CN106896690B - A holographic image evaluation method and device - Google Patents
A holographic image evaluation method and device Download PDFInfo
- Publication number
- CN106896690B CN106896690B CN201710179844.0A CN201710179844A CN106896690B CN 106896690 B CN106896690 B CN 106896690B CN 201710179844 A CN201710179844 A CN 201710179844A CN 106896690 B CN106896690 B CN 106896690B
- Authority
- CN
- China
- Prior art keywords
- holographic
- image
- imaging layer
- outer contour
- cross
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/0005—Adaptation of holography to specific applications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/02—Details of features involved during the holographic process; Replication of holograms without interference recording
- G03H1/024—Hologram nature or properties
- G03H1/0244—Surface relief holograms
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/02—Details of features involved during the holographic process; Replication of holograms without interference recording
- G03H2001/0208—Individual components other than the hologram
- G03H2001/0224—Active addressable light modulator, i.e. Spatial Light Modulator [SLM]
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/22—Processes or apparatus for obtaining an optical image from holograms
- G03H1/2202—Reconstruction geometries or arrangements
- G03H2001/2244—Means for detecting or recording the holobject
- G03H2001/2247—Means for detecting or recording the holobject for testing the hologram or holobject
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Holo Graphy (AREA)
Abstract
本发明的实施例提供一种全息图像评价方法和装置,涉及全息显示技术领域,用于对全息显示技术显示出来的全息图像的表面形貌进行评价。该方法包括:按照全息成像层的深度将全息显示信号中的m个不同深度的全息成像层信号分为n个等深度的全息成像层信号组;分别根据各个全息成像层信号组显示全息图像;在全息图像的深度方向上获取各个全息成像层信号组显示的全息图像的全息断面图像;根据各个全息断面图像的外轮廓上的各个点的坐标值以及设计全息图像中对应的全息成像层的外轮廓上的各个点的坐标值对全息显示信号显示的全息图像的表面形貌进行评价。本发明实施例用于全息图像的评价。
Embodiments of the present invention provide a method and device for evaluating a holographic image, which relate to the technical field of holographic display and are used for evaluating the surface morphology of a holographic image displayed by the holographic display technology. The method includes: dividing m holographic imaging layer signals of different depths in the holographic display signal into n holographic imaging layer signal groups of equal depths according to the depth of the holographic imaging layer; respectively displaying holographic images according to each holographic imaging layer signal group; Obtain the holographic cross-sectional images of the holographic images displayed by the signal groups of each holographic imaging layer in the depth direction of the holographic image; The coordinate value of each point on the contour evaluates the surface topography of the holographic image displayed by the holographic display signal. The embodiments of the present invention are used for evaluation of holographic images.
Description
技术领域technical field
本发明涉及全息显示技术领域,尤其涉及一种全息图像评价方法和装置。The invention relates to the technical field of holographic display, in particular to a method and device for evaluating a holographic image.
背景技术Background technique
随着显示技术的发展,用户已不再仅仅满足于平面显示,因此全息显示受到越来越多的关注。全息显示技术分为:光学全息和运用数字计算机去模拟、运算、处理各种光学过程的计算全息(英文名称:Computer Generated Hologram,简称:CGH)。其中,光学全息是利用光的干涉原理,通过引入一个与物光波相干的参考光波与物光波干涉,将物光波中的相位和振幅信息以干涉条纹的形式记录在某种介质上,利用光波衍射原理,再现原始物光波后形成原物体的3D图像。计算全息是利用计算机设计制作全息图像的技术,与光学全息不同,计算全息术是以广播衍射算法为基础,对被记录物波的数学描述或离散数据进行处理。其实现过程为:将物光波的数学描述函数输入计算机中模拟实际的干涉过程,计算出干涉条纹,绘制出计算全息图,再将计算全息图放到实际光路中获得再现图像。由于光学全息术需要非常稳定的光学系统(无振动,无噪声)以及具有高度相干性和高强度的光,因此大大限制了其应用范围,而计算全息具有噪声低、可重复性好以及可以获得虚拟物体的全息图等显著特点,因此计算全息技术是目前全息显示技术研究的热点。With the development of display technology, users are no longer satisfied with flat display, so holographic display has received more and more attention. Holographic display technology is divided into: optical holography and computational holography (English name: Computer Generated Hologram, abbreviation: CGH) that uses digital computers to simulate, calculate, and process various optical processes. Among them, optical holography uses the interference principle of light to record the phase and amplitude information in the object light wave in the form of interference fringes by introducing a reference light wave coherent with the object light wave to interfere with the object light wave. The principle is to reproduce the original object light wave to form a 3D image of the original object. Computational holography is a technology that uses computers to design and produce holographic images. Different from optical holography, computational holography is based on broadcast diffraction algorithms to process mathematical descriptions or discrete data of recorded object waves. The realization process is: input the mathematical description function of the object light wave into the computer to simulate the actual interference process, calculate the interference fringes, draw the computational hologram, and then put the computational hologram into the actual optical path to obtain the reproduced image. Since optical holography requires a very stable optical system (no vibration, no noise) and light with high coherence and high intensity, its application range is greatly limited, while computational holography has low noise, good repeatability and can obtain The hologram of virtual objects and other notable features, so computational holography technology is the current research focus of holographic display technology.
全息显示技术所显示出来的全息图像的表面形貌与设计时要求的全息图像的表面形貌是否相同是评价全息显示技术的成像质量的核心因素,因此对全息显示技术所显示出来的全息图像的表面形貌进行评价十分重要,然而现有技术中还没有可以评价全息图像的表面形貌的方法。Whether the surface topography of the holographic image displayed by the holographic display technology is the same as the surface topography of the holographic image required in the design is the core factor for evaluating the imaging quality of the holographic display technology. It is very important to evaluate the surface topography, however, there is no method for evaluating the surface topography of holographic images in the prior art.
发明内容SUMMARY OF THE INVENTION
本发明的实施例提供一种全息图像测试方法和装置,用于对全息显示技术显示出来的全息图像的表面形貌进行评价。Embodiments of the present invention provide a holographic image testing method and device, which are used to evaluate the surface topography of a holographic image displayed by a holographic display technology.
为达到上述目的,本发明的实施例采用如下技术方案:To achieve the above object, the embodiments of the present invention adopt the following technical solutions:
第一方面,提供一种全息图像评价方法,包括:In a first aspect, a holographic image evaluation method is provided, comprising:
按照全息成像层的深度将全息显示信号中的m个不同深度的全息成像层信号分为n个等深度的全息成像层信号组;其中,m、n均为正整数,且m大于或等于n;According to the depth of the holographic imaging layer, m holographic imaging layer signals of different depths in the holographic display signal are divided into n holographic imaging layer signal groups of equal depth; where m and n are both positive integers, and m is greater than or equal to n ;
分别根据各个所述全息成像层信号组显示全息图像;respectively displaying a holographic image according to each of the holographic imaging layer signal groups;
在所述全息图像的深度方向上获取各个所述全息成像层信号组显示的全息图像的全息断面图像;acquiring a holographic cross-sectional image of the holographic image displayed by each of the holographic imaging layer signal groups in the depth direction of the holographic image;
根据各个所述全息断面图像的外轮廓上的各个点的坐标值以及设计全息图像中对应的全息成像层的外轮廓上的各个点的坐标值对所述全息显示信号显示的全息图像的表面形貌进行评价。According to the coordinate value of each point on the outer contour of each holographic cross-sectional image and the coordinate value of each point on the outer contour of the corresponding holographic imaging layer in the designed holographic image, the surface shape of the holographic image displayed by the holographic display signal Appearance evaluation.
可选的,所述根据各个所述全息断面图像的外轮廓上的各个点的坐标值以及设计全息图像中对应的图像层的外轮廓上的各个点的坐标值判断显示全息图像的表面形貌与设计全息图像的表面形貌是否相同,包括:Optionally, according to the coordinate value of each point on the outer contour of each of the holographic cross-sectional images and the coordinate value of each point on the outer contour of the corresponding image layer in the designed holographic image, determine and display the surface topography of the holographic image. Is it the same as the surface topography of the designed holographic image, including:
以所述全息断面图像的外轮廓所在平面内任一点为原点作多条射线;其中,相邻两条射线的夹角均为预设值;Take any point in the plane where the outer contour of the holographic cross-sectional image is located as the origin to make a plurality of rays; wherein, the included angle of two adjacent rays is a preset value;
计算各射线与所述全息断面图像的外轮廓的交点的坐标值;calculating the coordinate value of the intersection of each ray and the outer contour of the holographic cross-sectional image;
根据各射线与所述全息断面图像的外轮廓的交点的坐标值以及所述设计全息图像中对应的全息成像层的外轮廓上与所述交点对应的点坐标值判断显示全息图像的表面形貌与设计全息图像的表面形貌是否相同。According to the coordinate value of the intersection of each ray and the outer contour of the holographic cross-sectional image and the coordinate value of the point corresponding to the intersection on the outer contour of the corresponding holographic imaging layer in the designed holographic image, determine the surface topography of the displayed holographic image Whether it is the same as the surface topography of the designed holographic image.
可选的,所述n大于或等于10且小于或等于100。Optionally, the n is greater than or equal to 10 and less than or equal to 100.
可选的,所述多条射线将所述全息断面图像的外轮廓分为x份,所述x为3的整数倍。Optionally, the multiple rays divide the outer contour of the holographic cross-sectional image into x parts, where x is an integer multiple of 3.
可选的,所述获取各个全息图像信号组显示在对应的深度平面上的全息断面图像,包括:Optionally, the acquiring the holographic cross-sectional images displayed on the corresponding depth plane by each holographic image signal group includes:
通过相机拍摄获取各个全息图像信号组显示在对应的深度平面上的全息断面图像。The holographic cross-sectional images of each holographic image signal group displayed on the corresponding depth plane are obtained by shooting with a camera.
第二方面,提供一种全息图像评价装置,包括:In a second aspect, a holographic image evaluation device is provided, comprising:
显示单元,用于按照全息成像层的深度将全息显示信号中的m个不同深度的全息成像层信号分为n个等深度的全息成像层信号组,并分别根据各个所述全息成像层信号组显示全息图像;其中,m、n均为正整数,且m大于或等于n;The display unit is used to divide m holographic imaging layer signals of different depths in the holographic display signal into n holographic imaging layer signal groups of equal depth according to the depth of the holographic imaging layer, and respectively according to the holographic imaging layer signal groups of each said holographic imaging layer Display a holographic image; wherein, m and n are both positive integers, and m is greater than or equal to n;
获取单元,用于在所述全息图像的深度方向上获取各个所述全息成像层信号组显示的全息图像的全息断面图像;an acquisition unit, configured to acquire, in the depth direction of the holographic image, a holographic cross-sectional image of the holographic image displayed by each of the holographic imaging layer signal groups;
处理单元,根据各个所述全息断面图像的外轮廓上的各个点的坐标值以及设计全息图像中对应的全息成像层的外轮廓上的各个点的坐标值对所述全息显示信号显示的全息图像的表面形貌进行评价。The processing unit, according to the coordinate value of each point on the outer contour of each holographic cross-sectional image and the coordinate value of each point on the outer contour of the corresponding holographic imaging layer in the designed holographic image, displays the holographic image for the holographic display signal The surface morphology was evaluated.
可选的,所述处理单元具体用于以所述全息断面图像的外轮廓所在平面内任一点为原点作多条射线,计算各射线与所述全息断面图像的外轮廓的交点的坐标值,根据各射线与所述全息断面图像的外轮廓的交点的坐标值以及各射线与设计全息图像中对应的全息成像层的外轮廓的交点的坐标值判断显示全息图像的表面形貌与设计全息图像的表面形貌是否相同。Optionally, the processing unit is specifically configured to take any point in the plane where the outer contour of the holographic cross-sectional image is located as the origin to make multiple rays, and calculate the coordinate value of the intersection of each ray and the outer contour of the holographic cross-sectional image, According to the coordinate value of the intersection of each ray and the outer contour of the holographic cross-sectional image and the coordinate value of the intersection of each ray and the outer contour of the corresponding holographic imaging layer in the designed holographic image, determine the surface topography of the displayed holographic image and the designed holographic image whether the surface morphology is the same.
可选的,所述n大于或等于10且小于或等于100。Optionally, the n is greater than or equal to 10 and less than or equal to 100.
可选的,所述多条射线将所述全息断面图像的外轮廓分为x份,所述x为3的整数倍。Optionally, the multiple rays divide the outer contour of the holographic cross-sectional image into x parts, where x is an integer multiple of 3.
可选的,所述显示单元为显示屏或空间光调制器;Optionally, the display unit is a display screen or a spatial light modulator;
所述获取单元为位于所述全息图像的深度方向上的照相机。The acquisition unit is a camera located in the depth direction of the holographic image.
本发明实施例提供的全息图像评价方法,首先按照全息成像层的深度将全息显示信号中的m个不同深度的全息成像层信号分为n个等深度的全息成像层信号组,并分别根据各个所述全息成像层信号组显示全息图像,然后在所述全息图像的深度方向上获取各个所述全息成像层信号组显示的全息图像的全息断面图像,最后根据各个所述全息断面图像的外轮廓上的各个点的坐标值以及设计全息图像中对应的全息成像层的外轮廓上的各个点的坐标值对所述全息显示信号显示的全息图像的表面形貌进行评价,即本发明的实施例提供了一种可以对全息图像的表面形貌进行评价的方法。In the holographic image evaluation method provided by the embodiment of the present invention, firstly, according to the depth of the holographic imaging layer, m holographic imaging layer signals of different depths in the holographic display signal are divided into n holographic imaging layer signal groups of equal depth, and according to each The holographic imaging layer signal group displays a holographic image, then acquires holographic cross-sectional images of the holographic images displayed by each of the holographic imaging layer signal groups in the depth direction of the holographic image, and finally according to the outer contour of each holographic cross-sectional image The coordinate value of each point on the holographic image and the coordinate value of each point on the outer contour of the corresponding holographic imaging layer in the designed holographic image are used to evaluate the surface morphology of the holographic image displayed by the holographic display signal, that is, the embodiment of the present invention. A method for evaluating the surface topography of a holographic image is provided.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to explain the embodiments of the present invention or the technical solutions in the prior art more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained according to these drawings without creative efforts.
图1为本发明实施例提供的全息图像评价方法的步骤流程图;1 is a flow chart of the steps of a holographic image evaluation method provided by an embodiment of the present invention;
图2为本发明实施例提供的全息图像的示意图;2 is a schematic diagram of a holographic image provided by an embodiment of the present invention;
图3为本发明实施例提供的全息成像层的示意图;3 is a schematic diagram of a holographic imaging layer provided by an embodiment of the present invention;
图4为本发明实施例提供的全息图像评价方法执行主体的示意图;4 is a schematic diagram of an execution body of a holographic image evaluation method provided by an embodiment of the present invention;
图5为本发明实施例提供的断面图像的示意图;5 is a schematic diagram of a cross-sectional image provided by an embodiment of the present invention;
图6为本发明实施例提供的射线与外轮廓的交点的示意图;6 is a schematic diagram of an intersection of a ray and an outer contour provided by an embodiment of the present invention;
图7为本发明实施例提供的全息图像的三维网格图;7 is a three-dimensional grid diagram of a holographic image provided by an embodiment of the present invention;
图8为本发明实施例提供的全息图像评价装置的示意性结构图。FIG. 8 is a schematic structural diagram of a holographic image evaluation device provided by an embodiment of the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
本发明的实施例提供了一种全息图像评价方法,具体的,参照图1所示,该全息图像评价方法包括如下步骤:An embodiment of the present invention provides a holographic image evaluation method. Specifically, as shown in FIG. 1 , the holographic image evaluation method includes the following steps:
S11、按照全息成像层的深度将全息显示信号中的m个不同深度的全息成像层信号分为n个等深度的全息成像层信号组。S11. Divide m holographic imaging layer signals of different depths in the holographic display signal into n holographic imaging layer signal groups of equal depths according to the depth of the holographic imaging layer.
其中,m、n均为正整数,且m大于或等于n。Among them, m and n are both positive integers, and m is greater than or equal to n.
示例性的,参照图2所示,图2中以全息显示信号用于显示球形全息图像为例对上述全息图像测试方法中的步骤S11进行说明。Illustratively, as shown in FIG. 2 , in FIG. 2 , step S11 in the above-mentioned holographic image testing method is described by taking the holographic display signal for displaying a spherical holographic image as an example.
如图2所示,全息图像包括m个全息成像层(全息成像层1、全息成像层2……全息成像层m),其中,全息成像层1所显示全息图像和全息成像层m所显示全息图像为圆锥体(如图3中a所示),其余全息成像层所显示全息图像均为圆台体(如图3中b所示),此外由全息成像层1至全息成像层m全息成像层的深度依次增,m个全息成像层分别对应一个全息成像层信号。As shown in Fig. 2, the holographic image includes m holographic imaging layers (holographic imaging layer 1, holographic imaging layer 2... holographic imaging layer m), wherein the holographic image displayed by the holographic imaging layer 1 and the holographic image displayed by the holographic imaging layer m The image is a cone (as shown in a in Figure 3), and the holographic images displayed by the other holographic imaging layers are all truncated cones (as shown in b in Figure 3). In addition, from the holographic imaging layer 1 to the holographic imaging layer m The depths of the m holographic imaging layers increase sequentially, and the m holographic imaging layers correspond to one holographic imaging layer signal respectively.
示例性的,若全息图像信号包括400个全息成像层,且将全息图像信号分为50个等深度的全息成像层信号组,则任一全息图像信号组中包括8个相邻的全息成像层。具体的,第1个全息图像信号组对应的全息图像包括:全息成像层1至全息成像层8;第2个全息图像信号组对应的全息图像包括:全息成像层9至全息成像层16;第50个全息图像信号组对应的全息图像包括:全息成像层393至全息成像层400。Exemplarily, if the holographic image signal includes 400 holographic imaging layers, and the holographic image signal is divided into 50 holographic imaging layer signal groups of equal depth, then any holographic image signal group includes 8 adjacent holographic imaging layers. . Specifically, the holographic images corresponding to the first holographic image signal group include: holographic imaging layer 1 to holographic imaging layer 8; the holographic images corresponding to the second holographic image signal group include: holographic imaging layer 9 to holographic imaging layer 16; The holographic images corresponding to the 50 holographic image signal groups include: the holographic imaging layer 393 to the holographic imaging layer 400 .
需要说明的是,上述实施例中以全息图像显示信号显示球形全息图像为例进行说明,但本发明实施例并不限定于此。任意形状全息图像信号(例如:椭球体、圆台体、圆锥体以及其他不规则形状的)均可以按照全息成像层的深度将全息显示信号中的m个不同深度的全息成像层信号分为n个等深度的全息成像层信号组。It should be noted that, in the above embodiment, the holographic image display signal displays a spherical holographic image as an example for description, but the embodiment of the present invention is not limited to this. Any shape holographic image signal (for example: ellipsoid, truncated cone, cone and other irregular shapes) can be divided into n holographic imaging layer signals of m different depths in the holographic display signal according to the depth of the holographic imaging layer Holographic imaging layer signal group of equal depth.
可选的,上述实施例中的n大于或等于10且小于或等于100。即,上述实施例中具体可以按照全息成像层的深度将全息显示信号中的m个不同深度的全息成像层信号分为10-100个等深度的全息成像层信号组。Optionally, n in the foregoing embodiment is greater than or equal to 10 and less than or equal to 100. That is, in the above embodiment, m holographic imaging layer signals of different depths in the holographic display signal may be divided into 10-100 holographic imaging layer signal groups of equal depth according to the depth of the holographic imaging layer.
S12、分别根据各个全息成像层信号组显示全息图像。S12. Display a holographic image according to each holographic imaging layer signal group.
可选的,根据各个全息成像层信号组显示全息图像,具体可以为:按照全息成像层的深度依次使各个全息成像层信号组显示全息图像。当然,也可以按照其他显示顺序对根据各个全息成像层信号组显示全息图像,本发明实施例中对各个全息成像层信号组显示全息图像的顺序不做限定,以所有全息成像层信号组均可以分别独立显示全息图像为准。Optionally, displaying the holographic image according to each holographic imaging layer signal group may specifically include: sequentially displaying the holographic image in each holographic imaging layer signal group according to the depth of the holographic imaging layer. Of course, holographic images can also be displayed according to each holographic imaging layer signal group according to other display sequences. In the embodiment of the present invention, the order in which each holographic imaging layer signal group displays holographic images is not limited, and all holographic imaging layer signal groups can be The holographic images are displayed independently respectively.
S13、在全息图像的深度方向上获取各个全息成像层信号组显示的全息图像的全息断面图像。S13: Acquire a holographic cross-sectional image of the holographic image displayed by each holographic imaging layer signal group in the depth direction of the holographic image.
示例性的,参照图4所示,可以通过全息图像显示装置41(显示器或者空间光调制器)显示全息图像,并在全息图像的深度方向上设置照相机42,通过照相机42进行对焦和拍摄获取各个全息成像层信号组显示的全息图像的全息断面图像。Exemplarily, as shown in FIG. 4 , a holographic image can be displayed by a holographic image display device 41 (display or spatial light modulator), and a camera 42 is set in the depth direction of the holographic image, and the camera 42 is used for focusing and shooting to obtain each image. The holographic cross-sectional image of the holographic image displayed by the holographic imaging layer signal group.
示例性的,参照图5所示,图3中圆锥体a和圆台体b所对应的全息断面图像分为圆(图5中a所示)以及圆环(如图5中b所示)。Exemplarily, as shown in FIG. 5 , the holographic cross-sectional images corresponding to the cone a and the frustum b in FIG. 3 are divided into circles (shown in a in FIG. 5 ) and rings (shown in b in FIG. 5 ).
S14、根据各个全息断面图像的外轮廓上的各个点的坐标值以及设计全息图像中对应的全息成像层的外轮廓上的各个点的坐标值对全息显示信号显示的全息图像的表面形貌进行评价。S14, according to the coordinate value of each point on the outer contour of each holographic cross-sectional image and the coordinate value of each point on the outer contour of the corresponding holographic imaging layer in the designed holographic image, carry out the surface topography of the holographic image displayed by the holographic display signal. Evaluation.
示例性的,步骤14具体可以通过如下方式来实现:Exemplarily, step 14 can be specifically implemented in the following manner:
Ⅰ、将n个全息图像信号组对用的全息图像按照实际尺寸打印出来。1. Print out the holographic images used for the pair of n holographic image signal groups according to the actual size.
Ⅱ、将打印出来的全息图像分别放在对应的图像深度上,并用工业相机进行对焦拍摄。Ⅱ. Put the printed holographic images at the corresponding image depths, and use an industrial camera to focus and shoot.
Ⅲ、比较不同深度的图片的外轮廓上的各个点的坐标值和其对应的全息断面图像的外轮廓上的各个点的坐标值,进而根据不同深度的图片的外轮廓上的各个点的坐标值与全息断面图像的外轮廓上的各个点的坐标值的差值对全息显示信号显示的全息图像的表面形貌进行评价。Ⅲ. Compare the coordinate value of each point on the outer contour of the picture with different depths and the coordinate value of each point on the outer contour of the corresponding holographic cross-sectional image, and then according to the coordinates of each point on the outer contour of the picture with different depths The difference between the value and the coordinate value of each point on the outer contour of the holographic cross-sectional image is used to evaluate the surface topography of the holographic image displayed by the holographic display signal.
此外,还需要说明的是,由于显示、测量过程中均会存在一定的误差,因此上述实施例中判断显示全息图像的表面形貌与设计全息图像的表面形貌相同时,并非要求全息断面图像的外轮廓上的各个点的坐标值与设计全息图像中对应的全息成像层的外轮廓上的各个点的坐标值完全相同,而是要求全息断面图像的外轮廓上的各个点的坐标值与设计全息图像中对应的全息成像层的外轮廓上的各个点的坐标值在一定范围之内。具体的范围可以根据具体的显示装置、工业照相机、全息图像以及对评价要求来设定,本发明实施例对此不作限定。In addition, it should also be noted that since there will be certain errors in the display and measurement processes, it is not required that the holographic cross-sectional image is determined when the surface topography of the displayed holographic image is determined to be the same as the surface topography of the designed holographic image in the above-mentioned embodiment. The coordinate value of each point on the outer contour of the holographic image is exactly the same as the coordinate value of each point on the outer contour of the corresponding holographic imaging layer in the designed holographic image, but the coordinate value of each point on the outer contour of the holographic cross-sectional image is required to be the same as The coordinate values of each point on the outer contour of the corresponding holographic imaging layer in the designed holographic image are within a certain range. The specific range may be set according to a specific display device, an industrial camera, a holographic image, and an evaluation requirement, which is not limited in this embodiment of the present invention.
本发明实施例提供的全息图像评价方法,首先按照全息成像层的深度将全息显示信号中的m个不同深度的全息成像层信号分为n个等深度的全息成像层信号组,并分别根据各个全息成像层信号组显示全息图像,然后在全息图像的深度方向上获取各个全息成像层信号组显示的全息图像的全息断面图像,最后根据各个全息断面图像的外轮廓上的各个点的坐标值以及设计全息图像中对应的全息成像层的外轮廓上的各个点的坐标值对全息显示信号显示的全息图像的表面形貌进行评价,即本发明的实施例提供了一种可以对全息图像的表面形貌进行评价的方法。In the holographic image evaluation method provided by the embodiment of the present invention, firstly, according to the depth of the holographic imaging layer, m holographic imaging layer signals of different depths in the holographic display signal are divided into n holographic imaging layer signal groups of equal depth, and according to each The holographic imaging layer signal group displays the holographic image, and then acquires the holographic cross-sectional image of the holographic image displayed by each holographic imaging layer signal group in the depth direction of the holographic image, and finally, according to the coordinate value of each point on the outer contour of each holographic cross-sectional image and the The coordinate values of each point on the outer contour of the corresponding holographic imaging layer in the holographic image are designed to evaluate the surface morphology of the holographic image displayed by the holographic display signal, that is, the embodiment of the present invention provides a surface A method for evaluating morphology.
进一步的,本发明实施例还提供了一种上述步骤S14的实现方式。具体的,上述步骤S14中根据各个全息断面图像的外轮廓上的各个点的坐标值以及设计全息图像中对应的全息成像层的外轮廓上的各个点的坐标值对全息显示信号显示的全息图像的表面形貌进行评价包括:Further, the embodiment of the present invention also provides an implementation manner of the foregoing step S14. Specifically, in the above step S14, according to the coordinate values of each point on the outer contour of each holographic cross-sectional image and the coordinate value of each point on the outer contour of the corresponding holographic imaging layer in the designed holographic image, the holographic image displayed by the holographic display signal is The surface topography to be evaluated includes:
S141、以全息断面图像的外轮廓所在平面内任一点为原点作多条射线。S141 , taking any point in the plane where the outer contour of the holographic cross-sectional image is located as the origin to create a plurality of rays.
其中,相邻两条射线的夹角均为预设值。Wherein, the included angle of two adjacent rays is a preset value.
示例性的,以下以全息断面图像为圆环且以圆环的圆心为原点作射线,相邻两条射线的夹角为30°为例对本发明实施例进行说明。具体的,参照图6所示,以圆环的圆心O为原点,作了射线12条射线(射线1至射线12),相临相邻两条射线(例如:射线1与射线2、射线12与射线L等)的夹角为均为30°,该12条射线与全息断面图像的外轮廓(圆环的外圆)的具有12个交点(点A至点L)。Exemplarily, the embodiment of the present invention will be described below by taking the holographic cross-sectional image as a ring and the center of the ring as the origin as a ray, and the angle between two adjacent rays is 30°. Specifically, as shown in FIG. 6, taking the center O of the ring as the origin, 12 rays (ray 1 to ray 12) are made, and two adjacent rays (for example: ray 1 and ray 2, ray 12) are adjacent to each other. The included angles with rays L, etc.) are all 30°, and the 12 rays have 12 intersection points (point A to point L) with the outer contour (outer circle of the ring) of the holographic cross-sectional image.
需要说明的是,当全息像为不规则图形时,全体图像评价方法的原理相同,不同之处在于,需要根据图像特点设定原点(可以为位于外轮廓内或外轮廓上的任一点),然后根据原点作多条射线确定交点,并获取射线与外轮廓的交点的坐标值,最后将各个交点的坐标值和理论值进行比较,评价全息图像的成像质量。It should be noted that when the holographic image is an irregular figure, the principle of the overall image evaluation method is the same. Then make multiple rays according to the origin to determine the intersection point, and obtain the coordinate value of the intersection point between the ray and the outer contour, and finally compare the coordinate value of each intersection point with the theoretical value to evaluate the imaging quality of the holographic image.
S142、计算各射线与全息断面图像的外轮廓的交点的坐标值。S142: Calculate the coordinate value of the intersection of each ray and the outer contour of the holographic cross-sectional image.
即,分别计算点A、点B、点C、点D、点E、点F、点G、点H、点I、点J、点K以及点L的坐标值。That is, the coordinate values of point A, point B, point C, point D, point E, point F, point G, point H, point I, point J, point K, and point L are calculated respectively.
S143、根据各射线与全息断面图像的外轮廓的交点的坐标值以及设计全息图像中对应的全息成像层的外轮廓上与交点对应的点坐标值判断显示全息图像的表面形貌与设计全息图像的表面形貌是否相同。S143, according to the coordinate value of the intersection of each ray and the outer contour of the holographic cross-sectional image and the coordinate value of the point corresponding to the intersection on the outer contour of the corresponding holographic imaging layer in the designed holographic image, determine the surface topography of the displayed holographic image and the designed holographic image whether the surface morphology is the same.
进一步,如图7所示,依次将第1个全息图像信号组对应的全息图像至第n个全息图像信号组对应的全息图像的断面图像的外轮廓上的点a连接起来、第1个全息图像信号组对应的全息图像至第n个全息图像信号组对应的全息图像的外轮廓上的点b连接起来,直到将第1个全息图像信号组对应的全息图像至第n个全息图像信号组对应的全息图像的外轮廓上的点L连接起来,则可在球形全息图像上获取12个闭合图形,且该12个闭合图形以及各全息图像信号组对应的全息图像的断面图像的外轮廓可以形成全息图像上的三维网格图。Further, as shown in FIG. 7 , sequentially connect the holographic image corresponding to the first holographic image signal group to the point a on the outer contour of the cross-sectional image of the holographic image corresponding to the nth holographic image signal group, and the first holographic image Connect the holographic image corresponding to the image signal group to the point b on the outer contour of the holographic image corresponding to the nth holographic image signal group, until the holographic image corresponding to the first holographic image signal group is connected to the nth holographic image signal group. If the points L on the outer contour of the corresponding holographic image are connected, 12 closed figures can be obtained on the spherical holographic image, and the 12 closed figures and the outer contour of the cross-sectional image of the holographic image corresponding to each holographic image signal group can be obtained. A three-dimensional grid map is formed on the holographic image.
可选的,多条射线将全息断面图像的外轮廓分为x份,x为3的整数倍。示例性的,x可以为12、24、36等值。Optionally, the multiple rays divide the outer contour of the holographic cross-sectional image into x parts, where x is an integer multiple of 3. Exemplarily, x may be 12, 24, 36, or the like.
设置x为3的整数倍,可以简化后续确定全息图像表面形貌的计算。Setting x to be an integer multiple of 3 can simplify the subsequent calculation of determining the surface topography of the holographic image.
本发明再一实施例提供一种与上述实施例提供的全息图像评价方法相对应的全息图像评价装置。具体的,参照图8所示,该全息图像评价装置800包括:Yet another embodiment of the present invention provides a holographic image evaluation device corresponding to the holographic image evaluation method provided by the above-mentioned embodiments. Specifically, as shown in FIG. 8 , the holographic image evaluation device 800 includes:
显示单元81,用于按照全息成像层的深度将全息显示信号中的m个不同深度的全息成像层信号分为n个等深度的全息成像层信号组,并分别根据各个全息成像层信号组显示全息图像。The display unit 81 is configured to divide m holographic imaging layer signals of different depths in the holographic display signal into n holographic imaging layer signal groups of equal depth according to the depth of the holographic imaging layer, and display the signals according to each holographic imaging layer signal group respectively. Holographic image.
其中,m、n均为正整数,且m大于或等于n。Among them, m and n are both positive integers, and m is greater than or equal to n.
获取单元82,用于在全息图像的深度方向上获取各个全息成像层信号组显示的全息图像的全息断面图像。The acquiring unit 82 is configured to acquire, in the depth direction of the holographic image, the holographic cross-sectional image of the holographic image displayed by each holographic imaging layer signal group.
处理单元83,根据各个全息断面图像的外轮廓上的各个点的坐标值以及设计全息图像中对应的全息成像层的外轮廓上的各个点的坐标值对全息显示信号显示的全息图像的表面形貌进行评价。The processing unit 83 , according to the coordinate value of each point on the outer contour of each holographic cross-sectional image and the coordinate value of each point on the outer contour of the corresponding holographic imaging layer in the designed holographic image, analyzes the surface shape of the holographic image displayed by the holographic display signal. Appearance evaluation.
可选的,处理单元83具体用于以全息断面图像的外轮廓所在平面内任一点为原点作多条射线,计算各射线与全息断面图像的外轮廓的交点的坐标值,根据各射线与全息断面图像的外轮廓的交点的坐标值以及各射线与设计全息图像中对应的全息成像层的外轮廓的交点的坐标值判断显示全息图像的表面形貌与设计全息图像的表面形貌是否相同。Optionally, the processing unit 83 is specifically used to make multiple rays with any point in the plane where the outer contour of the holographic cross-sectional image is located as the origin, and calculate the coordinate value of the intersection of each ray and the outer contour of the holographic cross-sectional image. The coordinate value of the intersection of the outer contour of the cross-sectional image and the coordinate value of the intersection of each ray and the outer contour of the corresponding holographic imaging layer in the designed holographic image is used to determine whether the surface topography of the displayed holographic image is the same as that of the designed holographic image.
可选的,n大于或等于10且小于或等于100。Optionally, n is greater than or equal to 10 and less than or equal to 100.
可选的,多条射线将全息断面图像的外轮廓分为x份,x为3的整数倍。Optionally, the multiple rays divide the outer contour of the holographic cross-sectional image into x parts, where x is an integer multiple of 3.
可选的,参照图4所示,显示单元81为显示屏或空间光调制器;Optionally, as shown in FIG. 4 , the display unit 81 is a display screen or a spatial light modulator;
获取单元82为位于全息图像的深度方向上的照相机。The acquisition unit 82 is a camera located in the depth direction of the holographic image.
需要说明的是,上述提供的全息图像评价方法的设计原理与本发明实施例提供的全息图像评价装置的设计原理完全相同,因此上述实施例提供的全息图像评价方法中的全部解释说明均可以援引至本发明实施例提供的全息图像评价装置中。It should be noted that the design principle of the holographic image evaluation method provided above is exactly the same as the design principle of the holographic image evaluation device provided by the embodiment of the present invention, so all the explanations in the holographic image evaluation method provided by the above embodiment can be cited to the holographic image evaluation device provided by the embodiment of the present invention.
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。The above are only specific embodiments of the present invention, but the protection scope of the present invention is not limited thereto. Any person skilled in the art who is familiar with the technical scope disclosed by the present invention can easily think of changes or substitutions. All should be covered within the protection scope of the present invention. Therefore, the protection scope of the present invention should be subject to the protection scope of the claims.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201710179844.0A CN106896690B (en) | 2017-03-23 | 2017-03-23 | A holographic image evaluation method and device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201710179844.0A CN106896690B (en) | 2017-03-23 | 2017-03-23 | A holographic image evaluation method and device |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN106896690A CN106896690A (en) | 2017-06-27 |
| CN106896690B true CN106896690B (en) | 2019-07-16 |
Family
ID=59193513
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201710179844.0A Active CN106896690B (en) | 2017-03-23 | 2017-03-23 | A holographic image evaluation method and device |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN106896690B (en) |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103227930A (en) * | 2012-01-27 | 2013-07-31 | 三星电子株式会社 | Image processing apparatus and method |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20150081010A (en) * | 2014-01-03 | 2015-07-13 | 한국전자통신연구원 | Apparatus and method for measurement and evaluation of field of view of reconstructed image of hologram |
| KR102083875B1 (en) * | 2014-08-11 | 2020-03-03 | 한국전자통신연구원 | Apparatus and method for measuring quality of holographic image |
| KR101803139B1 (en) * | 2015-01-27 | 2017-11-29 | 한국전자통신연구원 | Method and apparatus for correcting distortion of 3d hologram |
| KR102404416B1 (en) * | 2015-07-21 | 2022-06-07 | 한국전자통신연구원 | Apparatus and method of image-quality measurement for hologram images |
-
2017
- 2017-03-23 CN CN201710179844.0A patent/CN106896690B/en active Active
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103227930A (en) * | 2012-01-27 | 2013-07-31 | 三星电子株式会社 | Image processing apparatus and method |
Also Published As
| Publication number | Publication date |
|---|---|
| CN106896690A (en) | 2017-06-27 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11573317B2 (en) | Augmented reality platform and method for use of same | |
| Feng et al. | Fringe pattern analysis using deep learning | |
| US20140300941A1 (en) | Method and apparatus for generating hologram based on multi-view image | |
| KR102467556B1 (en) | Precise 360 image production technique using measured depth information | |
| CN113593009B (en) | A reflection-type acoustic holographic imaging method based on metasurface | |
| CN113587852A (en) | Color fringe projection three-dimensional measurement method based on improved three-step phase shift | |
| KR101854612B1 (en) | Apparatus and Method for Exemplar-Based Image Inpainting for Spherical Panoramic Image | |
| US20140313555A1 (en) | Digital hologram synthesis method and apparatus | |
| Yang et al. | Development and calibration of acoustic video camera system for moving vehicles | |
| JP2018005542A (en) | Image processing device, imaging apparatus, image processing method, image processing program, and storage medium | |
| KR101549178B1 (en) | Hologram generation apparatus and method | |
| CN106896690B (en) | A holographic image evaluation method and device | |
| CN114463166B (en) | Processing method and system for display image of curved display screen | |
| US10996628B2 (en) | Apparatus and method for evaluating hologram encoding/holographic image quality for amplitude-modulation hologram | |
| CN112288847B (en) | Light field three-dimensional reconstruction method based on fast Fourier transform | |
| CN111583323A (en) | Single-frame structured light field three-dimensional imaging method and system | |
| US8022344B2 (en) | Optical wavefront control pattern generating apparatus and optical wavefront control pattern generating method | |
| CN110874047A (en) | Method and device for holographing image under endoscope | |
| US20240089689A1 (en) | Method for determining a personalized head-related transfer function | |
| CN109855558B (en) | Three-dimensional reconstruction method of digital holography | |
| CN118670254B (en) | A three-dimensional measurement method, device and system based on multi-scale parallel single pixel | |
| KR20150076526A (en) | APPARATUS AND METHOD FOR PRODUCING 3-Dimension HOLOGRAM IMAGE | |
| CN119515945B (en) | High-precision three-dimensional surface reconstruction method and device based on polarization information enhancement | |
| CN116105632B (en) | A self-supervised phase unwrapping method and device for structured light three-dimensional imaging | |
| CN114742930B (en) | Image generation method, device, equipment and storage medium |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |