CN106834323A - Gene editing method based on streptomyces virginiae IBL14 gene cas7-5-3 - Google Patents
Gene editing method based on streptomyces virginiae IBL14 gene cas7-5-3 Download PDFInfo
- Publication number
- CN106834323A CN106834323A CN201611089333.1A CN201611089333A CN106834323A CN 106834323 A CN106834323 A CN 106834323A CN 201611089333 A CN201611089333 A CN 201611089333A CN 106834323 A CN106834323 A CN 106834323A
- Authority
- CN
- China
- Prior art keywords
- gene
- cas
- plasmid
- gene editing
- dna
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 81
- 238000010362 genome editing Methods 0.000 title claims abstract description 69
- 238000000034 method Methods 0.000 title claims abstract description 14
- 241000187122 Streptomyces virginiae Species 0.000 title description 7
- 241000187747 Streptomyces Species 0.000 claims abstract description 20
- 241000588724 Escherichia coli Species 0.000 claims abstract description 13
- 244000063299 Bacillus subtilis Species 0.000 claims abstract description 8
- 235000014469 Bacillus subtilis Nutrition 0.000 claims abstract description 8
- 239000013612 plasmid Substances 0.000 claims description 62
- 238000006243 chemical reaction Methods 0.000 claims description 24
- 238000010276 construction Methods 0.000 claims description 24
- 102000004169 proteins and genes Human genes 0.000 claims description 21
- 239000013613 expression plasmid Substances 0.000 claims description 17
- 239000012634 fragment Substances 0.000 claims description 17
- 108020004414 DNA Proteins 0.000 claims description 16
- 108091008146 restriction endonucleases Proteins 0.000 claims description 10
- 238000012163 sequencing technique Methods 0.000 claims description 9
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 claims description 8
- 238000013461 design Methods 0.000 claims description 8
- 239000008101 lactose Substances 0.000 claims description 8
- 210000000349 chromosome Anatomy 0.000 claims description 6
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 claims description 5
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 claims description 5
- 241000894006 Bacteria Species 0.000 claims description 4
- 230000000295 complement effect Effects 0.000 claims description 4
- 238000003780 insertion Methods 0.000 claims description 4
- 230000037431 insertion Effects 0.000 claims description 4
- 238000012795 verification Methods 0.000 claims description 4
- 108091092584 GDNA Proteins 0.000 claims description 3
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 3
- 210000001236 prokaryotic cell Anatomy 0.000 claims description 3
- 230000002759 chromosomal effect Effects 0.000 claims description 2
- 238000003776 cleavage reaction Methods 0.000 claims description 2
- 238000010230 functional analysis Methods 0.000 claims description 2
- 244000005700 microbiome Species 0.000 claims description 2
- 230000035772 mutation Effects 0.000 claims description 2
- 230000007017 scission Effects 0.000 claims description 2
- 238000007792 addition Methods 0.000 abstract 1
- 101150066555 lacZ gene Proteins 0.000 description 51
- 239000002609 medium Substances 0.000 description 18
- 239000000047 product Substances 0.000 description 13
- ULGZDMOVFRHVEP-RWJQBGPGSA-N Erythromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 ULGZDMOVFRHVEP-RWJQBGPGSA-N 0.000 description 9
- 238000001962 electrophoresis Methods 0.000 description 9
- 229920000936 Agarose Polymers 0.000 description 8
- 210000004027 cell Anatomy 0.000 description 8
- 108091033409 CRISPR Proteins 0.000 description 7
- 108010002747 Pfu DNA polymerase Proteins 0.000 description 6
- 229960000723 ampicillin Drugs 0.000 description 6
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 6
- 238000007689 inspection Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 239000013598 vector Substances 0.000 description 6
- 230000001580 bacterial effect Effects 0.000 description 5
- 239000012264 purified product Substances 0.000 description 5
- 125000006850 spacer group Chemical group 0.000 description 5
- 102000003960 Ligases Human genes 0.000 description 4
- 108090000364 Ligases Proteins 0.000 description 4
- 238000012408 PCR amplification Methods 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 229950006334 apramycin Drugs 0.000 description 4
- XZNUGFQTQHRASN-XQENGBIVSA-N apramycin Chemical compound O([C@H]1O[C@@H]2[C@H](O)[C@@H]([C@H](O[C@H]2C[C@H]1N)O[C@@H]1[C@@H]([C@@H](O)[C@H](N)[C@@H](CO)O1)O)NC)[C@@H]1[C@@H](N)C[C@@H](N)[C@H](O)[C@H]1O XZNUGFQTQHRASN-XQENGBIVSA-N 0.000 description 4
- 229960005091 chloramphenicol Drugs 0.000 description 4
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 4
- 229960003276 erythromycin Drugs 0.000 description 4
- 101150104734 ldh gene Proteins 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 239000013611 chromosomal DNA Substances 0.000 description 3
- 238000003209 gene knockout Methods 0.000 description 3
- 239000008103 glucose Substances 0.000 description 3
- 235000018102 proteins Nutrition 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 230000009182 swimming Effects 0.000 description 3
- OPIFSICVWOWJMJ-AEOCFKNESA-N 5-bromo-4-chloro-3-indolyl beta-D-galactoside Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1OC1=CNC2=CC=C(Br)C(Cl)=C12 OPIFSICVWOWJMJ-AEOCFKNESA-N 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 2
- 239000001888 Peptone Substances 0.000 description 2
- 108010080698 Peptones Proteins 0.000 description 2
- RJKFOVLPORLFTN-LEKSSAKUSA-N Progesterone Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H](C(=O)C)[C@@]1(C)CC2 RJKFOVLPORLFTN-LEKSSAKUSA-N 0.000 description 2
- 108091081062 Repeated sequence (DNA) Proteins 0.000 description 2
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000008272 agar Substances 0.000 description 2
- 238000000246 agarose gel electrophoresis Methods 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 108091006374 cAMP receptor proteins Proteins 0.000 description 2
- 239000005018 casein Substances 0.000 description 2
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 2
- 235000021240 caseins Nutrition 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 108091036078 conserved sequence Proteins 0.000 description 2
- 238000004925 denaturation Methods 0.000 description 2
- 230000036425 denaturation Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- JYGXADMDTFJGBT-VWUMJDOOSA-N hydrocortisone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 JYGXADMDTFJGBT-VWUMJDOOSA-N 0.000 description 2
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 2
- WRUGWIBCXHJTDG-UHFFFAOYSA-L magnesium sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Mg+2].[O-]S([O-])(=O)=O WRUGWIBCXHJTDG-UHFFFAOYSA-L 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 235000019319 peptone Nutrition 0.000 description 2
- 239000013600 plasmid vector Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000012257 pre-denaturation Methods 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 150000003431 steroids Chemical class 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 239000008399 tap water Substances 0.000 description 2
- 235000020679 tap water Nutrition 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000011426 transformation method Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-SVZMEOIVSA-N (+)-Galactose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-SVZMEOIVSA-N 0.000 description 1
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- ITZMJCSORYKOSI-AJNGGQMLSA-N APGPR Enterostatin Chemical compound C[C@H](N)C(=O)N1CCC[C@H]1C(=O)NCC(=O)N1[C@H](C(=O)N[C@@H](CCCN=C(N)N)C(O)=O)CCC1 ITZMJCSORYKOSI-AJNGGQMLSA-N 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 244000153158 Ammi visnaga Species 0.000 description 1
- 235000010585 Ammi visnaga Nutrition 0.000 description 1
- 241000219194 Arabidopsis Species 0.000 description 1
- 241000276408 Bacillus subtilis subsp. subtilis str. 168 Species 0.000 description 1
- 108010040467 CRISPR-Associated Proteins Proteins 0.000 description 1
- 230000004544 DNA amplification Effects 0.000 description 1
- 230000004543 DNA replication Effects 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 241000588722 Escherichia Species 0.000 description 1
- 101100382541 Escherichia coli (strain K12) casD gene Proteins 0.000 description 1
- 101100005249 Escherichia coli (strain K12) ygcB gene Proteins 0.000 description 1
- 241000620209 Escherichia coli DH5[alpha] Species 0.000 description 1
- 108010044467 Isoenzymes Proteins 0.000 description 1
- 108700023483 L-lactate dehydrogenases Proteins 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- 101100387128 Myxococcus xanthus (strain DK1622) devR gene Proteins 0.000 description 1
- 101100387131 Myxococcus xanthus (strain DK1622) devS gene Proteins 0.000 description 1
- 102000028391 RNA cap binding Human genes 0.000 description 1
- 108091000106 RNA cap binding Proteins 0.000 description 1
- 102000006382 Ribonucleases Human genes 0.000 description 1
- 108010083644 Ribonucleases Proteins 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 150000001447 alkali salts Chemical class 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 1
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- 229940041514 candida albicans extract Drugs 0.000 description 1
- 101150055191 cas3 gene Proteins 0.000 description 1
- 101150049463 cas5 gene Proteins 0.000 description 1
- 101150044165 cas7 gene Proteins 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 229930003935 flavonoid Natural products 0.000 description 1
- 150000002215 flavonoids Chemical class 0.000 description 1
- 235000017173 flavonoids Nutrition 0.000 description 1
- 238000012268 genome sequencing Methods 0.000 description 1
- 229930182470 glycoside Natural products 0.000 description 1
- 150000002338 glycosides Chemical class 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 229960000890 hydrocortisone Drugs 0.000 description 1
- 101150100002 iap gene Proteins 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000002906 microbiologic effect Effects 0.000 description 1
- 150000007523 nucleic acids Chemical group 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 229960003387 progesterone Drugs 0.000 description 1
- 239000000186 progesterone Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 230000003637 steroidlike Effects 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000005758 transcription activity Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 241001446247 uncultured actinomycete Species 0.000 description 1
- 238000012070 whole genome sequencing analysis Methods 0.000 description 1
- 239000012138 yeast extract Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/70—Vectors or expression systems specially adapted for E. coli
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/74—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/74—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
- C12N15/75—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Bacillus
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2800/00—Nucleic acids vectors
- C12N2800/10—Plasmid DNA
- C12N2800/101—Plasmid DNA for bacteria
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2800/00—Nucleic acids vectors
- C12N2800/80—Vectors containing sites for inducing double-stranded breaks, e.g. meganuclease restriction sites
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2810/00—Vectors comprising a targeting moiety
- C12N2810/10—Vectors comprising a non-peptidic targeting moiety
Landscapes
- Genetics & Genomics (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
本发明公开了一种基于维吉尼亚链霉菌IBL14基因cas7‑5‑3的基因编辑方法,首次实现了CRISPR‑Cas I系统对原核生物基因组的基因编辑;为CRISPR‑Cas II 型CAS进行基因编辑提供了新的补充和选择。应用该系统可对大肠杆菌、枯草杆菌等原核生物基因组进行方便、快速、有效地基因编辑。优化后的该基因编辑体系可望应用于其它生物的基因编辑中去。
The invention discloses a gene editing method based on the Streptomyces virginia IBL14 gene cas 7‑5‑3, which realizes for the first time the gene editing of the prokaryotic genome by the CRISPR‑Cas I system; Gene editing offers new additions and options. The system can be used to conveniently, quickly and effectively edit the genomes of Escherichia coli, Bacillus subtilis and other prokaryotic organisms. The optimized gene editing system is expected to be applied to the gene editing of other organisms.
Description
技术领域technical field
本发明涉及生物技术领域的基因编辑技术,确切地说是一种基于维吉尼亚链霉菌IBL14基因cas7-5-3的基因编辑方法。The invention relates to gene editing technology in the field of biotechnology, specifically a gene editing method based on the cas 7-5-3 gene of Streptomyces virginia IBL14.
背景技术Background technique
维吉尼亚链霉菌IBL14(Streptomyces virginiae IBL14)是我们从甾体药物生产厂家附近的污泥中分离筛选到的一株放线菌,它能够有效的转化和降解孕酮,黄酮,皮质醇和胆固醇等多种甾体类化合物_ENREF_1(Wang, F.-Q.; Zhang, C.-G.; Li, B.; Wei,D.-Z.; Tong, W.-Y., New microbiological transformations of steroids byStreptomyces virginiae IBL-14. Environmental science & technology 2009, 43(15), 5967-5974)。CRISPR(clustered regμlarly interspaced short palindromicrepeat sequences)称为成簇规则间隔的短回文重复序列,最先于20世纪八十年代发现于大肠杆菌中_ENREF_1(Ishino, Y.; Shinagawa, H.; Makino, K.; Amemura, M.;Nakata, A., Nucleotide Sequence of the iap Gene, Responsible for AlkalinePhosphatase Isozyme Conversion in Escherichia coli, and Identification of theGene Product. JOURNAL OF BACTERIOLOGY 1987, 169 (12), 5429-5433)。2002年R.Jansen等详细比较分析了原核生物基因组中的这种成簇规则间隔的短回文重复序列,发现了该重复序列的旁侧经常伴随出现保守的基因序列_ENREF_1(Jansen, R.; Embden, J.D.; Gaastra, W.; Schouls, L. M., Identification of genes that are associatedwith DNA repeats in prokaryotes. Mol Microbiol 2002, 43 (6), 1565-75),他们将这种独特的重复序列命名为 CRISPR,保守基因序列编码的蛋白质称为Cas附属蛋白(CRISPR-associated proteins)。目前已发现CRISPR-Cas系统广泛分布于原核生物中_ENREF_1(http://crispr.u-psud.fr/),已商业应用于基因编辑的仅为CRISPR-Cas II型系统中的Cas9蛋白。Streptomyces virginiae IBL14 (Streptomyces virginiae IBL14) is an actinomycete isolated and screened from the sludge near the steroid drug manufacturer. It can effectively transform and degrade progesterone, flavonoids, cortisol and cholesterol and other steroidal compounds_ENREF_1(Wang, F.-Q.; Zhang, C.-G.; Li, B.; Wei,D.-Z.; Tong, W.-Y., New microbiological transformations of steroids by Streptomyces virginiae IBL-14. Environmental science & technology 2009, 43(15), 5967-5974). CRISPR (clustered regμlarly interspaced short palindromic repeat sequences) is called clustered regularly interspaced short palindromic repeat sequences, which were first discovered in Escherichia coli_ENREF_1 in the 1980s (Ishino, Y.; Shinagawa, H.; Makino, K.; Amemura, M.; Nakata, A., Nucleotide Sequence of the iap Gene, Responsible for AlkalinePhosphatase Isozyme Conversion in Escherichia coli, and Identification of the Gene Product. JOURNAL OF BACTERIOLOGY 1987, 169 (12), 5429-5433). In 2002 R. Jansen et al. compared and analyzed the clustered regularly spaced short palindromic repeat sequence in the prokaryotic genome in detail, and found that the conserved gene sequence _ENREF_1 was often accompanied by the repeat sequence (Jansen, R.; Embden, J.D. ; Gaastra, W.; Schouls, L. M., Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 2002, 43 (6), 1565-75), they named this unique repeat sequence CRISPR, conserved gene sequence The encoded proteins are called Cas accessory proteins (CRISPR-associated proteins). At present, it has been found that the CRISPR-Cas system is widely distributed in prokaryotes_ENREF_1 (http://crispr.u-psud.fr/), and only the Cas9 protein in the CRISPR-Cas type II system has been commercially applied to gene editing.
迄今为止,CRISPR-Cas I型系统虽有诸多发现,但未见可应用于基因编辑的报道。先前,我们应用维吉尼亚链霉菌IBL14中的type I-B-sv14型CRISPR-Cas 系统结合一个工程的基因编辑质粒可对维吉尼亚链霉菌IBL14自身染色体进行基因编辑_ENREF_1(童望宇;雍德祥; 李雪; 邱彩花一种维吉尼亚链霉菌IBL14中的CRISPR-Cas系统及应用其进行基因编辑的方法. 2015110028173, 2015),但未能实现对其它生物基因组进行基因编辑。本发明将维吉尼亚链霉菌IBL14 type I-B-sv14型CRISPR-Cas 系统中的基因cas7-5-3与质粒(plasmid)连接得到一个Cas7-5-3蛋白表达质粒plasmid-cas7-5-3,结合设计的基因编辑质粒(plasmid-t/gDNA)或其它质粒首次实现了在原核生物大肠杆菌与枯草杆菌中的基因编辑。且该Cas7-5-3蛋白(含1323个氨基酸)具有与Cas9蛋白(含1368个氨基酸)相近的分子大小。So far, although many discoveries have been made about the CRISPR-Cas type I system, there is no report on its application to gene editing. Previously, we used the type I-B-sv14 CRISPR-Cas system in Streptomyces virginia IBL14 combined with an engineered gene editing plasmid to edit the chromosome of Streptomyces virginia IBL14_ENREF_1 (Tong Wangyu; Yong Dexiang; Li Xue; Qiu Caihua A CRISPR-Cas system in Streptomyces virginia IBL14 and its application for gene editing. 2015110028173, 2015), but it has not been able to achieve gene editing in other biological genomes. The present invention connects the gene cas7-5-3 in the Streptomyces virginia IBL14 type I-B-sv14 CRISPR-Cas system with a plasmid (plasmid) to obtain a Cas7-5-3 protein expression plasmid plasmamid-cas7-5-3 , combining the designed gene editing plasmid (plasmid-t/gDNA) or other plasmids for the first time to achieve gene editing in prokaryotes Escherichia coli and Bacillus subtilis. And the Cas7-5-3 protein (containing 1323 amino acids) has a molecular size similar to that of the Cas9 protein (containing 1368 amino acids).
虽已发现大肠杆菌中存在有CRISPR-Cas I型系统_ENREF_1(Semenova, E.;Savitskaya, E.; Musharova, O.; Strotskaya, A.; Vorontsova, D.; Datsenko, K.A.; Logacheva, M. D.; Severinov, K., Highly efficient primed spaceracquisition from targets destroyed by the Escherichia coli type I-E CRISPR-Cas interfering complex. Proceedings of the National Academy of Sciences ofthe United States of America 2016, 113 (27), 7626-7631),但迄今尚未见有通过大肠杆菌中的CRISPR-Cas I型系统进行基因编辑的报道;特别是枯草杆菌中尚未发现有CRISPR-Cas 系统_ENREF_1(http://crispr.u-psud.fr/)。本发明通过敲除大肠杆菌β-半乳糖苷酶基因lacZ和枯草杆菌乳酸脱氢酶基因ldh,从而实现验证该质粒体系的功效之目的。Although the CRISPR-Cas type I system _ENREF_1 has been found in Escherichia coli (Semenova, E.; Savitskaya, E.; Musharova, O.; Strotskaya, A.; Vorontsova, D.; Datsenko, K.A.; Logacheva, M. D.; Severinov, K., Highly efficient primed spaceacquisition from targets destroyed by the Escherichia coli type I-E CRISPR-Cas interfering complex. Proceedings of the National Academy of Sciences of the United States of America 2016, 113 (27), 7626-7631), but so far There is no report on gene editing by the CRISPR-Cas type I system in E. coli; in particular, the CRISPR-Cas system_ENREF_1 has not been found in Bacillus subtilis (http://crispr.u-psud.fr/). The present invention realizes the purpose of verifying the efficacy of the plasmid system by knocking out the E. coli β-galactosidase gene lacZ and the Bacillus subtilis lactate dehydrogenase gene ldh.
发明内容Contents of the invention
本发明要解决的技术问题是提供一种类似于CRISPR-Cas II型系统中Cas9蛋白的CRISPR-Cas type I-B-sv14系统Cas7-5-3蛋白表达质粒体系,结合基因编辑质粒或其它质粒进行原核生物的基因编辑。The technical problem to be solved by the present invention is to provide a CRISPR-Cas type I-B-sv14 system Cas7-5-3 protein expression plasmid system similar to the Cas9 protein in the CRISPR-Cas type II system, combined with gene editing plasmids or other plasmids for prokaryotic Gene editing of organisms.
为达此目的,本发明解决其问题所采用的技术方案是:一种基于维吉尼亚链霉菌IBL14基因cas7-5-3的基因编辑方法,其特征在于:维吉尼亚链霉菌IBL14中含有3个基因cas7-5-3,其核酸序列如附表1所描述,经蛋白表达质粒构建(附图1)、基因编辑质粒构建(附图2)和重组子的获取与检验步骤(附图3)可有效的对原核生物基因组进行编辑。To achieve this purpose, the technical solution adopted by the present invention to solve its problems is: a gene editing method based on Streptomyces virginia IBL14 gene cas 7-5-3, characterized in that: Streptomyces virginia IBL14 Contains 3 genes cas 7-5-3, the nucleic acid sequence of which is as described in Attached Table 1, after the construction of protein expression plasmid (attached 1), the construction of gene editing plasmid (attached 2) and the steps of obtaining and testing recombinants (Fig. 3) It can effectively edit the genome of prokaryotic organisms.
所述的一种基于维吉尼亚链霉菌IBL14基因cas7-5-3的基因编辑方法,其特征在于:包括的蛋白表达质粒构建、基因编辑质粒构建和重组子的获取与检验步骤如下:The gene editing method based on Streptomyces virginia IBL14 gene cas 7-5-3 is characterized in that: the steps of protein expression plasmid construction, gene editing plasmid construction and recombinant acquisition and inspection steps are as follows:
(1)根据维吉尼亚链霉菌IBL14基因cas7-5-3及相关信息序列设计引物(附表2),以维吉尼亚链霉菌IBL14基因组为模版,用DNA聚合酶通过PCR反应扩增得到cas7-5-3基因,并连接到质粒(plasmid)上,得Cas7-5-3蛋白表达质粒plasmid-cas7-5-3;(1) Design primers according to the cas 7-5-3 gene of Streptomyces virginiae IBL14 and related information sequences (Appendix 2), use the genome of Streptomyces virginiae IBL14 as a template, and use DNA polymerase to amplify by PCR reaction Amplify the cas 7-5-3 gene and connect it to the plasmid (plasmid) to obtain the Cas7-5-3 protein expression plasmid plasma- cas 7-5-3;
(2)根据原核生物靶向基因DNA序列信息设计引物(附表2),以原核生物基因组为模版,通过PCR反应分别扩增得到末端带有限制性内切酶识别和切割位点以及overlap PCR互补序列的靶向基因上下同源臂PCR片段,并用overlap PCR将上下同源臂连接得基因编辑模版(template DNA/t-DNA),同时根据原核生物靶向基因序列信息设计并直接合成首尾分别包含乳糖操纵子启动子和RNA终止子的靶向基因片段(guide-DNA/g-DNA)(附表2),并根据限制性酶切位点上的粘性末端将基因编辑模版与靶向基因片段连接到质粒上得到基因编辑质粒(plasmid-t/gDNA);(2) Design primers (Appendix 2) according to the DNA sequence information of the prokaryotic target gene, and use the prokaryotic genome as a template to amplify through PCR reactions to obtain restriction endonuclease recognition and cleavage sites at the end and overlap PCR The PCR fragments of the upper and lower homology arms of the target gene with complementary sequences, and the upper and lower homology arms are connected by overlap PCR to obtain a gene editing template (template DNA/t-DNA). Targeting gene fragment (guide-DNA/g-DNA) containing the lactose operon promoter and RNA terminator (Supplementary Table 2), and the gene editing template and the targeting gene according to the cohesive ends on the restriction site The fragment is connected to the plasmid to obtain a gene editing plasmid (plasmid-t/gDNA);
(3)制备原核生物细胞感受态,并将按步骤(1)得到的蛋白表达质粒plasmid-cas7-5-3和按步骤(2)得到的各种靶向基因编辑质粒分别转化到目标菌感受态中得到不同的基因编辑后的重组子;对重组子染色体进行PCR和基因测序和/或功能分析,以确证编辑后的目的重组子。(3) Prepare competent prokaryotic cells, and transform the protein expression plasmid plasmid- cas 7-5-3 obtained in step (1) and various targeted gene editing plasmids obtained in step (2) into target bacteria Different gene-edited recombinants were obtained in the competent state; PCR and gene sequencing and/or functional analysis were performed on the recombinant chromosomes to confirm the edited target recombinants.
所述的一种基于维吉尼亚链霉菌IBL14基因cas7-5-3的基因编辑方法,其特征在于:所述原核生物指大肠杆菌、枯草杆菌及其它原核微生物。The gene editing method based on the cas 7-5-3 gene of Streptomyces virginia IBL14 is characterized in that: the prokaryotic organisms refer to Escherichia coli, Bacillus subtilis and other prokaryotic microorganisms.
所述的一种基于维吉尼亚链霉菌IBL14基因cas7-5-3的基因编辑方法,其特征在于:所述的基因编辑指应用该蛋白表达质粒结合基因编辑质粒或其它质粒可对原核细胞的染色体基因进行敲除、插入、无痕点突变及任意组合。The described gene editing method based on Streptomyces virginia IBL14 gene cas 7-5-3 is characterized in that: the gene editing refers to the application of the protein expression plasmid in combination with a gene editing plasmid or other plasmids that can modify the prokaryotic Chromosomal gene knockout, insertion, scarless point mutation and any combination of cells.
有益效果Beneficial effect
本发明是一种基于维吉尼亚链霉菌IBL14 的CRISPR-Cas I型系统的cas基因建立的一种新的基因编辑系统,首次实现了CRISPR-Cas I系统对原核生物基因组的基因编辑;为CRISPR-Cas II 型CAS进行基因编辑提供了新的补充和选择。应用该系统对大肠杆菌、枯草杆菌等原核生物基因组可方便、快速、有效地进行基因编辑。优化后的该基因编辑体系可望应用于其它生物的基因编辑中去。The present invention is a new gene editing system based on the cas gene of the CRISPR-Cas I type system of Streptomyces virginia IBL14, and realizes the gene editing of the prokaryotic genome by the CRISPR-Cas I system for the first time; CRISPR-Cas type II Cas provides new complements and options for gene editing. The system can be used to conveniently, quickly and effectively edit the genomes of prokaryotic organisms such as Escherichia coli and Bacillus subtilis. The optimized gene editing system is expected to be applied to the gene editing of other organisms.
附图说明Description of drawings
图1为蛋白表达质粒pHT304-cas7-5-3的构建。Ori / origin:DNA复制起始位点;lac promoter / lactose promoter:乳糖操纵子的启动子,与RNA聚合酶结合起动DNA转录;CAP binding site / catabolite activator protein binding site: cAMP受体蛋白结合位点,促进RNA酶转录活性;AmpR / ampicillin resistance:氨苄青霉素抗性;Erm /erythromycin: 红霉素Figure 1 shows the construction of the protein expression plasmid pHT304-cas7-5-3. Ori / origin: DNA replication initiation site; lac promoter / lactose promoter: the promoter of the lactose operon, combined with RNA polymerase to initiate DNA transcription; CAP binding site / catabolite activator protein binding site: cAMP receptor protein binding site , to promote RNase transcription activity; AmpR / ampicillin resistance: ampicillin resistance; Erm /erythromycin: erythromycin
图2为基因编辑质粒的构建,(A)基因编辑质粒pKC1139-lacZ-t/g-DNA的构建,(B)基因编辑质粒pKC1139-ldh-t/g-DNA的构建。Ori pSG5 / the origin from pSG5: pSG5质粒载体上的复制起始点;oriTRK2 / the origin of conjugal transfer from RK2: RK2质粒载体上的结合转移复制起始点;lac promoter / lactose promoter: 乳糖操纵子的启动子;T7 promoter: T7 启动子,起始DNA转录;AmpR / ampicillin resistance: 氨苄青霉素抗性;AprR / apramycin resistance: 安普霉素抗性;Cm / Chloramphenicol: 氯霉素Figure 2 shows the construction of gene editing plasmids, (A) construction of gene editing plasmid pKC1139- lacZ -t/g-DNA, (B) construction of gene editing plasmid pKC1139- ldh -t/g-DNA. Ori pSG5 / the origin from pSG5: the origin of replication on the pSG5 plasmid vector; oriTRK2 / the origin of conjugal transfer from RK2: the origin of conjugal transfer from RK2 plasmid vector; lac promoter / lactose promoter: the promoter of the lactose operon ;T7 promoter: T7 promoter, which initiates DNA transcription; AmpR / ampicillin resistance: ampicillin resistance; AprR / apramycin resistance: apramycin resistance; Cm / Chloramphenicol: chloramphenicol
图3为转化子筛选与验证结果。(A)大肠杆菌JM109(DE3)蓝白斑筛选结果,蓝色表明为原始菌株,白色表明为重组菌株;(B)基因lacZ外部PCR电泳图,泳道M:5000 bp DNAladder,泳道1:空白对照,泳道2:质粒pHT304-cas7-5-3、pKC1139-lacZ-t/g-DNA和pKD46转化子的lacZ基因PCR,泳道3:野生型EC JM109(DE3)基因组的lacZ基因PCR(泳道2中DNA条带较泳道3中DNA条带小表明基因敲除成功);(C)质粒pHT304-cas7-5-3、pKC1139-lacZ-t/g-DNA、pKD46转化子lacZ基因PCR测序结果图(测序结果与表2中设计的基因序列相一致表明重组子正确)。Figure 3 shows the results of screening and verification of transformants. (A) Blue-white screening results of Escherichia coli JM109(DE3), the blue indicates the original strain, and the white indicates the recombinant strain; (B) The external PCR electrophoresis image of the gene lacZ , lane M: 5000 bp DNAladder, lane 1: blank control, Swimming lane 2: the lacZ gene PCR of plasmid pHT304- cas 7-5-3, pKC1139- lacZ -t/g-DNA and pKD46 transformants, swimming lane 3: the lacZ gene PCR of wild-type EC JM109 (DE3) genome (in swimming lane 2 The DNA band is smaller than the DNA band in lane 3, indicating successful gene knockout); (C) PCR sequencing results of the lacZ gene of the plasmid pHT304- cas 7-5-3, pKC1139- lacZ -t/g-DNA, and pKD46 transformants (The sequence result is consistent with the designed gene sequence in Table 2, indicating that the recombinant is correct).
具体实施方式detailed description
为了更充分理解本发明的技术内容,下面结合具体实施例对本发明的技术方案作进一步介绍和说明,旨在更好的解释本发明的内容,以下实施例不限制本发明的保护范围。此外,在所列实施例中如无特别说明均采用如下材料:In order to fully understand the technical content of the present invention, the technical solution of the present invention will be further introduced and illustrated below in conjunction with specific examples, in order to better explain the content of the present invention, and the following examples do not limit the protection scope of the present invention. In addition, the following materials are used in the listed examples unless otherwise specified:
1)菌株与质粒1) Strains and plasmids
维吉尼亚链霉菌Streptomyces virginiae IBL14 /SV IBL14;大肠杆菌Escherichia coli DH5α / EC DH5α;Escherichia coli JM109 / EC JM109;枯草杆菌Bacillus subtilis168 /BS 168,质粒pHT304;pKC1139;pKD46。 Streptomyces virginiae IBL14 / SV IBL14; Escherichia coli DH5α / EC DH5α; Escherichia coli JM109 / EC JM109; Bacillus subtilis 168 / BS 168, plasmid pHT304; pKC1139; pKD46.
2)培养基2) Medium
LB液体培养基LB liquid medium
酵母粉5 g,蛋白胨10 g,NaCl 10 g,加入适量自来水溶解后,定容至1 L,pH调至7.0~7.2,分装包扎后, 121 ℃/20 min灭菌。Add 5 g of yeast powder, 10 g of peptone, and 10 g of NaCl, add an appropriate amount of tap water to dissolve, adjust the volume to 1 L, adjust the pH to 7.0-7.2, subpackage and bandage, and sterilize at 121 °C/20 min.
LB固体培养基LB solid medium
酵母粉5 g,蛋白胨10 g,NaCl 10 g,琼脂20 g,加入适量自来水溶解后, 定容至1L,pH调至7.0~7.2,分装包扎后,121 ℃/20 min灭菌。Add 5 g of yeast powder, 10 g of peptone, 10 g of NaCl, and 20 g of agar, add an appropriate amount of tap water to dissolve, adjust the volume to 1 L, adjust the pH to 7.0-7.2, subpackage and bandage, and sterilize at 121 °C/20 min.
Spizizen 基本培养基Spizizen Minimal Medium
10×Spizzen 基本盐培养基100 mL/L,50%(w/v) 葡萄糖10 mL/L,色氨酸母液(5 mg/mL)10 m L/L,琼脂1.5%w/v),121 ℃/20 min灭菌。10×Spizzen basic salt medium 100 mL/L, 50% (w/v) glucose 10 mL/L, tryptophan stock solution (5 mg/mL) 10 m L/L, agar 1.5% w/v), 121 Sterilize at °C/20 min.
GM1培养基(5mL)GM1 medium (5mL)
40%葡萄糖100 μl, 20 mg/mL 酸水解酪素100 μl,50 mg/m L酵母抽提物100 μl,20%(w/w)MgSO4.7H2O 5 μl,10×Spizzen 基本培养基500 μl,水3195 μl,上述物质混合前需121 ℃/20 min灭菌。40% glucose 100 μl, 20 mg/mL acid hydrolyzed casein 100 μl, 50 mg/mL yeast extract 100 μl, 20% (w/w) MgSO4.7H2O 5 μl, 10×Spizzen minimal medium 500 μl , water 3195 μl, the above substances need to be sterilized at 121 ℃/20 min before mixing.
GM2培养基(5mL)GM2 medium (5mL)
40%葡萄糖100 μl, 20 mg/mL 酸水解酪素50 μl,20%(w/w)MgSO4.7H2O 40 μl,10×Spizzen 基本培养基500 μl,水3310 μl,上述物质混合前需121 ℃/20 min灭菌。100 μl of 40% glucose, 50 μl of 20 mg/mL acid hydrolyzed casein, 40 μl of 20% (w/w) MgSO4.7H2O, 500 μl of 10×Spizzen basic medium, 3310 μl of water, 121 ℃ before mixing /20 min for sterilization.
所用试剂均为市售品。All reagents used are commercially available.
实施例1(三质粒一步共转化法敲除EC JM109 lacZ基因)Example 1 (Three-plasmid one-step co-transformation method to knock out EC JM109 lacZ gene)
(1)蛋白表达质粒pHT304-cas7-5-3的构建(1) Construction of protein expression plasmid pHT304- cas 7-5-3
根据SV IBL14全基因组测序信息及质粒pHT-304序列信息,设计带有质粒pHT-304互补序列的cas7-5-3基因特异性引物cas-F和cas-R(表2)。提取SV IBL14基因组DNA,使用全式金生物技术有限公司生产的TransStart FastPfu DNA Polymerase进行cas基因PCR扩增,反应条件:95℃ 5 min,94℃ 30 s,55 ℃ 30 s,72 ℃ 2 min,2.5 U 生工生物工程(上海)股份有限公司生产的Pfu DNA Polymerase (50 μl 反应体系),30 个循环,72 ℃ 10 min。PCR 产物经1%琼脂糖电泳检测,试剂盒回收,得到纯化的cas全长基因。通过一步法将cas全长基因序列与质粒pHT-304连接,得Cas7-5-3蛋白表达质粒pHT304-cas7-5-3。According to the whole genome sequencing information of SV IBL14 and the sequence information of plasmid pHT-304, the cas 7-5-3 gene-specific primers cas -F and cas -R with the complementary sequence of plasmid pHT-304 were designed (Table 2). Genomic DNA of SV IBL14 was extracted, and cas gene PCR amplification was carried out using TransStart FastPfu DNA Polymerase produced by Quanshijin Biotechnology Co., Ltd. The reaction conditions were: 95°C for 5 min, 94°C for 30 s, 55°C for 30 s, 72°C for 2 min, 2.5 U of Pfu DNA Polymerase produced by Sangon Bioengineering (Shanghai) Co., Ltd. (50 μl reaction system), 30 cycles, 72 ° C for 10 min. The PCR product was detected by 1% agarose electrophoresis, recovered by the kit, and the purified cas full-length gene was obtained. The cas full-length gene sequence was connected to the plasmid pHT-304 by one-step method to obtain the Cas7-5-3 protein expression plasmid pHT304- cas 7-5-3.
(2)基因编辑质粒pKC1139-lacZ-t-DNA的构建(2) Construction of gene editing plasmid pKC1139- lacZ -t-DNA
(A) 基因lacZ引物设计与lacZ全长基因的扩增(A) Gene lacZ primer design and amplification of the full-length lacZ gene
根据EC JM109基因组测序信息,设计基因lacZ特异性引物lacZ-F和lacZ-R(表2)。提取EC JM109基因组DNA,使用Pfu DNA Polymerase进行lacZ基因PCR扩增,反应条件:95 ℃ 5min,94 ℃ 30 s,52 ℃ 30 s,72 ℃ 1 min,2.5 U Pfu DNA Polymerase (50 μl 反应体系),30 个循环,72 ℃ 10 min。PCR 产物经1.5%琼脂糖电泳检测,试剂盒回收,得到纯化的lacZ全长基因片段备用。According to the genome sequencing information of EC JM109, gene lacZ -specific primers lacZ -F and lacZ -R were designed (Table 2). Extract EC JM109 genomic DNA, use Pfu DNA Polymerase for lacZ gene PCR amplification, reaction conditions: 95 °C for 5 min, 94 °C for 30 s, 52 °C for 30 s, 72 °C for 1 min, 2.5 U Pfu DNA Polymerase (50 μl reaction system) , 30 cycles, 10 min at 72°C. The PCR product was detected by 1.5% agarose electrophoresis, recovered from the kit, and the purified lacZ full-length gene fragment was obtained for future use.
(B)上、下游同源臂的制备(B) Preparation of upstream and downstream homology arms
根据lacZ基因全序列(表1)设计lacZ基因上游同源臂引物lacZ-UF和lacZ-UR、下游同源臂引物lacZ-DF和lacZ-DR(表2) (黑体加粗为overlap PCR互补序列),且上同源臂上游引物含HindIII限制性内切酶酶切位点,下同源臂下游引物含XbaI限制性内切酶酶切位点。以纯化的lacZ基因DNA为模板,先分别扩增上、下游同源臂,反应条件为:95 ℃ 5 min,94℃ 30 s,58 ℃ 30 s,72 ℃ 45 s,2.5 U Pfu DNA Polymerase (50 μl 反应体系),30 个循环,72 ℃ 10 min。PCR 产物经1.5%琼脂糖电泳检测,试剂盒回收,得到纯化后的上、下游同源臂DNA 片段备用。According to the full sequence of the lacZ gene (Table 1), the primers lacZ -UF and lacZ -UR of the upstream homology arm of the lacZ gene, and the primers lacZ -DF and lacZ -DR of the downstream homology arm of the lacZ gene (Table 2) were designed. ), and the upper homology arm upstream primer contains a HindIII restriction endonuclease site, and the lower homology arm downstream primer contains an XbaI restriction endonuclease site. Using the purified lacZ gene DNA as a template, the upper and lower homology arms were first amplified respectively. The reaction conditions were: 95°C for 5 min, 94°C for 30 s, 58°C for 30 s, 72°C for 45 s, 2.5 U Pfu DNA Polymerase ( 50 μl reaction system), 30 cycles, 72 °C for 10 min. The PCR product was detected by 1.5% agarose electrophoresis, recovered by the kit, and the purified DNA fragments of the upper and lower homology arms were obtained for future use.
(C)基因编辑模版载体pKC1139-lacZ-t-DNA的构建(C) Construction of gene editing template vector pKC1139- lacZ -t-DNA
取上同源臂纯化产物与下同源臂纯化产物0.5 μl混合作为模板,25 μl反应体系进行overlap PCR,反应条件为:94 ℃预变性5 min,94 ℃变性l min, 58℃退火1 min,72℃延伸30 s,一个循环后加人引物UF与DR各1μl,继续PCR,反应条件为:95 ℃预变性5 min,94℃变性30 s,58 ℃退火30 s,72℃延伸1 min 30 s,进行30个循环,72 ℃ 10 min。1.5%琼脂糖凝胶电泳检测扩增产物并纯化,得基因编辑模版;将获得的基因编辑模版通过HindIII限制性内切酶酶、XbaI限制性内切酶切出粘性末端,然后通过全式金生物技术有限公司生产的T4连接酶将其连接到pKC1139质粒上,得基因编辑模版载体pKC1139-lacZ-t-DNA。Mix 0.5 μl of the purified product of the upper homology arm and the purified product of the lower homology arm as a template, and perform overlap PCR in a 25 μl reaction system. The reaction conditions are: pre-denaturation at 94 °C for 5 min, denaturation at 94 °C for 1 min, and annealing at 58 °C for 1 min , extend at 72°C for 30 s, add 1 μl each of primers UF and DR after one cycle, and continue PCR. The reaction conditions are: pre-denaturation at 95°C for 5 min, denaturation at 94°C for 30 s, annealing at 58°C for 30 s, and extension at 72°C for 1 min 30 s, 30 cycles, 72 ℃ 10 min. 1.5% agarose gel electrophoresis was used to detect and purify the amplified product to obtain a gene editing template; the obtained gene editing template was cut out of sticky ends by HindIII restriction endonuclease and XbaI restriction endonuclease, and then passed through full gold The T4 ligase produced by Biotechnology Co., Ltd. was used to connect it to the pKC1139 plasmid to obtain the gene editing template vector pKC1139- lacZ -t-DNA.
(D)基因编辑质粒pKC1139-lacZ-t/g-DNA的构建(D) Construction of gene editing plasmid pKC1139- lacZ -t/g-DNA
含乳糖操纵子启动子及guide DNA-lacZ连接产物的靶向基因片段(表2)由滁州通用生物公司直接合成,首尾分别加上BamHI及EcoRI酶切位点,中间依次是启动子,重复序列(repeat),间隔序列(spacer),重复序列(repeat)及终止子;将合成的靶向基因片段通过BamHI和EcoRI限制性内切酶切出粘性末端,然后通过T4连接酶将其连接到得基因编辑模版载体pKC1139-lacZ-t-DNA上得基因编辑质粒pKC1139-lacZ-t/g-DNA 。The targeted gene fragment containing the lactose operon promoter and the guide DNA- lacZ junction product (Table 2) was directly synthesized by Chuzhou General Biological Company, with BamHI and EcoRI restriction sites added at the beginning and end, respectively, the middle is the promoter, and the repeat sequence (repeat), spacer sequence (spacer), repeat sequence (repeat) and terminator; the synthetic targeted gene fragments were cut out of sticky ends by BamHI and EcoRI restriction endonucleases, and then ligated to the obtained DNA by T4 ligase The gene editing plasmid pKC1139- lacZ -t/g-DNA was obtained from the gene editing template vector pKC1139- lacZ -t-DNA.
(3)重组子的获取与检验(3) Acquisition and inspection of recombinants
(A)EC JM109感受态一步法制备(A) Competent one-step preparation of EC JM109
在超净台中,用已灭过菌的牙签挑取EC JM109平板上的单克隆于30 ml LB液体培养基中,37 ℃,200 rpm过夜培养;取过夜培养的菌液100 μl转接至新的LB液体培养基中,37℃,200 rpm培养约2 h,至菌液OD600值为0.4~0.6;取1 ml上述菌液至1.5 ml EP管中,4 ℃下5000 rpm×g离心5 min,彻底除尽上清液后,取已经在冰上预冷的SSCS溶液50 μl将菌体沉淀吹打均匀,即得EC JM109的感受态细胞,-80 ℃下保存备用(此过程全程在冰上进行)。In the ultra-clean bench, use a sterilized toothpick to pick up the single clone on the EC JM109 plate and culture it overnight in 30 ml LB liquid medium at 37 °C and 200 rpm; transfer 100 μl of the overnight cultured bacterial solution to a new Incubate in LB liquid medium at 37°C and 200 rpm for about 2 h until the OD600 value of the bacterial liquid is 0.4-0.6; take 1 ml of the above bacterial liquid into a 1.5 ml EP tube, and centrifuge at 5000 rpm×g at 4°C for 5 min After removing the supernatant completely, take 50 μl of the SSCS solution that has been pre-cooled on ice and pipette the bacterial cell pellet evenly to obtain the competent cells of EC JM109, and store them at -80 ℃ for later use (the whole process is done on ice conduct).
(B)质粒pKD46,pHT304-cas7-5-3和pKC1139-lacZ-t/g-DNA的共转化(B) Co-transformation of plasmids pKD46, pHT304- cas 7-5-3 and pKC1139- lacZ -t/g-DNA
将质粒pKD46,pHT304-cas7-5-3和pKC1139-lacZ-t/g-DNA充分混匀后转化到EC JM109感受态中,在涂有5 μl异丙基-β-D-硫代吡喃半乳糖苷(IPTG 200 mg/ml)、40 μl 5-溴-4-氯-3-吲哚-β-D-吡喃半乳糖苷(X-gal 20 mg/ml )和 20 μl阿拉伯糖(10 mM/L)的安普霉素和氨苄青霉素抗性的LB固体培养基中30 ℃过夜培养,得转化子。The plasmids pKD46, pHT304- cas 7-5-3 and pKC1139- lacZ -t/g-DNA were well mixed and transformed into EC JM109 competent cells, and then coated with 5 μl isopropyl-β-D-thiopyridine Galactopyranoside (IPTG 200 mg/ml), 40 μl 5-bromo-4-chloro-3-indole-β-D-galactopyranoside (X-gal 20 mg/ml ) and 20 μl arabinose (10 mM/L) apramycin and ampicillin-resistant LB solid medium and cultured overnight at 30 °C to obtain transformants.
(C)重组子染色体PCR和基因测序分析(C) Recombinant chromosome PCR and gene sequencing analysis
挑取白色单克隆作为模板,再以lacZ基因验证引物lacZ-F/lacZ-R进行PCR扩增反应,反应条件:95 ℃ 5 min,94 ℃ 30 s,58 ℃ 30 s,72℃ 2 min 40 s,2.5 U 生工生物工程(上海)股份有限公司生产的EasyTaq DNA Polymerase (25 μl反应体系),30 个循环,72℃ 10 min。PCR 产物经1%琼脂糖电泳检测,观察重组子染色体DNA扩增条带减小,并经通用生物系统(安徽)有限公司测序证明lacZ基因敲除成功(附图3)。The white monoclonal clone was picked as a template, and the lacZ gene verification primer lacZ -F/ lacZ -R was used for PCR amplification reaction. The reaction conditions were: 95°C for 5 min, 94°C for 30 s, 58°C for 30 s, 72°C for 2 min 40 s, 2.5 U EasyTaq DNA Polymerase (25 μl reaction system) produced by Sangon Bioengineering (Shanghai) Co., Ltd., 30 cycles, 72 ° C for 10 min. The PCR product was detected by 1% agarose electrophoresis, and the amplified band of recombinant chromosomal DNA was observed to decrease, and the lacZ gene was successfully knocked out by General Biosystems (Anhui) Co., Ltd. sequencing (Figure 3).
实施例2(三质粒二步共转化敲除EC JM109 lacZ基因)Example 2 (two-step co-transformation with three plasmids to knock out the EC JM109 lacZ gene)
(1)蛋白表达质粒pHT304-cas7-5-3的构建(1) Construction of protein expression plasmid pHT304- cas 7-5-3
同实施例1步骤(1)Same as embodiment 1 step (1)
(2)基因编辑质粒pKC1139-lacZ-t-DNA的构建(2) Construction of gene editing plasmid pKC1139- lacZ -t-DNA
同实施例1步骤(2)Same as embodiment 1 step (2)
(3)重组子的获取与检验(3) Acquisition and inspection of recombinants
(A)质粒pHT304-cas7-5-3转化及EC JM109- pHT304-cas7-5-3感受态制备(A) Transformation of plasmid pHT304- cas 7-5-3 and competent preparation of EC JM109- pHT304- cas 7-5-3
将质粒pHT304-cas7-5-3转化到EC JM109感受态中,通过红霉素抗性筛选转化子,再以该转化子制备感受态,获得含有质粒pHT304-cas7-5-3的EC JM109- pHT304-cas7-5-3菌株感受态。感受态制备方法同实施例1中步骤(3A)。The plasmid pHT304- cas 7-5-3 was transformed into EC JM109 competent, and the transformants were screened by erythromycin resistance, and then the transformants were used to prepare competent cells to obtain EC containing plasmid pHT304- cas 7-5-3 Competence of JM109- pHT304- cas 7-5-3 strain. The competent preparation method is the same as step (3A) in Example 1.
(B)质粒pKD46和pKC1139-lacZ-t/g-DNA的共转化(B) Co-transformation of plasmids pKD46 and pKC1139- lacZ -t/g-DNA
将质粒pKD46和pKC1139-lacZ-t/g-DNA充分混匀后转化到EC JM109- pHT304-cas7-5-3感受态中,在涂有5 μl IPTG、40 μl X-gal和 20 μl阿拉伯糖的红霉素、安普霉素和氨苄青霉素的LB固体培养基中30 ℃过夜培养,得转化子。Mix the plasmids pKD46 and pKC1139- lacZ -t/g-DNA well and transform them into EC JM109-pHT304- cas 7-5-3 competent medium, in which 5 μl IPTG, 40 μl X-gal and 20 μl Arabidopsis The erythromycin, apramycin and ampicillin LB solid medium with glycosides were cultivated overnight at 30°C to obtain transformants.
(C)重组子染色体PCR和基因测序分析(C) Recombinant chromosome PCR and gene sequencing analysis
挑取白色单克隆作为模板,再以lacZ基因验证引物lacZ-F/lacZ-R进行PCR扩增反应,反应条件:95 ℃ 5 min,94 ℃ 30 s,58 ℃ 30 s,72℃ 2 min 40 s,2.5 UEasyTaq DNAPolymerase (25 μl反应体系),30 个循环,72 ℃ 10 min。PCR 产物经1%琼脂糖电泳检测,观察重组子染色体DNA扩增条带大小变化,并经基因测序证明lacZ基因敲除成功。The white monoclonal clone was picked as a template, and the lacZ gene verification primer lacZ -F/ lacZ -R was used for PCR amplification reaction. The reaction conditions were: 95°C for 5 min, 94°C for 30 s, 58°C for 30 s, 72°C for 2 min 40 s, 2.5 UEasyTaq DNA Polymerase (25 μl reaction system), 30 cycles, 72 ° C for 10 min. The PCR product was detected by 1% agarose electrophoresis, and the size change of the recombinant chromosomal DNA amplification band was observed, and the lacZ gene was successfully knocked out by gene sequencing.
实施例3(二质粒一步共转化法敲除EC JM109 lacZ基因)Example 3 (Two-plasmid one-step co-transformation method to knock out EC JM109 lacZ gene)
(1)蛋白表达质粒pHT304-cas7-5-3的构建(1) Construction of protein expression plasmid pHT304- cas 7-5-3
同实施例1步骤(1)Same as embodiment 1 step (1)
(2)基因编辑质粒pKD46-lacZ-t/g-DNA的构建(2) Construction of gene editing plasmid pKD46- lacZ -t/g-DNA
除将同源臂及guide DNA-lacZ靶基因片段依次连接到质粒pKD46上,形成基因编辑质粒pKD46-lacZ-t/g-DNA外,其余步骤与实施例1中步骤(2)相同。Except that the homology arm and the guide DNA- lacZ target gene fragment were sequentially connected to the plasmid pKD46 to form the gene editing plasmid pKD46- lacZ -t/g-DNA, the rest of the steps were the same as step (2) in Example 1.
(3)重组子的获取与检验(3) Acquisition and inspection of recombinants
同实施例1步骤(3)Same as embodiment 1 step (3)
实施例4(BS 168基因ldh的敲除及氯霉素抗性基因的插入)Embodiment 4 (knockout of BS 168 gene ldh and insertion of chloramphenicol resistance gene)
(1)蛋白表达质粒pHT304-cas7-5-3的构建(1) Construction of protein expression plasmid pHT304- cas 7-5-3
同实施例1步骤(1)Same as embodiment 1 step (1)
(2)基因编辑质粒pKC1139-ldh-t/g-DNA的构建(2) Construction of gene editing plasmid pKC1139- ldh -t/g-DNA
(A)基因ldh引物设计与ldh全长基因的扩增(A) Gene ldh primer design and amplification of ldh full-length gene
设计基因引物为ldh-F和ldh-R(表2)。以BS168基因组DNA为模版,扩增ldh基因片段。反应条件:95 ℃ 5 min,94 ℃ 30 s,55 ℃ 30 s,72 ℃ 2 min,2.5 U Pfu DNA Polymerase(50 μl 反应体系),30 个循环,72 ℃ 10 min。PCR 产物经1.5%琼脂糖电泳检测,试剂盒回收,得到纯化的ldh全长基因片段备用。Design gene primers as ldh -F and ldh -R (Table 2). Using BS 168 genomic DNA as a template, the ldh gene fragment was amplified. Reaction conditions: 95°C for 5 min, 94°C for 30 s, 55°C for 30 s, 72°C for 2 min, 2.5 U Pfu DNA Polymerase (50 μl reaction system), 30 cycles, 72°C for 10 min. The PCR product was detected by 1.5% agarose electrophoresis, recovered from the kit, and the purified ldh full-length gene fragment was obtained for future use.
(B)上、下游同源臂的制备(B) Preparation of upstream and downstream homology arms
分别设计上、下同源臂引物ldh-UF、ldh-UCmR、ldh-UCmF、ldh-CmDR、ldh-CmDF、ldh-DR(表2)。以纯化的ldh基因和Cm 基因DNA为模板,先分别扩增上、Cm、下游同源臂,反应条件为:95 ℃ 5 min,94 ℃ 30 s,55℃ 30 s,72 ℃ 1min 20 s,2.5 U Pfu DNA Polymerase(50μl 反应体系),30 个循环,72 ℃ 10 min。PCR 产物经1.5%琼脂糖电泳检测,试剂盒回收,得到纯化后的上、Cm、下游同源臂DNA 片段备用。The upper and lower homology arm primers ldh -UF, ldh-UCmR, ldh -UCmF, ldh -CmDR, ldh - CmDF , ldh -DR were designed respectively (Table 2). Using the purified ldh gene and Cm gene DNA as templates, the upper, Cm , and downstream homology arms were first amplified respectively. The reaction conditions were: 95°C for 5 min, 94°C for 30 s, 55°C for 30 s, 72°C for 1 min 20 s, 2.5 U Pfu DNA Polymerase (50 μl reaction system), 30 cycles, 72 ° C for 10 min. The PCR product was detected by 1.5% agarose electrophoresis, recovered by the kit, and purified upper, Cm , and downstream homology arm DNA fragments were obtained for future use.
(C)基因编辑模版载体pKC1139-ldh-t-DNA的构建(C) Construction of gene editing template vector pKC1139- ldh -t-DNA
取上同源臂纯化产物、cm纯化产物及下同源臂纯化产物1.0 μl混合作为模板,25 μl反应体系进行overlap PCR,反应条件为:94 ℃预变性5 min,94 ℃变性l min, 55 ℃退火1min, 72 ℃延伸30 s,一个循环后加人引物UF与DR各1 μl,继续PCR,反应条件为:95 ℃预变性5 min,94 ℃变性30 s,55℃退火30 s,72 ℃延伸2min,进行30个循环,72 ℃ 10 min。1.5%琼脂糖凝胶电泳检测扩增产物并纯化,得基因编辑模版;将获得的基因编辑模版通过HindIII和XbaI限制性内切酶切出粘性末端,然后通过T4连接酶将其连接到pKC1139质粒上,得基因编辑模版载体pKC1139-ldh-t-DNA。Take 1.0 μl of the purified product of the upper homology arm, the purified product of the cm and the purified product of the lower homology arm and mix it as a template, and perform overlap PCR in a 25 μl reaction system. Anneal for 1 min at °C, extend for 30 s at 72°C, add 1 μl each of primers UF and DR after one cycle, and continue PCR. Extend for 2 min at ℃, and perform 30 cycles, 10 min at 72 ℃. 1.5% agarose gel electrophoresis to detect the amplified product and purify it to obtain the gene editing template; cut out the cohesive ends of the obtained gene editing template with HindIII and XbaI restriction endonucleases, and then connect it to the pKC1139 plasmid with T4 ligase On the above, the gene editing template vector pKC1139- ldh -t-DNA was obtained.
(D)基因编辑质粒pKC1139-ldh-t/g-DNA的构建(D) Construction of gene editing plasmid pKC1139- ldh -t/g-DNA
含乳糖操纵子启动子及guide DNA-ldh连接产物的靶向基因片段(表2)由滁州通用生物公司直接合成,首尾分别加上BamHI及EcoRI酶切位点,中间依次是启动子,重复序列(repeat),间隔序列(spacer),重复序列(repeat)及终止子;将合成的靶向基因片段通过BamHI和EcoRI限制性内切酶切出粘性末端,然后通过T4连接酶将其连接到得基因编辑模版载体pKC1139-ldh-t-DNA上得基因编辑质粒pKC1139-ldh-t/g-DNA 。The targeted gene fragment containing the lactose operon promoter and guide DNA- ldh ligation product (Table 2) was directly synthesized by Chuzhou General Biology Co., Ltd., with BamHI and EcoRI restriction sites added at the beginning and end, respectively, the middle is the promoter, and the repeat sequence (repeat), spacer sequence (spacer), repeat sequence (repeat) and terminator; the synthetic targeted gene fragments were cut out of sticky ends by BamHI and EcoRI restriction endonucleases, and then ligated to the obtained DNA by T4 ligase The gene editing plasmid pKC1139- ldh -t/g-DNA was obtained from the gene editing template vector pKC1139- ldh -t-DNA.
(3)重组子的获取与检验(3) Acquisition and inspection of recombinants
(A)BS168感受态的制备(A) Preparation of BS 168 competent cells
挑取野生型BS168单克隆于5 ml GM1培养基中,37 ℃,130 rpm 过夜培养。次日转接 1ml于9 mlGM1培养基中,37 ℃,200 rpm 培养3.5 h。转接5 ml GM1培养液于45 ml GM2培养基中,37 ℃,130 rpm 培养1.5 h。4 ℃,4000 rpm,离心10 min。留适量上清重悬细胞,分装到2 ml EP 管中得BS168感受态备用。Pick a wild-type BS 168 monoclonal and culture it overnight in 5 ml GM1 medium at 37 °C and 130 rpm. The next day, 1 ml was transferred to 9 ml GM1 medium, and cultured at 37 °C, 200 rpm for 3.5 h. Transfer 5 ml of GM1 culture medium to 45 ml of GM2 medium, and culture at 37 °C, 130 rpm for 1.5 h. Centrifuge at 4000 rpm for 10 min at 4 °C. Retain an appropriate amount of supernatant to resuspend the cells, and divide into 2 ml EP tubes to obtain BS 168 competence for future use.
(B)质粒pHT304-cas7-5-3和pKC1139-ldh-t/g-DNA的共转化(B) Co-transformation of plasmids pHT304- cas 7-5-3 and pKC1139- ldh -t/g-DNA
将质粒pHT304-cas7-5-3和pKC1139-ldh-t/g-DNA充分混匀后加入到制备好的感受态中,37 ℃静置1 h,37 ℃,220 rpm 培养3-4 h。吸取适量菌液涂布到含有Cm抗性的LB培养基上,于37 ℃培养箱培养。Mix the plasmids pHT304- cas 7-5-3 and pKC1139- ldh -t/g-DNA well and add them to the prepared competent cells, let stand at 37°C for 1 hour, and incubate at 37°C at 220 rpm for 3-4 hours . Pipette an appropriate amount of bacterial liquid and spread it on the LB medium containing Cm resistance, and cultivate it in a 37 °C incubator.
(C)重组子染色体PCR和基因测序分析(C) Recombinant chromosome PCR and gene sequencing analysis
于含有Cm 抗生素的LB平板上挑取单克隆,37 ℃,200 rpm,过夜培养。次日提取基因组进行PCR,产物经1%琼脂糖电泳检测,观察重组子染色体DNA扩增条带大小的改变,并经基因测序证明BS168-ldh基因敲除及氯霉素抗性基因插入成功。Single clones were picked on LB plates containing Cm antibiotics, cultured overnight at 37°C, 200 rpm. The next day, the genome was extracted for PCR, and the product was detected by 1% agarose electrophoresis to observe the change in the size of the amplified band of recombinant chromosomal DNA, and gene sequencing proved that the BS 168- ldh gene knockout and the chloramphenicol resistance gene insertion were successful .
实施例5(单质粒敲除BS 168 ldh基因)Embodiment 5 (single plasmid knocks out BS 168 ldh gene)
(1)蛋白表达质粒pHT304-cas7-5-3的构建(1) Construction of protein expression plasmid pHT304- cas 7-5-3
同实施例1步骤(1)Same as embodiment 1 step (1)
(2)基因编辑质粒pHT304-cas7-5-3-ldh-t/g-DNA的构建(2) Construction of gene editing plasmid pHT304- cas 7-5-3- ldh -t/g-DNA
除temple-DNA-ldh靶基因片段不含Cm 基因外,其余步骤与实施例4中步骤(2)相同。Except that the temple-DNA- ldh target gene fragment does not contain the Cm gene, other steps are the same as step (2) in Example 4.
(3)重组子的获取与检验(3) Acquisition and inspection of recombinants
同实施例4步骤(3)Same as embodiment 4 step (3)
以上所述仅以实施例来进一步说明本发明的技术内容,以便于读者更容易理解,但不代表本发明的实施方式仅限于此,任何依本发明所做的技术延伸或再创造,均受本发明的保护。The above description only uses examples to further illustrate the technical content of the present invention, so that readers can understand more easily, but it does not mean that the implementation of the present invention is limited to this, and any technical extension or re-creation according to the present invention is subject to protection of the invention.
表1 维吉尼亚链霉菌IBL14基因cas7-5-3、大肠杆菌JM109基因lacZ和枯草杆菌BS168基因ldh全长序列Table 1 Full-length sequences of Streptomyces virginia IBL14 gene cas7-5-3, Escherichia coli JM109 gene lacZ and Bacillus subtilis BS168 gene ldh
基因 序列gene sequence
A) cas7A) cas7
(999bp) gtggtcgccggtgccccgaacaacggggagggcgaggacaacacggggcgtgtgaagaagctgagggtcgggcgggaggagttcccgtacgtgtccgcgcaggcgttccgtcggtggttgcgtgactcgctgccggcgcaggagccgcgttcggtggtcactcgctcgggcagcggtgccaagcagcaggcacacaccgcgggccggccggacctgcacctggacgatgatctgttcggctacatggtcgcggtgaaggggaaggggggaagctaccagcgggacaccgtgctggctaccgggactttagtttcagtggtgccgcagcgtccgacgttggacttcggcacgatgagccgggacttcccggctggtgagcacccggtgattcactcgcacgagctgtacagcgcgaccctggccggcgatgttctgctggatctgccgcgggctggggtcttcgagacggacggcaacgggttgcgcgtggcgatcagccctgccgtcgctgaggaagcggcgaagaacggggcggaggtcaccacgctgcggggcagtgcggccattcggttgccgcttactgagcggcaccggcggatcggcacgctgttgcggacgctggcgtcggtgcgtggtggggccaagcaggctctgcactacggggaccgggccccttcattggtcttgttggctcctctcaagggtggcgtcaatccgttcacccgtgttctgggcgcccgcgacggtaagcctgtgttcctgagcgatgtcctgcgcgaggagctcgaggcgtgggcggatgagctggacgggccggtgctgctgggctgggccccggggtttctcggcgatcagcgtgagcaggtccgccgcgagctcaaggatctgattgacgagggccgtgtcgtcctgagccatcctcgtgtgctgctgacccagctggccgaccggatcgagcagggtgatcatgacgcgtggttcgaggactccgcggcgtga(999bp) gtggtcgccggtgccccgaacaacggggagggcgaggacaacacggggcgtgtgaagaagctgagggtcgggcgggaggagttcccgtacgtgtccgcgcaggcgttccgtcggtggttgcgtgactcgctgccggcgcaggagccgcgttcggtggtcactcgctcgggcagcggtgccaagcagcaggcacacaccgcgggccggccggacctgcacctggacgatgatctgttcggctacatggtcgcggtgaaggggaaggggggaagctaccagcgggacaccgtgctggctaccgggactttagtttcagtggtgccgcagcgtccgacgttggacttcggcacgatgagccgggacttcccggctggtgagcacccggtgattcactcgcacgagctgtacagcgcgaccctggccggcgatgttctgctggatctgccgcgggctggggtcttcgagacggacggcaacgggttgcgcgtggcgatcagccctgccgtcgctgaggaagcggcgaagaacggggcggaggtcaccacgctgcggggcagtgcggccattcggttgccgcttactgagcggcaccggcggatcggcacgctgttgcggacgctggcgtcggtgcgtggtggggccaagcaggctctgcactacggggaccgggccccttcattggtcttgttggctcctctcaagggtggcgtcaatccgttcacccgtgttctgggcgcccgcgacggtaagcctgtgttcctgagcgatgtcctgcgcgaggagctcgaggcgtgggcggatgagctggacgggccggtgctgctgggctgggccccggggtttctcggcgatcagcgtgagcaggtccgccgcgagctcaaggatctgattgacgagggccgtgtcgtcctgagccatcctcgtgtgctgctgacccagctggccgaccggatcgagcagggtgatcatgacgcgtggttcgaggactccgc ggcgtga
B)cas5B) cas5
(663bp)(663bp)
gtgacgggtacggaggtcacggccctgcagatcacggtgacggcgccggttgtctccttccgtaatccgctgtatgccggggtgcaggtgacgctgccgtgtccgccgccggccaccgtcggcggcctcctcgccgcagcggctggggggtgggagcaggtcaatccggagctgcgtttcgcgatggcgttccacgctggcggcaaggcggtcgatctcgagacgtaccacccgctggacgcgtctgggaagaaggcgtcgcctgccccgcgtaaccgggagttccttacggcggccgagctcaccgtgtggctggtcgacgaccctgaagggtggcagcgccgcctgcgtcggccggtgtggccgctgcggctgggccgcagccaggacctggtcggtatccgcaccggcctggttccgttgcgcgcggagcccggcgagcagcggtccgccgtggtgccggagacggcggggaggatgggaaccctactgcggctgccgactgcggtctctgggggccgggaccgtacccggtgggacagctaccggttcgacagctcgggccgcagtgaccatgtggtcgtaggcggctggtcgactgccgggggacaggcagtcattctgctgccctcggcccatcccgataccgtcgcgcgttcctgagtgacgggtacggaggtcacggccctgcagatcacggtgacggcgccggttgtctccttccgtaatccgctgtatgccggggtgcaggtgacgctgccgtgtccgccgccggccaccgtcggcggcctcctcgccgcagcggctggggggtgggagcaggtcaatccggagctgcgtttcgcgatggcgttccacgctggcggcaaggcggtcgatctcgagacgtaccacccgctggacgcgtctgggaagaaggcgtcgcctgccccgcgtaaccgggagttccttacggcggccgagctcaccgtgtggctggtcgacgaccctgaagggtggcagcgccgcctgcgtcggccggtgtggccgctgcggctgggccgcagccaggacctggtcggtatccgcaccggcctggttccgttgcgcgcggagcccggcgagcagcggtccgccgtggtgccggagacggcggggaggatgggaaccctactgcggctgccgactgcggtctctgggggccgggaccgtacccggtgggacagctaccggttcgacagctcgggccgcagtgaccatgtggtcgtaggcggctggtcgactgccgggggacaggcagtcattctgctgccctcggcccatcccgataccgtcgcgcgttcctga
C)cas3C) cas3
(2316bp)(2316bp)
gtgggccgtctggacgcggtggaggacgtcttcggcggcaggttctggcccgtcgtggaactcgctggcctcacccacgacgccggcaagattcccgaaggcttccagcggatgctggcgggatacagccgtgcctggggtgagcgtcacgaagtcgcctcgttgggcttcctgcccgcgctcatcggcgacccggacgtgctgttgtgggtggcgaccgcggtcgccacccaccatcgtccgctgaccggccagaacggacgcgacctgcagactctctacagcggtgtcaccatcaccgagctcgcgcaccgtttcgggccttttgacccacgcgctgtccccgccttggaggcctggcttcgtgcgagcgccatccgggtcggcctccccgcggccgctgttccagacgacggcacgctcaccgacaccggagtggtcgctggcgcccaccagctgctggaggagattttggaccgttgggcagaccgtgtgaggcctgaggtgggcttggccgctgtactgctgcagggggcggtcaccctggccgaccacttgtcctccgcccatcaggctctgcccaccgtccagccgttgggggccgggttccggtcccggttggagaaggagttcgctgaacgcggcaggaccctgcgtgcccaccagctggaggccgccaccgttaccggacatcttctgctgcgcgggccgaccggcagtgggaagaccgaggctgccctgctgtgggctgccagccaggtcgaggccctgaaggcggaaggccggggcgtgccgcgtgtgtttttcactctcccctacctggcctccatcaacgccatggcaacacggctgggtgacactctcggcgatggtgaggctgtcggcgttgcccactcccgcgccgcctcctaccaccttgcccaggccatcgccccgcaggacggcgacgaggaggacgaacacggagccccctgccgtgttgacgcggccgccaaggccttgtcccgggccgctgccaccaagctgttccgcgagagtgtccgcgtcgccaccccctaccagcttctgcgggccgccctggccgggccggcccactccggcatcctcatcgacgccgcgaactcggtgttcatcctggacgaactccacgcctacgacgcccgcaggctcggctacatcctggccagtgcccggctgtgggaacgcctcggtggacggatcacagtcctgtccgcgaccctgcccagggccctggccgacctgttcgagagcaccctcaccgcccccatcaccttcctcgacacccccgacctcgggctgccggcgcgccacctcctgcacacccgaggccaccatctcaccgacccggccacactggaggagatccgtctgcggctgtcccgggacgagtcggtcctggtgatcgccaacaacgtgtcccaggccatcgccctgtacgaacagctcgcacccgacgtgtgtgaacgcttcggtcaggacgccgcgctactgctgcactcccggtttcgacggatggaccggtcccggattgagcagaagatcgccgaccggttcgccactgtggcacctgatgcccagaacagccgtaagccgggcctggtcgttgccacgcaggtggtcgaggtcagtctcgacgtcgacttcgatgtgctgttcactggagcggctccgctcgaggccctcctgcagcgcttcggccggaccaaccgcgtcggggcccgcccgccggccgacgtcatcgtccaccatcccgcctggaccacacgccgccgacagcccggcgagtacgccgacggcatctacccacgggagccggtcgagtccgcgtggcacatcctcacccgcaatcacgggcgagtcatcgacgaagcggacgccaccgcgtggctggacgaggtctacgccacggactggggcaggcaatggcaccgcgaggtgctggagcggcgagaaagattcgaccgtgcgttcctgcagttccgctaccccttcgaagaccgcactgacctggccgataccttcgacgaactcttcgacggctccgaagccatcctcgccgaagaccaggacgcctactcagccgcactggccgcaccagacggcgaccaccccggagctggccggctcctcgcagaggaatacctcatccccgttccccactgggccagccccctcagccgctacgagaagcagctcaaagtccgcgtcatcaacggcgactaccaccccgaccacggcctcatggcggtccgggggctgccccagcccgcctaccgcgccggggaggtcttgtgagtgggccgtctggacgcggtggaggacgtcttcggcggcaggttctggcccgtcgtggaactcgctggcctcacccacgacgccggcaagattcccgaaggcttccagcggatgctggcgggatacagccgtgcctggggtgagcgtcacgaagtcgcctcgttgggcttcctgcccgcgctcatcggcgacccggacgtgctgttgtgggtggcgaccgcggtcgccacccaccatcgtccgctgaccggccagaacggacgcgacctgcagactctctacagcggtgtcaccatcaccgagctcgcgcaccgtttcgggccttttgacccacgcgctgtccccgccttggaggcctggcttcgtgcgagcgccatccgggtcggcctccccgcggccgctgttccagacgacggcacgctcaccgacaccggagtggtcgctggcgcccaccagctgctggaggagattttggaccgttgggcagaccgtgtgaggcctgaggtgggcttggccgctgtactgctgcagggggcggtcaccctggccgaccacttgtcctccgcccatcaggctctgcccaccgtccagccgttgggggccgggttccggtcccggttggagaaggagttcgctgaacgcggcaggaccctgcgtgcccaccagctggaggccgccaccgttaccggacatcttctgctgcgcgggccgaccggcagtgggaagaccgaggctgccctgctgtgggctgccagccaggtcgaggccctgaaggcggaaggccggggcgtgccgcgtgtgtttttcactctcccctacctggcctccatcaacgccatggcaacacggctgggtgacactctcggcgatggtgaggctgtcggcgttgcccactcccgcgccgcctcctaccaccttgcccaggccatcgccccgcaggacggcgacgaggaggacgaacacggagccccctgccgtgttgacgcggccgccaaggcct tgtcccgggccgctgccaccaagctgttccgcgagagtgtccgcgtcgccaccccctaccagcttctgcgggccgccctggccgggccggcccactccggcatcctcatcgacgccgcgaactcggtgttcatcctggacgaactccacgcctacgacgcccgcaggctcggctacatcctggccagtgcccggctgtgggaacgcctcggtggacggatcacagtcctgtccgcgaccctgcccagggccctggccgacctgttcgagagcaccctcaccgcccccatcaccttcctcgacacccccgacctcgggctgccggcgcgccacctcctgcacacccgaggccaccatctcaccgacccggccacactggaggagatccgtctgcggctgtcccgggacgagtcggtcctggtgatcgccaacaacgtgtcccaggccatcgccctgtacgaacagctcgcacccgacgtgtgtgaacgcttcggtcaggacgccgcgctactgctgcactcccggtttcgacggatggaccggtcccggattgagcagaagatcgccgaccggttcgccactgtggcacctgatgcccagaacagccgtaagccgggcctggtcgttgccacgcaggtggtcgaggtcagtctcgacgtcgacttcgatgtgctgttcactggagcggctccgctcgaggccctcctgcagcgcttcggccggaccaaccgcgtcggggcccgcccgccggccgacgtcatcgtccaccatcccgcctggaccacacgccgccgacagcccggcgagtacgccgacggcatctacccacgggagccggtcgagtccgcgtggcacatcctcacccgcaatcacgggcgagtcatcgacgaagcggacgccaccgcgtggctggacgaggtctacgccacggactggggcaggcaatggcaccgcgaggtgctggagcggcgagaaagattcgaccgtgcgttcctgcagtt ccgctaccccttcgaagaccgcactgacctggccgataccttcgacgaactcttcgacggctccgaagccatcctcgccgaagaccaggacgcctactcagccgcactggccgcaccagacggcgaccaccccggagctggccggctcctcgcagaggaatacctcatccccgttccccactgggccagccccctcagccgctacgagaagcagctcaaagtccgcgtcatcaacggcgactaccaccccgaccacggcctcatggcggtccgggggctgccccagcccgcctaccgcgccggggaggtcttgtga
D)lacZ (3075bp)D) lacZ (3075bp)
atgaccatgattacggattcactggccgtcgttttacaacgtcgtgactgggaaaaccctggcgttacccaacttaatcgccttgcagcacatccccctttcgccagctggcgtaatagcgaagaggcccgcaccgatcgcccttcccaacagttgcgcagcctgaatggcgaatggcgctttgcctggtttccggcaccagaagcggtgccggaaagctggctggagtgcgatcttcctgaggccgatactgtcgtcgtcccctcaaactggcagatgcacggttacgatgcgcccatctacaccaacgtgacctatcccattacggtcaatccgccgtttgttcccacggagaatccgacgggttgttactcgctcacatttaatgttgatgaaagctggctacaggaaggccagacgcgaattatttttgatggcgttaactcggcgtttcatctgtggtgcaacgggcgctgggtcggttacggccaggacagtcgtttgccgtctgaatttgacctgagcgcatttttacgcgccggagaaaaccgcctcgcggtgatggtgctgcgctggagtgacggcagttatctggaagatcaggatatgtggcggatgagcggcattttccgtgacgtctcgttgctgcataaaccgactacacaaatcagcgatttccatgttgccactcgctttaatgatgatttcagccgcgctgtactggaggctgaagttcagatgtgcggcgagttgcgtgactacctacgggtaacagtttctttatggcagggtgaaacgcaggtcgccagcggcaccgcgcctttcggcggtgaaattatcgatgagcgtggtggttatgccgatcgcgtcacactacgtctgaacgtcgaaaacccgaaactgtggagcgccgaaatcccgaatctctatcgtgcggtggttgaactgcacaccgccgacggcacgctgattgaagcagaagcctgcgatgtcggtttccgcgaggtgcggattgaaaatggtctgctgctgctgaacggcaagccgttgctgattcgaggcgttaaccgtcacgagcatcatcctctgcatggtcaggtcatggatgagcagacgatggtgcaggatatcctgctgatgaagcagaacaactttaacgccgtgcgctgttcgcattatccgaaccatccgctgtggtacacgctgtgcgaccgctacggcctgtatgtggtggatgaagccaatattgaaacccacggcatggtgccaatgaatcgtctgaccgatgatccgcgctggctaccggcgatgagcgaacgcgtaacgcgaatggtgcagcgcgatcgtaatcacccgagtgtgatcatctggtcgctggggaatgaatcaggccacggcgctaatcacgacgcgctgtatcgctggatcaaatctgtcgatccttcccgcccggtgcagtatgaaggcggcggagccgacaccacggccaccgatattatttgcccgatgtacgcgcgcgtggatgaagaccagcccttcccggctgtgccgaaatggtccatcaaaaaatggctttcgctacctggagagacgcgcccgctgatcctttgcgaatacgcccacgcgatgggtaacagtcttggcggtttcgctaaatactggcaggcgtttcgtcagtatccccgtttacagggcggcttcgtctgggactgggtggatcagtcgctgattaaatatgatgaaaacggcaacccgtggtcggcttacggcggtgattttggcgatacgccgaacgatcgccagttctgtatgaacggtctggtctttgccgaccgcacgccgcatccagcgctgacggaagcaaaacaccagcagcagtttttccagttccgtttatccgggcaaaccatcgaagtgaccagcgaatacctgttccgtcatagcgataacgagctcctgcactggatggtggcgctggatggtaagccgctggcaagcggtgaagtgcctctggatgtcgctccacaaggtaaacagttgattgaactgcctgaactaccgcagccggagagcgccgggcaactctggctcacagtacgcgtagtgcaaccgaacgcgaccgcatggtcagaagccgggcacatcagcgcctggcagcagtggcgtctggcggaaaacctcagtgtgacgctccccgccgcgtcccacgccatcccgcatctgaccaccagcgaaatggatttttgcatcgagctgggtaataagcgttggcaatttaaccgccagtcaggctttctttcacagatgtggattggcgataaaaaacaactgctgacgccgctgcgcgatcagttcacccgtgcaccgctggataacgacattggcgtaagtgaagcgacccgcattgaccctaacgcctgggtcgaacgctggaaggcggcgggccattaccaggccgaagcagcgttgttgcagtgcacggcagatacacttgctgatgcggtgctgattacgaccgctcacgcgtggcagcatcaggggaaaaccttatttatcagccggaaaacctaccggattgatggtagtggtcaaatggcgattaccgttgatgttgaagtggcgagcgatacaccgcatccggcgcggattggcctgaactgccagctggcgcaggtagcagagcgggtaaactggctcggattagggccgcaagaaaactatcccgaccgccttactgccgcctgttttgaccgctgggatctgccattgtcagacatgtataccccgtacgtcttcccgagcgaaaacggtctgcgctgcgggacgcgcgaattgaattatggcccacaccagtggcgcggcgacttccagttcaacatcagccgctacagtcaacagcaactgatggaaaccagccatcgccatctgctgcacgcggaagaaggcacatggctgaatatcgacggtttccatatggggattggtggcgacgactcctggagcccgtcagtatcggcggaattccagctgagcgccggtcgctaccattaccagttggtctggtgtcaaaaataaatgaccatgattacggattcactggccgtcgttttacaacgtcgtgactgggaaaaccctggcgttacccaacttaatcgccttgcagcacatccccctttcgccagctggcgtaatagcgaagaggcccgcaccgatcgcccttcccaacagttgcgcagcctgaatggcgaatggcgctttgcctggtttccggcaccagaagcggtgccggaaagctggctggagtgcgatcttcctgaggccgatactgtcgtcgtcccctcaaactggcagatgcacggttacgatgcgcccatctacaccaacgtgacctatcccattacggtcaatccgccgtttgttcccacggagaatccgacgggttgttactcgctcacatttaatgttgatgaaagctggctacaggaaggccagacgcgaattatttttgatggcgttaactcggcgtttcatctgtggtgcaacgggcgctgggtcggttacggccaggacagtcgtttgccgtctgaatttgacctgagcgcatttttacgcgccggagaaaaccgcctcgcggtgatggtgctgcgctggagtgacggcagttatctggaagatcaggatatgtggcggatgagcggcattttccgtgacgtctcgttgctgcataaaccgactacacaaatcagcgatttccatgttgccactcgctttaatgatgatttcagccgcgctgtactggaggctgaagttcagatgtgcggcgagttgcgtgactacctacgggtaacagtttctttatggcagggtgaaacgcaggtcgccagcggcaccgcgcctttcggcggtgaaattatcgatgagcgtggtggttatgccgatcgcgtcacactacgtctgaacgtcgaaaacccgaaactgtggagcgccgaaatcccgaatctctatcgtgcggtggttgaactgcacaccgccgacggcacgctgattgaagcagaagcctgcgatgtcggtttcc gcgaggtgcggattgaaaatggtctgctgctgctgaacggcaagccgttgctgattcgaggcgttaaccgtcacgagcatcatcctctgcatggtcaggtcatggatgagcagacgatggtgcaggatatcctgctgatgaagcagaacaactttaacgccgtgcgctgttcgcattatccgaaccatccgctgtggtacacgctgtgcgaccgctacggcctgtatgtggtggatgaagccaatattgaaacccacggcatggtgccaatgaatcgtctgaccgatgatccgcgctggctaccggcgatgagcgaacgcgtaacgcgaatggtgcagcgcgatcgtaatcacccgagtgtgatcatctggtcgctggggaatgaatcaggccacggcgctaatcacgacgcgctgtatcgctggatcaaatctgtcgatccttcccgcccggtgcagtatgaaggcggcggagccgacaccacggccaccgatattatttgcccgatgtacgcgcgcgtggatgaagaccagcccttcccggctgtgccgaaatggtccatcaaaaaatggctttcgctacctggagagacgcgcccgctgatcctttgcgaatacgcccacgcgatgggtaacagtcttggcggtttcgctaaatactggcaggcgtttcgtcagtatccccgtttacagggcggcttcgtctgggactgggtggatcagtcgctgattaaatatgatgaaaacggcaacccgtggtcggcttacggcggtgattttggcgatacgccgaacgatcgccagttctgtatgaacggtctggtctttgccgaccgcacgccgcatccagcgctgacggaagcaaaacaccagcagcagtttttccagttccgtttatccgggcaaaccatcgaagtgaccagcgaatacctgttccgtcatagcgataacgagctcctgcactggatggtggcgctggatggtaagccgctggcaagcgg tgaagtgcctctggatgtcgctccacaaggtaaacagttgattgaactgcctgaactaccgcagccggagagcgccgggcaactctggctcacagtacgcgtagtgcaaccgaacgcgaccgcatggtcagaagccgggcacatcagcgcctggcagcagtggcgtctggcggaaaacctcagtgtgacgctccccgccgcgtcccacgccatcccgcatctgaccaccagcgaaatggatttttgcatcgagctgggtaataagcgttggcaatttaaccgccagtcaggctttctttcacagatgtggattggcgataaaaaacaactgctgacgccgctgcgcgatcagttcacccgtgcaccgctggataacgacattggcgtaagtgaagcgacccgcattgaccctaacgcctgggtcgaacgctggaaggcggcgggccattaccaggccgaagcagcgttgttgcagtgcacggcagatacacttgctgatgcggtgctgattacgaccgctcacgcgtggcagcatcaggggaaaaccttatttatcagccggaaaacctaccggattgatggtagtggtcaaatggcgattaccgttgatgttgaagtggcgagcgatacaccgcatccggcgcggattggcctgaactgccagctggcgcaggtagcagagcgggtaaactggctcggattagggccgcaagaaaactatcccgaccgccttactgccgcctgttttgaccgctgggatctgccattgtcagacatgtataccccgtacgtcttcccgagcgaaaacggtctgcgctgcgggacgcgcgaattgaattatggcccacaccagtggcgcggcgacttccagttcaacatcagccgctacagtcaacagcaactgatggaaaccagccatcgccatctgctgcacgcggaagaaggcacatggctgaatatcgacggtttccatatggggattggtggcgacgactcctgg agcccgtcagtatcggcggaattccagctgagcgccggtcgctaccattaccagttggtctggtgtcaaaaataa
E)ldhE) ldh
(966bp)(966bp)
atgatgaacaaacatgtaaataaagtagctttaatcggagcgggttttgttggaagcagttatgcatttgcgttaattaaccaaggaatcacagatgagcttgtggtcattgatgtaaataaagaaaaagcaatgggcgatgtgatggatttaaaccacggaaaggcgtttgcgccacaaccggtcaaaacatcttacggaacatatgaagactgcaaggatgctgatattgtctgcatttgcgccggagcaaaccaaaaacctggtgagacacgccttgaattagtagaaaagaacttgaagattttcaaaggcatcgttagtgaagtcatggcgagcggatttgacggcattttcttagtcgcgacaaatccggttgatatcctgacttacgcaacatggaaattcagcggcctgccaaaagagcgggtgattggaagcggcacaacacttgattctgcgagattccgtttcatgctgagcgaatactttggcgcagcgcctcaaaacgtacacgcgcatattatcggagagcacggcgacacagagcttcctgtttggagccacgcgaatgtcggcggtgtgccggtcagtgaactcgttgagaaaaacgatgcgtacaaacaagaggagctggaccaaattgtagatgatgtgaaaaacgcagcttaccatatcattgagaaaaaaggcgcgacttattatggggttgcgatgagtcttgctcgcattacaaaagccattcttcataatgaaaacagcatattaactgtcagcacatatttggacgggcaatacggtgcagatgacgtgtacatcggtgtgccggctgtcgtgaatcgcggagggatcgcaggtatcactgagctgaacttaaatgagaaagaaaaagaacagttccttcacagcgccggcgtccttaaaaacattttaaaacctcattttgcagaacaaaaagtcaactaaatgatgaacaaacatgtaaataaagtagctttaatcggagcgggttttgttggaagcagttatgcatttgcgttaattaaccaaggaatcacagatgagcttgtggtcattgatgtaaataaagaaaaagcaatgggcgatgtgatggatttaaaccacggaaaggcgtttgcgccacaaccggtcaaaacatcttacggaacatatgaagactgcaaggatgctgatattgtctgcatttgcgccggagcaaaccaaaaacctggtgagacacgccttgaattagtagaaaagaacttgaagattttcaaaggcatcgttagtgaagtcatggcgagcggatttgacggcattttcttagtcgcgacaaatccggttgatatcctgacttacgcaacatggaaattcagcggcctgccaaaagagcgggtgattggaagcggcacaacacttgattctgcgagattccgtttcatgctgagcgaatactttggcgcagcgcctcaaaacgtacacgcgcatattatcggagagcacggcgacacagagcttcctgtttggagccacgcgaatgtcggcggtgtgccggtcagtgaactcgttgagaaaaacgatgcgtacaaacaagaggagctggaccaaattgtagatgatgtgaaaaacgcagcttaccatatcattgagaaaaaaggcgcgacttattatggggttgcgatgagtcttgctcgcattacaaaagccattcttcataatgaaaacagcatattaactgtcagcacatatttggacgggcaatacggtgcagatgacgtgtacatcggtgtgccggctgtcgtgaatcgcggagggatcgcaggtatcactgagctgaacttaaatgagaaagaaaaagaacagttccttcacagcgccggcgtccttaaaaacattttaaaacctcattttgcagaacaaaaagtcaactaa
表2 引物及编辑原件序列表Table 2 Primers and edited original sequence list
引物名称 序列(5’→3’)Primer name Sequence (5'→3')
304cas-F taacaatttcacacaggaaacagctgtggtcgccggtgccccgaac304cas-F taacaatttcacacaggaaacagctgtggtcgccggtgccccgaac
304cas-R ttggcgggtgtcggggctggcttaatcacaagacctccccggcgc304cas-R ttggcgggtgtcggggctggcttaatcacaagacctccccggcgc
lacZ-F tacccaacttaatcgccttgcagcacalacZ-F tacccaacttaatcgccttgcagcaca
lacZ-R ccgtcgatattcagccatgtgccttcttlacZ-R ccgtcgatattcagccatgtgccttctt
lacZ-UFlacZ-UF
lacZ-URlacZ-UR
lacZ-DFlacZ-DF
lacZ-DRlacZ-DR
guide DNA-lacZguide DNA-lacZ
ldh-Fldh-F
ldh-Rldh-R
ldh-UFldh-UF
ldh-UCmRldh-UCmR
ldh-UCmFldh-UCmF
ldh-CmDRldh-CmDR
ldh-CmDFldh-CmDF
ldh-DRldh-DR
ldh-URldh-UR
ldh-DFldh-DF
guide DNA-ldhguide DNA-ldh
cccAAGCTTatgagcgtggtggttatgcccccAAGCTTatgagcgtggtggttatgcc
acgaagccgccctgtaaacccatgccgtgggtttcaataacgaagccgccctgtaaacccatgccgtgggtttcaata
tattgaaacccacggcatgggtttacagggcggcttcgttattgaaacccacggcatgggtttacagggcggcttcgt
gcgtTCTAGAatgcgggtcgcttcacttacgcgtTCTAGAatgcgggtcgcttcacttac
cgGGATCCtaatacgactcactatagggaatattgtcctcatcgccccttcgaggggtcgcaacccgcccggtgcagtatgaaggcggcggagccgacaccacggtcctcatcgccccttcgaggggtcgcaacctagcataaccccttggggcctctaaacgggtcttgaggggttttttgGAATTCcgcgGGATCCtaatacgactcactatagggaatattgtcctcatcgccccttcgaggggtcgcaacccgcccggtgcagtatgaaggcggcggagccgacaccacggtcctcatcgccccttcgaggggtcgcaacctagcataaccccttggggcctctaaacgggtcttgaggggttttttgGAATTCcg
atgatgaacaaacatgtaaatgatgaacaaacatgtaa
ttagttgactttttgttcttagttgactttttgttc
ccAAGCTTcgatgagatggatttaaaccaccAAGCTTcgatgagatggatttaaacca
cacaggtaggcgcgccatgttgcgtaagtcaggatacacaggtaggcgcgccatgttgcgtaagtcaggata
tatcctgacttacgcaacatggcgcgcctacctgtgtatcctgacttacgcaacatggcgcgcctacctgtg
tttttctcaacgagttcactccttacgccccgcctttttctcaacgagttcactccttacgccccgcc
ggcggggcgtaaggagtgaactcgttgagaaaaaggcggggcgtaaggagtgaactcgttgagaaaaa
gcgtTCTAGAgcgattcacgacagccgcgtTCTAGAgcgattcacgacagcc
tttttctcaacgagttcactatgttgcgtaagtcaggatatttttctcaacgagttcactatgttgcgtaagtcaggata
tatcctgacttacgcaacatagtgaactcgttgagaaaaatatcctgacttacgcaacatagtgaactcgttgagaaaaa
cgGGATCCtaatgtgagttagctcactcattaggcaccccaggctttacactttatgcttccggctcgtatgttgtgtggaattgtgagcggataacaagtcctcatcgccccttcgaggggtcgcaacagcggcctgccaaaagagcgggtgattggaagcggcacaagtcctcatcgccccttcgaggggtcgcaacctagcataaccccttggggcctctaaacgggtcttgaggggttttttgGAATTCcgcgGGATCCtaatgtgagttagctcactcattaggcaccccaggctttacactttatgcttccggctcgtatgttgtgtggaattgtgagcggataacaagtcctcatcgccccttcgaggggtcgcaacagcggcctgccaaaagagcgggtgattggaagcggcacaagtcctcatcgccccttcgaggggtcgcaacctagcataaccccttggggcctctaaacgggtcttgaggggttttttgGAATTCcg
大写字母为酶切位点,波浪线为保护碱基,引物黑体加粗为互补区,单下划线为启动子promoter,斜体为spacer,黑体加粗为repeat,双下划线为终止子terminatorThe capital letter is the enzyme cutting site, the wavy line is the protective base, the bold bold of the primer is the complementary region, the single underline is the promoter promoter, the italic is the spacer, the bold bold is the repeat, and the double underline is the terminator
Claims (4)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201611089333.1A CN106834323A (en) | 2016-12-01 | 2016-12-01 | Gene editing method based on streptomyces virginiae IBL14 gene cas7-5-3 |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201611089333.1A CN106834323A (en) | 2016-12-01 | 2016-12-01 | Gene editing method based on streptomyces virginiae IBL14 gene cas7-5-3 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN106834323A true CN106834323A (en) | 2017-06-13 |
Family
ID=59145558
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201611089333.1A Pending CN106834323A (en) | 2016-12-01 | 2016-12-01 | Gene editing method based on streptomyces virginiae IBL14 gene cas7-5-3 |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN106834323A (en) |
Cited By (37)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107475169A (en) * | 2017-09-19 | 2017-12-15 | 安徽大学 | Cas7 and Cas3 prokaryotic gene edit methods in a kind of type Cas systems based on I |
| CN107523583A (en) * | 2017-09-19 | 2017-12-29 | 安徽大学 | A kind of prokaryotic gene edit methods for coming from gene cas5 3 in I type CRISPR Cas systems |
| CN107557373A (en) * | 2017-09-19 | 2018-01-09 | 安徽大学 | A kind of gene editing method based on I Type B CRISPR Cas system genes cas3 |
| CN107557378A (en) * | 2017-09-19 | 2018-01-09 | 安徽大学 | Gene cas7 3 eukaryotic gene edit methods in a kind of type CRISPR Cas systems based on I |
| CN107630041A (en) * | 2017-09-19 | 2018-01-26 | 安徽大学 | A kind of eukaryotic gene edit methods based on Virginia streptomycete IBL14 I Type B Cas systems |
| CN107630042A (en) * | 2017-09-19 | 2018-01-26 | 安徽大学 | A kind of prokaryotic gene edit methods for coming from I type Cas 4 cas genes of system |
| US9999671B2 (en) | 2013-09-06 | 2018-06-19 | President And Fellows Of Harvard College | Delivery of negatively charged proteins using cationic lipids |
| US10113163B2 (en) | 2016-08-03 | 2018-10-30 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
| US10167457B2 (en) | 2015-10-23 | 2019-01-01 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
| US10323236B2 (en) | 2011-07-22 | 2019-06-18 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
| US10465176B2 (en) | 2013-12-12 | 2019-11-05 | President And Fellows Of Harvard College | Cas variants for gene editing |
| CN110438142A (en) * | 2019-05-13 | 2019-11-12 | 安徽大学 | A kind of transcriptional control method based on SviCas5-6-7 in I-B-Svi type CRISPR-Cas system |
| CN110438141A (en) * | 2019-05-13 | 2019-11-12 | 安徽大学 | A kind of gene editing method based on SviCas6-SviCas3 |
| US10508298B2 (en) | 2013-08-09 | 2019-12-17 | President And Fellows Of Harvard College | Methods for identifying a target site of a CAS9 nuclease |
| US10597679B2 (en) | 2013-09-06 | 2020-03-24 | President And Fellows Of Harvard College | Switchable Cas9 nucleases and uses thereof |
| US10704062B2 (en) | 2014-07-30 | 2020-07-07 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
| US10745677B2 (en) | 2016-12-23 | 2020-08-18 | President And Fellows Of Harvard College | Editing of CCR5 receptor gene to protect against HIV infection |
| US10858639B2 (en) | 2013-09-06 | 2020-12-08 | President And Fellows Of Harvard College | CAS9 variants and uses thereof |
| US11046948B2 (en) | 2013-08-22 | 2021-06-29 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
| US11268082B2 (en) | 2017-03-23 | 2022-03-08 | President And Fellows Of Harvard College | Nucleobase editors comprising nucleic acid programmable DNA binding proteins |
| US11306324B2 (en) | 2016-10-14 | 2022-04-19 | President And Fellows Of Harvard College | AAV delivery of nucleobase editors |
| US11319532B2 (en) | 2017-08-30 | 2022-05-03 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
| US11447770B1 (en) | 2019-03-19 | 2022-09-20 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
| US11542509B2 (en) | 2016-08-24 | 2023-01-03 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
| US11542496B2 (en) | 2017-03-10 | 2023-01-03 | President And Fellows Of Harvard College | Cytosine to guanine base editor |
| US11560566B2 (en) | 2017-05-12 | 2023-01-24 | President And Fellows Of Harvard College | Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation |
| US11661590B2 (en) | 2016-08-09 | 2023-05-30 | President And Fellows Of Harvard College | Programmable CAS9-recombinase fusion proteins and uses thereof |
| US11732274B2 (en) | 2017-07-28 | 2023-08-22 | President And Fellows Of Harvard College | Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE) |
| US11795443B2 (en) | 2017-10-16 | 2023-10-24 | The Broad Institute, Inc. | Uses of adenosine base editors |
| US11898179B2 (en) | 2017-03-09 | 2024-02-13 | President And Fellows Of Harvard College | Suppression of pain by gene editing |
| US11912985B2 (en) | 2020-05-08 | 2024-02-27 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
| US12157760B2 (en) | 2018-05-23 | 2024-12-03 | The Broad Institute, Inc. | Base editors and uses thereof |
| US12281338B2 (en) | 2018-10-29 | 2025-04-22 | The Broad Institute, Inc. | Nucleobase editors comprising GeoCas9 and uses thereof |
| US12351837B2 (en) | 2019-01-23 | 2025-07-08 | The Broad Institute, Inc. | Supernegatively charged proteins and uses thereof |
| US12390514B2 (en) | 2017-03-09 | 2025-08-19 | President And Fellows Of Harvard College | Cancer vaccine |
| US12406749B2 (en) | 2017-12-15 | 2025-09-02 | The Broad Institute, Inc. | Systems and methods for predicting repair outcomes in genetic engineering |
| US12435330B2 (en) | 2019-10-10 | 2025-10-07 | The Broad Institute, Inc. | Methods and compositions for prime editing RNA |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105543266A (en) * | 2015-12-25 | 2016-05-04 | 安徽大学 | CRISPR (Clustered Regularly Interspaced Short Palindromic Repeat sequences)-Cas (CRISPR-associated proteins) system in Streptomyces virginiae IBL14 and method for carrying out gene editing by using CRISPR-Cas system |
-
2016
- 2016-12-01 CN CN201611089333.1A patent/CN106834323A/en active Pending
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105543266A (en) * | 2015-12-25 | 2016-05-04 | 安徽大学 | CRISPR (Clustered Regularly Interspaced Short Palindromic Repeat sequences)-Cas (CRISPR-associated proteins) system in Streptomyces virginiae IBL14 and method for carrying out gene editing by using CRISPR-Cas system |
Non-Patent Citations (1)
| Title |
|---|
| 雍德祥: "维吉尼亚链霉菌IBL14中的CRISPR-Cas系统及其基因编辑方法", 《中国优秀硕士学位论文全文数据库基础科学辑》 * |
Cited By (68)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10323236B2 (en) | 2011-07-22 | 2019-06-18 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
| US12006520B2 (en) | 2011-07-22 | 2024-06-11 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
| US10508298B2 (en) | 2013-08-09 | 2019-12-17 | President And Fellows Of Harvard College | Methods for identifying a target site of a CAS9 nuclease |
| US10954548B2 (en) | 2013-08-09 | 2021-03-23 | President And Fellows Of Harvard College | Nuclease profiling system |
| US11920181B2 (en) | 2013-08-09 | 2024-03-05 | President And Fellows Of Harvard College | Nuclease profiling system |
| US11046948B2 (en) | 2013-08-22 | 2021-06-29 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
| US10597679B2 (en) | 2013-09-06 | 2020-03-24 | President And Fellows Of Harvard College | Switchable Cas9 nucleases and uses thereof |
| US11299755B2 (en) | 2013-09-06 | 2022-04-12 | President And Fellows Of Harvard College | Switchable CAS9 nucleases and uses thereof |
| US10858639B2 (en) | 2013-09-06 | 2020-12-08 | President And Fellows Of Harvard College | CAS9 variants and uses thereof |
| US9999671B2 (en) | 2013-09-06 | 2018-06-19 | President And Fellows Of Harvard College | Delivery of negatively charged proteins using cationic lipids |
| US10682410B2 (en) | 2013-09-06 | 2020-06-16 | President And Fellows Of Harvard College | Delivery system for functional nucleases |
| US10912833B2 (en) | 2013-09-06 | 2021-02-09 | President And Fellows Of Harvard College | Delivery of negatively charged proteins using cationic lipids |
| US11124782B2 (en) | 2013-12-12 | 2021-09-21 | President And Fellows Of Harvard College | Cas variants for gene editing |
| US11053481B2 (en) | 2013-12-12 | 2021-07-06 | President And Fellows Of Harvard College | Fusions of Cas9 domains and nucleic acid-editing domains |
| US10465176B2 (en) | 2013-12-12 | 2019-11-05 | President And Fellows Of Harvard College | Cas variants for gene editing |
| US12215365B2 (en) | 2013-12-12 | 2025-02-04 | President And Fellows Of Harvard College | Cas variants for gene editing |
| US11578343B2 (en) | 2014-07-30 | 2023-02-14 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
| US12398406B2 (en) | 2014-07-30 | 2025-08-26 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
| US10704062B2 (en) | 2014-07-30 | 2020-07-07 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
| US12043852B2 (en) | 2015-10-23 | 2024-07-23 | President And Fellows Of Harvard College | Evolved Cas9 proteins for gene editing |
| US12344869B2 (en) | 2015-10-23 | 2025-07-01 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
| US11214780B2 (en) | 2015-10-23 | 2022-01-04 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
| US10167457B2 (en) | 2015-10-23 | 2019-01-01 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
| US11702651B2 (en) | 2016-08-03 | 2023-07-18 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
| US10947530B2 (en) | 2016-08-03 | 2021-03-16 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
| US10113163B2 (en) | 2016-08-03 | 2018-10-30 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
| US11999947B2 (en) | 2016-08-03 | 2024-06-04 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
| US11661590B2 (en) | 2016-08-09 | 2023-05-30 | President And Fellows Of Harvard College | Programmable CAS9-recombinase fusion proteins and uses thereof |
| US12084663B2 (en) | 2016-08-24 | 2024-09-10 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
| US11542509B2 (en) | 2016-08-24 | 2023-01-03 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
| US11306324B2 (en) | 2016-10-14 | 2022-04-19 | President And Fellows Of Harvard College | AAV delivery of nucleobase editors |
| US10745677B2 (en) | 2016-12-23 | 2020-08-18 | President And Fellows Of Harvard College | Editing of CCR5 receptor gene to protect against HIV infection |
| US11820969B2 (en) | 2016-12-23 | 2023-11-21 | President And Fellows Of Harvard College | Editing of CCR2 receptor gene to protect against HIV infection |
| US12390514B2 (en) | 2017-03-09 | 2025-08-19 | President And Fellows Of Harvard College | Cancer vaccine |
| US11898179B2 (en) | 2017-03-09 | 2024-02-13 | President And Fellows Of Harvard College | Suppression of pain by gene editing |
| US11542496B2 (en) | 2017-03-10 | 2023-01-03 | President And Fellows Of Harvard College | Cytosine to guanine base editor |
| US12435331B2 (en) | 2017-03-10 | 2025-10-07 | President And Fellows Of Harvard College | Cytosine to guanine base editor |
| US11268082B2 (en) | 2017-03-23 | 2022-03-08 | President And Fellows Of Harvard College | Nucleobase editors comprising nucleic acid programmable DNA binding proteins |
| US11560566B2 (en) | 2017-05-12 | 2023-01-24 | President And Fellows Of Harvard College | Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation |
| US11732274B2 (en) | 2017-07-28 | 2023-08-22 | President And Fellows Of Harvard College | Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE) |
| US12359218B2 (en) | 2017-07-28 | 2025-07-15 | President And Fellows Of Harvard College | Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE) |
| US11319532B2 (en) | 2017-08-30 | 2022-05-03 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
| US11932884B2 (en) | 2017-08-30 | 2024-03-19 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
| US11286506B2 (en) | 2017-09-19 | 2022-03-29 | Anhui University | Type I-B CRISPR-Cas system gene Cas3-based gene editing method |
| CN107523583A (en) * | 2017-09-19 | 2017-12-29 | 安徽大学 | A kind of prokaryotic gene edit methods for coming from gene cas5 3 in I type CRISPR Cas systems |
| CN107630042A (en) * | 2017-09-19 | 2018-01-26 | 安徽大学 | A kind of prokaryotic gene edit methods for coming from I type Cas 4 cas genes of system |
| WO2019056848A1 (en) * | 2017-09-19 | 2019-03-28 | 安徽大学 | Type i-b crispr-cas system gene cas3-based gene editing method |
| CN107630041A (en) * | 2017-09-19 | 2018-01-26 | 安徽大学 | A kind of eukaryotic gene edit methods based on Virginia streptomycete IBL14 I Type B Cas systems |
| CN107557378B (en) * | 2017-09-19 | 2025-04-25 | 安徽大学 | A eukaryotic gene editing method based on the gene cas7-3 in the type I CRISPR-Cas system |
| CN107475169B (en) * | 2017-09-19 | 2025-04-25 | 安徽大学 | A prokaryotic gene editing method based on Cas7 and Cas3 in type I Cas system |
| CN107557378A (en) * | 2017-09-19 | 2018-01-09 | 安徽大学 | Gene cas7 3 eukaryotic gene edit methods in a kind of type CRISPR Cas systems based on I |
| CN107557373A (en) * | 2017-09-19 | 2018-01-09 | 安徽大学 | A kind of gene editing method based on I Type B CRISPR Cas system genes cas3 |
| CN107475169A (en) * | 2017-09-19 | 2017-12-15 | 安徽大学 | Cas7 and Cas3 prokaryotic gene edit methods in a kind of type Cas systems based on I |
| EP3556860A4 (en) * | 2017-09-19 | 2020-09-02 | Anhui University | GENEDITATION PROCESS BASED ON GEN CAS3 FROM THE TYPE I-B CRISPR CAS SYSTEM |
| US11795443B2 (en) | 2017-10-16 | 2023-10-24 | The Broad Institute, Inc. | Uses of adenosine base editors |
| US12406749B2 (en) | 2017-12-15 | 2025-09-02 | The Broad Institute, Inc. | Systems and methods for predicting repair outcomes in genetic engineering |
| US12157760B2 (en) | 2018-05-23 | 2024-12-03 | The Broad Institute, Inc. | Base editors and uses thereof |
| US12281338B2 (en) | 2018-10-29 | 2025-04-22 | The Broad Institute, Inc. | Nucleobase editors comprising GeoCas9 and uses thereof |
| US12351837B2 (en) | 2019-01-23 | 2025-07-08 | The Broad Institute, Inc. | Supernegatively charged proteins and uses thereof |
| US11643652B2 (en) | 2019-03-19 | 2023-05-09 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
| US11447770B1 (en) | 2019-03-19 | 2022-09-20 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
| US11795452B2 (en) | 2019-03-19 | 2023-10-24 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
| US12281303B2 (en) | 2019-03-19 | 2025-04-22 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
| CN110438142A (en) * | 2019-05-13 | 2019-11-12 | 安徽大学 | A kind of transcriptional control method based on SviCas5-6-7 in I-B-Svi type CRISPR-Cas system |
| CN110438141A (en) * | 2019-05-13 | 2019-11-12 | 安徽大学 | A kind of gene editing method based on SviCas6-SviCas3 |
| US12435330B2 (en) | 2019-10-10 | 2025-10-07 | The Broad Institute, Inc. | Methods and compositions for prime editing RNA |
| US11912985B2 (en) | 2020-05-08 | 2024-02-27 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
| US12031126B2 (en) | 2020-05-08 | 2024-07-09 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN106834323A (en) | Gene editing method based on streptomyces virginiae IBL14 gene cas7-5-3 | |
| AU2022100155A4 (en) | Improved methods for modification of target nucleic acids | |
| EP3556860B1 (en) | Type i-b crispr-cas system gene cas3-based gene editing method | |
| Hamilton | A binary-BAC system for plant transformation with high-molecular-weight DNA | |
| CN107523583A (en) | A kind of prokaryotic gene edit methods for coming from gene cas5 3 in I type CRISPR Cas systems | |
| CN107630042A (en) | A kind of prokaryotic gene edit methods for coming from I type Cas 4 cas genes of system | |
| CN104109687A (en) | Construction and application of Zymomonas mobilis CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-association proteins)9 system | |
| CN113136374B (en) | Preparation and application of recombinant mutant Tn5 transposase | |
| WO2013143438A1 (en) | Nucleic acid molecular cloning method based on homologous recombination, and related reagent kit | |
| CN106755037A (en) | Streptomyces virginiae IBL14 type I-B-sv14 CAS gene editing system | |
| CN107475169B (en) | A prokaryotic gene editing method based on Cas7 and Cas3 in type I Cas system | |
| Liu et al. | CRISPR-Cas12a assisted precise genome editing of Mycolicibacterium neoaurum | |
| CN107245493A (en) | A vector expressing an aptamer ribozyme-modified sgRNA regulated by theophylline and its application | |
| JP2007151542A (en) | Cloning and expression method of target gene by homologous recombination | |
| CN106978438B (en) | Method for improving homologous recombination efficiency | |
| WO2022046662A1 (en) | Systems and methods for transposing cargo nucleotide sequences | |
| WO2021258580A1 (en) | Crispr/cas12a-based in vitro large-fragment dna cloning method and applications thereof | |
| CN114875056B (en) | Method for editing bacillus subtilis genome based on CRISPR-Cas9 system and application thereof | |
| CN114410608B (en) | Method for efficiently expressing and purifying Cas9 protein and application thereof | |
| CN101503698A (en) | Non-false positive T vector and preparation | |
| CN114480464B (en) | Double plasmid construction method of vibrio parahaemolyticus CRISPRi | |
| CN110029121A (en) | A kind of construction method of pseudomonas aeruginosa CRISPRi system | |
| CN102925471A (en) | Method for non-restrictively constructing seamless plasmid expression vector | |
| CN103146736A (en) | Construction and application of plant expression carrier pGII0229-GUS | |
| CN104673820A (en) | Novel TALEN carrier suitable for sorangium cellulosum and construction method of novel TALEN carrier |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |