[go: up one dir, main page]

CN106887434B - Three-dimensional memory element - Google Patents

Three-dimensional memory element Download PDF

Info

Publication number
CN106887434B
CN106887434B CN201510929883.9A CN201510929883A CN106887434B CN 106887434 B CN106887434 B CN 106887434B CN 201510929883 A CN201510929883 A CN 201510929883A CN 106887434 B CN106887434 B CN 106887434B
Authority
CN
China
Prior art keywords
line switch
switch
stack
ridge
selection line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510929883.9A
Other languages
Chinese (zh)
Other versions
CN106887434A (en
Inventor
胡志玮
叶腾豪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Macronix International Co Ltd
Original Assignee
Macronix International Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix International Co Ltd filed Critical Macronix International Co Ltd
Priority to CN201510929883.9A priority Critical patent/CN106887434B/en
Publication of CN106887434A publication Critical patent/CN106887434A/en
Application granted granted Critical
Publication of CN106887434B publication Critical patent/CN106887434B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/20EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/20EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B43/23EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B43/27EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

本发明公开了一种三维存储器元件,包括多层叠层结构,多层叠层结构包括多个导电条带及多条沟道,以定义出第一、第二、第三和第四脊状叠层;位于第一脊状叠层上的第一串行选择线开关;位于第二脊状叠层上的第一接地选择线开关;第一U形存储单元串行,串接第一串行选择线开关和第一接地选择线开关;位于第三脊状叠层上的第二串行选择线开关;位于第四脊状叠层上的第二接地选择线开关;第二U形存储单元串行,串接第二串行选择线开关和第二接地选择线开关。第一字线接触结构与第一脊状叠层的导电条带接触。第二字线接触结构与第二脊状叠层的导电条带接触;第三字线接触结构与第三和第四脊状叠层的导电条带接触。

The present invention discloses a three-dimensional memory element, including a multi-layer stack structure, the multi-layer stack structure including a plurality of conductive strips and a plurality of channels to define a first, a second, a third and a fourth ridge stack; a first serial selection line switch located on the first ridge stack; a first ground selection line switch located on the second ridge stack; a first U-shaped memory cell series, the first serial selection line switch and the first ground selection line switch connected in series; a second serial selection line switch located on the third ridge stack; a second ground selection line switch located on the fourth ridge stack; a second U-shaped memory cell series, the second serial selection line switch and the second ground selection line switch connected in series. A first word line contact structure contacts the conductive strip of the first ridge stack. A second word line contact structure contacts the conductive strip of the second ridge stack; and a third word line contact structure contacts the conductive strips of the third and fourth ridge stacks.

Description

三维存储器元件3D memory element

技术领域technical field

本发明是有关于一种高密度存储器元件。特别是一种三维(Three Dimemsional,3D)存储器元件。The present invention relates to a high density memory element. In particular, a three-dimensional (Three Dimemsional, 3D) memory element.

背景技术Background technique

非易失性存储器元件,例如闪存,具有在移除电源时亦不丢失储存于记忆单元中的信息的特性。已广泛运用于用于便携式音乐播放器、移动电话、数码相机等的固态大容量存储应用。为了达到具有更高密度储存容量的需求,目前已经有各种不同结构的三维存储器元件,例如具有单栅极(single-gate)存储单元、双栅极(double gate)存储单元,和环绕式栅极(surrounding gate)存储单元的三维闪存元件,被提出。Non-volatile memory elements, such as flash memory, have the property of not losing information stored in memory cells when power is removed. It has been widely used in solid-state mass storage applications for portable music players, mobile phones, digital cameras, etc. In order to meet the demand for higher density storage capacity, there are various three-dimensional memory devices with different structures, such as single-gate memory cells, double gate memory cells, and wrap-around gates. A three-dimensional flash memory device with surrounding gate memory cells is proposed.

典型的三维非易失性存储器元件包含多个构建于多层叠层结构(multi-layerstacks)之中具有垂直通道的存储单元立体阵列。以具有U形存储单元串行结构的单栅极垂直通道(Single-Gate Vertical Channel,SGVC)NAND存储器元件为例,一般是采用多晶硅材质的叠层导电条带来作为存储单元的栅极。由于多晶硅的阻值较大,因此在构建存储单元阵列时,需要将导电条带跟隔成多个区段,并过阶梯状的字线接触结构字线接触结构,将位于同一阶层的导电条与位于存储单元阵列上方的金属字线电性连接。A typical three-dimensional non-volatile memory device includes a plurality of three-dimensional arrays of memory cells with vertical channels built into multi-layer stacks. Taking a single-gate vertical channel (SGVC) NAND memory device with a U-shaped memory cell serial structure as an example, a stacked conductive strip made of polysilicon is generally used as the gate of the memory cell. Due to the high resistance of polysilicon, when constructing a memory cell array, it is necessary to separate the conductive strips into multiple sections, and pass the stepped word line contact structure word line contact structure to connect the conductive strips located at the same level. It is electrically connected to the metal word lines located above the memory cell array.

由于,字线接触结构占据存储器元件相当大的面积,加上存储单元阵列上方容纳金属字线的布线空间有限。随着存储器元件记忆容量的扩充,使得多层叠层层结构中导电条带阶层的数量相对增加,需要设置更多字线和字线接触结构。目前只能通过缩小字线的线径和间距(pitch),或者增加记忆区块的面积尺寸,来加以因应。Because the word line contact structure occupies a relatively large area of the memory element, and the wiring space for accommodating the metal word lines above the memory cell array is limited. With the expansion of the memory capacity of the memory element, the number of conductive strip layers in the multi-layered layer structure is relatively increased, and more word lines and word line contact structures need to be provided. At present, it can only be dealt with by reducing the line diameter and pitch of the word lines, or increasing the area size of the memory block.

然而,缩小字线的线径和间距会导致工艺裕度(process window)减少、良率降低而大幅增加工艺成本,甚至因导致氧化层击穿(oxide breakdown)现象产生。增加记忆区块的面积尺寸并不符合目前元件微缩的趋势。However, shrinking the wire diameter and spacing of the word lines will reduce the process window and yield, thereby greatly increasing the process cost, and even causing oxide breakdown. Increasing the area size of the memory block does not conform to the current trend of device scaling.

因此,有需要提供一种先进的存储器元件,以解决上述技术所面临的问题。Therefore, there is a need to provide an advanced memory device that solves the problems faced by the above-mentioned technologies.

发明内容SUMMARY OF THE INVENTION

本说明书的一实施例是提供一种三维存储器元件。此三维存储器元件包括:多层叠层结构(multi-layer stacks)、第一串行选择线(String Select Line,SSL)开关、第一接地选择线(Ground Selection Line,GSL)开关、第二串行选择线开关、第二接地选择线开关、第一U形存储单元串行、第二U形存储单元串行、第一字线接触结构、第二字线接触结构以及第三字线接触结构。多层叠层结构包括彼此隔离的多个导电条带以及多条沟道(trench),用以至少定义出第一脊状叠层(ridge stacks)、第二脊状叠层、第三脊状叠层以及第四脊状叠层。第一串行选择线开关位于第一脊状叠层之上。第一接地选择线开关位于第二脊状叠层之上。第一U形存储单元串行串接第一串行选择线开关和第一接地选择线开关。第二串行选择线开关位于第三脊状叠层之上。第二接地选择线开关位于第四脊状叠层之上。第二U形存储单元串行串接第二串行选择线开关和第二接地选择线开关。第一字线接触结构与位于第一脊状叠层上的导电条带接触。第二字线接触结构与位于第二脊状叠层上的导电条带接触;第三字线接触结构与位于第三脊状叠层和第四脊状叠层上的导电条带接触。An embodiment of the present specification provides a three-dimensional memory device. The three-dimensional memory element includes: multi-layer stacks, a first String Select Line (SSL) switch, a first Ground Selection Line (GSL) switch, and a second String Select Line (SSL) switch. A select line switch, a second ground select line switch, a first U-shaped memory cell string, a second U-shaped memory cell string, a first word line contact structure, a second word line contact structure, and a third word line contact structure. The multilayer stack structure includes a plurality of conductive strips and a plurality of trenches isolated from each other to define at least a first ridge stack, a second ridge stack, and a third ridge stack layer and a fourth ridged stack. A first serial select line switch is located over the first ridged stack. The first ground select line switch is located over the second ridged stack. The first U-shaped memory unit is serially connected to the first serial selection line switch and the first ground selection line switch. The second serial select line switch is located over the third ridged stack. The second ground select line switch is located over the fourth ridged stack. The second U-shaped memory unit is serially connected to the second serial selection line switch and the second ground selection line switch. The first word line contact structure is in contact with the conductive strip on the first ridge stack. The second wordline contact structure is in contact with the conductive strips on the second ridge stack; the third wordline contact structure is in contact with the conductive strips on the third and fourth ridge stacks.

根据上述实施例,本说明书是提供一种具有多个脊状叠层的三维存储器元件,其中每一个脊状叠层包含,分别具有位于顶部的一个串行选择线开关或一个接地选择线开关以及位于该串行选择线开关或该接地选择线开关下方的多个存储单元。通过串接位于两个脊状叠层上的第一串行选择线开关和第一接地选择线开关,以及位于第一串行选择线开关和第一接地选择线开关下方的存储单元来形成第一U形存储单元串行;同时通过串接位于另外两个不同脊状叠层上的第二串行选择线开关和第二接地选择线开关,以及位于第二串行选择线开关和第二接地选择线开关下方的存储单元来形成第二U形存储单元串行。In accordance with the above-described embodiments, the present specification provides a three-dimensional memory element having a plurality of ridge stacks, wherein each ridge stack includes, respectively, a serial select line switch or a ground select line switch on top, and A plurality of memory cells located below the serial select line switch or the ground select line switch. The first string select line switch and the first ground select line switch are connected in series on the two ridge stacks, and the memory cells are located under the first string select line switch and the first ground select line switch. a U-shaped memory cell string; simultaneously by connecting in series a second string select line switch and a second ground select line switch on two other different ridge stacks, and a second string select line switch and a second The memory cells below the select line switch are grounded to form a second U-shaped string of memory cells.

其中,位于第一U形存储单元串行的第一串行选择线开关下方的存储单元与第一字线接触结构连接;位于第二U形存储单元串行的第二串行选择线开关下方的存储单元与第二字线接触结构连接;而位于第一U形存储单元串行的第一接地选择线开关下方的存储单元以及位于第二U形存储单元串行的第二接地选择线开关下方的存储单元,则连接至相同的第三字线接触结构。换句话说,三维存储器元件中,用来连接位于接地选择开关下方的存储单元的字线接触结构数量小于用来连接位于串行选择开关下方的存储单元的字线接触结构。若与先前技术中的三维存储器元件相比,在不改变记忆容量的前提下,可以减少字线接触结构的设置。Wherein, the memory cells located under the first serial selection line switch of the first U-shaped memory cell series are connected to the first word line contact structure; they are located under the second serial selection line switch of the second U-shaped memory cell series. The memory cells are connected to the second word line contact structure; and the memory cells located under the first ground select line switches of the first U-shaped memory cell series and the second ground select line switches of the second U-shaped memory cell series The lower memory cells are then connected to the same third word line contact structure. In other words, in the three-dimensional memory element, the number of word line contact structures used to connect memory cells located under the ground select switch is smaller than the number of word line contact structures used to connect memory cells located under the serial select switch. Compared with the three-dimensional memory element in the prior art, the arrangement of the word line contact structure can be reduced without changing the memory capacity.

通过减少字线接触结构的设置,可以减少存储器元件的面积尺寸;更可在不影响工艺裕度的前提下,扩展存储器元件的记忆容量,大幅降低工艺成本,并防止氧化层击穿现象产生,增加垂直通道存储器元件的工艺良率。By reducing the arrangement of the word line contact structure, the area size of the memory element can be reduced; moreover, the memory capacity of the memory element can be expanded without affecting the process margin, the process cost can be greatly reduced, and the oxide layer breakdown can be prevented. Increase the process yield of vertical channel memory devices.

附图说明Description of drawings

本发明的其他目的、特征和优点可见于下述实施例和权利要求范围,并配合所附图式,作详细说明如下:Other objects, features and advantages of the present invention can be seen in the following embodiments and the scope of claims, and in conjunction with the accompanying drawings, are described in detail as follows:

图1A至图1D是根据已知技术所绘示的一种单栅极垂直通道NAND存储器元件的局部结构透视图;1A to 1D are partial structural perspective views of a single-gate vertical channel NAND memory device according to the prior art;

图2是根据图1D所绘示的单栅极垂直通道NAND存储器元件的局部结构上视图;2 is a partial structural top view of the single-gate vertical channel NAND memory device depicted in FIG. 1D;

图3是根据本发明的另一实施例所绘示的单栅极垂直通道NAND存储器元件的局部结构上视图;3 is a top view of a partial structure of a single-gate vertical channel NAND memory device according to another embodiment of the present invention;

图4是绘示以图1C的单栅极垂直通道NAND存储器元件进行写入操作(programoperation)时的等效电路图;4 is an equivalent circuit diagram illustrating a program operation with the single-gate vertical channel NAND memory device of FIG. 1C;

图5是绘示以图1C的单栅极垂直通道NAND存储器元件进行读取操作(readoperation)时的等效电路图;以及5 is an equivalent circuit diagram illustrating a read operation with the single-gate vertical channel NAND memory device of FIG. 1C; and

图6是绘示以图1C的单栅极垂直通道NAND存储器元件进行擦除操作(eraseoperation)时的等效电路图。FIG. 6 is an equivalent circuit diagram illustrating an erase operation performed with the single-gate vertical channel NAND memory device of FIG. 1C .

【符号说明】【Symbol Description】

100、300:存储器元件100, 300: memory element

101:基材101: Substrate

102:导电层102: Conductive layer

103:绝缘层103: Insulation layer

104:多层叠层结构104: Multilayer Laminated Structure

104A、104B、104C、104D:脊状叠层104A, 104B, 104C, 104D: Ridge Laminate

104A1-104A6、104B1-104B6、104C1-104C6、104D1-104D6:导电条带104A1-104A6, 104B1-104B6, 104C1-104C6, 104D1-104D6: Conductive strips

105:沟道105: Channel

106:记忆材料层106: Memory material layer

107:半导体通道层107: Semiconductor channel layer

108、108P、108R:存储单元108, 108P, 108R: storage unit

109A、109B:U形存储单元串行109A, 109B: U-shaped memory cell serial

110A、110B:接地选择线开关110A, 110B: Ground selection line switch

111A、111B:串行选择开关111A, 111B: Serial selection switch

112:介电材质层112: Dielectric Material Layer

113:空气间隙113: Air Gap

114:接触插塞114: Contact plug

115:位线115: bit line

116:接触插塞116: Contact plug

117:金属导线117: Metal Wire

118:共同源极线118: Common source line

119A、119B、119C、319C:字线接触结构119A, 119B, 119C, 319C: word line contact structure

120:字线120: word line

121、122:接触垫121, 122: Contact pads

IG 1A、IG 1B控制开关IG 1A, IG 1B control switch

IG 0A、IG 0B:辅助开关IG 0A, IG 0B: Auxiliary switch

Vpgm:写入电压Vpgm: write voltage

Vpass:栅极通过电压Vpass: Gate pass voltage

Vref:栅极读取电压floating:浮置Vref: gate read voltage floating: floating

GIDL:栅极诱发漏极漏电流GIDL: Gate Induced Drain Leakage Current

具体实施方式Detailed ways

本发明是提供一种存储器元件,可解决已知存储器元件工艺裕度不足的问题,并且同时节省制造成本提高工艺良率。为让本发明的上述和其他目的、特征和优点能更明显易懂,下文特举数个较佳实施例,并配合所附图式,作详细说明如下。The present invention provides a memory element, which can solve the problem of insufficient process margin of the known memory element, and at the same time save the manufacturing cost and improve the process yield. In order to make the above-mentioned and other objects, features and advantages of the present invention more obvious and easy to understand, several preferred embodiments are exemplified below, and are described in detail as follows in conjunction with the accompanying drawings.

但必须注意的是,这些特定的实施案例,并非用以限定本发明。本发明仍可采用其他特征、元件、方法及参数来加以实施。较佳实施例的提出,仅是用以例示本发明的技术特征,并非用以限定本发明的权利要求范围。该技术领域中具有通常知识者,将可根据以下说明书的描述,在不脱离本发明的精神范围内,作均等的修饰与变化。在不同实施例与图式之中,相同的元件,将以相同的元件符号加以表示。However, it must be noted that these specific implementation cases are not intended to limit the present invention. The present invention may still be practiced with other features, elements, methods and parameters. The preferred embodiments are provided only to illustrate the technical features of the present invention, and not to limit the scope of the claims of the present invention. Those with ordinary knowledge in the technical field will be able to make equivalent modifications and changes based on the description of the following specification without departing from the spirit and scope of the present invention. In different embodiments and drawings, the same elements will be represented by the same element symbols.

请参照图1A至图1C,图1A至图1C是根据本发明的一实施例所绘示制作单栅极垂直通道NAND存储器元件100的工艺结构透视图。制作单栅极垂直通道NAND存储器元件100的方法,包括下述步骤:首先在基材101的表面上形成多层叠层结构104(如图1A所绘示)。在本实施例中,多层叠层结构104包括沿着图1A所绘示的Z轴方向,在基材101上彼此交错叠层的多个导电层102以及多个绝缘层103。Please refer to FIGS. 1A to 1C . FIGS. 1A to 1C are perspective views illustrating a process structure for fabricating a single-gate vertical channel NAND memory device 100 according to an embodiment of the present invention. The method for fabricating the single-gate vertical channel NAND memory device 100 includes the following steps: firstly, a multi-layer stack structure 104 (as shown in FIG. 1A ) is formed on the surface of the substrate 101 . In this embodiment, the multi-layer structure 104 includes a plurality of conductive layers 102 and a plurality of insulating layers 103 that are alternately stacked on the substrate 101 along the Z-axis direction shown in FIG. 1A .

本发明的一些实施例中,导电层102的材质,可以包含掺杂有磷或砷的n型多晶硅(或n型外延单晶硅)、掺杂有硼的p型多晶硅(或p型外延单晶硅)、无掺杂的的多晶硅、金属硅化物(silicides),例如硅化钛(TiSi)、硅化钴(CoSi)或硅锗(SiGe)、氧化物半导体(oxide semiconductors),例如氧化铟锌(InZnO)或氧化铟镓锌(InGaZnO)、金属,例如铝(Al)、铜(Cu)、钨(W)、钛(Ti)、钴(Co)、镍(Ni)、氮化钛(TiN)、氮化钽(TaN)或氮化钽铝(TaAlN),或两种或多种上述材质的组合物所构成。绝缘层103可以由介电材料,例如硅氧化物(oxide)、硅氮化物(nitride)、硅氮氧化物(oxynitride)、硅酸盐(silicate)或其他材料,所构成。In some embodiments of the present invention, the material of the conductive layer 102 may include n-type polysilicon (or n-type epitaxial monocrystalline silicon) doped with phosphorus or arsenic, p-type polysilicon (or p-type epitaxial monocrystalline silicon) doped with boron crystalline silicon), undoped polycrystalline silicon, metal silicides such as titanium silicide (TiSi), cobalt silicide (CoSi) or silicon germanium (SiGe), oxide semiconductors such as indium zinc oxide ( InZnO) or indium gallium zinc oxide (InGaZnO), metals such as aluminum (Al), copper (Cu), tungsten (W), titanium (Ti), cobalt (Co), nickel (Ni), titanium nitride (TiN) , tantalum nitride (TaN) or tantalum aluminum nitride (TaAlN), or a combination of two or more of the above materials. The insulating layer 103 may be formed of a dielectric material, such as silicon oxide, silicon nitride, silicon oxynitride, silicate, or other materials.

接着,对多层叠层结构104进行一图案化工艺,以形成多个脊状叠层104A、104B、104C和104D。在本发明的一些实施例中,是采用非等向蚀刻工艺(anisotropic etchingprocess),例如反应离子蚀刻(Reactive Ion Etching,RIE)工艺,对多层叠层结构104进行蚀刻。藉以在多层叠层结构104之中形成沿着X横向延伸且沿Z轴纵向延伸的沟道105,将多层叠层结构104分割成多个脊状叠层104A、104B、104C和104D,并将基材101的部分区域经由沟道105曝露于外(如图1B所绘示)。Next, a patterning process is performed on the multilayer stack structure 104 to form a plurality of ridge stack layers 104A, 104B, 104C and 104D. In some embodiments of the present invention, an anisotropic etching process, such as a reactive ion etching (Reactive Ion Etching, RIE) process, is used to etch the multilayer structure 104 . The multi-layer stack structure 104 is divided into a plurality of ridge-like stacks 104A, 104B, 104C, and 104D, whereby a channel 105 extending laterally along the X axis and longitudinally along the Z axis is formed in the multilayer stack structure 104, and the Part of the substrate 101 is exposed through the channel 105 (as shown in FIG. 1B ).

每一个脊状叠层104A、104B、104C和104D都包含多个条状的导电条带。例如在本实施例中,脊状叠层104A具有沿着Z轴方向向上叠层的导电条带104A1、104A2、104A3、104A4、104A5和104A6;脊状叠层104B具有沿着Z轴方向向上叠层的导电条带104B1、104B2、104B3、104B4、104B5和104B6;脊状叠层104C具有沿着Z轴方向向上叠层的导电条带104C1、104C2、104B3、104C4、104C5和104C6;以及脊状叠层104D具有沿着Z轴方向向上叠层的导电条带104D1、104D2、104D3、104D4、104D5和104D6。其中,位于脊状叠层104A、104B、104C和104D的顶部平面的导电条带104A6、104B6、104C6和104D6具有比位于相同脊状叠层104A、104B、104C和104D的其他平面的导电条带104A1-104A5、104B1-104B5、104C1-104C5和104D1-104D5还大的厚度。Each of the ridge stacks 104A, 104B, 104C, and 104D includes a plurality of strip-shaped conductive strips. For example, in this embodiment, the ridge stack 104A has conductive strips 104A1, 104A2, 104A3, 104A4, 104A5, and 104A6 stacked up in the Z-axis direction; Layers of conductive strips 104B1, 104B2, 104B3, 104B4, 104B5, and 104B6; ridge stack 104C having conductive strips 104C1, 104C2, 104B3, 104C4, 104C5, and 104C6 stacked up in the Z-axis direction; and ridges The stack 104D has conductive strips 104D1, 104D2, 104D3, 104D4, 104D5, and 104D6 stacked up in the Z-axis direction. Among them, conductive strips 104A6, 104B6, 104C6, and 104D6 on the top plane of ridge stacks 104A, 104B, 104C, and 104D have more conductive strips than conductive strips on other planes of the same ridge stacks 104A, 104B, 104C, and 104D 104A1-104A5, 104B1-104B5, 104C1-104C5 and 104D1-104D5 are also thicker.

之后,于脊状叠层104A、104B、104C和104D的侧壁上方以及沟道105底部形成具有电荷捕捉结构(charge trapping structure),的记忆材料层106。并于记忆材料层106上形成图案化的半导体通道层107。进而在脊状叠层104A、104B、104C和104D的导电条带104A1-A6、104B1-B6、104C1-C6和104D1-D6与记忆材料层106和通道层107三者重叠的位置(crosspoint),分别定义出多个存储单元108(如图1C所绘示)。Afterwards, a memory material layer 106 having a charge trapping structure is formed on the sidewalls of the ridge stacks 104A, 104B, 104C and 104D and at the bottom of the channel 105 . And a patterned semiconductor channel layer 107 is formed on the memory material layer 106 . Further, at the crosspoints where the conductive strips 104A1-A6, 104B1-B6, 104C1-C6 and 104D1-D6 of the ridge stacks 104A, 104B, 104C and 104D overlap with the memory material layer 106 and the channel layer 107, A plurality of memory cells 108 are respectively defined (as shown in FIG. 1C ).

在本发明的一些实施例中,记忆材料层106的电荷捕捉结构可以是一种复合多叠层,其是选自于由硅氧化物-氮化硅-硅氧化物(oxide-nitride-oxide、ONO)结构、一硅氧化物-氮化硅-硅氧化物-氮化硅-硅氧化物(oxide-nitride-oxide-nitride-oxide,ONONO)结构、一硅-硅氧化物-氮化硅-硅氧化物-硅(silicon-oxide-nitride-oxide-silicon,SONOS)结构、一能隙工程硅-硅氧化物-氮化硅-硅氧化物-硅(bandgap engineeredsilicon-oxide-nitride-oxide-silicon,BE-SONOS)结构、一氮化钽-氧化铝-氮化硅-硅氧化物-硅(tantalum nitride,aluminum oxide,silicon nitride,silicon oxide,silicon,TANOS)结构以及一金属高介电系数能隙工程硅-硅氧化物-氮化硅-硅氧化物-硅(metal-high-k bandgap-engineered silicon-oxide-nitride-oxide-silicon,MA BE-SONOS)结构所组成的一族群。半导体通道层107可以由掺杂有磷或砷的n型多晶硅,或n型外延单晶硅所构成。此外,半导体通道层107也可以由掺杂有硼的p型多晶硅,或p型外延单晶硅所构成。In some embodiments of the present invention, the charge trapping structure of the memory material layer 106 may be a composite multilayer, which is selected from the group consisting of oxide-nitride-oxide (oxide-nitride-oxide, ONO) structure, a silicon oxide-silicon nitride-silicon oxide-silicon nitride-silicon oxide (oxide-nitride-oxide-nitride-oxide, ONONO) structure, a silicon-silicon oxide-silicon nitride- Silicon-oxide-nitride-oxide-silicon (SONOS) structure, an energy gap engineered silicon-silicon oxide-silicon nitride-silicon oxide-silicon (bandgap engineered silicon-oxide-nitride-oxide-silicon) , BE-SONOS) structure, a tantalum nitride-aluminum oxide-silicon nitride-silicon oxide-silicon (tantalum nitride, aluminum oxide, silicon nitride, silicon oxide, silicon, TANOS) structure and a metal high dielectric constant energy A group of gap-engineered silicon-silicon oxide-silicon nitride-silicon oxide-silicon (metal-high-k bandgap-engineered silicon-oxide-nitride-oxide-silicon, MA BE-SONOS) structures. The semiconductor channel layer 107 may be composed of n-type polysilicon doped with phosphorus or arsenic, or n-type epitaxial single crystal silicon. In addition, the semiconductor channel layer 107 can also be composed of p-type polysilicon doped with boron, or p-type epitaxial single crystal silicon.

在本实施例中,图案化的半导体通道层107是由n型多晶硅所构成,且图案化的半导体通道层107至少包括彼此分离的两个部分。其中一部分的半导体通道层107覆盖在相邻的脊状叠层104A和104B以及用来隔离脊状叠层104A和104B的沟道105的底部。藉以分别在脊状叠层104A和104B之间形成一个U形通道薄膜,用来串接形成于脊状叠层104A和104B上的多个存储单元108,进而形成第一U形存储单元串行109A。另一部分的半导体通道层107覆盖在相邻的脊状叠层104C和104C以及用来隔离脊状叠层104C和104D的沟道105的底部。并且在脊状叠层104C和104D之间形成另一个U形通道薄膜,用来串接形成于脊状叠层104C和104D上的多个存储单元108,进而形成第二U形存储单元串行109B。In this embodiment, the patterned semiconductor channel layer 107 is made of n-type polysilicon, and the patterned semiconductor channel layer 107 includes at least two parts separated from each other. A portion of the semiconductor channel layer 107 covers the adjacent ridge stacks 104A and 104B and the bottoms of the trenches 105 used to isolate the ridge stacks 104A and 104B. Thereby, a U-shaped channel film is formed between the ridge-shaped stacks 104A and 104B respectively, which is used to connect the plurality of memory cells 108 formed on the ridge-shaped stacks 104A and 104B in series, thereby forming a first U-shaped memory cell series 109A. Another portion of the semiconductor channel layer 107 covers the adjacent ridge stacks 104C and 104C and the bottom of the channel 105 used to isolate the ridge stacks 104C and 104D. And another U-shaped channel film is formed between the ridge-shaped stacks 104C and 104D for connecting the plurality of memory cells 108 formed on the ridge-shaped stacks 104C and 104D in series, thereby forming a second U-shaped memory cell series 109B.

其中,位于脊状叠层104A的顶部的存储单元,可以作为第一U形存储单元串行109A的第一接地选择线开关110A;位于脊状叠层104B的顶部的存储单元,可以作为第一U形存储单元串行109A的第一串行选择开关111A。位于脊状叠层104C的顶部的存储单元,可以作为第二U形存储单元串行109B的第二接地选择线开关110B;位于脊状叠层104D的顶部的存储单元,可以作为第二U形存储单元串行109B的第二串行选择开关111B。The memory cells located at the top of the ridge stack 104A can be used as the first ground select line switch 110A of the first U-shaped memory cell series 109A; the memory cells located on the top of the ridge stack 104B can be used as the first ground select line switch 110A. The first string selection switch 111A of the U-shaped memory cell string 109A. The memory cells at the top of the ridge stack 104C may act as the second ground select line switch 110B of the second U-shaped memory cell string 109B; the memory cells at the top of the ridge stack 104D may act as a second U-shaped memory cell The second string selection switch 111B of the memory cell string 109B.

另外值得注意的是,虽然图1C仅绘示由四个脊状叠层(脊状叠层104A、104B、104C和104D)所形成的二条U形存储单元串行(第一U形存储单元串行109A和第二U形存储单元串行109B)。但其仅是为了清楚描述起见而绘示,并非用以限定本发明。在本发明的一些实施例之中,单栅极垂直通道NAND存储器元件100可以包括更多的脊状叠层以及更多的U形存储单元串行,进而形成一个立体存储单元阵列。It is also worth noting that although FIG. 1C only shows two U-shaped memory cell strings (the first U-shaped memory cell string) formed by four ridge stacks (ridge stacks 104A, 104B, 104C and 104D) row 109A and second U-shaped memory cell series 109B). However, it is only shown for the purpose of clear description, and is not intended to limit the present invention. In some embodiments of the present invention, the single-gate vertical channel NAND memory device 100 may include more ridge stacks and more U-shaped memory cell strings, thereby forming a three-dimensional memory cell array.

之后,在沟道105中填充介电材质层112。在本发明的一些实施例中,形成介电材质层112的材质可以包含二氧化硅、氮化硅、氮氧化硅、高介电系数(high-k)材料或上述材料的任意组合。在本实施例中,较佳还包含在沟道105中形成空气间隙(air gap)113,用来降低位于不同脊状叠层104A、104B、104C和104D侧壁上存储单元108相互之间的干扰。After that, a dielectric material layer 112 is filled in the trenches 105 . In some embodiments of the present invention, the material for forming the dielectric material layer 112 may include silicon dioxide, silicon nitride, silicon oxynitride, high-k materials, or any combination of the above materials. In this embodiment, an air gap 113 is preferably formed in the channel 105 to reduce the distance between the memory cells 108 on the sidewalls of the different ridge stacks 104A, 104B, 104C and 104D. interference.

后续如图1D所绘示,在脊状叠层104A、104B、104C和104D顶部形成接触插塞(contact plug)114,分别使第一串行选择线开关111A和第二串行选择线开关111B连接至一条位线115;并形成接触插塞116使第一接地选择线开关110A和第二接地选择线开关110B分别通过金属导线117连接至一共同源极线118。并在立体存储单元阵列的周边区形成阶梯状的多个字线接触结构(例如,图1D所绘示的119B),使位于脊状叠层104A、104B、104C和104D的相同阶层中用来形成层存储单元108的导电条带104A1-D1、104A2-D2、104A3-D3、104A4-D4、104A5-D5和104A6-D6,分别连接至不同的字线120。Subsequently, as shown in FIG. 1D , contact plugs 114 are formed on the tops of the ridge stacks 104A, 104B, 104C and 104D to enable the first serial selection line switch 111A and the second serial selection line switch 111B, respectively. It is connected to a bit line 115 ; and a contact plug 116 is formed so that the first ground selection line switch 110A and the second ground selection line switch 110B are respectively connected to a common source line 118 through metal wires 117 . A plurality of word line contact structures (eg, 119B shown in FIG. 1D ) are formed in the peripheral region of the three-dimensional memory cell array, so that they are located in the same level of the ridge stacks 104A, 104B, 104C and 104D for use Conductive strips 104A1-D1, 104A2-D2, 104A3-D3, 104A4-D4, 104A5-D5, and 104A6-D6, which form layer memory cells 108, are connected to different word lines 120, respectively.

字线接触结构,例如字线接触结构119A、119B和119C,的详细配置请参照图2,图2是根据第1D所绘示单栅极垂直通道NAND存储器元件100的局部结构上视图。字线接触结构119A、119B和119C是分别配置在脊状叠层104A、104B、104C和104D的长轴两侧。在本实施例中,字线接触结构119A包含阶梯状叠层的多个接触层,分别用来与位于脊状叠层104B中不同阶层的导电条带接触;字线接触结构119B包含阶梯状叠层的多个接触层,分别用来与位于脊状叠层104D中不同阶层的导电条带接触。字线接触结构119C包含阶梯状叠层的多个接触层,分别用来与脊状叠层104A和104C中位于相同阶层的导电条带接触。The detailed configuration of the word line contact structures, such as the word line contact structures 119A, 119B and 119C, please refer to FIG. 2 , which is a top view of a partial structure of the single-gate vertical channel NAND memory device 100 according to FIG. 2 . The word line contact structures 119A, 119B and 119C are disposed on both sides of the long axis of the ridge stacks 104A, 104B, 104C and 104D, respectively. In this embodiment, the word line contact structure 119A includes a plurality of contact layers of the stepped stack, which are respectively used to contact conductive strips located at different levels in the ridge stack 104B; the word line contact structure 119B includes the stepped stack The multiple contact layers of the layers are respectively used to make contact with the conductive strips located at different levels in the ridge stack 104D. The word line contact structure 119C includes a plurality of contact layers of the stepped stack for making contact with conductive strips at the same level in the ridge stacks 104A and 104C, respectively.

换句话说,脊状叠层104A和104C中位于相同平面层的导电条带,共享一个字线接触结构119C。详言之,脊状叠层104A和104C中位于第一平面层的导电条带104A1和104C1,与阶梯状字线接触结构119C的第一接触层(未绘示)接触;位于第二平面层的导电条带104A2和104C2,与阶梯状字线接触结构119C得第二接触层(未绘示)接触;位于第三平面层的导电条带104A3和104C3,与阶梯状字线接触结构119C的第三接触层(未绘示)接触;位于第四平面层的导电条带104A4和104C4,与阶梯状字线接触结构119C的第四接触(未绘示)层接触;位于第五平面层的导电条带104A5和104C5,与阶梯状字线接触结构119C的第五接触层(未绘示)接触;以及位于第六平面层的导电条带104A6和104C6,与阶梯状字线接触结构119C的第六接触层(未绘示)接触。由于字线接触结构已为已知,故其详细的构造与制作方法不在此赘述。In other words, the conductive strips in the ridge stacks 104A and 104C at the same plane layer share a word line contact structure 119C. Specifically, the conductive strips 104A1 and 104C1 in the first plane layer of the ridge stacks 104A and 104C are in contact with the first contact layer (not shown) of the stepped word line contact structure 119C; they are located in the second plane layer The conductive strips 104A2 and 104C2 are in contact with the second contact layer (not shown) of the stepped word line contact structure 119C; the conductive strips 104A3 and 104C3 on the third plane layer are in contact with the stepped word line contact structure 119C. The third contact layer (not shown) contacts; the conductive strips 104A4 and 104C4 on the fourth plane layer are in contact with the fourth contact (not shown) layer of the stepped word line contact structure 119C; the conductive strips on the fifth plane layer Conductive strips 104A5 and 104C5, in contact with the fifth contact layer (not shown) of the stepped wordline contact structure 119C; and conductive strips 104A6 and 104C6 in the sixth plane layer, in contact with the fifth contact layer (not shown) of the stepped wordline contact structure 119C The sixth contact layer (not shown) contacts. Since the word line contact structure is already known, its detailed structure and fabrication method will not be repeated here.

但字线接触结构的配置方式并不以此为限,在本发明的一些实施例中,位于多于两个以上不同U形存储单元串行中的串行选择线开关下方的导电条带,会分别与不同的字线接触结构;位于此多于两个以上不同U形存储单元串行中的接地选择线开关下方的导电条带会共享一个字线接触结构。However, the configuration of the word line contact structure is not limited to this. In some embodiments of the present invention, the conductive strips located under the serial selection line switches in more than two or more different U-shaped memory cell strings, The conductive strips located under the ground select line switches in the more than two different U-shaped memory cell strings share a word line contact structure, respectively.

在本发明的一些实施例之中,单栅极垂直通道NAND存储器元件100还包括多个串行选择线接触垫121和一个共享的接地选择线接触垫122分别用来将串行选择线开关(例如,第一串行选择线开关111A和第二串行选择线开关111B)和接地选择开关(例如,第一接地选择线开关110A和第二接地选择线开关110B)连接至译码器(未绘示)。例如在本实施例中,每一个串行选择线接触垫121分别位于具有第一串行选择线开关111A和第二串行选择线开关111B的脊状叠层104B和104D的一端,邻接字线接触结构119A和119B,并且与用来形成第一串行选择线开关111A和第二串行选择线开关111B的导电条带104B6和104D6接触。共享的接地选择线接触垫122则位于具有第一接地选择线开关110A和第二接地选择线开关110B的脊状叠层104A和104C的一端,邻接字线接触结构119C,并且与用来形成第一接地选择线开关110A和第二接地选择线开关110B的导电条带104A6和104C6接触。In some embodiments of the present invention, the single-gate vertical channel NAND memory device 100 further includes a plurality of serial select line contact pads 121 and a shared ground select line contact pad 122 for connecting the serial select line switches ( For example, the first serial selection line switch 111A and the second serial selection line switch 111B) and the ground selection switches (eg, the first ground selection line switch 110A and the second ground selection line switch 110B) are connected to the decoder (not shown). For example, in this embodiment, each TSL contact pad 121 is located at one end of the ridge stacks 104B and 104D having the first TSL switch 111A and the second TSL switch 111B, respectively, adjacent to the word line Contact structures 119A and 119B, and make contact with conductive strips 104B6 and 104D6 used to form first string select line switch 111A and second string select line switch 111B. The shared ground select line contact pad 122 is located at one end of the ridge stacks 104A and 104C with the first ground select line switch 110A and the second ground select line switch 110B, adjacent to the word line contact structure 119C, and is used to form the first ground select line contact structure 119C. A ground select line switch 110A contacts the conductive strips 104A6 and 104C6 of a second ground select line switch 110B.

被共享的字线接触结构119C的形状可以随着单栅极垂直通道NAND存储器元件的设计而有所不同。例如请参照图3,图3是根据本发明的另一实施例所绘示的单栅极垂直通道NAND存储器元件300的局部结构上视图。单栅极垂直通道NAND存储器元件300的结构大致与单栅极垂直通道NAND存储器元件100相同,差别仅在于,邻接接地选择线接触垫122的字线接触结构319C的形状不同。在本实施例之中,被位于脊状叠层104A和104C的第一接地选择线开关110A和第二接地选择线开关110B下方的导电条带104A6和104C6所共享的字线接触结构319C,可以配置成纵向阶梯结构。进一步节省单栅极垂直通道NAND存储器元件300的横向宽度。The shape of the shared word line contact structure 119C may vary with the design of the single gate vertical channel NAND memory element. For example, please refer to FIG. 3 , which is a top view of a partial structure of a single-gate vertical channel NAND memory device 300 according to another embodiment of the present invention. The structure of the single gate vertical channel NAND memory element 300 is substantially the same as the single gate vertical channel NAND memory element 100, the only difference being that the shape of the word line contact structure 319C adjacent to the ground select line contact pad 122 is different. In the present embodiment, the word line contact structure 319C shared by the conductive strips 104A6 and 104C6 located under the first ground select line switch 110A and the second ground select line switch 110B of the ridge stacks 104A and 104C may be Configured in a vertical ladder structure. The lateral width of the single gate vertical channel NAND memory element 300 is further saved.

为了防止具有共享字线接触结构119C的不同U形存储单元串行109A和109B在写入操作、读取操作和擦除操作中产生讯号干扰,在本发明的一些实施例之中,单栅极垂直通道NAND存储器元件100可以包括一个位于U形存储单元串行109A的第一串行选择线开关111A和第一接地选择线开关110A之间的第一控制开关IG_1A,以及一个位于U形存储单元串行109B的第二串行选择线开关111B和第二接地选择线开关110B之间的第二控制开关IG_1B。In order to prevent the different U-shaped memory cell strings 109A and 109B with the shared word line contact structure 119C from generating signal interference during write operations, read operations, and erase operations, in some embodiments of the present invention, the single-gate Vertical channel NAND memory element 100 may include a first control switch IG_1A between first string select line switch 111A and first ground select line switch 110A of U-shaped memory cell string 109A, and a U-shaped memory cell A second control switch IG_1B between the second string select line switch 111B of the string 109B and the second ground select line switch 110B.

例如请参照图4,图4是绘示以图1C的单栅极垂直通道NAND存储器元件100进行写入操作时的等效电路图。在本实施例中,第一控制开关IG_1A可以包括一种互补式切换电路(complementary switch circuit)123与脊装叠层104B的底部导电条带104B1连接,用以控制位于脊装叠层104B底部的存储单元108的启闭。第二控制开关IG_1B与位于脊装叠层104D的底部导电条带104D1连接,用以控制位于脊装叠层104D底部的存储单元108的启闭。由于,第二控制开关IG_1B的结构可以与第一控制开关IG_1A相同,故第二控制开关IG_1B的结构不再绘示于图4中。但在其他实施例中,第二控制开关IG_1B的结构仍可以与第一控制开关1G_1A不同。For example, please refer to FIG. 4 . FIG. 4 is an equivalent circuit diagram of the single-gate vertical channel NAND memory device 100 of FIG. 1C during a write operation. In this embodiment, the first control switch IG_1A may include a complementary switch circuit 123 connected to the bottom conductive strip 104B1 of the spine-mounted stack 104B for controlling the bottom of the spine-mounted stack 104B. Opening and closing of the storage unit 108 . The second control switch IG_1B is connected to the bottom conductive strip 104D1 of the spine-mounted stack 104D for controlling the opening and closing of the memory cells 108 at the bottom of the spine-mounted stack 104D. Since the structure of the second control switch IG_1B can be the same as that of the first control switch IG_1A, the structure of the second control switch IG_1B is not shown in FIG. 4 . However, in other embodiments, the structure of the second control switch IG_1B may still be different from that of the first control switch 1G_1A.

另外在一些较佳的实施例中,单栅极垂直通道NAND存储器元件100还可以包括一个位于第一接地选择线开关110A和第一控制开关IG_1A之间的第一辅助开关IG_0A,以及一个位于第二接地选择线开关110B和第二控制开关IG_1B之间的第二辅助开关IG_0B。同样的,第一辅助开关IG_0A和第二辅助开关IG_0B的结构可以与第一控制开关IG_1A相同或不同。In addition, in some preferred embodiments, the single-gate vertical channel NAND memory device 100 may further include a first auxiliary switch IG_0A located between the first ground selection line switch 110A and the first control switch IG_1A, and a first auxiliary switch IG_0A located between the first ground selection line switch 110A and the first control switch IG_1A The second auxiliary switch IG_0B between the two ground selection line switch 110B and the second control switch IG_1B. Likewise, the structures of the first auxiliary switch IG_0A and the second auxiliary switch IG_0B may be the same as or different from those of the first control switch IG_1A.

在本实施例中,第一辅助开关IG_0A是与脊装叠层104A的底部导电条带104A1连接,用以控制位于脊装叠层104A底部的存储单元108的启闭;第二辅助开关IG_0B是与脊装叠层104C底部的导电条带104C1连接,用以控制位于脊装叠层104C底部的存储单元108的启闭。In this embodiment, the first auxiliary switch IG_0A is connected to the bottom conductive strip 104A1 of the spine-mounted stack 104A to control the opening and closing of the memory cells 108 located at the bottom of the spine-mounted stack 104A; the second auxiliary switch IG_0B is The conductive strip 104C1 at the bottom of the spine-mounted stack 104C is connected to control the opening and closing of the memory cells 108 at the bottom of the spine-mounted stack 104C.

当以第一串行选择开关111A选择第一U形存储单元串行109A中的存储单元108P进行写入操作时,会开启第一串行选择线开关111A、第一控制开关IG_1A和第一辅助开关IG_0A;并关闭第一接地选择线开关110A。以位线115和共同源极线118同时对第一串行选择线开关111A和第一接地选择线开关110A施加0伏电压(0V);再通过字线120对被选取存储单元108P施加一栅极写入电压Vpgm;以及对位于第一U型存储单元串行109A上的其他存储单元108施加一栅极通过电压Vpass。其中,栅极写入电压Vpgm大于栅极通过电压Vpass,藉以引发电子e-产生Fowler-Nordheim穿隧效应,将数据写入存储单元108P之中。When the memory cell 108P in the first U-shaped memory cell string 109A is selected by the first serial selection switch 111A for writing operation, the first serial selection line switch 111A, the first control switch IG_1A and the first auxiliary switch are turned on. switch IG_0A; and turn off the first ground selection line switch 110A. A voltage of 0 volts (0V) is simultaneously applied to the first serial selection line switch 111A and the first ground selection line switch 110A by the bit line 115 and the common source line 118 ; and then a gate is applied to the selected memory cell 108P through the word line 120 write voltage Vpgm; and apply a gate pass voltage Vpass to other memory cells 108 located on the first U-shaped memory cell series 109A. The gate write voltage Vpgm is greater than the gate pass voltage Vpass, so as to induce electron e- to generate Fowler-Nordheim tunneling effect and write data into the memory cell 108P.

未被选择的第二U形存储单元串行109B在进行写入操作时,使位于脊状叠层104D上的第二串行选择线开关111B和其下方的存储单元的栅极保持浮置(floating)。由于脊状叠层104A和104C中的导电条带共享一个字线接触结构119C;且第一接地选择线开关110A和第二接地选择线开关110B也共享接地选择线接触垫122。因此,施加在脊状叠层104C上的第二接地选择线开关110B以及其下方的存储单元108(包含存储单元108P')的栅极电压,会和施加在脊状叠层104A上的第一接地选择线开关110A以及其下方的存储单元108(包含存储单元108P)的栅极电压完全相同。关闭第二控制开关IG_1B,可使第二U形存储单元串行109B内的104C形成局部自我电位抬升(local self-boosting)以维持足够的电位,防止位于脊状叠层104C上的存储单元108P'受到写入电压Vpgm的影响而被写入。The unselected second U-shaped memory cell string 109B keeps the gates of the second string select line switch 111B on the ridge stack 104D and the memory cells below it floating ( floating). Since the conductive strips in the ridge stacks 104A and 104C share a wordline contact structure 119C; Therefore, the gate voltage applied to the second ground select line switch 110B on the ridge stack 104C and the memory cell 108 below it (including the memory cell 108P') will be the same as the gate voltage applied to the first ridge stack 104A. The gate voltages of ground select line switch 110A and the memory cells 108 (including memory cell 108P) below it are identical. Closing the second control switch IG_1B enables the local self-boosting of the second U-shaped memory cell string 109B to form local self-boosting to maintain a sufficient potential to prevent the memory cells 108P located on the ridge stack 104C ' is written under the influence of the write voltage Vpgm.

请参照图5,图5是绘示以图1C的单栅极垂直通道NAND存储器元件100进行读取操作时的等效电路图。在本实施例中,当以第一串行选择线开关111A选择位于第一U形存储单元串行109A上的存储单元108R进行读取操作时,会开启第一串行选择线开关111A、第一接地选择线开关110A、第一控制开关IG_1A和第一辅助开关IG_0A。使位线115和共同源极线118同时对第一串行选择线开关111A和第一接地选择线开关110A分别施加1伏特(1V)及0伏电压(0V);再通过字线120对被选取的存储单元108R施加一栅极读取电压Vref;以及对位于第一U型存储单元串行109A上的其他存储单元108施加一栅极通过电压Vpass。即可由被选取的存储单元108R中读取数据。Please refer to FIG. 5 . FIG. 5 is an equivalent circuit diagram illustrating a read operation using the single-gate vertical channel NAND memory device 100 of FIG. 1C . In this embodiment, when the memory cell 108R located on the first U-shaped memory cell serial 109A is selected by the first serial selection line switch 111A to perform the read operation, the first serial selection line switch 111A, the first serial selection line switch 111A, the A ground selection line switch 110A, a first control switch IG_1A and a first auxiliary switch IG_0A. The bit line 115 and the common source line 118 simultaneously apply 1 volt (1V) and 0 volt (0V) to the first serial selection line switch 111A and the first ground selection line switch 110A; A gate read voltage Vref is applied to the selected memory cell 108R; and a gate pass voltage Vpass is applied to other memory cells 108 on the first U-shaped memory cell series 109A. That is, data can be read from the selected storage unit 108R.

未被选择的第二U形存储单元串行109B在进行读取操作时,位于脊状叠层104D上的第二串行选择线开关111B和其下方的存储单元108栅极保持浮置。由于脊状叠层104A和104C中的导电条带共享一个字线接触结构119C;且第一接地选择线开关110A和第二接地选择线开关110B也共享接地选择线接触垫122。因此,施加在脊状叠层104C上的第二接地选择线开关110B以及其下方的存储单元108(包含存储单元108R')的栅极电压,会和施加在脊状叠层104A上的第一接地选择线开关110A以及其下方的存储单元108(包含存储单元108R)的栅极电压完全相同。关闭第二控制开关IG_1B,并且使第二U形存储单元串行109B中的第二串行选择线开关111B和其下方的存储单元108的栅极保持浮置,可防止未被选取的第二U形存储单元串行109B中的存储单元108R'被栅极读取电压Vref所读取。During the read operation of the unselected second U-shaped memory cell string 109B, the gates of the second string select line switch 111B on the ridge stack 104D and the memory cells 108 below it remain floating. Since the conductive strips in the ridge stacks 104A and 104C share a wordline contact structure 119C; Therefore, the gate voltage applied to the second ground select line switch 110B on the ridge stack 104C and the memory cell 108 below it (including the memory cell 108R') will be the same as the gate voltage applied to the first ridge stack 104A. The gate voltages of ground select line switch 110A and the memory cell 108 (including memory cell 108R) below it are identical. Turning off the second control switch IG_1B and keeping the gates of the second string select line switch 111B in the second U-shaped memory cell string 109B and the memory cells 108 below it floating can prevent unselected second Memory cells 108R' in U-shaped memory cell string 109B are read by gate read voltage Vref.

请参照图6,图6是绘示以图1C的单栅极垂直通道NAND存储器元件100进行擦除操作时的等效电路图。在本实施例中,当选择第一U形存储单元串行109A进行擦除操作时,会对第一串行选择线开关111A、第一控制开关IG_1A和第一辅助开关IG_0A的栅极施加7伏电压(7V),藉以将其开启;以共同源极线118对第一接地选择线开关110A施加0伏电压(0V),将第一接地选择线开关110A的栅极保持浮置;对位于第一U型存储单元串行109A上的所有存储单元108的栅极施加0伏电压(0V);再以位线115对第一串行选择线开关111A施加20伏特(20V)的擦除电压。藉以使位于第一U型存储单元串行109A上的存储单元108产生栅极诱发漏极漏电流(Gated-Induce Drain Leakage,GIDL)GIDL。Please refer to FIG. 6 . FIG. 6 is an equivalent circuit diagram of the single-gate vertical channel NAND memory device 100 of FIG. 1C during an erase operation. In this embodiment, when the first U-shaped memory cell string 109A is selected for the erasing operation, 7 is applied to the gates of the first string selection line switch 111A, the first control switch IG_1A and the first auxiliary switch IG_0A voltage (7V) to turn it on; 0 volts (0V) is applied to the first ground selection line switch 110A through the common source line 118 to keep the gate of the first ground selection line switch 110A floating; A voltage of 0 volts (0V) is applied to the gates of all the memory cells 108 on the first U-shaped memory cell string 109A; then an erase voltage of 20 volts (20V) is applied to the first string selection line switch 111A through the bit line 115 . Thereby, the memory cells 108 located on the first U-shaped memory cell series 109A generate a gate-induced drain leakage (GIDL) GIDL.

未被选择的第二U形存储单元串行109B在进行擦除操作时,位于脊状叠层104D上的第二串行选择线开关111B和其下方的存储单元108以及第二控制开关IG_1B和第二接地选择开关110B的栅极都保持浮置。由于脊状叠层104A和104C中的导电条带共享一个字线接触结构119C;且第一接地选择线开关110A和第二接地选择线开关110B也共享接地选择线接触垫122。因此,施加在脊状叠层104C上的第二接地选择线开关110B以及其下方的存储单元108的栅极电压,会和施加在脊状叠层104A上的第一接地选择线开关110A以及其下方的存储单元108的栅极电压完全相同。使位于脊状叠层104D上的第二串行选择线开关111B和其下方的存储单元108以及第二控制开关IG_1B的栅极都保持浮置,可延迟擦除时间,防止第二U形存储单元串行109B中的存储单元108在纳秒擦除时间内被擦除。When the unselected second U-shaped memory cell string 109B is performing an erase operation, the second string selection line switch 111B on the ridge stack 104D and the memory cells 108 below it, and the second control switches IG_1B and IG_1B and The gates of the second ground selection switch 110B are kept floating. Since the conductive strips in the ridge stacks 104A and 104C share a wordline contact structure 119C; Therefore, the gate voltage of the second ground select line switch 110B applied on the ridge stack 104C and the memory cell 108 below it will be the same as that of the first ground select line switch 110A and its underlying memory cell 108 applied on the ridge stack 104A. The gate voltages of the underlying memory cells 108 are identical. Keeping the gates of the second serial select line switch 111B on the ridge stack 104D and the memory cell 108 below it and the second control switch IG_1B floating can delay the erase time and prevent the second U-shaped memory The memory cells 108 in the cell string 109B are erased within the nanosecond erase time.

根据上述实施例,本说明书是提供一种具有多个脊状叠层的三维存储器元件,其中每一个脊状叠层包含,分别具有位于顶部的一个串行选择线开关或一个接地选择线开关以及位于串行选择线开关或接地选择线开关下方的多个存储单元。通过串接位于两个脊状叠层上的第一串行选择线开关和第一接地选择线开关,以及位于第一串行选择线开关和第一接地选择线开关下方的存储单元来形成第一U形存储单元串行;同时通过串接位于另外两个不同脊状叠层上的第二串行选择线开关和第二接地选择线开关,以及位于第二串行选择线开关和第二接地选择线开关下方的存储单元来形成第二U形存储单元串行。In accordance with the above-described embodiments, the present specification provides a three-dimensional memory element having a plurality of ridge stacks, wherein each ridge stack includes, respectively, a serial select line switch or a ground select line switch on top, and Multiple memory cells located below the serial select line switch or the ground select line switch. The first string select line switch and the first ground select line switch are connected in series on the two ridge stacks, and the memory cells are located under the first string select line switch and the first ground select line switch. a U-shaped memory cell string; simultaneously by connecting in series a second string select line switch and a second ground select line switch on two other different ridge stacks, and a second string select line switch and a second The memory cells below the select line switch are grounded to form a second U-shaped string of memory cells.

其中,位于第一U形存储单元串行的第一串行选择线开关下方的存储单元与第一字线接触结构连接;位于第二U形存储单元串行的第二串行选择线开关下方的存储单元与第二字线接触结构连接;而位于第一U形存储单元串行的第一接地选择线开关下方的存储单元以及位于第二U形存储单元串行的第二接地选择线开关下方的存储单元,则连接至相同的第三字线接触结构。换句话说,三维存储器元件中,用来连接位于接地选择开关下方的存储单元的字线接触结构数量小于用来连接位于串行选择开关下方的存储单元的字线接触结构。若与先前技术中的三维存储器元件相比,在不改变记忆容量的前提下,可以减少字线接触结构的设置。Wherein, the memory cells located under the first serial selection line switch of the first U-shaped memory cell series are connected to the first word line contact structure; they are located under the second serial selection line switch of the second U-shaped memory cell series. The memory cells are connected to the second word line contact structure; and the memory cells located under the first ground select line switches of the first U-shaped memory cell series and the second ground select line switches of the second U-shaped memory cell series The lower memory cells are then connected to the same third word line contact structure. In other words, in the three-dimensional memory element, the number of word line contact structures used to connect memory cells located under the ground select switch is smaller than the number of word line contact structures used to connect memory cells located under the serial select switch. Compared with the three-dimensional memory element in the prior art, the arrangement of the word line contact structure can be reduced without changing the memory capacity.

通过减少字线接触结构的设置,可以减少存储器元件的面积尺寸;更可在不影响工艺裕度的前提下,扩展存储器元件的记忆容量,大幅降低工艺成本,并防止氧化层击穿现象产生,增加垂直通道存储器元件的工艺良率。By reducing the arrangement of the word line contact structure, the area size of the memory element can be reduced; moreover, the memory capacity of the memory element can be expanded without affecting the process margin, the process cost can be greatly reduced, and the oxide layer breakdown can be prevented. Increase the process yield of vertical channel memory devices.

Claims (10)

1.一种三维存储器元件,包括:1. A three-dimensional memory element, comprising: 一多层叠层结构,包括彼此隔离的多个导电条带以及多条沟道,用以至少定义出一第一脊状叠层、一第二脊状叠层、一第三脊状叠层以及一第四脊状叠层;A multi-layer stack structure including a plurality of conductive strips and a plurality of channels isolated from each other, for defining at least a first ridge stack, a second ridge stack, a third ridge stack, and a fourth ridged stack; 一第一串行选择线开关,位于该第一脊状叠层之上;a first serial selection line switch on the first ridge stack; 一第一接地选择线开关,位于该第二脊状叠层之上;a first ground selection line switch located on the second ridge stack; 一第一U形存储单元串行,串接该第一串行选择线开关和该第一接地选择线开关;a first U-shaped memory cell serial, connected in series with the first serial selection line switch and the first grounding selection line switch; 一第二串行选择线开关,位于该第三脊状叠层之上;a second serial selection line switch on the third ridged stack; 一第二接地选择线开关,位于该第四脊状叠层之上;a second ground selection line switch located on the fourth ridge stack; 一第二U形存储单元串行,串接该第二串行选择线开关和该第二接地选择线开关;a second U-shaped memory cell serial, connected in series with the second serial selection line switch and the second grounding selection line switch; 一第一字线接触结构,与位于该第一脊状叠层上的这些导电条带接触;a first word line contact structure in contact with the conductive strips on the first ridge stack; 一第二字线接触结构,与位于该第三脊状叠层上的这些导电条带接触;以及a second wordline contact structure in contact with the conductive strips on the third ridge stack; and 一第三字线接触结构,与位于该第二脊状叠层和该第四脊状叠层上的这些导电条带接触。A third wordline contact structure contacts the conductive strips on the second ridge stack and the fourth ridge stack. 2.根据权利要求1所述的三维存储器元件,更包括2. The three-dimensional memory element of claim 1, further comprising 一第一串行选择线接触垫,与位于该第一脊状叠层的一顶部导电条带接触;a first serial select line contact pad in contact with a top conductive strip on the first ridge stack; 一第二串行选择线接触垫,与位于该第三脊状叠层的一顶部导电条带接触;以及a second serial select line contact pad in contact with a top conductive strip on the third ridge stack; and 一接地选择线接触垫,与位于该第二脊状叠层和该第四脊状叠层的二顶部导电条带接触。A ground select line contact pad is in contact with the two top conductive strips on the second ridge stack and the fourth ridge stack. 3.根据权利要求1所述的三维存储器元件,更包括:3. The three-dimensional memory element according to claim 1, further comprising: 一记忆材料层,位于这些沟道的多个侧壁上;a layer of memory material on the sidewalls of the channels; 一图案化通道膜,覆盖于该记忆材料层以及这些沟道的多个底部上;以及a patterned channel film covering the memory material layer and the bottoms of the channels; and 多个存储单元,形成于该记忆材料层和该图案化通道膜与这些导电条带三者重叠的多个位置。A plurality of memory cells are formed at a plurality of positions where the memory material layer, the patterned channel film and the conductive strips overlap. 4.根据权利要求3所述的三维存储器元件,其中:4. The three-dimensional memory element of claim 3, wherein: 该第一U形存储单元串行是通过一部分该图案化通道膜串接该第一串行选择线开关、位于该第一脊状叠层和该第二脊状叠层上的这些存储单元以及该第一接地选择线开关所形成;以及The first U-shaped memory cell string is connected in series with the first string select line switch, the memory cells on the first ridge stack and the second ridge stack through a portion of the patterned channel film, and formed by the first ground select line switch; and 该第二U形存储单元串行是通过另一部分该图案化通道膜串接该第二串行选择线开关、位于该第三脊状叠层和该第四脊状叠层上的这些存储单元以及该第二接地选择线开关所形成。The second U-shaped memory cell string is connected in series with the second string select line switch, the memory cells on the third ridge stack and the fourth ridge stack through another part of the patterned channel film and the second ground selection line switch is formed. 5.根据权利要求3所述的三维存储器元件,更包括:5. The three-dimensional memory element according to claim 3, further comprising: 一第一控制开关,位于该第一串行选择线开关和该第一接地选择线开关之间;以及a first control switch located between the first serial selection line switch and the first ground selection line switch; and 一第二控制开关,位于该第二串行选择线开关和该第二接地选择线开关之间。A second control switch is located between the second serial selection line switch and the second ground selection line switch. 6.根据权利要求5所述的三维存储器元件,其中:6. The three-dimensional memory element of claim 5, wherein: 该第一控制开关与该第一脊状叠层的一底部导电条带连接;以及the first control switch is connected to a bottom conductive strip of the first ridge stack; and 该第二控制开关与该第三脊状叠层的一底部导电条带连接。The second control switch is connected to a bottom conductive strip of the third ridge stack. 7.根据权利要求6所述的三维存储器元件,更包括:7. The three-dimensional memory element according to claim 6, further comprising: 一第一辅助开关,位于该第一控制开关和该第一接地选择线开关之间;以及a first auxiliary switch located between the first control switch and the first ground selection line switch; and 一第二辅助开关,位于该第二控制开关和该第二接地选择线开关之间。A second auxiliary switch is located between the second control switch and the second ground selection line switch. 8.根据权利要求7所述的三维存储器元件,其中:8. The three-dimensional memory element of claim 7, wherein: 该第一辅助开关与该第二脊状叠层的一底部导电条带接触;以及the first auxiliary switch is in contact with a bottom conductive strip of the second ridge stack; and 该第二辅助开关与该第四脊状叠层的一底部导电条带接触。The second auxiliary switch is in contact with a bottom conductive strip of the fourth ridge stack. 9.根据权利要求5所述的三维存储器元件,其中当选择该第一U形存储单元串行进行一写入操作时,该写入操作包括:9. The three-dimensional memory element of claim 5, wherein when selecting the first U-shaped memory cells to perform a write operation in series, the write operation comprises: 开启该第一串行选择线开关和该第一控制开关;turning on the first serial selection line switch and the first control switch; 关闭该第一接地选择线开关、第二接地选择线开关和该第二控制开关;以及turning off the first ground selection line switch, the second ground selection line switch, and the second control switch; and 对位于该第一U型存储单元串行上的这些存储单元之一者施加一写入电压;以及applying a write voltage to one of the memory cells on the first U-shaped memory cell string; and 对位于该第一U型存储单元串行上的其他这些存储单元施加一通过电压,其中该写入电压大于该通过电压。A pass voltage is applied to the other memory cells on the first U-shaped memory cell string, wherein the write voltage is greater than the pass voltage. 10.根据权利要求9所述的三维存储器元件,其中在进行该写入操作时,该第二串行选择线开关的一栅极是保持浮置。10. The three-dimensional memory device of claim 9, wherein a gate of the second serial select line switch is kept floating during the write operation.
CN201510929883.9A 2015-12-15 2015-12-15 Three-dimensional memory element Active CN106887434B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510929883.9A CN106887434B (en) 2015-12-15 2015-12-15 Three-dimensional memory element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510929883.9A CN106887434B (en) 2015-12-15 2015-12-15 Three-dimensional memory element

Publications (2)

Publication Number Publication Date
CN106887434A CN106887434A (en) 2017-06-23
CN106887434B true CN106887434B (en) 2019-07-05

Family

ID=59173465

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510929883.9A Active CN106887434B (en) 2015-12-15 2015-12-15 Three-dimensional memory element

Country Status (1)

Country Link
CN (1) CN106887434B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10515973B2 (en) * 2017-11-30 2019-12-24 Intel Corporation Wordline bridge in a 3D memory array
US20200091163A1 (en) * 2018-09-17 2020-03-19 Macronix International Co., Ltd. Memory device and manufacturing method for the same
CN114841333A (en) * 2022-06-01 2022-08-02 长江存储科技有限责任公司 Nonvolatile memory, storage system and operation method suitable for neural network

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102194821A (en) * 2010-01-25 2011-09-21 旺宏电子股份有限公司 Three-dimensional memory array with improved string select line and bit line contact layout
CN102800361A (en) * 2011-05-24 2012-11-28 爱思开海力士有限公司 3-dimensional non-volatile memory device and method of manufacturing the same
CN105097817A (en) * 2014-05-23 2015-11-25 爱思开海力士有限公司 Three-dimensional nonvolatile memory device, semiconductor system including the same, and method of manufacturing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015056452A (en) * 2013-09-10 2015-03-23 株式会社東芝 Semiconductor memory device and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102194821A (en) * 2010-01-25 2011-09-21 旺宏电子股份有限公司 Three-dimensional memory array with improved string select line and bit line contact layout
CN102800361A (en) * 2011-05-24 2012-11-28 爱思开海力士有限公司 3-dimensional non-volatile memory device and method of manufacturing the same
CN105097817A (en) * 2014-05-23 2015-11-25 爱思开海力士有限公司 Three-dimensional nonvolatile memory device, semiconductor system including the same, and method of manufacturing the same

Also Published As

Publication number Publication date
CN106887434A (en) 2017-06-23

Similar Documents

Publication Publication Date Title
TWI611607B (en) Three dimensional memory device
US7781807B2 (en) Non-volatile semiconductor storage device
JP4601287B2 (en) Nonvolatile semiconductor memory device
JP6545587B2 (en) Semiconductor device
KR101982383B1 (en) 3d non-volatile storage with wide band gap transistor decoder
US8432719B2 (en) Three-dimensional stacked and-type flash memory structure and methods of manufacturing and operating the same hydride
CN102386188B (en) Three-dimensional array memory architecture with diodes in memory strings
JP4601316B2 (en) Nonvolatile semiconductor memory device
TWI634646B (en) Non-volatile semiconductor memory device
US9698154B2 (en) Semiconductor device
CN112447736A (en) Vertical non-volatile memory device
CN106935587A (en) Memory element and manufacturing method thereof
TW201913963A (en) Reverse or flash memory
US9048137B2 (en) Scalable gate logic non-volatile memory cells and arrays
KR20120130721A (en) Field side sub-bitline nor flash array and method of fabricating the same
WO2009039141A1 (en) Erase method in thin film nonvolatile memory
KR20120128438A (en) Vertical structure non-volatile memory device, semiconductor device and system
US20180261620A1 (en) Three dimensional memory device and method for fabricating the same
JP5238208B2 (en) Nonvolatile semiconductor memory device driving method and nonvolatile semiconductor memory device
CN106887434B (en) Three-dimensional memory element
US9576976B1 (en) Three dimensional memory device
US9356105B1 (en) Ring gate transistor design for flash memory
CN102655152B (en) Storage device, its manufacturing method and operating method
JP4761946B2 (en) NONVOLATILE SEMICONDUCTOR MEMORY ELEMENT, ITS MANUFACTURING METHOD, AND SEMICONDUCTOR INTEGRATED CIRCUIT DEVICE INCLUDING NONVOLATILE SEMICONDUCTOR MEMORY ELEMENT
JP4810330B2 (en) Semiconductor memory device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant