CN106854984A - A kind of enhancing methane exploitation of combination injection hot sea water and the gas hydrates method of replacing of carbon dioxide sequestration - Google Patents
A kind of enhancing methane exploitation of combination injection hot sea water and the gas hydrates method of replacing of carbon dioxide sequestration Download PDFInfo
- Publication number
- CN106854984A CN106854984A CN201611031053.5A CN201611031053A CN106854984A CN 106854984 A CN106854984 A CN 106854984A CN 201611031053 A CN201611031053 A CN 201611031053A CN 106854984 A CN106854984 A CN 106854984A
- Authority
- CN
- China
- Prior art keywords
- carbon dioxide
- hydrate
- reservoir
- methane
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 title claims abstract description 202
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims abstract description 128
- 239000001569 carbon dioxide Substances 0.000 title claims abstract description 101
- 229910002092 carbon dioxide Inorganic materials 0.000 title claims abstract description 101
- 239000013535 sea water Substances 0.000 title claims abstract description 47
- 238000002347 injection Methods 0.000 title claims abstract description 46
- 239000007924 injection Substances 0.000 title claims abstract description 46
- 238000000034 method Methods 0.000 title claims abstract description 26
- 230000009919 sequestration Effects 0.000 title claims abstract description 15
- 150000004677 hydrates Chemical class 0.000 title claims description 8
- 230000002708 enhancing effect Effects 0.000 title claims 3
- NMJORVOYSJLJGU-UHFFFAOYSA-N methane clathrate Chemical compound C.C.C.C.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O NMJORVOYSJLJGU-UHFFFAOYSA-N 0.000 claims abstract description 29
- 238000005065 mining Methods 0.000 claims abstract description 15
- 238000006243 chemical reaction Methods 0.000 claims abstract description 10
- 238000005553 drilling Methods 0.000 claims abstract description 4
- 239000007789 gas Substances 0.000 claims description 49
- VTVVPPOHYJJIJR-UHFFFAOYSA-N carbon dioxide;hydrate Chemical compound O.O=C=O VTVVPPOHYJJIJR-UHFFFAOYSA-N 0.000 claims description 17
- 238000003860 storage Methods 0.000 claims description 11
- 238000006073 displacement reaction Methods 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 239000003345 natural gas Substances 0.000 claims description 3
- 238000000746 purification Methods 0.000 claims description 3
- 230000005012 migration Effects 0.000 claims description 2
- 238000013508 migration Methods 0.000 claims description 2
- 150000001335 aliphatic alkanes Chemical class 0.000 claims 1
- 150000001875 compounds Chemical class 0.000 claims 1
- 238000007789 sealing Methods 0.000 claims 1
- 230000007423 decrease Effects 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 3
- 239000011148 porous material Substances 0.000 abstract description 3
- 238000004519 manufacturing process Methods 0.000 description 16
- 238000011084 recovery Methods 0.000 description 9
- 230000021715 photosynthesis, light harvesting Effects 0.000 description 6
- 238000000354 decomposition reaction Methods 0.000 description 5
- 230000035939 shock Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 230000035699 permeability Effects 0.000 description 4
- 238000000926 separation method Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 230000036571 hydration Effects 0.000 description 2
- 238000006703 hydration reaction Methods 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009933 burial Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/01—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells specially adapted for obtaining from underwater installations
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B41/00—Equipment or details not covered by groups E21B15/00 - E21B40/00
- E21B41/0099—Equipment or details not covered by groups E21B15/00 - E21B40/00 specially adapted for drilling for or production of natural hydrate or clathrate gas reservoirs; Drilling through or monitoring of formations containing gas hydrates or clathrates
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
- E21B43/164—Injecting CO2 or carbonated water
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
- E21B43/24—Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/70—Combining sequestration of CO2 and exploitation of hydrocarbons by injecting CO2 or carbonated water in oil wells
Landscapes
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Fluid Mechanics (AREA)
- Environmental & Geological Engineering (AREA)
- Physics & Mathematics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Gas Separation By Absorption (AREA)
Abstract
本发明属于天然气水合物开采领域,涉及到一种结合注入热海水增强甲烷开采和二氧化碳封存的天然气水合物置换方法。首先钻井完成后,水合物储层压力降低,井筒周围的天然气水合物处于亚稳态状态;然后利用井筒向储层注入二氧化碳,在离井筒较近的水合物藏开采浅层发生置换反应;再利用井筒向储层同时注入二氧化碳热海水,使因置换反应而形成地致密的二氧化碳、甲烷混合水合物发生分解,并使无法被置换的水合物小孔穴中的甲烷得到开发;最后停止注入热海水,向储层持续注入二氧化碳,使二氧化碳向水合物藏开采深层迁移,促进更多的水合物发生置换反应。本发明同时实现了水合物安全高效开采和封存二氧化碳以减轻温室效应的目的。
The invention belongs to the field of natural gas hydrate exploitation, and relates to a natural gas hydrate replacement method combining injection of hot seawater to enhance methane exploitation and carbon dioxide sequestration. First, after the drilling is completed, the pressure of the hydrate reservoir decreases, and the gas hydrate around the wellbore is in a metastable state; then, the wellbore is used to inject carbon dioxide into the reservoir, and the replacement reaction occurs in the shallow layer of the hydrate reservoir near the wellbore; and then Use the wellbore to simultaneously inject carbon dioxide hot seawater into the reservoir, decompose the dense carbon dioxide and methane mixed hydrate formed by the replacement reaction, and develop the methane in the small pores of the hydrate that cannot be replaced; finally stop injecting hot seawater , to continuously inject carbon dioxide into the reservoir, so that carbon dioxide migrates to the deep layer of hydrate reservoir mining, and promotes more hydrate replacement reactions. The invention simultaneously realizes the purpose of safe and efficient mining of hydrate and sequestration of carbon dioxide to reduce the greenhouse effect.
Description
技术领域technical field
本发明属于天然气水合物开采领域,涉及到一种结合注入热海水增强甲烷开采和二氧化碳封存的天然气水合物置换方法。The invention belongs to the field of natural gas hydrate exploitation, and relates to a natural gas hydrate replacement method combining injection of hot seawater to enhance methane exploitation and carbon dioxide sequestration.
背景技术Background technique
天然气水合物广泛存在于大陆永久冻土带和深海海底,具有分布广、埋藏浅、规模大、能量密度高的特点,被看作为一种潜在的非常规能源,其已探明储量相当于全球已探明化石燃料(煤、石油、天然气)总量的二倍。传统的天然气水合物开采方法主要有降压法、热激法和注入抑制剂法,但均存在缺陷:降压法开采效率低、热激法能量耗散大以及注入抑制剂法破坏环境。二氧化碳置换是一种新型、环境有好的天然气水合物开采方法,能够同时实现甲烷开发作为能源供给和二氧化碳封存缓解温室效应的目的,并且在开采过程中由于二氧化碳水合物的形成能够保证储层的稳定性,避免引发海洋地质灾害。Natural gas hydrate widely exists in continental permafrost and deep seabed, and has the characteristics of wide distribution, shallow burial, large scale, and high energy density. It is regarded as a potential unconventional energy source, and its proven reserves are equivalent to the global Twice the total amount of proven fossil fuels (coal, oil, natural gas). The traditional natural gas hydrate production methods mainly include depressurization method, thermal shock method and inhibitor injection method, but all of them have defects: low production efficiency of depressurization method, large energy dissipation of heat shock method, and damage to the environment by injection of inhibitor method. Carbon dioxide replacement is a new and environmentally friendly natural gas hydrate mining method, which can simultaneously realize the purpose of methane development as an energy supply and carbon dioxide sequestration to alleviate the greenhouse effect, and the formation of carbon dioxide hydrate during the mining process can ensure the reservoir stability and avoid marine geological disasters.
二氧化碳置换作为最有前途的天然气水合物开采方法,在实际工程中仍存在许多问题:首先,甲烷水合物由6个大穴、2个小穴组成,二氧化碳分子的体积比甲烷大,其大小介于甲烷水合物的大穴和小穴之间,理想状况下甲烷的开采率最高只能达到75%;其次,开采前期,二氧化碳在甲烷水合物表面快速置换,随着置换反应的进行,逐渐在水合物表面形成致密的甲烷、二氧化碳混合水合物层,导致渗透率下降,不利于二氧化碳向水合物内部扩散,置换速率迅速降低,严重情况下导致置换反应基本停止。因此,针对甲烷开采率、二氧化碳封存率和置换速率低的问题,亟待一种新型的天然气水合物置换方法。As the most promising natural gas hydrate extraction method, carbon dioxide replacement still has many problems in practical engineering: First, methane hydrate consists of 6 large cavities and 2 small cavities. The volume of carbon dioxide molecules is larger than that of methane, and its size is between methane Between the large and small cavities of the hydrate, under ideal conditions, the maximum recovery rate of methane can only reach 75%. Secondly, in the early stage of mining, carbon dioxide is rapidly replaced on the surface of methane hydrate, and gradually forms on the surface of hydrate as the replacement reaction progresses. The dense mixed hydrate layer of methane and carbon dioxide leads to a decrease in permeability, which is not conducive to the diffusion of carbon dioxide into the hydrate, and the replacement rate decreases rapidly. In severe cases, the replacement reaction basically stops. Therefore, in view of the problems of low methane recovery rate, carbon dioxide storage rate and low replacement rate, a new natural gas hydrate replacement method is urgently needed.
发明内容Contents of the invention
为了克服现有技术里存在的问题,本发明提供一种新型的天然气水合物置换方法,在置换中期结合注入热海水,使致密的二氧化碳、甲烷混合水合物层发生分解,提高甲烷开采率和二氧化碳封存率,同时促进二氧化碳扩散,提高置换速率。In order to overcome the problems existing in the prior art, the present invention provides a novel natural gas hydrate replacement method, which combines the injection of hot seawater in the middle of the replacement to decompose the dense carbon dioxide and methane mixed hydrate layer, thereby increasing the methane recovery rate and carbon dioxide Storage rate, while promoting the diffusion of carbon dioxide and increasing the replacement rate.
为了实现上述功能,本发明提供的技术方案是一种结合注入热海水增强甲烷开采和二氧化碳封存的天然气水合物置换方法,具体步骤如下:In order to achieve the above functions, the technical solution provided by the present invention is a natural gas hydrate replacement method that combines injection of hot seawater to enhance methane recovery and carbon dioxide sequestration. The specific steps are as follows:
1)选取水合物藏开采目标区域,搭建海上注入平台和产气平台,分别进行二氧化碳及热海水注入井、甲烷产气井钻井;钻井完成后,水合物储层压力降低,井筒周围的天然气水合物处于亚稳态状态。1) Select the target area for hydrate reservoir exploitation, build an offshore injection platform and a gas production platform, and drill carbon dioxide and hot seawater injection wells and methane gas production wells respectively; in a metastable state.
2)通过二氧化碳及热海水注入井向水合物储层注入二氧化碳,并控制储层压力在对应储层温度的二氧化碳水合物相平衡压力以上,促使在离井筒较近的天然气水合物藏开采浅层发生置换反应,被置换出的甲烷气体和残余的二氧化碳气体通过甲烷产气井收集。根据二氧化碳、二氧化碳水合物以及甲烷水合物的相平衡条件和气体分离条件,可选择二氧化碳的最优注入条件。2) Inject carbon dioxide into the hydrate reservoir through carbon dioxide and hot seawater injection wells, and control the reservoir pressure above the equilibrium pressure of the carbon dioxide hydrate phase corresponding to the reservoir temperature, so as to promote the exploitation of shallow gas hydrate reservoirs closer to the wellbore A displacement reaction occurs, and the displaced methane gas and residual carbon dioxide gas are collected through the methane production well. According to the phase equilibrium conditions and gas separation conditions of carbon dioxide, carbon dioxide hydrate and methane hydrate, the optimal injection conditions of carbon dioxide can be selected.
3)通过二氧化碳及热海水注入井同时向水合物储层注入热海水和二氧化碳,利用热海水使天然气水合物藏开采浅层因置换反应而形成的致密的二氧化碳、甲烷混合水合物发生部分分解,打开二氧化碳向深层水合物藏流动运移的通道,提高二氧化碳的置换速率,同时利用热海水将无法被二氧化碳直接置换的天然气水合物小孔穴中的甲烷释放出来,提高甲烷开采率和二氧化碳封存率;被释放出甲烷气体和二氧化碳通过甲烷产气井收集。3) Simultaneously inject hot seawater and carbon dioxide into hydrate reservoirs through carbon dioxide and hot seawater injection wells, and use hot seawater to partially decompose dense carbon dioxide and methane mixed hydrates formed by replacement reactions in the shallow layers of natural gas hydrate reservoirs, Open the channel for the flow and migration of carbon dioxide to deep hydrate reservoirs, increase the replacement rate of carbon dioxide, and use hot seawater to release methane in the small pores of natural gas hydrate that cannot be directly replaced by carbon dioxide, increasing the methane recovery rate and carbon dioxide sequestration rate; The released methane gas and carbon dioxide are collected by methane production wells.
上述热海水和二氧化碳的同时注入,一方面因为使混合水合物部分分解,而不发生水合物藏的大面积分解、坍塌,避免引发海洋地质灾害能够保证储层稳定性;另一方面相对于常规的热激法,热海水结合二氧化碳的注入过程无需加热整个水合物储层,因此具有较低的能量耗散。依据不同的储层温度、压力、渗透率以及水合物饱和度等储层条件,可选择最优的注入条件。The above-mentioned simultaneous injection of hot seawater and carbon dioxide, on the one hand, partially decomposes the mixed hydrate, avoids large-scale decomposition and collapse of hydrate reservoirs, and avoids marine geological disasters to ensure reservoir stability; on the other hand, compared with conventional In the heat shock method, the injection process of hot seawater combined with carbon dioxide does not need to heat the entire hydrate reservoir, so it has low energy dissipation. According to different reservoir conditions such as temperature, pressure, permeability and hydrate saturation, the optimal injection conditions can be selected.
4)停止注入热海水,利用二氧化碳及热海水注入井向水合物储层注入二氧化碳,并控制储层压力在对应储层温度的二氧化碳水合物相平衡压力以上,促使在离井筒较远的天然气水合物藏开采深层发生置换反应,被置换出的甲烷气体和残余的二氧化碳气体通过甲烷产气井收集;同时残余的热海水和注入的二氧化碳生成二氧化碳水合物,提高储层稳定性并增强二氧化碳的封存量。4) Stop injecting hot seawater, use carbon dioxide and hot seawater injection wells to inject carbon dioxide into the hydrate reservoir, and control the reservoir pressure above the carbon dioxide hydrate phase equilibrium pressure corresponding to the reservoir temperature, so as to promote the hydration of natural gas far away from the wellbore. The replacement reaction occurs in the deep layer of the reservoir mining, and the displaced methane gas and residual carbon dioxide gas are collected through the methane gas production well; at the same time, the residual hot seawater and the injected carbon dioxide generate carbon dioxide hydrate, which improves the stability of the reservoir and enhances the storage capacity of carbon dioxide .
5)针对步骤2)、3)和4)中从海上产气平台的甲烷产气井收集的产品,首先进行气、水分离,再对气体进行分离得到纯净甲烷气体,最终完成对甲烷气体的储藏与运输。5) For the products collected from the methane gas production wells of the offshore gas production platform in steps 2), 3) and 4), the gas and water are separated first, and then the gas is separated to obtain pure methane gas, and finally the storage of methane gas is completed with transport.
进一步的,上述步骤5)中所述的甲烷提纯后,将残留的二氧化碳气体再次注入水合物储层中进行封存,提高二氧化碳的封存量。Further, after the methane purification described in the above step 5), the residual carbon dioxide gas is reinjected into the hydrate reservoir for storage to increase the storage capacity of carbon dioxide.
与现有技术相比,本发明的有益效果是:Compared with prior art, the beneficial effect of the present invention is:
本发明同时实现了水合物安全高效开采和封存二氧化碳以减轻温室效应的目的。相对传统的置换开采,结合注入热水过程能够有效地提高置换速率、甲烷开采率和二氧化碳封存率;相比传统的热激法,同时注入热海水和二氧化碳能使混合水合物部分分解,而不发生水合物藏的大面积分解、坍塌,引发海洋地质灾害,另一方面结合注入过程无需加热整个水合物储层,因此具有较低的能量耗散。The invention simultaneously realizes the purpose of safe and efficient mining of hydrate and sequestration of carbon dioxide to reduce the greenhouse effect. Compared with the traditional displacement mining, the combination of hot water injection can effectively increase the displacement rate, methane recovery rate and carbon dioxide sequestration rate; compared with the traditional thermal shock method, the simultaneous injection of hot seawater and carbon dioxide can partially decompose the mixed hydrate without Large-scale decomposition and collapse of hydrate reservoirs will cause marine geological disasters. On the other hand, the injection process does not need to heat the entire hydrate reservoir, so it has low energy dissipation.
(1)本发明采用二氧化碳置换和热海水注入结合的方式,能够使甲烷水合物无法被置换的小孔穴被开发,提高甲烷的开采率,小孔穴发生分解产生的自由水与二氧化碳结合生成二氧化碳水合物,提高二氧化碳封存率;(1) The present invention adopts the combination of carbon dioxide replacement and hot seawater injection, so that small cavities that cannot be replaced by methane hydrate can be developed, and the recovery rate of methane can be improved. The free water generated by the decomposition of small cavities combines with carbon dioxide to form carbon dioxide hydration substances to increase the carbon dioxide sequestration rate;
(2)本发明在置换中期结合注入热海水,能够有效地破坏致密的甲烷、二氧化碳混合水合物层,提高储层渗透率,促进二氧化碳的扩散,提高置换速率。(2) The present invention combines the injection of hot seawater in the middle stage of replacement, which can effectively destroy the dense methane and carbon dioxide mixed hydrate layer, improve the permeability of the reservoir, promote the diffusion of carbon dioxide, and increase the replacement rate.
(3))结合注入热海水和二氧化碳使混合水合物部分分解,在提高置换率的同时而不发生水合物藏的大面积分解、坍塌,引发海洋地质灾害,保证储层稳定性。(3) Combined with the injection of hot seawater and carbon dioxide, the mixed hydrate is partially decomposed, and the replacement rate is increased without large-scale decomposition and collapse of the hydrate reservoir, causing marine geological disasters, and ensuring the stability of the reservoir.
(4)相比传统的热激法,热海水结合二氧化碳的注入过程无需加热整个水合物储层,因此具有较低的能量耗散。(4) Compared with the traditional heat shock method, the injection process of hot seawater combined with carbon dioxide does not need to heat the entire hydrate reservoir, so it has lower energy dissipation.
(5)残余的热海水会和注入的二氧化碳生成二氧化碳水合物,在进一步提高储层稳定性的同时,增强二氧化碳的封存量。(5) The residual hot seawater will form carbon dioxide hydrate with the injected carbon dioxide, which will enhance the storage capacity of carbon dioxide while further improving the stability of the reservoir.
附图说明Description of drawings
附图1是一种结合注入热海水增强甲烷开采和二氧化碳封存的天然气水合物置换方法示意图。Figure 1 is a schematic diagram of a natural gas hydrate replacement method that combines injection of hot seawater to enhance methane recovery and carbon dioxide sequestration.
附图2是开采浅层置换示意图。Accompanying drawing 2 is the schematic diagram of mining shallow layer displacement.
附图3是热海水结合二氧化碳注入阶段示意图。Accompanying drawing 3 is the schematic diagram of hot seawater combined with carbon dioxide injection stage.
附图4是开采深层置换示意图。Accompanying drawing 4 is the schematic diagram of mining deep layer replacement.
具体实施方式detailed description
下面结合附图和实施例对本发明的技术方案进行详细说明。The technical solutions of the present invention will be described in detail below in conjunction with the accompanying drawings and embodiments.
实施例1Example 1
如附图1所示,天然气水合物藏常存在于海平面下1200-1500米的海洋沉积物中,其温度、压力条件为275-285K,3.2-11MPa。现选取海平面下1200米、储层温度275K、储层压力3.2MPa的水合物藏作为目标区域,进行标准化开采流程描述,并进行最优条件说明。As shown in Figure 1, natural gas hydrate pools often exist in marine sediments 1200-1500 meters below sea level, and the temperature and pressure conditions are 275-285K, 3.2-11MPa. The hydrate reservoir at 1,200 meters below sea level, with a reservoir temperature of 275K and a reservoir pressure of 3.2MPa is now selected as the target area to describe the standardized mining process and describe the optimal conditions.
(1)搭建海上注入平台和产气平台,如附图1所示,进行二氧化碳及热海水注入井、甲烷产气井钻井。钻井完成后,水合物储层压力降低,井筒周围的天然气水合物处于亚稳态状态。(1) Build an offshore injection platform and a gas production platform, as shown in Figure 1, to drill carbon dioxide and hot seawater injection wells and methane gas production wells. After the drilling is completed, the pressure of the hydrate reservoir decreases, and the gas hydrate around the wellbore is in a metastable state.
(2)如附图2所示,从二氧化碳及热海水注入井向水合物储层注入二氧化碳,并控制储层压力在对应储层温度的二氧化碳水合物相平衡压力以上。此处将压力控制在1.5MPa(275K时二氧化碳水合物的相平衡压力)以上,使离井筒较近的水合物藏开采浅层发生置换反应,被置换出的甲烷气体和残余的二氧化碳气体通过甲烷产气井收集。(2) As shown in Figure 2, inject carbon dioxide into the hydrate reservoir from the carbon dioxide and hot seawater injection well, and control the reservoir pressure to be above the equilibrium pressure of the carbon dioxide hydrate phase corresponding to the reservoir temperature. Here, the pressure is controlled above 1.5MPa (the phase equilibrium pressure of carbon dioxide hydrate at 275K), so that the replacement reaction occurs in the shallow layer of the hydrate reservoir near the wellbore, and the replaced methane gas and residual carbon dioxide gas pass through the methane Gas production well collection.
根据二氧化碳、二氧化碳水合物以及甲烷水合物的相平衡条件,二氧化碳置换天然气水合物的温度、压力条件可以分为三个置换区域:A区域(二氧化碳、二氧化碳水合物以及甲烷水合物相平衡曲线之上)、B区域(二氧化碳相平衡曲线之下,二氧化碳水合物以及甲烷水合物相平衡曲线之上)和C区域(二氧化碳以及甲烷水合物相平衡曲线之下,二氧化碳水合物相平衡曲线之上),其中A区域(液态二氧化碳具有较强的扩散能力)和C区域(甲烷水合物处于非稳定区域)的置换率和置换速率较优于B区域。According to the phase equilibrium conditions of carbon dioxide, carbon dioxide hydrate and methane hydrate, the temperature and pressure conditions for carbon dioxide to replace natural gas hydrate can be divided into three replacement regions: A region (above the phase equilibrium curve of carbon dioxide, carbon dioxide hydrate and methane hydrate ), B region (below the carbon dioxide phase equilibrium curve, above the carbon dioxide hydrate and methane hydrate phase equilibrium curve) and C region (below the carbon dioxide and methane hydrate phase equilibrium curve, above the carbon dioxide hydrate phase equilibrium curve), Among them, the replacement rate and replacement rate of region A (liquid carbon dioxide has a strong diffusion ability) and region C (methane hydrate is in an unstable region) are better than those of region B.
基于上述描述,在储层温度为275K时,储层压力控制在1.5-3.2MPa和3.7MPa以上为较优条件;考虑到气体分离、甲烷收集问题,储层压力控制在1.5-3.2MPa为最优开采条件。Based on the above description, when the reservoir temperature is 275K, it is better to control the reservoir pressure at 1.5-3.2MPa and above 3.7MPa; considering the problems of gas separation and methane collection, the optimal condition is to control the reservoir pressure at 1.5-3.2MPa Excellent mining conditions.
(3)从二氧化碳及热海水注入井同时向水合物储层注入热海水和二氧化碳,并通过甲烷产气井收集产品。(3) Simultaneously inject hot seawater and carbon dioxide into hydrate reservoirs from carbon dioxide and hot seawater injection wells, and collect products through methane gas production wells.
如附图3所示,注入热海水的目的是使水合物藏开采浅层因置换反应而形成地致密的二氧化碳、甲烷混合水合物发生部分分解:一方面打开二氧化碳向水合物藏开采深层流动运移的通道,提高置换速率;另一方面使无法被置换的水合物小孔穴中的甲烷得到开发,提高甲烷开采率和二氧化碳封存率。热海水的注入温度和流量尤为关键,较优的注入条件能够保证储层稳定性和较低的能量耗散:一方面因为较优的注入条件使混合水合物部分分解,而不发生水合物藏的大面积分解、坍塌,引发海洋地质灾害,这也是同时注入二氧化碳的目的;另一方面相对于常规的热激法,热海水结合二氧化碳的注入过程无需加热整个水合物储层,因此具有较低的能量耗散。As shown in Figure 3, the purpose of injecting hot seawater is to partially decompose the dense carbon dioxide and methane mixed hydrate formed due to the replacement reaction in the shallow layer of hydrate reservoir mining: on the one hand, open the flow of carbon dioxide to the deep layer of hydrate reservoir mining On the other hand, the methane in the small hydrate pores that cannot be replaced can be developed, and the methane recovery rate and carbon dioxide sequestration rate can be improved. The injection temperature and flow rate of hot seawater are particularly critical, and better injection conditions can ensure reservoir stability and lower energy dissipation: on the one hand, mixed hydrates are partially decomposed due to better injection conditions, and hydrate accumulation does not occur. Large-scale decomposition and collapse of large-scale hydrates can cause marine geological disasters, which is also the purpose of injecting carbon dioxide at the same time; energy dissipation.
基于上述描述,依据不同的储层温度、压力、渗透率以及水合物饱和度等条件,存在不同的最优注入条件。此处在储层温度为275K,压力为1.5-3.2MPa,水合物饱和度为40-60%的条件下,热海水的注入温度选定为40℃,注入时间为20min,热海水和二氧化碳的注入比为1:20。Based on the above description, there are different optimal injection conditions according to different conditions such as reservoir temperature, pressure, permeability and hydrate saturation. Here, under the condition that the reservoir temperature is 275K, the pressure is 1.5-3.2MPa, and the hydrate saturation is 40-60%, the injection temperature of hot seawater is selected as 40℃, and the injection time is 20min. The injection ratio is 1:20.
(4)停止注入热海水,利用二氧化碳及热海水注入井向水合物储层注入二氧化碳,并控制储层压力在对应储层温度的二氧化碳水合物相平衡压力以上,此处将压力控制在1.5-3.2MPa,如图4所示,使离井筒较远的水合物藏开采深层发生置换反应,被置换出的甲烷气体和残余的二氧化碳气体通过甲烷产气井收集。值得注意的是,残余的热海水会和注入的二氧化碳生成二氧化碳水合物,在进一步提高储层稳定性的同时,增强二氧化碳的封存量。(4) Stop injecting hot seawater, use carbon dioxide and hot seawater injection wells to inject carbon dioxide into the hydrate reservoir, and control the reservoir pressure above the equilibrium pressure of the carbon dioxide hydrate phase corresponding to the reservoir temperature. Here, the pressure is controlled at 1.5- 3.2MPa, as shown in Figure 4, causes a displacement reaction to occur in the deep layer of the hydrate reservoir far from the wellbore, and the displaced methane gas and residual carbon dioxide gas are collected through the methane gas production well. It is worth noting that the residual hot seawater will form carbon dioxide hydrate with the injected carbon dioxide, which will enhance the storage capacity of carbon dioxide while further improving the stability of the reservoir.
(5)针对步骤(2)、(3)和(4)中从海上产气平台的甲烷产气井收集的产品,首先进行气、水分离,再利用深冷分离工艺得到纯净甲烷气体,最终完成对甲烷气体的储藏与运输。甲烷提纯步骤残留的含二氧化碳气体可再次注入水合物储层中进行封存。(5) For the products collected from the methane gas production wells of the offshore gas production platform in steps (2), (3) and (4), the gas and water are separated first, and then the pure methane gas is obtained by the cryogenic separation process, and finally completed Storage and transportation of methane gas. The carbon dioxide-containing gas remaining in the methane purification step can be reinjected into the hydrate reservoir for storage.
以上实施例是本发明具体实施方式的一种,本领域技术人员在本技术方案范围内进行的通常变化和替换应包含在本发明内。The above embodiment is one of the specific implementation methods of the present invention, and the usual changes and substitutions made by those skilled in the art within the scope of the technical solution shall be included in the present invention.
Claims (2)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201611031053.5A CN106854984B (en) | 2016-11-17 | 2016-11-17 | A kind of gas hydrates method of replacing of combination injection hot sea water enhancing methane exploitation and carbon dioxide sequestration |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201611031053.5A CN106854984B (en) | 2016-11-17 | 2016-11-17 | A kind of gas hydrates method of replacing of combination injection hot sea water enhancing methane exploitation and carbon dioxide sequestration |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN106854984A true CN106854984A (en) | 2017-06-16 |
| CN106854984B CN106854984B (en) | 2019-03-05 |
Family
ID=59125617
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201611031053.5A Active CN106854984B (en) | 2016-11-17 | 2016-11-17 | A kind of gas hydrates method of replacing of combination injection hot sea water enhancing methane exploitation and carbon dioxide sequestration |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN106854984B (en) |
Cited By (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108868706A (en) * | 2018-06-06 | 2018-11-23 | 中国矿业大学 | Directional drilling supercritical carbon dioxide fracturing replacement exploitation of gas hydrate method |
| CN108952639A (en) * | 2018-09-10 | 2018-12-07 | 西南石油大学 | A kind of method of joint gas displacement and oscillator field exploitation of gas hydrate hiding |
| CN109458164A (en) * | 2018-12-25 | 2019-03-12 | 西南石油大学 | Visualize the analogy method of reaction unit and alternating temperature transformation dynamic response |
| WO2019114226A1 (en) * | 2017-12-12 | 2019-06-20 | 大连理工大学 | Method for exploiting marine natural gas hydrates using water erosion method |
| CN109915094A (en) * | 2019-03-29 | 2019-06-21 | 大连理工大学 | A kind of natural gas hydrate replacement mining method combined with carbon dioxide inhibitor |
| CN110159232A (en) * | 2019-06-05 | 2019-08-23 | 重庆大学 | A kind of exploitation sea bed gas hydrate device and method |
| CN111022000A (en) * | 2019-03-04 | 2020-04-17 | 深圳市弘毅海洋智能装备有限公司 | Combustible ice mining method |
| CN111255419A (en) * | 2020-01-19 | 2020-06-09 | 中国海洋石油集团有限公司 | Compound exploitation method of natural gas hydrate |
| CN112240186A (en) * | 2019-07-18 | 2021-01-19 | 中国石油天然气股份有限公司 | Natural gas hydrate heat injection-replacement combined simulation mining device and method |
| CN113431535A (en) * | 2021-08-11 | 2021-09-24 | 太原理工大学 | Method for carbon sequestration by using in-situ pyrolyzed organic ore bed |
| CN114542021A (en) * | 2022-01-27 | 2022-05-27 | 华南理工大学 | Thermochemical method for enhancing CO2Replacement mining of CH4Apparatus and method for hydrate |
| CN115321080A (en) * | 2022-07-07 | 2022-11-11 | 大连理工大学 | A multi-layer injection and pumping CO2 storage method in seabed sedimentary layer |
| WO2022237777A1 (en) * | 2021-05-12 | 2022-11-17 | 南方科技大学 | Method for reinforcing natural gas hydrate reservoir |
| CN115681037A (en) * | 2021-07-28 | 2023-02-03 | 中国科学院广州能源研究所 | Integrated system of CO2 hybrid heating, power generation and storage driven by geothermal energy |
| CN116127251A (en) * | 2023-04-17 | 2023-05-16 | 成都英沃信科技有限公司 | A Formation Pressure Monitoring Method for Carbon Dioxide Injected Water Gas Reservoirs |
| EP4117804A4 (en) * | 2020-03-09 | 2024-04-24 | Carbon Geocycle, Inc. | METHOD AND SYSTEM FOR GREENHOUSE GAS CAPTURE AND SEQUESTRATION |
| CN118637254A (en) * | 2024-08-09 | 2024-09-13 | 中国科学院地质与地球物理研究所 | A method for enhanced carbon dioxide hydrate storage using cold seawater injection |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060060356A1 (en) * | 2004-09-23 | 2006-03-23 | Arne Graue | Production of free gas by gas hydrate conversion |
| CN1920251A (en) * | 2006-09-07 | 2007-02-28 | 中国科学院广州能源研究所 | Method and device for natural gas hydrate exploitation with in-situ catalytic oxidation thermochemistry method |
| CN103277072A (en) * | 2013-05-16 | 2013-09-04 | 李贤明 | Method and system for exploiting seabed natural gas hydrate |
| CN105003237A (en) * | 2015-06-11 | 2015-10-28 | 中国石油大学(华东) | Device and method for integration of geothermal exploitation of natural gas hydrate and CO2 waste gas reinjection treatment |
| CN105422056A (en) * | 2016-01-26 | 2016-03-23 | 辽宁石油化工大学 | Method for mining natural gas hydrate in deep seafloor through carbon dioxide method |
| CN105625998A (en) * | 2016-02-02 | 2016-06-01 | 西南石油大学 | Reverse production method and production equipment for seafloor natural gas hydrate stable layer |
-
2016
- 2016-11-17 CN CN201611031053.5A patent/CN106854984B/en active Active
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060060356A1 (en) * | 2004-09-23 | 2006-03-23 | Arne Graue | Production of free gas by gas hydrate conversion |
| CN1920251A (en) * | 2006-09-07 | 2007-02-28 | 中国科学院广州能源研究所 | Method and device for natural gas hydrate exploitation with in-situ catalytic oxidation thermochemistry method |
| CN103277072A (en) * | 2013-05-16 | 2013-09-04 | 李贤明 | Method and system for exploiting seabed natural gas hydrate |
| CN105003237A (en) * | 2015-06-11 | 2015-10-28 | 中国石油大学(华东) | Device and method for integration of geothermal exploitation of natural gas hydrate and CO2 waste gas reinjection treatment |
| CN105422056A (en) * | 2016-01-26 | 2016-03-23 | 辽宁石油化工大学 | Method for mining natural gas hydrate in deep seafloor through carbon dioxide method |
| CN105625998A (en) * | 2016-02-02 | 2016-06-01 | 西南石油大学 | Reverse production method and production equipment for seafloor natural gas hydrate stable layer |
Non-Patent Citations (2)
| Title |
|---|
| 吴传芝: "天然气水合物开采技术研究进展", 《地质科技情报》 * |
| 阮徐可: "不同形式天然气水合物藏开采技术的选择研究综述", 《天然气勘探与开发》 * |
Cited By (24)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2019114226A1 (en) * | 2017-12-12 | 2019-06-20 | 大连理工大学 | Method for exploiting marine natural gas hydrates using water erosion method |
| CN108868706A (en) * | 2018-06-06 | 2018-11-23 | 中国矿业大学 | Directional drilling supercritical carbon dioxide fracturing replacement exploitation of gas hydrate method |
| CN108952639A (en) * | 2018-09-10 | 2018-12-07 | 西南石油大学 | A kind of method of joint gas displacement and oscillator field exploitation of gas hydrate hiding |
| CN108952639B (en) * | 2018-09-10 | 2020-11-17 | 西南石油大学 | Method for exploiting natural gas hydrate reservoir by combining gas replacement and vibration field |
| CN109458164A (en) * | 2018-12-25 | 2019-03-12 | 西南石油大学 | Visualize the analogy method of reaction unit and alternating temperature transformation dynamic response |
| CN109458164B (en) * | 2018-12-25 | 2024-04-19 | 西南石油大学 | Visual reaction device and simulation method of variable-temperature variable-pressure dynamic reaction |
| CN111022000B (en) * | 2019-03-04 | 2022-01-07 | 深圳市弘毅海洋智能装备有限公司 | Combustible ice mining method |
| CN111022000A (en) * | 2019-03-04 | 2020-04-17 | 深圳市弘毅海洋智能装备有限公司 | Combustible ice mining method |
| CN109915094A (en) * | 2019-03-29 | 2019-06-21 | 大连理工大学 | A kind of natural gas hydrate replacement mining method combined with carbon dioxide inhibitor |
| CN110159232A (en) * | 2019-06-05 | 2019-08-23 | 重庆大学 | A kind of exploitation sea bed gas hydrate device and method |
| CN112240186A (en) * | 2019-07-18 | 2021-01-19 | 中国石油天然气股份有限公司 | Natural gas hydrate heat injection-replacement combined simulation mining device and method |
| CN111255419B (en) * | 2020-01-19 | 2022-05-17 | 中国海洋石油集团有限公司 | Compound exploitation method of natural gas hydrate |
| CN111255419A (en) * | 2020-01-19 | 2020-06-09 | 中国海洋石油集团有限公司 | Compound exploitation method of natural gas hydrate |
| EP4117804A4 (en) * | 2020-03-09 | 2024-04-24 | Carbon Geocycle, Inc. | METHOD AND SYSTEM FOR GREENHOUSE GAS CAPTURE AND SEQUESTRATION |
| WO2022237777A1 (en) * | 2021-05-12 | 2022-11-17 | 南方科技大学 | Method for reinforcing natural gas hydrate reservoir |
| CN115681037A (en) * | 2021-07-28 | 2023-02-03 | 中国科学院广州能源研究所 | Integrated system of CO2 hybrid heating, power generation and storage driven by geothermal energy |
| CN115681037B (en) * | 2021-07-28 | 2025-06-17 | 中国科学院广州能源研究所 | Geothermal energy-driven CO2 hybrid heating, power generation and storage integrated system |
| CN113431535A (en) * | 2021-08-11 | 2021-09-24 | 太原理工大学 | Method for carbon sequestration by using in-situ pyrolyzed organic ore bed |
| CN114542021A (en) * | 2022-01-27 | 2022-05-27 | 华南理工大学 | Thermochemical method for enhancing CO2Replacement mining of CH4Apparatus and method for hydrate |
| CN115321080A (en) * | 2022-07-07 | 2022-11-11 | 大连理工大学 | A multi-layer injection and pumping CO2 storage method in seabed sedimentary layer |
| CN115321080B (en) * | 2022-07-07 | 2024-10-25 | 大连理工大学 | Multi-layer injection and extraction CO for seabed sedimentary layer2Sealing method |
| CN116127251A (en) * | 2023-04-17 | 2023-05-16 | 成都英沃信科技有限公司 | A Formation Pressure Monitoring Method for Carbon Dioxide Injected Water Gas Reservoirs |
| CN116127251B (en) * | 2023-04-17 | 2023-09-29 | 西南石油大学 | A formation pressure monitoring method for water-filled gas reservoirs injected with carbon dioxide |
| CN118637254A (en) * | 2024-08-09 | 2024-09-13 | 中国科学院地质与地球物理研究所 | A method for enhanced carbon dioxide hydrate storage using cold seawater injection |
Also Published As
| Publication number | Publication date |
|---|---|
| CN106854984B (en) | 2019-03-05 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN106854984A (en) | A kind of enhancing methane exploitation of combination injection hot sea water and the gas hydrates method of replacing of carbon dioxide sequestration | |
| CN105625998B (en) | A kind of reverse recovery method of sea bed gas hydrate stabilized zone and its winning apparatus | |
| CN103603638B (en) | A kind of gas hydrates CO in conjunction with voltage drop method2Replacement exploitation method | |
| CN108278100B (en) | A kind of natural gas hydrate exploitation method and system | |
| CN109488259B (en) | Method for mining type I hydrate system based on warm seawater-gravel huff and puff displacement | |
| CN105003237B (en) | Apparatus and method for integrating geothermal exploitation of natural gas hydrate and CO2 waste gas reinjection treatment | |
| CN100455769C (en) | Method for deep geothermal water circulation mining of seabed hydrate | |
| CN103216219B (en) | A kind of CO 2/ N 2the method of underground replacement exploitation of gas hydrate | |
| CN106437653B (en) | A kind of hydrate exploitation and the carbon dioxide sequestration integrated processes of note quick lime and carbon dioxide process | |
| CN106677745B (en) | A kind of gas hydrates decompression exploitation and CO2Bury the process of combination | |
| CN108678724B (en) | Utilize the hollow well construction and method of underground heat exploiting ocean hydrate hiding | |
| CN101016841A (en) | Method for exploiting natural gas hydrates and device thereof | |
| CN114135254B (en) | A Combined Production Method of Hydrate Solid Fluidization and Depressurization | |
| CN105545273A (en) | A device and method for CO2 fracturing displacement production of natural gas hydrate in land area | |
| CN101864937A (en) | Exploitation of marine natural gas hydrate by geothermal energy | |
| CN103982165B (en) | A Method for Exploiting Natural Gas Hydrate Using Mixed Gas of CO2 and H2 | |
| CN113294126A (en) | Natural gas hydrate combined mining method and device for stabilizing stratum | |
| WO2019114226A1 (en) | Method for exploiting marine natural gas hydrates using water erosion method | |
| CN110159232A (en) | A kind of exploitation sea bed gas hydrate device and method | |
| CN103573233A (en) | Method and device for exploiting natural gas hydrate in cryolithozone | |
| CN116201598A (en) | Carbon dioxide sealing method and sealing system | |
| CN108086961A (en) | A kind of water erosion method exploiting ocean natural gas hydrates method of combination heat injection | |
| CN114382444B (en) | A natural gas hydrate production system and method combined with CO2 gas storage | |
| CN204436341U (en) | A kind of supercritical carbon dioxide jet jet drilling production of water compound device | |
| CN212027661U (en) | An offshore natural gas hydrate gas lift reverse circulation drilling system |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |