FIG. 9, if the discontinuous alternating current I AC is close to/close to zero and has a positive rate of change, the voltage
如上所述,同步整流控制单元100可用于控制包括电源开关50的基本上任何电路200中的电源开关。这些电路200包括,例如半桥功率转换器和全桥功率转换器。As mentioned above, the synchronous
图10示意地示出了全桥功率转换器电路200的电路图的一个非限制性示例,本发明的实施例可以在全桥功率转换器电路200中实施。然而,应该注意到,本发明实施例还可在包括一个或多个电源开关的大量其它电路中实施。FIG. 10 schematically illustrates one non-limiting example of a circuit diagram of a full-bridge
图10中的电路200因此是包括同步整流电路的谐振开关功率转换器200的示意图示。谐振开关功率转换器200通过隔离变压器18分为原边210和副边220。原边210在本示例中可对应于电路的非同步侧210。副边220在这里可对应于电路的同步侧220。The
变压器18具有Np匝的原绕组181和Ns匝的副绕组182。谐振开关功率转换器的副边220在这里包括四个非同步侧电源开关13、14、15和16,它们可通过使用MOSFET或其它合适的晶体管等来实施。原边210还包括谐振电路17和电容器12,谐振电路17可包括以众所周知的方式排列的电容器和电感器,电容器12连接于两个原边端子10和11之间。整流后AC电压输入到电容器12。因此,整流后AC电压,即替代电压AC的负电压值已经转换成对应正电压的电压,连接至端子10和11。The transformer 18 has a primary winding 181 of Np turns and a secondary winding 182 of Ns turns. The
转换器的副边220包括四个非同步侧电源开关19、20、21和22,它们可通过使用MOSFET或其它合适的晶体管等来实施。副边220还包括在电容器25,其连接于两个副边端子23和24之间并由整流后的AC电压供电。因此,整流后AC电压连接至端子23和24。The
第一非同步控制信号Q1 30在开关周期的前半部分内驱动两个非同步侧电源开关13和16,使得第一非同步控制信号Q1 30具有逻辑高值,这意味着由第一非同步控制信号Q130驱动的两个非同步侧电源开关被接通。在开关周期的后半部分内,第一非同步控制信号Q1 30具有逻辑低值,这意味着由第一非同步控制信号Q1 30驱动的两个非同步侧电源开关被关闭。The first asynchronous
第二非同步控制信号Q2 31在开关周期/循环的前半部分内驱动两个非同步侧电源开关14和15,使得第二非同步控制信号Q2 31具有逻辑低值,这意味着由第二非同步控制信号Q2 31驱动的两个电源开关被关闭。在开关周期的后半部分内,第二非同步控制信号Q231具有逻辑高值,这意味着由第二非同步控制信号Q2 31驱动的两个电源开关被接通。The second asynchronous
在第一和第二非同步控制信号Q1和Q2之间引入了死区时间以防止电路中的电流击穿,即由于同时接通多个电源开关引起的短路。在本文档中,死区时间可限定为第一和第二非同步控制信号Q1和Q2都具有逻辑低值时的时间段。相应地,死区时间可限定为第一和第二同步控制信号SQ1和SQ2都具有逻辑低值时的时间段。Dead time is introduced between the first and second asynchronous control signals Q1 and Q2 to prevent current breakdown in the circuit, ie a short circuit due to turning on multiple power switches simultaneously. In this document, dead time may be defined as the time period when both the first and second asynchronous control signals Q1 and Q2 have logic low values. Accordingly, the dead time may be defined as a time period when both the first and second synchronization control signals SQ1 and SQ2 have logic low values.
在副边/同步侧220上,第一同步控制信号SQ1 32驱动两个同步侧电源开关19和22,而第二同步控制信号SQ2 33以对应的方式驱动电源开关20和21,同样第一非同步控制信号Q1 30和第二非同步控制信号Q2 31驱动四个非同步电源开关。On the secondary/
所以,第一同步控制信号SQ1 32在开关周期的前半部分内驱动两个同步侧电源开关19和22,使得第一同步控制信号SQ1 32具有逻辑高值,这意味着由第一同步控制信号SQ132驱动的两个非同步侧电源开关被接通。在开关周期的后半部分内,第一同步控制信号SQ132具有逻辑低值,这意味着由第一同步控制信号SQ1 32驱动的两个同步侧电源开关被关闭。Therefore, the first synchronization
第二同步控制信号SQ2 33在开关周期的前半部分内驱动两个同步侧电源开关20和21,使得第二同步控制信号SQ2 33具有逻辑低值,这意味着由第二同步控制信号SQ2 33驱动的两个电源开关被关闭。在开关周期的后半部分内,第二同步控制信号SQ2 33具有逻辑高值,这意味着由第二同步控制信号SQ2 33驱动的两个电源开关被接通。The second synchronization
在第一和第二同步控制信号SQ1和SQ2之间引入了死区时间以防止电流击穿。Dead time is introduced between the first and second synchronization control signals SQ1 and SQ2 to prevent current breakdown.
同步整流控制单元100能够根据上面描述的不同实施例在图10所示的全桥功率转换器电路200中的不同位置/地方实施。The synchronous
根据一实施例,同步整流控制单元100连接于电源开关19、20、21、22与电容器25之间的同步整流侧220的整流后AC总线,还称为DC总线,即在整流后AC部分上。同步整流控制单元100由此随后在图10表示为1并置于图1的点37和38之间。这里,输入到同步整流控制单元1的电流I是整流后AC电流IAC_rect 34,其可以是连续或非连续的,如上文针对整流后交流电IAC_rect所描述。According to an embodiment, the synchronous
根据另一实施例,同步整流控制单元100连接至变压器18与两个电源开关21和22之间的同步整流侧220的AC部分。同步整流控制单元100由此随后在图10表示为2。这里,输入到同步整流控制单元2的电流I是同步交流电AC IAC,sec 35,其可以是连续或非连续的,如上文针对交流电IAC所描述。因此,如果作为同步整流控制单元100的输入的交流电IAC是测量后的同步整流侧电流,那么同步整流控制单元是同步整流侧单元2。According to another embodiment, the synchronous
根据另一实施例,同步整流控制单元100连接至在谐振电路17与变压器18之间的非同步整流侧210的AC部分。同步整流控制单元100由此随后在图10表示为3。这里,由同步整流控制单元3测量的电流I是非同步交流电AC IAC,prim 36,其可以是连续或非连续的,如上文针对交流电IAC所描述。在全桥转换器电路200中,非同步交流电AC IAC,prim 36可以是同步交流电AC IAC,sec 35的镜像波形。According to another embodiment, the synchronous
根据本发明这些实施例的同步整流控制单元1、2、3可对应于本文档所公开的任一实施例,前提是它们具有合适的输入电流。因此,上文描述的同步整流控制单元100的内部结构的操作还对图10公开的每个同步整流控制单元1、2、3有效,即:当同步侧整流后交流电IAC_rect 34被输入到同步整流控制单元1时、当同步侧交流电IAC,sec 35被输入到同步整流控制单元2时,或者当非同步侧交流电IAC,prim 36被输入到同步整流控制单元3时。The synchronous
图11为图示同步整流控制方法300的流程图。FIG. 11 is a flowchart illustrating a synchronous
然而,应注意,任何、一些或所有所描述的动作301至303可按与枚举指示略有不同的时间顺序执行,同时执行,或者甚至以相反顺序执行。另外,注意的是,一些动作可以根据不同实施例以多个替代方式执行。方法300可包括以下动作:It should be noted, however, that any, some or all of the described actions 301-303 may be performed in a slightly different chronological order than indicated by the enumeration, concurrently, or even in the reverse order. Additionally, note that some actions may be performed in a number of alternative ways, according to different embodiments.
动作301Action 301
在第一动作301中,测量包括电源开关50的电路100中的电流I。In a first action 301, the current I in the
动作302Action 302
在第二动作302中,如果电流I的正向变化率接近电流I的值0,则输出第一电压V128的逻辑高值。In the second action 302, if the positive rate of change of the current I is close to the value 0 of the current I, a logic high value of the first voltage V128 is output.
或者,如果电流I的负向变化率接近电流I的值0,则输出第二电压V2 29的逻辑高值。Alternatively, if the negative rate of change of the current I is close to the value 0 of the current I, a logic high value of the
动作303Action 303
在第三动作303中,基于第一和第二非同步脉冲宽度调制(pulse widthmodulation,PWM)控制信号Q1 30和Q2 31,以及基于第一电压V1 28和第二电压V2 29,生成第一和第二同步PWM控制信号SQ1 32和SQ2 33。所生成的第一和第二同步PWM控制信号SQ132和SQ2 33然后可用于控制电路200中的电源开关50的开关。In a third act 303, based on the first and second asynchronous pulse width modulation (PWM)
另外,同步整流控制方法可在图12示意地图示的电路400中实施。处理电路400可用于:Additionally, the synchronous rectification control method may be implemented in the
测量301包括电源开关50的电路100中的电流I;measuring 301 the current I in the
如果所述电流I的正向变化率接近电流I的值0,则输出302第一电压V1 28的逻辑高值,或者If the positive rate of change of the current I is close to the value 0 of the current I, then output 302 a logic high value of the
如果所述电流I的负向变化率接近电流I的值0,则输出302第二电压V2 29的逻辑高值;以及outputting 302 a logic high value of the
基于第一和第二非同步脉冲宽度调制(pulse width modulation,PWM)控制信号Q1 30和Q2 31,以及基于第一电压V1 28和第二电压V2 29,生成303第一和第二同步PWM控制信号SQ1 32和SQ2 33。这些第一和第二同步PWM控制信号SQ1 32和SQ2 33可用于控制电源开关50的开关。Based on the first and second asynchronous pulse width modulation (PWM)
处理电路400可包括,例如中央处理器(Central Processing Unit,CPU)、处理单元、处理电路、处理器、专用集成电路(Application Specific Integrated Circuit,ASIC)、微处理器或可解析和执行指令的其它处理逻辑的一个或多个实例。所以,本文中使用的表达“处理电路”可表示包括多个处理电路,例如上述枚举的任何、一些或所有项的处理线路。The
处理电路400还执行数据处理功能以供数据输入、输出和包括数据缓冲的处理,以及执行设备控制功能。
根据一些实施例,处理电路400可连接到至少一个存储器401。存储器401可包括物理设备,用于临时或永久存储数据或程序,即指令序列。根据一些实施例,存储器401可包括含有硅基晶体管的集成电路。另外,存储器401可以是易失性的或非易失性的。According to some embodiments, the
先前所描述的动作301至303可通过一个或多个处理电路400与执行动作301至303的功能的计算机程序代码一起来执行。所以,包括执行动作301至303的指令的计算机程序产品在被加载至处理电路400时可执行同步整流控制方法300。Actions 301-303 previously described may be performed by one or
例如,可采用数据载体的形式提供上述计算机程序产品,所述数据载体携带计算机程序代码,所述计算机程序代码用以在其加载至处理电路400时根据一些实施例来执行动作301至303中的任意、至少一些或全部动作。所述数据载体可为,例如,硬盘、CD-ROM光盘、存储棒、光储存设备、磁存储设备或任何其他合适的介质,诸如可以非瞬时性方式中保存机器可读数据的磁盘或磁带。另外,计算机程序产品可作为服务器上的计算机程序代码提供并可远程地通过互联网或内网连接等下载。For example, the computer program product described above may be provided in the form of a data carrier carrying computer program code for performing the steps of actions 301 to 303 according to some embodiments when it is loaded into the
在如附图所图示的实施例的详细描述中使用的术语并不旨在限制所描述的方法300和/或同步整流控制单元100,这相反受到所附权利要求书的限制。The terminology used in the detailed description of the embodiments as illustrated in the drawings is not intended to limit the described
本文所用的术语“和/或”包括相关联的所列项目中的一者或多者的任何和所有组合。此外,单数形式“一”和“所述”解释为“至少一个”,因此还可能包括某一类的多个实体,除非另外明确地陈述。应进一步理解,术语“包括”、“包含”、“含有”和/或“由……组成”用于说明存在所述特征、动作、整体、步骤、操作、元件和/或部件,但并不排除存在或添加一个或多个其它特征、动作、整体、步骤、操作、元件、部件和/或它们的组合。As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items. In addition, the singular forms "a" and "the" are construed as "at least one" and thus may also include a plurality of entities of a certain class, unless expressly stated otherwise. It will be further understood that the terms "comprising", "comprising", "containing" and/or "consisting of" are used to describe the presence of stated features, acts, integers, steps, operations, elements and/or components, but not The presence or addition of one or more other features, acts, integers, steps, operations, elements, components and/or combinations thereof is excluded.
Claims (4)
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/EP2014/063967 WO2016000763A1 (en) | 2014-07-01 | 2014-07-01 | Unit and method for synchronous rectification control |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN106797215A CN106797215A (en) | 2017-05-31 |
| CN106797215B true CN106797215B (en) | 2020-09-25 |
Family
ID=51177045
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201480079770.8A Active CN106797215B (en) | 2014-07-01 | 2014-07-01 | Synchronous rectification control unit and method |
Country Status (3)
| Country | Link |
|---|---|
| EP (1) | EP3149854A1 (en) |
| CN (1) | CN106797215B (en) |
| WO (1) | WO2016000763A1 (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102018212197A1 (en) * | 2018-07-23 | 2020-01-23 | Robert Bosch Gmbh | Electronic circuitry and operating procedures therefor |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN2257103Y (en) * | 1995-10-13 | 1997-06-25 | 中南工学院 | Intelligent switch power type quick charger |
| US6992906B1 (en) * | 2002-12-10 | 2006-01-31 | Edward Herbert | Synthetic rectifiers |
| CN102355976A (en) * | 2009-03-19 | 2012-02-15 | 林肯环球股份有限公司 | Power source for an electric arc welder comprising an inverter being controlled with a modified phase shifted gate drive |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2007145388A1 (en) * | 2006-06-15 | 2007-12-21 | Pstek Co.Ltd. | Method for series resonant converter control with synchronous rectifier |
| JP4710749B2 (en) * | 2006-07-28 | 2011-06-29 | 富士電機システムズ株式会社 | DC-DC converter control circuit and method |
| US8064229B2 (en) * | 2008-11-11 | 2011-11-22 | Semiconductor Components Industries, Llc | Method of forming a series resonant switching power supply control circuit and structure therefor |
| TWI462445B (en) * | 2012-10-19 | 2014-11-21 | Lite On Technology Corp | Power converting device |
| TWI451675B (en) * | 2012-10-31 | 2014-09-01 | Lite On Technology Corp | Synchronously regulating controller circuit and power converting device |
-
2014
- 2014-07-01 WO PCT/EP2014/063967 patent/WO2016000763A1/en active Application Filing
- 2014-07-01 EP EP14738776.5A patent/EP3149854A1/en not_active Withdrawn
- 2014-07-01 CN CN201480079770.8A patent/CN106797215B/en active Active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN2257103Y (en) * | 1995-10-13 | 1997-06-25 | 中南工学院 | Intelligent switch power type quick charger |
| US6992906B1 (en) * | 2002-12-10 | 2006-01-31 | Edward Herbert | Synthetic rectifiers |
| CN102355976A (en) * | 2009-03-19 | 2012-02-15 | 林肯环球股份有限公司 | Power source for an electric arc welder comprising an inverter being controlled with a modified phase shifted gate drive |
Also Published As
| Publication number | Publication date |
|---|---|
| EP3149854A1 (en) | 2017-04-05 |
| WO2016000763A1 (en) | 2016-01-07 |
| CN106797215A (en) | 2017-05-31 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR102612384B1 (en) | PWM capacitor control | |
| CN104539155B (en) | It is a kind of to have from the Multiphase Parallel converter and its control method flowed | |
| TWI521852B (en) | Isolated switching converters, and switching controllers and controlling methods thereof | |
| CN105305818B (en) | For the system and method for switch power supply current sampling | |
| CN109412417B (en) | Valley and Peak Detection for Switching Power Converters | |
| JP5532794B2 (en) | Synchronous rectification control device, control method, and isolated switching power supply | |
| CN107086793B (en) | A Dynamic Compensation Control Circuit for Synchronous Rectification Power Converter | |
| KR20110094733A (en) | Control device,led emitting light device comprising the same, and control method | |
| JP2019503160A (en) | Control circuit and method for controlling resonant converter, and power inverter including resonant converter and control circuit | |
| TWI482976B (en) | Method and apparatus for detecting ccm operation of a magnetic device | |
| JP6787505B2 (en) | Control method and control circuit of switching power supply | |
| KR20160134562A (en) | Overcurrent protection circuit and power factor correction circuit comprising the same | |
| CN107005165A (en) | Switching power unit | |
| JP2009159721A (en) | Switching power supply unit and primary-side control circuit | |
| TW201406023A (en) | Digital power control circuit for power converter and control circuit for power converter | |
| JP2017034829A (en) | Power conversion device | |
| JP2017204921A (en) | Switching power supply | |
| CN102893478A (en) | Synchronous Rectifier Control Techniques for Resonant Converters | |
| TWI774054B (en) | Switch mode power circuit, device, and method for reducing common-mode electromagnetic interference in a power converter | |
| CN206962707U (en) | A kind of dynamic compesated control circuit for synchronous rectification power inverter | |
| WO2017168220A1 (en) | Controller for use with a power converter, and method of operating the same | |
| CN106797215B (en) | Synchronous rectification control unit and method | |
| CN102545621B (en) | Switching power supply and control method thereof | |
| US9742309B2 (en) | Waveform shape discriminator | |
| JP2014073027A (en) | Power conversion device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |