CN106878834B - Passive optical network compatible device and implementation method thereof and optical line terminal - Google Patents
Passive optical network compatible device and implementation method thereof and optical line terminal Download PDFInfo
- Publication number
- CN106878834B CN106878834B CN201510919447.3A CN201510919447A CN106878834B CN 106878834 B CN106878834 B CN 106878834B CN 201510919447 A CN201510919447 A CN 201510919447A CN 106878834 B CN106878834 B CN 106878834B
- Authority
- CN
- China
- Prior art keywords
- unit
- data
- ended
- upstream
- onu
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 73
- 238000000034 method Methods 0.000 title claims abstract description 59
- 238000012545 processing Methods 0.000 claims abstract description 79
- 238000005070 sampling Methods 0.000 claims abstract description 25
- 238000012937 correction Methods 0.000 claims abstract description 10
- 230000005540 biological transmission Effects 0.000 claims abstract description 8
- 238000006243 chemical reaction Methods 0.000 claims abstract description 8
- 238000011144 upstream manufacturing Methods 0.000 claims description 133
- KISUPFXQEHWGAR-RRKCRQDMSA-N 4-amino-5-bromo-1-[(2r,4s,5r)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]pyrimidin-2-one Chemical group C1=C(Br)C(N)=NC(=O)N1[C@@H]1O[C@H](CO)[C@@H](O)C1 KISUPFXQEHWGAR-RRKCRQDMSA-N 0.000 claims description 45
- 238000011084 recovery Methods 0.000 claims description 10
- 238000013475 authorization Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000012423 maintenance Methods 0.000 description 3
- 230000002457 bidirectional effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000005538 encapsulation Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
- H04Q11/0067—Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/27—Arrangements for networking
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Computing Systems (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Signal Processing (AREA)
- Small-Scale Networks (AREA)
- Optical Communication System (AREA)
Abstract
Description
技术领域technical field
本发明涉及无源光网络(Passive Optical Network,PON)系统传输技术,尤其涉及一种无源光网络兼容装置及其实现方法和光线路终端(Optical Line Terminal,OLT)。The present invention relates to a passive optical network (Passive Optical Network, PON) system transmission technology, and in particular to a passive optical network compatible device and an implementation method thereof, and an optical line terminal (Optical Line Terminal, OLT).
背景技术Background technique
近年来,随着全球范围内接入市场的飞快发展以及全业务运营的快速开展,已有的PON技术标准在带宽需求、业务支撑能力,以及接入节点设备和配套设备的性能提升等方面都面临新的升级需求。目前,万兆无源光网络(NGPON,N Gigabit-Capable PassiveOptical Network)已经处于商用阶段,NGPON分两个标准:无源光网络(XGPON,X Gigabit-Capable Passive Optical Network)和NGPON2;其中,XGPON为非对称模式(上行2.5Gbit/s,下行10Gbit/s),对称模式(上行10Gbit/s,下行10Gbit/s)称为NGPON2;NGPON2上行速率为10Gbit/s。考虑到XGPON和NGPON2共存,NGPON2需要同时兼容XGPON模式;目前,PON系统中NGPON2可以和XGPON采用相同的波长,通过时分多址(TDMA,Time Division MultipleAccess)技术来实现实现共存。In recent years, with the rapid development of the global access market and the rapid development of full-service operations, the existing PON technical standards have improved in terms of bandwidth requirements, service support capabilities, and performance improvement of access node equipment and supporting equipment. Facing new upgrade requirements. At present, 10 Gigabit Passive Optical Network (NGPON, N Gigabit-Capable Passive Optical Network) is already in the commercial stage, NGPON is divided into two standards: Passive Optical Network (XGPON, X Gigabit-Capable Passive Optical Network) and NGPON2; among them, XGPON Asymmetric mode (upstream 2.5Gbit/s, downstream 10Gbit/s), symmetrical mode (upstream 10Gbit/s, downstream 10Gbit/s) is called NGPON2; NGPON2 upstream rate is 10Gbit/s. Considering the coexistence of XGPON and NGPON2, NGPON2 needs to be compatible with the XGPON mode at the same time; at present, NGPON2 and XGPON in the PON system can use the same wavelength and realize coexistence through Time Division Multiple Access (TDMA, Time Division Multiple Access) technology.
但是,网络中NGPON2和XGPON两种光网络单元(ONU,Optical Network Unit)设备共存时,现有的OLT无法同时兼容NGPON2和XGPON的上行速率;如何适应这两种ONU设备,兼容NGPON2和XGPON,使成本更低,网络演进更平滑,是运营商及设备生产厂商所要解决的问题。However, when NGPON2 and XGPON two optical network unit (ONU, Optical Network Unit) devices coexist in the network, the existing OLT cannot be compatible with the upstream rates of NGPON2 and XGPON at the same time; how to adapt to these two ONU devices, compatible with NGPON2 and XGPON, Lower costs and smoother network evolution are the problems that operators and equipment manufacturers need to solve.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本发明实施例期望提供一种无源光网络兼容装置及其实现方法和光线路终端,能兼容NGPON2和XGPON两种无源光网络,从而使无源光网络能平滑演进。In view of this, the embodiments of the present invention expect to provide a passive optical network compatible device and an implementation method thereof, and an optical line terminal, which are compatible with both NGPON2 and XGPON passive optical networks, so that the passive optical network can evolve smoothly.
为达到上述目的,本发明的技术方案是这样实现的:In order to achieve the above object, the technical scheme of the present invention is achieved in this way:
本发明实施例提供了一种无源光网络兼容装置,所述装置包括:第一上行突发时钟数据恢复(BCRD,BurstClock and Data Recovery)单元、第二上行BCDR单元、第一差分转单端(SELECTIO)单元、第二SELECTIO单元、降采样单元、第一上行通路单元、第二上行通路单元;其中,An embodiment of the present invention provides a passive optical network compatible device, the device includes: a first upstream burst clock data recovery (BCRD, BurstClock and Data Recovery) unit, a second upstream BCDR unit, a first differential to single-ended conversion (SELECTIO) unit, second SELECTIO unit, down-sampling unit, first upstream path unit, second upstream path unit; wherein,
所述第一上行BCDR单元和第二上行BCDR单元,用于采用第一模式和第二模式恢复光网络单元ONU的上行数据,并将恢复的上行数据分别发送到第一SELECTIO单元和第二SELECTIO单元;The first upstream BCDR unit and the second upstream BCDR unit are used to restore the upstream data of the optical network unit ONU using the first mode and the second mode, and send the restored upstream data to the first SELECTIO unit and the second SELECTIO unit respectively unit;
所述第一SELECTIO单元和第二SELECTIO单元,用于分别对接收的所述恢复的上行数据进行差分转单端处理,并将转换的单端数据分别发送到第一上行通路单元和降采样单元;The first SELECTIO unit and the second SELECTIO unit are used to perform differential-to-single-ended processing on the recovered uplink data received, respectively, and send the converted single-ended data to the first uplink channel unit and the downsampling unit respectively ;
所述降采样单元,用于对接收的所述第二SELECTIO单元发送的单端数据进行降采样,并将降采样后的单端数据发送到所述第二上行通路单元;The downsampling unit is used to downsample the received single-ended data sent by the second SELECTIO unit, and send the downsampled single-ended data to the second upstream path unit;
所述第一上行通路单元,用于采用第一标准处理接收到的所述第一SELECTIO单元发送的单端数据;在定界成功后,进行解扰和前向纠错(FEC,Forward Error Correction)译码处理,并发送处理完的千兆无源光网络传输汇聚(GTC,GPON TransmissionConvergence)帧;The first uplink path unit is used to process the received single-ended data sent by the first SELECTIO unit using the first standard; after the delimitation is successful, perform descrambling and Forward Error Correction (FEC, Forward Error Correction). ) decoding processing, and sending the processed Gigabit Passive Optical Network Transmission Convergence (GTC, GPON Transmission Convergence) frame;
所述第二上行通路单元,用于采用第二标准处理接收到的所述降采样后的单端数据,在定界成功后,进行解扰和FEC译码处理,并发送处理完的GTC帧。The second uplink path unit is used to process the received single-ended data after the down-sampling by the second standard, and after the delimitation is successful, perform descrambling and FEC decoding processing, and send the processed GTC frame .
上述方案中,所述第一上行BCDR单元,具体用于采用锁数据模式恢复ONU的上行数据;In the above scheme, the first upstream BCDR unit is specifically used to recover the upstream data of the ONU by adopting the lock data mode;
所述第二上行BCDR单元,具体用于采用锁时钟模式恢复ONU的上行数据。The second upstream BCDR unit is specifically used for recovering the upstream data of the ONU in a clock lock mode.
上述方案中,所述第一SELECTIO单元和第二SELECTIO单元,具体用于对接收的上行数据进行差分转单端处理,并根据接收的上行数据恢复时钟,保持转换的单端数据与时钟的同步。In the above scheme, the first SELECTIO unit and the second SELECTIO unit are specifically used to perform differential-to-single-ended processing on the received uplink data, and restore the clock according to the received uplink data, keeping the synchronization of the converted single-ended data and the clock. .
上述方案中,所述第一上行通路单元,包括:万兆上行定界(XGUDLIM,X GigabitUpsteam Delimiter)单元、万兆上行解扰(XGUDSC,X Gigabit Upsteam Descramble)单元、以及万兆上行前向纠错(XGUFEC,X Gigabit Upsteam Forward Error Correction)单元;In the above scheme, the first uplink path unit includes: a 10 Gigabit uplink delimiter (XGUDLIM, X Gigabit Upsteam Delimiter) unit, a 10 Gigabit uplink descrambling (XGUDSC, X Gigabit Upsteam Descramble) unit, and a 10 Gigabit uplink forward correction. Error (XGUFEC, X Gigabit Upsteam Forward Error Correction) unit;
所述第一上行通路单元,还用于在定界成功后,发送第一定界成功信息;The first uplink path unit is further configured to send the first delimitation success information after the delimitation is successful;
所述第二上行通路单元,包括:上行定界(UDLIM,Upstream Delimiter)单元、上行解扰(UDSC,Upstream Descramble)单元、以及上行前向纠错(UFEC,Upsteam ForwardError Correction)单元;The second upstream path unit includes: an upstream delimiter (UDLIM, Upstream Delimiter) unit, an upstream descrambling (UDSC, Upstream Descramble) unit, and an upstream forward error correction (UFEC, Upsteam ForwardError Correction) unit;
所述第二上行通路单元,还用于在定界成功后,发送第二定界成功信息;The second uplink path unit is further configured to send second delimitation success information after the delimitation is successful;
所述第一标准为万兆无源光网络NGPON2标准;The first standard is the 10 Gigabit Passive Optical Network NGPON2 standard;
所述第二标准为非对称万兆无源光网络XGPON标准。The second standard is an asymmetric 10 Gigabit passive optical network XGPON standard.
上述方案中,所述装置还包括:上行接收控制单元,用于获取所述第一定界成功信息和第二定界成功信息;In the above solution, the device further includes: an uplink receiving control unit, configured to acquire the first delimitation success information and the second delimitation success information;
根据第一定界成功信息和第二定界成功信息,确定所述ONU速率信息;Determine the ONU rate information according to the first delimitation success information and the second delimitation success information;
根据将所述ONU对应的ONU速率信息、分配给ONU的序列号(ONU_ID,ONU_Identity)、业务容器(TCONT,Transmission Containers)表绑定在一起并下发给所述ONU;According to the ONU rate information corresponding to the ONU, the sequence number (ONU_ID, ONU_Identity) assigned to the ONU, the service container (TCONT, Transmission Containers) table is bound together and issued to the ONU;
如果所述上行接收控制单元同时接收到所述第一定界成功信息和第二定界成功信息,则根据预先设定的处理策略先处理其中一个。If the uplink receiving control unit receives the first delimitation success information and the second delimitation success information at the same time, it processes one of them first according to a preset processing strategy.
本发明实施例还提供了一种无源光网络兼容的实现方法,所述方法包括:The embodiment of the present invention also provides a passive optical network compatible implementation method, the method includes:
分别采用第一模式和第二模式恢复ONU的上行数据,并对恢复的上行数据分别进行差分转单端处理,转换成单端数据;Adopt the first mode and the second mode to restore the upstream data of the ONU respectively, and perform differential-to-single-ended processing on the recovered upstream data respectively, and convert it into single-ended data;
对所述采用第二模式恢复并经过差分转单端转换的单端数据进行降采样处理,转换成降采样后的单端数据;Perform down-sampling processing on the single-ended data recovered by the second mode and converted into single-ended data through differential to single-ended conversion, and converted into down-sampled single-ended data;
采用第一标准和第二标准分别对所述单端数据和所述降采样后的单端数据进行处理,在定界成功后,进行解扰和FEC译码处理,发送处理完的GTC帧。The single-ended data and the down-sampled single-ended data are processed using the first standard and the second standard, respectively, and after successful delimitation, descrambling and FEC decoding are performed, and the processed GTC frame is sent.
上述方案中,所述方法还包括:定界成功后发送定界成功信息;In the above scheme, the method further includes: after the delimitation is successful, the delimitation success information is sent;
根据所述定界成功信息,确定所述ONU对应的ONU速率信息;According to the delimiting success information, determine the ONU rate information corresponding to the ONU;
根据将所述ONU对应的ONU速率信息、分配的ONU_ID、TCONT表绑定在一起并下发给所述ONU。According to the ONU rate information corresponding to the ONU, the allocated ONU_ID, and the TCONT table are bound together and delivered to the ONU.
上述方案中,所述对所述采用第二模式恢复并经过差分转单端转换的单端数据进行降采样处理,转换成降采样后的单端数据,包括:In the above scheme, the single-ended data recovered by the second mode and converted into single-ended data after differential to single-ended conversion is subjected to down-sampling processing, and converted into down-sampled single-ended data, including:
对采用第二模式恢复并转换的所述单端数据进行差分转单端处理,并将接收的上行数据恢复时钟给内部使用,保持转换的单端数据与时钟的同步。Differential-to-single-ended processing is performed on the single-ended data recovered and converted using the second mode, and the received uplink data is recovered as a clock for internal use to maintain the synchronization of the converted single-ended data and the clock.
上述方案中,所述第一标准为万兆无源光网络NGPON标准;In the above scheme, the first standard is the 10 Gigabit Passive Optical Network NGPON standard;
所述第二标准为非对称万兆无源光网络XGPON标准;The second standard is an asymmetric 10 Gigabit passive optical network XGPON standard;
所述第一模式为锁数据模式;The first mode is a lock data mode;
所述第二模式为锁时钟模式。The second mode is a clock lock mode.
本发明实施例还提供了一种OLT,其特征在于,所述OLT包括:上述方案中任一项所述的无源光网络兼容装置。An embodiment of the present invention further provides an OLT, characterized in that, the OLT includes: the passive optical network compatible device according to any one of the above solutions.
本发明实施例所提供的无源光网络兼容装置及其实现方法和光线路终端,分别采用第一模式和第二模式恢复ONU的上行数据,并对恢复的上行数据分别进行差分转单端处理,转换成单端数据;对采用第二模式恢复并转换的单端数据进行降采样处理,转换成降采样后的单端数据;第一上行通路和第二上行通路采用不同标准分别对所述单端数据和所述降采样后的单端数据进行处理,并在定界成功后,进行解扰和FEC译码处理,发送处理完的GTC帧;可以看出,由于采用两个上行BCRD单元分别采用两种模式恢复ONU的上行数据,并在两个通路采用不同标准分别处理不同的单端数据;如此,本发明实施例可使一个装置同时满足NGPON2和XGPON两种速率数据的传输要求,能达到兼容NGPON2和XGPON两种无源光网络的目的,从而使无源光网络演进更平滑,使成本更低。The passive optical network compatible device and the implementation method thereof and the optical line terminal provided by the embodiments of the present invention respectively use the first mode and the second mode to restore the upstream data of the ONU, and perform differential-to-single-end processing on the restored upstream data respectively, Convert the single-ended data into single-ended data; perform down-sampling processing on the single-ended data recovered and converted using the second mode, and convert it into single-ended data after down-sampling; the first uplink path and the second uplink path respectively use different standards for the single-ended data. The terminal data and the single-ended data after the downsampling are processed, and after the delimitation is successful, descrambling and FEC decoding processing are performed, and the processed GTC frame is sent; it can be seen that, due to the use of two uplink BCRD units respectively Two modes are used to restore the upstream data of the ONU, and different standards are used in the two paths to process different single-ended data respectively; in this way, the embodiment of the present invention can enable one device to meet the transmission requirements of NGPON2 and XGPON data at two rates at the same time. Achieve the purpose of being compatible with NGPON2 and XGPON passive optical networks, so that the evolution of passive optical networks is smoother and the cost is lower.
附图说明Description of drawings
图1为本发明实施例一种无源光网络兼容装置的组成结构示意图;1 is a schematic diagram of a composition structure of a passive optical network compatible device according to an embodiment of the present invention;
图2为本发明示例双速率数据处理的实现原理示意图;FIG. 2 is a schematic diagram of the implementation principle of an example dual-rate data processing of the present invention;
图3为本发明示例双速率处理双向授权流程示意图;FIG. 3 is a schematic diagram of an example dual-rate processing bidirectional authorization flow diagram of the present invention;
图4为本发明实施例一种无源光网络兼容的实现方法的流程示意图。FIG. 4 is a schematic flowchart of a method for implementing passive optical network compatibility according to an embodiment of the present invention.
具体实施方式Detailed ways
本发明实施例中,分别采用第一模式和第二模式恢复ONU的上行数据,并对恢复的上行数据分别进行差分转单端处理,转换成单端数据;对采用第二模式恢复并转换的单端数据进行降采样处理,转换成降采样后的单端数据;第一上行通路和第二上行通路采用不同标准分别对所述单端数据和所述降采样后的单端数据进行处理,并在定界成功后,进行解扰和FEC译码处理,发送处理完的GTC帧。In the embodiment of the present invention, the first mode and the second mode are respectively used to restore the upstream data of the ONU, and the restored upstream data is processed by differential to single-ended respectively, and converted into single-ended data; The single-ended data is down-sampled and converted into down-sampled single-ended data; the first upstream path and the second upstream path use different standards to process the single-ended data and the down-sampled single-ended data respectively, And after the delimitation is successful, descrambling and FEC decoding are performed, and the processed GTC frame is sent.
下面结合实施例对本发明再作进一步详细的说明。The present invention will be described in further detail below in conjunction with the embodiments.
本发明实施例提供的无源光网络兼容装置,如图1所示,包括:The passive optical network compatible device provided by the embodiment of the present invention, as shown in FIG. 1 , includes:
第一上行BCDR单元11、第二上行BCDR单元12、第一差分转单端(SELECTIO)单元13、第二SELECTIO单元14、降采样单元15、第一上行通路单元16、第二上行通路单元17;其中,The first upstream BCDR unit 11, the second upstream BCDR unit 12, the first differential to single-ended (SELECTIO) unit 13, the second SELECTIO unit 14, the downsampling unit 15, the first upstream channel unit 16, the second upstream channel unit 17 ;in,
所述第一上行BCDR单元11和第二上行BCDR单元12,用于采用不同工作模式恢复光网络单元ONU的上行数据,并对恢复的上行数据分别发送到第一SELECTIO单元13和第二SELECTIO单元14;The first upstream BCDR unit 11 and the second upstream BCDR unit 12 are used to restore the upstream data of the optical network unit ONU using different operating modes, and send the restored upstream data to the first SELECTIO unit 13 and the second SELECTIO unit respectively 14;
具体的,当ONU向OLT发送上行数据时,上行数据以光信号形式进入OLT的光模块,光模块将光信号的上行数据转换成电信号的上行数据,并发送至第一上行BCDR单元11和第二上行BCDR单元12;第一上行BCDR单元11和第二上行BCDR单元12分别采用不同工作模式完成对所述上行数据的恢复。这里,第一上行BCDR单元11可以用于处理满足NGPON2标准的数据,NGPON2为10G/s速率的信号,第一上行BCDR单元11需要配置成锁数据模式;第二上行BCDR单元12可以用于处理满足XGPON标准的数据,XGPON上行速率为2.5G/s;因为后续处理涉及到降采样模块,为了确保采样时钟的稳定性,第二上行BCDR单元12需要配置成锁时钟模式。这里,第一上行BCDR单元11和第二上行BCDR单元12将上行数据恢复成4组16对的差分信号数据发送到所述第一SELECTIO单元13和第二SELECTIO单元14。Specifically, when the ONU sends uplink data to the OLT, the uplink data enters the optical module of the OLT in the form of an optical signal, and the optical module converts the uplink data of the optical signal into the uplink data of the electrical signal, and sends it to the first uplink BCDR unit 11 and The second upstream BCDR unit 12; the first upstream BCDR unit 11 and the second upstream BCDR unit 12 respectively use different working modes to complete the recovery of the upstream data. Here, the first upstream BCDR unit 11 can be used to process data that meets the NGPON2 standard. NGPON2 is a signal with a rate of 10G/s. The first upstream BCDR unit 11 needs to be configured to lock data mode; the second upstream BCDR unit 12 can be used to process For data that meets the XGPON standard, the XGPON uplink rate is 2.5G/s; because the subsequent processing involves a downsampling module, in order to ensure the stability of the sampling clock, the second uplink BCDR unit 12 needs to be configured in a clock lock mode. Here, the first upstream BCDR unit 11 and the second upstream BCDR unit 12 restore the upstream data into 4 groups of 16 pairs of differential signal data and send them to the first SELECTIO unit 13 and the second SELECTIO unit 14 .
所述第一SELECTIO单元13和第二SELECTIO单元14,用于分别对接收的所述恢复的上行数据进行差分转单端处理,并将转换的单端数据分别发送到第一上行通路单元16和降采样单元15;The first SELECTIO unit 13 and the second SELECTIO unit 14 are used to perform differential-to-single-ended processing on the recovered uplink data received, and send the converted single-ended data to the first uplink channel unit 16 and downsampling unit 15;
具体的,所述第一SELECTIO单元13和第二SELECTIO单元14分别对接收的第一上行BCDR单元11和第二上行BCDR单元12输出的4组16对差分信号数据进行差分转单端处理;将数据合成64比特的单端数据,分别送给第一上行通路单元16和降采样单元15,并且根据所述差分信号数据进行时钟恢复,保持数据与时钟的同步。Specifically, the first SELECTIO unit 13 and the second SELECTIO unit 14 respectively perform differential-to-single-ended processing on the received four groups of 16 pairs of differential signal data output by the first upstream BCDR unit 11 and the second upstream BCDR unit 12; The data is synthesized into 64-bit single-ended data and sent to the first upstream channel unit 16 and the down-sampling unit 15 respectively, and clock recovery is performed according to the differential signal data to keep the synchronization between the data and the clock.
所述降采样单元15,用于对接收的所述第二SELECTIO单元14发送的单端数据进行降采样,并将降采样的单端数据发送到所述第二上行通路单元17;The down-sampling unit 15 is configured to down-sample the received single-ended data sent by the second SELECTIO unit 14, and send the down-sampled single-ended data to the second upstream path unit 17;
这里,所述降采样单元15对所述第二SELECTIO单元14送出的64比特的单端数据进行降采样处理,将所述64比特的单端数据降采样位16比特的单端数;这样,16比特的单端数可以被所述第二上行通路单元17处理。Here, the downsampling unit 15 performs downsampling processing on the 64-bit single-ended data sent by the second SELECTIO unit 14, and downsamples the 64-bit single-ended data to a 16-bit single-ended number; thus, 16 The single-ended number of bits can be handled by the second upstream path unit 17 .
所述第一上行通路单元16,用于采用第一标准处理接收到的所述第一SELECTIO单元13发送的单端数据,在定界成功后,进行解扰和FEC译码处理,并发送处理完的GTC帧;The first uplink path unit 16 is used to process the received single-ended data sent by the first SELECTIO unit 13 using the first standard, and after the delimitation is successful, perform descrambling and FEC decoding processing, and send processing finished GTC frame;
具体的,第一上行通路单元16可以用于处理NGPON2的数据,处理的数据上行速率为9.95328Gbps,数据恢复时钟为155.52M,位宽为64比特,可以用于处理10Gbit/s速率的数据,也称为10G通路;所以经第一SELECTIO单元13处理的64比特单端数据可以直接送到所述第一上行通路单元16进行处理;Specifically, the first upstream channel unit 16 can be used to process the data of NGPON2, the upstream rate of the processed data is 9.95328Gbps, the data recovery clock is 155.52M, and the bit width is 64 bits, and can be used to process the data at a rate of 10Gbit/s, Also called 10G path; so the 64-bit single-ended data processed by the first SELECTIO unit 13 can be directly sent to the first upstream path unit 16 for processing;
所述第一上行通路单元16,包括:XGUDLIM单元、XGUDSC单元、XGUFEC单元;所述XGUDLIM单元,用于采用第一标准对所述单端数据进行定界;所述XGUDSC单元,用于采用第一标准对所述单端数据进行解扰;所述XGUFEC单元,用于采用第一标准对所述单端数据进行FEC解码。所述第一上行通路单元16的数据处理过程为:首先对所述第一SELECTIO单元13发送的单端数据进行定界,如果定界成功,则发送第一定界成功信息,并进行解扰和FEC译码处理,最后发送处理完的GTC帧;所述第一标准为NGPON2标准。The first uplink channel unit 16 includes: an XGUDLIM unit, an XGUDSC unit, and an XGUFEC unit; the XGUDLIM unit is used to delimit the single-ended data by using the first standard; the XGUDSC unit is used to use the first standard. A standard descrambles the single-ended data; the XGUFEC unit is configured to perform FEC decoding on the single-ended data using the first standard. The data processing process of the first uplink path unit 16 is as follows: first, delimit the single-ended data sent by the first SELECTIO unit 13, and if the delimitation succeeds, send the first delimitation success information and perform descrambling. and FEC decoding processing, and finally send the processed GTC frame; the first standard is the NGPON2 standard.
所述第二上行通路单元17,用于采用第二标准处理接收到的所述降采样后的单端数据,在定界成功后,进行解扰和FEC译码处理,并发送处理完的GTC帧;The second uplink path unit 17 is used to process the received single-ended data after the down-sampling by the second standard, and after the delimitation is successful, perform descrambling and FEC decoding processing, and send the processed GTC frame;
具体的,第二上行通路单元17可以用于处理XGPON的数据,处理的数据上行速率为2.48832Gbps,位宽为16比特,可以用于处理2.5Gbit/s速率的数据,也称为2.5G通路;所以经第二SELECTIO单元14处理的64比特的单端数据需要经过所述降采样单元15进行降采样成16比特的单端数据,才可以送到所述第二上行通路单元17进行处理;Specifically, the second upstream channel unit 17 can be used to process XGPON data, the upstream rate of the processed data is 2.48832Gbps, the bit width is 16 bits, and it can be used to process data at a rate of 2.5Gbit/s, also called a 2.5G channel ; So the single-ended data of 64 bits processed by the second SELECTIO unit 14 needs to be down-sampled into the single-ended data of 16 bits through the down-sampling unit 15, just can be sent to the second upstream path unit 17 for processing;
所述第二上行通路单元17,包括:UDLIM单元、UDSC单元、UFEC单元;所述UDLIM单元,用于采用第二标准对所述降采样后的单端数据进行定界;所述UDSC单元,用于采用第二标准对所述降采样后的单端数据进行解扰;所述UFEC单元,用于采用第二标准对所述降采样后的单端数据进行FEC解码。所述第二上行通路单元17的数据处理过程为:首先对所述降采样后的单端数据进行定界,如果定界成功,则发送第二定界成功信息,并进行解扰和FEC译码处理,最后发送处理完的GTC帧;所述第二标准为XGPON标准。The second uplink path unit 17 includes: a UDLIM unit, a UDSC unit, and a UFEC unit; the UDLIM unit is used to delimit the down-sampled single-ended data by using a second standard; the UDSC unit, The UFEC unit is configured to use the second standard to descramble the down-sampled single-ended data; the UFEC unit is configured to perform FEC decoding on the down-sampled single-ended data using the second standard. The data processing process of the second uplink path unit 17 is as follows: first, delimit the single-ended data after the down-sampling, and if the delimitation is successful, send the second delimitation success information, and perform descrambling and FEC translation. code processing, and finally send the processed GTC frame; the second standard is the XGPON standard.
所述第一上行通路单元16和第二上行通路单元17发送的GTC帧,由后续的GTC解帧单元进行解帧处理,并将解帧后的数据发送给不同的处理单元进行处理。The GTC frames sent by the first uplink channel unit 16 and the second uplink channel unit 17 are deframed by subsequent GTC deframe units, and the deframed data are sent to different processing units for processing.
本发明实施例提供的无源光网络兼容装置还包括:上行接收控制单元18;The passive optical network compatible device provided by the embodiment of the present invention further includes: an uplink receiving control unit 18;
所述上行接收控制单元18,用于接收所述第一上行通路单元16和第二上行通路单元17通路发送的第一定界成功信息和第二定界成功信息;根据第一定界成功信息和第二定界成功信息确定所述ONU速率信息;如果接收到的是第一定界成功信息,由于第一定界成功信息是由第一上行通路单元16发出,第一上行通路单元16采用第一标准处理数据,如此,表明ONU速率为第一标准;如果接收到的是第二定界成功信息,由于第二定界成功信息是由第二上行通路单元17发出,第二上行通路单元17采用第二标准处理数据,如此,表明ONU速率为第二标准;这里第一标准为NGPON2标准,第二标准为XGPON标准。所述ONU速率信息可以采用1和0区分,NGPON2标准的ONU速率信息用1表示,XGPON标准的ONU速率信息用0表示。The upstream receiving control unit 18 is configured to receive the first delimitation success information and the second delimitation success information sent by the first upstream path unit 16 and the second upstream path unit 17; according to the first delimitation success information Determine the ONU rate information with the second demarcation success information; if what is received is the first demarcation success information, because the first demarcation success information is sent by the first upstream path unit 16, the first upstream path unit 16 adopts The first standard processes data, so that the ONU rate is the first standard; if what is received is the second delimitation success information, since the second delimitation success information is sent by the second upstream path unit 17, the second upstream path unit 17 Use the second standard to process data, so that the ONU rate is the second standard; here the first standard is the NGPON2 standard, and the second standard is the XGPON standard. The ONU rate information can be distinguished by 1 and 0, the ONU rate information of the NGPON2 standard is represented by 1, and the ONU rate information of the XGPON standard is represented by 0.
在ONU注册流程中,所述上行接收控制单元18将所述ONU对应的ONU速率信息、分配给ONU的序列号ONU_ID、TCONT表绑定在一起并通过OLT的下行单元发给ONU,来完成双向授权。如果同时收到两个定界成功信息,则可以根据预先设定的处理策略先处理其中一个;比如:可以根据市场推广需求设定处理策略为NGPON2标准速率的ONU优先注册;这里,可以按照通常的处理策略优先注册NGPON2标准速率的ONU。In the ONU registration process, the upstream receiving control unit 18 binds the ONU rate information corresponding to the ONU, the sequence number ONU_ID assigned to the ONU, and the TCONT table, and sends it to the ONU through the downstream unit of the OLT to complete the two-way authorized. If two delimitation success messages are received at the same time, one of them can be processed first according to the preset processing strategy; for example, the processing strategy can be set as the ONU with the NGPON2 standard rate according to the market promotion needs to register first; The processing strategy is to preferentially register ONUs with NGPON2 standard rate.
下面结合具体示例对本发明产生的积极效果作进一步详细的描述。The positive effects of the present invention will be described in further detail below with reference to specific examples.
双速率数据处理的实现原理如图2所示,包括:ONU的上行数据到2.5G和10G通路内部后,先进行定界,根据上行数据和万兆定界模块及定界模块的定界符做互相关运算,当得到的互相关运算值在配置的阈值范围内,则认为找到定界头,从而根据漂移值对输入的数据进行对齐送往后面的模块进行解扰、解FEC、GTC解帧,并送往流量管理(TM,TrafficManagement)模块进行处理等。The implementation principle of double-rate data processing is shown in Figure 2, including: after the upstream data of the ONU is sent to the 2.5G and 10G channels, it is delimited first, according to the upstream data and the delimiter of the 10G delimiter module and the delimiter module. Perform cross-correlation operation. When the obtained cross-correlation operation value is within the configured threshold range, it is considered that the delimiter header is found, so as to align the input data according to the drift value and send it to the following modules for descrambling, FEC, and GTC solutions. The frame is sent to the traffic management (TM, TrafficManagement) module for processing.
双速率处理双向授权流程示意图如图3所示,首先OLT下发三个上行开销物理层操作管理和维护(Upstream_Overhead PLOAM,Upstream_Overhead Physical LayerOperations And Maintenance)消息给OLT PON口下所有的ONU;ONU收到后进入序列号(SN,Serial Number)状态,OLT在等待时间T1后开启一个静默窗口,并通过带宽映射(BWMAP,BandWidth Map)下发SN请求和一个半空帧;ONU在收到SN请求后,上发自己的SN消息;由于上行有两种速率的数据一起上来,如步骤301所示:上行接收控制单元(URC,UpstreamReceive Control)根据ITU-T G.989.3协议,在ALLOC_ID为3FD的时候,给两路定界模块都进行开窗,两路数据会同时进入2.5G和10G通路中;假设此时上来的是10G ONU的SN消息,数据分别进入10G定界模块、降采样后进入2.5G定界模块,那肯定只能在10G定界模块能找到定界符,同理2.5G数据也只能在2.5G的定界模块找到定界符;URC在收到定界模块给出的定界成功标志(SYNC)信号后,会给出一个速率标志位(RATEMODE)送到上行物理层操作管理和维护(Upstream Physical Layer Operations And Maintenance,UPLOAM)消息模块,如果SYNC信号来自10G定界模块,则标志位RATEMODE为1,否则为0;软件在提取SN PLOAM消息时,将这个速率标志位一并提取,然后分配相应的ONU_ID给此时的ONU,这个ONU则进入测距状态;软件在分配ONU_ID的操作是串行的,所以此时不会有第二个ONU在测距状态;ONU在收到OLT下发的测距请求后,上发注册(RG,Register)PLOAM消息,此消息包含ONU_ID,此时URC将RATEMODE、ONU_ID与TCONT表绑定在一起并下发给ONU,从而完成双向授权,ONU完成激活开始进入各种业务通讯,同时开始注册另外一种速率的ONU;所以,在处理的时候是遵循哪路先定界先注册对应速率的ONU,当理论上两种速率的ONU同时上来则优先注册10G速率的ONU。The schematic diagram of the two-way authorization process of double-rate processing is shown in Figure 3. First, the OLT sends three upstream overhead physical layer operation management and maintenance (Upstream_Overhead PLOAM, Upstream_Overhead Physical Layer Operations And Maintenance) messages to all the ONUs under the OLT PON port; the ONU receives the After entering the serial number (SN, Serial Number) state, the OLT opens a silent window after the waiting time T1, and sends the SN request and a half-empty frame through the bandwidth map (BWMAP, BandWidth Map); after the ONU receives the SN request, Send its own SN message; since there are two rates of data in the uplink, as shown in step 301: the uplink receiving control unit (URC, UpstreamReceive Control) according to the ITU-T G.989.3 protocol, when the ALLOC_ID is 3FD, Open the window for both delimiter modules, and the two channels of data will enter the 2.5G and 10G channels at the same time; assuming that the SN message of the 10G ONU is coming up at this time, the data enters the 10G delimiter module, and then enters 2.5G after downsampling. For the delimiter module, the delimiter can only be found in the 10G delimiter module. Similarly, 2.5G data can only be found in the 2.5G delimiter module; URC receives the delimiter given by the delimiter module. After the delimitation success flag (SYNC) signal, a rate flag bit (RATEMODE) will be given to the Upstream Physical Layer Operations And Maintenance (UPLOAM) message module. If the SYNC signal comes from the 10G delimiter module, Then the flag bit RATEMODE is 1, otherwise it is 0; when the software extracts the SN PLOAM message, it extracts the rate flag bit together, and then assigns the corresponding ONU_ID to the ONU at this time, and this ONU enters the ranging state; the software is assigning The operation of ONU_ID is serial, so there will be no second ONU in the ranging state at this time; after receiving the ranging request from the OLT, the ONU sends a register (RG, Register) PLOAM message, which contains ONU_ID, at this time URC binds RATEMODE, ONU_ID and TCONT table together and sends it to ONU, thus completing two-way authorization, ONU completes activation and starts to enter various business communications, and starts to register ONU of another rate; When processing, the ONU with the corresponding rate is registered first, and the ONU with the corresponding rate is registered first.
基于上述无源光网络兼容装置,本发明实施例还了一种无源光网络兼容的实现方法,如图4所示,所述方法包括以下几个步骤:Based on the above-mentioned passive optical network compatible device, an embodiment of the present invention further provides a method for implementing passive optical network compatibility. As shown in FIG. 4 , the method includes the following steps:
步骤401:分别采用第一模式和第二模式恢复ONU的上行数据,并分别进行差分转单端处理,转换成单端数据;Step 401: respectively adopt the first mode and the second mode to restore the upstream data of the ONU, and perform differential-to-single-ended processing respectively, and convert them into single-ended data;
这里,当所述ONU发送上行数据时,上行数据以光信号形式进入光模块,光模块将光信号的上行数据转换成电信号的上行数据;为了兼容NGPON2和XGPON,分别采用第一模式和第二模式对所述上行数据进行BCDR;所述第一种模式为锁数据模式,第二模式为锁时钟模式。经过所述锁数据模式处理的数据适用于后续以NGPON2标准处理,NGPON2数据的速率为10G/s;经过所述锁时钟模式处理的数据可以确保采样时钟的稳定性,适用于后续以XGPON标准处理,XGPON数据的速率为2.5G/s。这里,所述上行数据经过BCDR处理成为4组16对的差分信号数据。这里,再对所述4组16对差分信号数据进行差分转单端处理,将数据合成64比特的单端数据,并根据差分信号数据进行时钟恢复,所述恢复的时钟用于内部使用,保持转换的单端数据与时钟的同步。Here, when the ONU sends uplink data, the uplink data enters the optical module in the form of an optical signal, and the optical module converts the uplink data of the optical signal into the uplink data of the electrical signal; in order to be compatible with NGPON2 and XGPON, the first mode and the third mode are respectively adopted. Two modes perform BCDR on the uplink data; the first mode is a data lock mode, and the second mode is a clock lock mode. The data processed in the lock data mode is suitable for subsequent processing in the NGPON2 standard, and the rate of the NGPON2 data is 10G/s; the data processed in the clock lock mode can ensure the stability of the sampling clock, and is suitable for subsequent processing in the XGPON standard. , the XGPON data rate is 2.5G/s. Here, the uplink data is processed by BCDR into four groups of 16 pairs of differential signal data. Here, the four groups of 16 pairs of differential signal data are then subjected to differential-to-single-ended processing, and the data is synthesized into 64-bit single-ended data, and clock recovery is performed according to the differential signal data. The recovered clock is used for internal use and kept Synchronization of the converted single-ended data to the clock.
步骤402:对所述采用第二模式恢复并经过差分转单端转换的单端数据进行降采样处理,转换成降采样后的单端数据;Step 402: Perform down-sampling processing on the single-ended data recovered by the second mode and converted into single-ended data by differential conversion, and converted into down-sampled single-ended data;
这里,采用第二模式恢复并进行差分转单端处理的所述单端数据适用于按照XGPON标准处理;XGPON上行速率为2.48832Gbps,位宽为16比特;由于经过差分转单端处理的单端数据为64比特,所以需要对64比特的单端数据进行降采样处理;如此,降采样的16比特的单端数可以被按照XGPON标准进行处理。Here, the single-ended data recovered using the second mode and subjected to differential-to-single-ended processing is suitable for processing in accordance with the XGPON standard; the XGPON uplink rate is 2.48832 Gbps, and the bit width is 16 bits; The data is 64 bits, so it is necessary to down-sample the 64-bit single-ended data; in this way, the down-sampled 16-bit single-ended data can be processed according to the XGPON standard.
步骤403:采用第一标准和第二标准分别对单端数据和降采样后的单端数据进行处理;在定界成功后,进行解扰和FEC译码,发送处理完的GTC帧;Step 403: use the first standard and the second standard to process the single-ended data and the down-sampled single-ended data respectively; after the delimitation is successful, perform descrambling and FEC decoding, and send the processed GTC frame;
具体的,采用第一标准处理接收到的所述单端数据,包括:首先对所述单端数据进行定界,如果定界成功,则发送第一定界成功信息,并采用第一标准进行解扰和FEC译码处理,最后发送处理完的GTC帧;所述第一标准为NGPON2标准;Specifically, using the first standard to process the received single-ended data includes: firstly delimiting the single-ended data, and if the delimitation succeeds, sending first demarcation success information, and using the first standard to delimit the single-ended data. descrambling and FEC decoding processing, and finally sending the processed GTC frame; the first standard is the NGPON2 standard;
采用第二标准处理接收到的所述降采样后的单端数,包括:首先对所述降采样后的单端数据进行定界,如果定界成功,则发送第二定界成功信息,并采用第二标准进行解扰和FEC译码处理,最后发送处理完的GTC帧;所述第二标准为XGPON标准。Using the second standard to process the received down-sampled single-ended data includes: firstly delimiting the down-sampled single-ended data, and if the delimitation succeeds, sending second delimitation success information, and using The second standard performs descrambling and FEC decoding processing, and finally sends the processed GTC frame; the second standard is the XGPON standard.
本实施例无源光网络兼容的实现方法,还包括:定界成功后发送定界成功信息;根据所述定界成功信息,确定所述ONU对应的ONU速率信息;将所述ONU对应的ONU速率信息、分配的ONU_ID、TCONT表绑定在一起并下发给所述ONU;The implementation method of passive optical network compatibility in this embodiment further includes: sending delimitation success information after delimitation is successful; determining ONU rate information corresponding to the ONU according to the delimitation success information; The rate information, the assigned ONU_ID, and the TCONT table are bound together and issued to the ONU;
具体的,所述第一定界成功信息和第二定界成功信息分别对应于采用第一标准定界成功和采用第二标准定界成功,因此,如果接收到的是第一定界成功信息,则表明所述ONU速率为第一标准;如果接收到的是第二定界成功信息,则表明所述ONU速率为第二标准;这里第一标准为NGPON2标准,第二标准为XGPON标准。Specifically, the first delimitation success information and the second delimitation success information respectively correspond to the success of delimitation using the first standard and the success of demarcation using the second standard. Therefore, if the received information is the first delimitation success information , it indicates that the ONU rate is the first standard; if the second delimitation success information is received, it indicates that the ONU rate is the second standard; here the first standard is the NGPON2 standard, and the second standard is the XGPON standard.
在ONU注册流程中,所述将所述ONU对应的ONU速率信息和所诉分配的ONU_ID与TCONT表绑定在一起并通过OLT的下行单元发给ONU,来完成双向授权。如果同时收到两个定界成功信息,则可以根据预先设定的处理策略先处理其中一个;比如:可以根据市场推广需求设定处理策略为NGPON2标准速率的ONU优先注册;这里,可以按照通常的处理策略优先注册NGPON2标准速率的ONU。所述ONU速率信息可以采用1和0区分,NGPON2标准的ONU速率信息用1表示,XGPON标准的ONU速率信息用0表示。In the ONU registration process, the ONU rate information corresponding to the ONU and the allocated ONU_ID are bound together with the TCONT table and sent to the ONU through the downlink unit of the OLT to complete the bidirectional authorization. If two delimitation success messages are received at the same time, one of them can be processed first according to the preset processing strategy; for example, the processing strategy can be set as the ONU with the NGPON2 standard rate according to the market promotion needs to register first; The processing strategy is to preferentially register ONUs with NGPON2 standard rate. The ONU rate information can be distinguished by 1 and 0, the ONU rate information of the NGPON2 standard is represented by 1, and the ONU rate information of the XGPON standard is represented by 0.
本发明实施例还了一种无源光网络兼容的OLT,所述无源光网络兼容的OLT不但包括:光模块、万兆无源光网络封装方式(XGUGEM,X Gigabit Upstream GPON EncapsulationMode)解帧单元、带宽动态分配(DBA,Dynamic Bandwidth Allocation,DBA)单元、万兆无源光网络传输汇聚(XGUGTC,X Gigabit Upstream GTC)单元、万兆上行功率电平调整XGUPLM(XGUPLM,X Gigabit Upstream Power Level Management)、万兆上行帧定界符(XGUBIP,XGigabit Upstream Bit Interleaved Parity)、万兆上行动态宽带报告(XGUDBR,XGigabit Upstream Dynamic Bandwidth Report)、下行数据部分;还包括无源光网络兼容装置,如图1所示,所述装置包括:第一上行BCDR单元11、第二上行BCDR单元12、第一SELECTIO单元13、第二SELECTIO单元14、降采样单元15、第一上行通路单元16、第二上行通路单元17;其中,The embodiment of the present invention also provides an OLT compatible with a passive optical network. The OLT compatible with the passive optical network not only includes: optical modules, 10 Gigabit passive optical network encapsulation mode (XGUGEM, X Gigabit Upstream GPON Encapsulation Mode) deframe Unit, Dynamic Bandwidth Allocation (DBA, DBA) unit, 10 Gigabit Passive Optical Network Transmission Convergence (XGUGTC, X Gigabit Upstream GTC) unit, 10 Gigabit Upstream Power Level Adjustment XGUPLM (XGUPLM, X Gigabit Upstream Power Level) Management), 10 Gigabit Upstream Frame Delimiter (XGUBIP, XGigabit Upstream Bit Interleaved Parity), 10 Gigabit Upstream Dynamic Broadband Report (XGUDBR, XGigabit Upstream Dynamic Bandwidth Report), downstream data part; also includes passive optical network compatible devices, such as As shown in FIG. 1, the apparatus includes: a first upstream BCDR unit 11, a second upstream BCDR unit 12, a first SELECTIO unit 13, a second SELECTIO unit 14, a downsampling unit 15, a first upstream channel unit 16, a second Uplink unit 17; wherein,
所述第一上行BCDR单元11和第二上行BCDR单元12,用于采用不同工作模式恢复光网络单元ONU的上行数据,并将恢复的上行数据分别发送到第一SELECTIO单元13和第二SELECTIO单元14;The first upstream BCDR unit 11 and the second upstream BCDR unit 12 are used to restore the upstream data of the optical network unit ONU using different working modes, and send the restored upstream data to the first SELECTIO unit 13 and the second SELECTIO unit respectively 14;
具体的,当ONU向OLT发送上行数据时,上行数据以光信号形式进入OLT的光模块,光模块将光信号的上行数据转换成电信号的上行数据,并发送至第一上行BCDR单元11和第二上行BCDR单元12;第一上行BCDR单元11和第二上行BCDR单元12分别采用不同工作模式完成对所述上行数据的恢复。这里,第一上行BCDR单元11可以用于处理满足NGPON2标准的数据,NGPON2为10G/s速率的信号,第一上行BCDR单元11需要配置成锁数据模式;第二上行BCDR单元12可以用于处理满足XGPON标准的数据,XGPON上行速率为2.5G/s;因为后续处理涉及到降采样模块,为了确保采样时钟的稳定性,第二上行BCDR单元12需要配置成锁时钟模式。这里,第一上行BCDR单元11和第二上行BCDR单元12将上行数据恢复成4组16对的差分信号数据发送到所述第一SELECTIO单元13和第二SELECTIO单元14。Specifically, when the ONU sends uplink data to the OLT, the uplink data enters the optical module of the OLT in the form of an optical signal, and the optical module converts the uplink data of the optical signal into the uplink data of the electrical signal, and sends it to the first uplink BCDR unit 11 and The second upstream BCDR unit 12; the first upstream BCDR unit 11 and the second upstream BCDR unit 12 respectively use different working modes to complete the recovery of the upstream data. Here, the first upstream BCDR unit 11 can be used to process data that meets the NGPON2 standard. NGPON2 is a signal with a rate of 10G/s. The first upstream BCDR unit 11 needs to be configured to lock data mode; the second upstream BCDR unit 12 can be used to process For data that meets the XGPON standard, the XGPON uplink rate is 2.5G/s; because the subsequent processing involves a downsampling module, in order to ensure the stability of the sampling clock, the second uplink BCDR unit 12 needs to be configured in a clock lock mode. Here, the first upstream BCDR unit 11 and the second upstream BCDR unit 12 restore the upstream data into 4 groups of 16 pairs of differential signal data and send them to the first SELECTIO unit 13 and the second SELECTIO unit 14 .
所述第一SELECTIO单元13和第二SELECTIO单元14,用于分别对接收的所述恢复的上行数据进行差分转单端处理,并将转换的单端数据分别发送到第一上行通路单元16和降采样单元15;The first SELECTIO unit 13 and the second SELECTIO unit 14 are used to perform differential-to-single-ended processing on the recovered uplink data received, and send the converted single-ended data to the first uplink channel unit 16 and downsampling unit 15;
具体的,所述第一SELECTIO单元13和第二SELECTIO单元14分别对接收的第一上行BCDR单元11和第二上行BCDR单元12输出的4组16对差分信号数据进行差分转单端处理;将数据合成64比特的单端数据,分别送给第一上行通路单元16和降采样单元15,并根据所述差分信号数据进行时钟恢复,将恢复的时钟给内部使用,并保持所述单端数据与时钟的同步。Specifically, the first SELECTIO unit 13 and the second SELECTIO unit 14 respectively perform differential-to-single-ended processing on the received four groups of 16 pairs of differential signal data output by the first upstream BCDR unit 11 and the second upstream BCDR unit 12; The data is synthesized into 64-bit single-ended data, which are respectively sent to the first upstream channel unit 16 and the down-sampling unit 15, and clock recovery is performed according to the differential signal data, the recovered clock is used internally, and the single-ended data is kept Synchronization with the clock.
所述降采样单元15,用于对接收的所述第二SELECTIO单元14发送的单端数据进行降采样,并将降采样的单端数据发送到所述第二上行通路单元17;The down-sampling unit 15 is configured to down-sample the received single-ended data sent by the second SELECTIO unit 14, and send the down-sampled single-ended data to the second upstream path unit 17;
这里,所述降采样单元15对所述第二SELECTIO单元14送出的64比特的单端数据进行降采样处理,将所述64比特的单端数据降采样位16比特的单端数;这样,16比特的单端数可以被所述第二上行通路单元17处理。Here, the downsampling unit 15 performs downsampling processing on the 64-bit single-ended data sent by the second SELECTIO unit 14, and downsamples the 64-bit single-ended data to a 16-bit single-ended number; thus, 16 The single-ended number of bits can be handled by the second upstream path unit 17 .
所述第一上行通路单元16,用于采用第一标准处理接收到的所述第一SELECTIO单元13发送的单端数据,在定界成功后,进行解扰和FEC译码处理,并发送处理完的GTC帧;The first uplink path unit 16 is used to process the received single-ended data sent by the first SELECTIO unit 13 using the first standard, and after the delimitation is successful, perform descrambling and FEC decoding processing, and send processing finished GTC frame;
具体的,第一上行通路单元16可以用于处理NGPON2的数据,处理的数据上行速率为9.95328Gbps,数据恢复时钟为155.52M,位宽为64比特,可以用于处理10Gbit/s速率的数据,也称为10G通路;所以经第一SELECTIO单元13处理的64比特单端数据可以直接送到所述第一上行通路单元16进行处理;Specifically, the first upstream channel unit 16 can be used to process the data of NGPON2, the upstream rate of the processed data is 9.95328Gbps, the data recovery clock is 155.52M, and the bit width is 64 bits, and can be used to process the data at a rate of 10Gbit/s, Also called 10G path; so the 64-bit single-ended data processed by the first SELECTIO unit 13 can be directly sent to the first upstream path unit 16 for processing;
所述第一上行通路单元16,包括:XGUDLIM单元、XGUDSC单元、XGUFEC单元;所述XGUDLIM单元,用于采用第一标准对所述单端数据进行定界;所述XGUDSC单元,用于采用第一标准对所述单端数据进行解扰;所述XGUFEC单元,用于采用第一标准对所述单端数据进行FEC解码。所述第一上行通路单元16的数据处理过程为:首先对所述第一SELECTIO单元13发送的单端数据进行定界,如果定界成功,则发送第一定界成功信息,并进行解扰和FEC译码处理,最后发送处理完的GTC帧;所述第一标准为NGPON2标准。The first uplink channel unit 16 includes: an XGUDLIM unit, an XGUDSC unit, and an XGUFEC unit; the XGUDLIM unit is used to delimit the single-ended data by using the first standard; the XGUDSC unit is used to use the first standard. A standard descrambles the single-ended data; the XGUFEC unit is configured to perform FEC decoding on the single-ended data using the first standard. The data processing process of the first uplink path unit 16 is as follows: first, delimit the single-ended data sent by the first SELECTIO unit 13, and if the delimitation succeeds, send the first delimitation success information and perform descrambling. and FEC decoding processing, and finally send the processed GTC frame; the first standard is the NGPON2 standard.
所述第二上行通路单元17,用于采用第二标准处理接收到的所述降采样后的单端数据,在定界成功后,进行解扰和FEC译码处理,并发送处理完的GTC帧;The second uplink path unit 17 is used to process the received single-ended data after the down-sampling by the second standard, and after the delimitation is successful, perform descrambling and FEC decoding processing, and send the processed GTC frame;
具体的,第二上行通路单元17可以用于处理XGPON的数据,处理的数据上行速率为2.48832Gbps,位宽为16比特,可以用于处理2.5Gbit/s速率的数据,也称为2.5G通路;所以经第二SELECTIO单元14处理的64比特的单端数据需要经过所述降采样单元15进行降采样成16比特的单端数才可以送到所述第二上行通路单元17进行处理;Specifically, the second upstream channel unit 17 can be used to process XGPON data, the upstream rate of the processed data is 2.48832Gbps, the bit width is 16 bits, and it can be used to process data at a rate of 2.5Gbit/s, also called a 2.5G channel So the 64-bit single-ended data processed by the second SELECTIO unit 14 needs to be down-sampled into 16-bit single-ended data through the down-sampling unit 15 and can be sent to the second upstream path unit 17 for processing;
所述第二上行通路单元17,包括:UDLIM单元、UDSC单元、UFEC单元;所述UDLIM单元,用于采用第二标准对所述降采样后的单端数据进行定界;所述UDSC单元,用于采用第二标准对所述降采样后的单端数据进行解扰;所述UFEC单元,用于采用第二标准对所述降采样后的单端数据进行FEC解码。所述第二上行通路单元17的数据处理过程为:首先对所述降采样后的单端数据进行定界,如果定界成功,则发送第二定界成功信息,并进行解扰和FEC译码处理,最后发送处理完的GTC帧;所述第二标准为XGPON标准。The second uplink path unit 17 includes: a UDLIM unit, a UDSC unit, and a UFEC unit; the UDLIM unit is used to delimit the down-sampled single-ended data by using a second standard; the UDSC unit, The UFEC unit is configured to use the second standard to descramble the down-sampled single-ended data; the UFEC unit is configured to perform FEC decoding on the down-sampled single-ended data using the second standard. The data processing process of the second uplink path unit 17 is as follows: first, delimit the single-ended data after the down-sampling, and if the delimitation is successful, send the second delimitation success information, and perform descrambling and FEC translation. code processing, and finally send the processed GTC frame; the second standard is the XGPON standard.
所述第一上行通路单元16和第二上行通路单元17发送的GTC帧,由后续的GTC解帧单元进行解帧处理,并将解帧后的数据发送给不同的处理单元进行处理。The GTC frames sent by the first uplink channel unit 16 and the second uplink channel unit 17 are deframed by subsequent GTC deframe units, and the deframed data are sent to different processing units for processing.
本发明实施例提供的无源光网络兼容装置还包括:上行接收控制单元18;The passive optical network compatible device provided by the embodiment of the present invention further includes: an uplink receiving control unit 18;
所述上行接收控制单元18,用于接收所述第一上行通路单元16和第二上行通路单元17通路发送的第一定界成功信息和第二定界成功信息;根据第一定界成功信息和第二定界成功信息确定所述ONU速率信息;如果接收到的是第一定界成功信息,由于第一定界成功信息是由第一上行通路单元16发出,第一上行通路单元16采用第一标准处理数据,如此,表明ONU速率为第一标准;如果接收到的是第二定界成功信息,由于第二定界成功信息是由第二上行通路单元17发出,第二上行通路单元17采用第二标准处理数据,如此,表明ONU速率为第二标准;这里第一标准为NGPON2标准,第二标准为XGPON标准。所述ONU速率信息可以采用1和0区分,NGPON2标准的ONU速率信息用1表示,XGPON标准的ONU速率信息用0表示。The upstream receiving control unit 18 is configured to receive the first delimitation success information and the second delimitation success information sent by the first upstream path unit 16 and the second upstream path unit 17; according to the first delimitation success information Determine the ONU rate information with the second demarcation success information; if what is received is the first demarcation success information, because the first demarcation success information is sent by the first upstream path unit 16, the first upstream path unit 16 adopts The first standard processes data, so that the ONU rate is the first standard; if what is received is the second delimitation success information, since the second delimitation success information is sent by the second upstream path unit 17, the second upstream path unit 17 Use the second standard to process data, so that the ONU rate is the second standard; here the first standard is the NGPON2 standard, and the second standard is the XGPON standard. The ONU rate information can be distinguished by 1 and 0, the ONU rate information of the NGPON2 standard is represented by 1, and the ONU rate information of the XGPON standard is represented by 0.
在ONU注册流程中,所述上行接收控制单元18将所述ONU对应的ONU速率信息、所述ONU上传的ONU序列号NU_ID、TCONT表绑定在一起并通过OLT的下行单元发给ONU,来完成双向授权。如果同时收到两个定界成功信息,则可以根据预先设定的处理策略先处理其中一个;比如:可以根据市场推广需求设定处理策略为NGPON2标准速率的ONU优先注册;这里,可以按照通常的处理策略优先注册NGPON2标准速率的ONU。In the ONU registration process, the upstream receiving control unit 18 binds the ONU rate information corresponding to the ONU, the ONU serial number NU_ID uploaded by the ONU, and the TCONT table, and sends it to the ONU through the downstream unit of the OLT to Complete two-way authorization. If two delimitation success messages are received at the same time, one of them can be processed first according to the preset processing strategy; for example, the processing strategy can be set as the ONU with the NGPON2 standard rate according to the market promotion needs to register first; The processing strategy is to preferentially register ONUs with NGPON2 standard rate.
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。The above are only preferred embodiments of the present invention, and are not intended to limit the protection scope of the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention shall be included in the within the protection scope of the present invention.
Claims (8)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201510919447.3A CN106878834B (en) | 2015-12-10 | 2015-12-10 | Passive optical network compatible device and implementation method thereof and optical line terminal |
| PCT/CN2016/100938 WO2017097020A1 (en) | 2015-12-10 | 2016-09-29 | Passive optical network compatible device and implementation method therefor, and optical line terminal |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201510919447.3A CN106878834B (en) | 2015-12-10 | 2015-12-10 | Passive optical network compatible device and implementation method thereof and optical line terminal |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN106878834A CN106878834A (en) | 2017-06-20 |
| CN106878834B true CN106878834B (en) | 2020-07-31 |
Family
ID=59012647
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201510919447.3A Active CN106878834B (en) | 2015-12-10 | 2015-12-10 | Passive optical network compatible device and implementation method thereof and optical line terminal |
Country Status (2)
| Country | Link |
|---|---|
| CN (1) | CN106878834B (en) |
| WO (1) | WO2017097020A1 (en) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109787709B (en) * | 2017-11-14 | 2022-04-19 | 中兴通讯股份有限公司 | Passive optical network, and encoding and decoding determining method and device |
| CN117201970A (en) * | 2022-05-30 | 2023-12-08 | 中兴通讯股份有限公司 | Data transmission method, optical line terminal, optical network unit, and readable medium |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1848731A (en) * | 2005-04-13 | 2006-10-18 | 华为技术有限公司 | A Gigabit Passive Optical Network System |
| CN101330765A (en) * | 2007-06-18 | 2008-12-24 | 麦奎尔有限公司 | PON burst mode receiver with fast decision threshold setting |
| CN101552647A (en) * | 2008-04-03 | 2009-10-07 | 华为技术有限公司 | Method and device for receiving optical signals |
| CN101674503A (en) * | 2009-09-25 | 2010-03-17 | 上海大学 | EPON multi-rate universal transmission equipment |
| CN102547491A (en) * | 2010-12-29 | 2012-07-04 | 中兴通讯股份有限公司 | Optical line terminal, optical network unit and passive optical network system |
| CN103125095A (en) * | 2010-08-10 | 2013-05-29 | 富士通网络通讯株式会社 | Station-side apparatus and PON system |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060171714A1 (en) * | 2005-02-02 | 2006-08-03 | Calix Networks, Inc. | Electrically shared passive optical network |
| US8009993B2 (en) * | 2008-12-10 | 2011-08-30 | Pmc-Sierra Israel Ltd. | Hybrid balanced coding scheme |
| CN102025415B (en) * | 2009-09-18 | 2013-12-04 | 华为技术有限公司 | Velocity detection method and device |
| US9369207B2 (en) * | 2010-11-15 | 2016-06-14 | Alcatel Lucent | Apparatus and method for two-stage optical network |
-
2015
- 2015-12-10 CN CN201510919447.3A patent/CN106878834B/en active Active
-
2016
- 2016-09-29 WO PCT/CN2016/100938 patent/WO2017097020A1/en active Application Filing
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1848731A (en) * | 2005-04-13 | 2006-10-18 | 华为技术有限公司 | A Gigabit Passive Optical Network System |
| CN101330765A (en) * | 2007-06-18 | 2008-12-24 | 麦奎尔有限公司 | PON burst mode receiver with fast decision threshold setting |
| CN101552647A (en) * | 2008-04-03 | 2009-10-07 | 华为技术有限公司 | Method and device for receiving optical signals |
| CN101674503A (en) * | 2009-09-25 | 2010-03-17 | 上海大学 | EPON multi-rate universal transmission equipment |
| CN103125095A (en) * | 2010-08-10 | 2013-05-29 | 富士通网络通讯株式会社 | Station-side apparatus and PON system |
| CN102547491A (en) * | 2010-12-29 | 2012-07-04 | 中兴通讯股份有限公司 | Optical line terminal, optical network unit and passive optical network system |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2017097020A1 (en) | 2017-06-15 |
| CN106878834A (en) | 2017-06-20 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN102131131B (en) | Method and system for realizing passive optical network (PON) extension and relay | |
| US7949255B2 (en) | System, device and method for transporting signals through passive optical network | |
| US8428457B2 (en) | Optical passive network system and its operation method | |
| EP2348691B1 (en) | Service transmission method and service transmission apparatus | |
| US9112612B2 (en) | Relay device, station-side optical communication device, communication system, and bandwidth allocation method | |
| JP2010252062A (en) | Dynamic bandwidth allocating apparatus and method and station apparatus of PON system | |
| CN102292925B (en) | Methods and systems for dynamic equalization delay passive optical networks | |
| EP3531590B1 (en) | Passive optical network communication method, device and system | |
| US7512337B2 (en) | Gigabit ethernet passive optical network having double link structure | |
| US8559819B2 (en) | Information transfer and receiving method, system, and device | |
| US7899329B2 (en) | Transmission system and transmission apparatus | |
| CN109286864B (en) | A registration-based information processing method, device and storage medium | |
| US20110318001A1 (en) | Method and device for sending and receiving service data | |
| EP1783938B1 (en) | Method and system for transferring time division multiplexing service data | |
| CN109936781B (en) | A method, device and system for data transmission | |
| WO2011006403A1 (en) | Method and system for data transmission and provider edge node | |
| CN103125095B (en) | Base station side device and pon system | |
| CN106878834B (en) | Passive optical network compatible device and implementation method thereof and optical line terminal | |
| CN101141194B (en) | Method of remote managing user side equipment in passive optical network system | |
| CN102740171B (en) | A kind of EPON loop detecting method and system | |
| JP4893589B2 (en) | PON system station side apparatus and frame processing method | |
| JP6424545B2 (en) | Optical communication device and optical communication network system | |
| JP2019009500A (en) | Relay node apparatus, PON system, and network system | |
| EP2795817B1 (en) | System and method for providing resilience in communication networks | |
| JP2013046132A (en) | Communication system and master station device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |