CN106927840B - Thermal shock resistant complex phase ceramic material and preparation of ceramic discharge spout based on same - Google Patents
Thermal shock resistant complex phase ceramic material and preparation of ceramic discharge spout based on same Download PDFInfo
- Publication number
- CN106927840B CN106927840B CN201710217529.2A CN201710217529A CN106927840B CN 106927840 B CN106927840 B CN 106927840B CN 201710217529 A CN201710217529 A CN 201710217529A CN 106927840 B CN106927840 B CN 106927840B
- Authority
- CN
- China
- Prior art keywords
- thermal shock
- phase
- ceramic
- ceramic material
- raw materials
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000035939 shock Effects 0.000 title claims abstract description 50
- 239000000919 ceramic Substances 0.000 title claims abstract description 49
- 229910010293 ceramic material Inorganic materials 0.000 title claims abstract description 26
- 238000002360 preparation method Methods 0.000 title claims abstract description 14
- 239000002131 composite material Substances 0.000 claims abstract description 51
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims abstract description 40
- 239000002994 raw material Substances 0.000 claims abstract description 37
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims abstract description 25
- 239000000843 powder Substances 0.000 claims abstract description 23
- 238000000889 atomisation Methods 0.000 claims abstract description 18
- 239000011230 binding agent Substances 0.000 claims abstract description 17
- 229910010413 TiO 2 Inorganic materials 0.000 claims abstract description 16
- 229910004298 SiO 2 Inorganic materials 0.000 claims abstract description 14
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 13
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 11
- 239000000956 alloy Substances 0.000 claims abstract description 11
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 claims abstract description 11
- 229910052863 mullite Inorganic materials 0.000 claims abstract description 11
- 238000000462 isostatic pressing Methods 0.000 claims abstract description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 20
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 8
- 229910052593 corundum Inorganic materials 0.000 claims description 8
- 239000011159 matrix material Substances 0.000 claims description 8
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 8
- 239000010431 corundum Substances 0.000 claims description 7
- 239000004375 Dextrin Substances 0.000 claims description 4
- 229920001353 Dextrin Polymers 0.000 claims description 4
- 235000019425 dextrin Nutrition 0.000 claims description 4
- 229920000609 methyl cellulose Polymers 0.000 claims description 4
- 239000001923 methylcellulose Substances 0.000 claims description 4
- 235000010981 methylcellulose Nutrition 0.000 claims description 4
- 235000019422 polyvinyl alcohol Nutrition 0.000 claims description 3
- 239000000463 material Substances 0.000 abstract description 17
- 238000005260 corrosion Methods 0.000 abstract description 9
- 229910052751 metal Inorganic materials 0.000 abstract description 9
- 239000002184 metal Substances 0.000 abstract description 9
- 230000007797 corrosion Effects 0.000 abstract description 8
- 230000003628 erosive effect Effects 0.000 abstract description 3
- 238000002844 melting Methods 0.000 abstract description 2
- 230000008018 melting Effects 0.000 abstract description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 23
- 239000000203 mixture Substances 0.000 description 13
- 239000000395 magnesium oxide Substances 0.000 description 12
- 229910000601 superalloy Inorganic materials 0.000 description 12
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 238000005245 sintering Methods 0.000 description 8
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 8
- 239000008187 granular material Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- -1 sieve Substances 0.000 description 6
- 229910052814 silicon oxide Inorganic materials 0.000 description 6
- 238000005452 bending Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000010304 firing Methods 0.000 description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 2
- 238000010146 3D printing Methods 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000002083 X-ray spectrum Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000009694 cold isostatic pressing Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 229910002085 magnesia-stabilized zirconia Inorganic materials 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 239000011858 nanopowder Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
- 229910001233 yttria-stabilized zirconia Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/10—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
- C04B35/101—Refractories from grain sized mixtures
- C04B35/106—Refractories from grain sized mixtures containing zirconium oxide or zircon (ZrSiO4)
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
- B22F9/082—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3206—Magnesium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3225—Yttrium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3232—Titanium oxides or titanates, e.g. rutile or anatase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3244—Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3418—Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/9607—Thermal properties, e.g. thermal expansion coefficient
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/9669—Resistance against chemicals, e.g. against molten glass or molten salts
- C04B2235/9676—Resistance against chemicals, e.g. against molten glass or molten salts against molten metals such as steel or aluminium
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
本发明涉及抗热震复相陶瓷材料及基于该材料的陶瓷漏嘴的制备。将含下述质量分数的原料:Al2O3 69.01%~76.00%、ZrO2 17.01%~24.13%、SiO2 5.29%~5.97%、MgO 0.05%~0.89%或Y2O3 0.05%~1.33%、TiO2 0.05%~0.19%、结合剂0.5%~1.5%混合;经90~220MPa等静压成型,在1630~1680℃温度范围高温烧结,制得抗热震复相陶瓷材料漏嘴。所述的抗热震复相陶瓷材料含有α‑氧化铝相、氧化锆相和莫来石相,适用于制成抗热震复相陶瓷漏嘴。与现有技术相比,本发明提供的抗热震复相陶瓷材料,由于含有相当数量的较低热膨胀系数莫来石相和抗侵蚀性能好、强度高的氧化锆,具有耐高温、耐熔融金属侵蚀,以及抗热震性能优越等特点;克服了传统的陶瓷漏嘴缺点,适合用于高温合金雾化制粉。
The invention relates to the preparation of thermal shock resistant multiphase ceramic material and ceramic leak nozzle based on the material. Raw materials containing the following mass fractions: Al 2 O 3 69.01%-76.00%, ZrO 2 17.01%-24.13%, SiO 2 5.29%-5.97%, MgO 0.05%-0.89% or Y 2 O 3 0.05%-1.33 %, TiO 2 0.05%~0.19%, and binder 0.5%~1.5%; after isostatic pressing at 90~220MPa, and sintered at a high temperature in the temperature range of 1630~1680℃, the thermal shock resistant composite ceramic material leak nozzle is obtained. The thermal shock resistant composite ceramic material contains α-alumina phase, zirconia phase and mullite phase, and is suitable for making a thermal shock resistant composite ceramic leak nozzle. Compared with the prior art, the thermal shock-resistant multi-phase ceramic material provided by the present invention has high temperature resistance and melting resistance due to the mullite phase with a relatively low thermal expansion coefficient and zirconia with good corrosion resistance and high strength. It has the characteristics of metal erosion and thermal shock resistance; it overcomes the shortcomings of traditional ceramic leak nozzles, and is suitable for high-temperature alloy atomization powder making.
Description
技术领域technical field
本发明涉及一种陶瓷材料,尤其是涉及抗热震复相陶瓷材料及基于该材料的陶瓷漏嘴的制备。The invention relates to a ceramic material, in particular to the preparation of a thermal shock-resistant composite phase ceramic material and a ceramic leak nozzle based on the material.
背景技术Background technique
高温合金粉末是现代金属增材制造复杂部件的重要原料,陶瓷漏嘴是雾化法制备高温合金粉末装置的关键部件之一。传统的陶瓷漏嘴,在内置1500℃熔融金属,外侧高速气流喷吹的极端环境下,很容易产生裂纹或“炸裂”,或由于耐高温、耐金属熔体侵蚀差,造成雾化制成的高温合金粉末成球性差,并可引起熔融金属从裂缝快速流出的危险。Superalloy powder is an important raw material for modern metal additive manufacturing of complex parts, and ceramic nozzle is one of the key components of the device for preparing superalloy powder by atomization method. Traditional ceramic leak nozzles are prone to cracks or "bursts" in the extreme environment of built-in 1500°C molten metal and high-speed airflow blowing outside, or high temperature caused by atomization due to poor resistance to high temperature and corrosion of metal melt Alloy powders are poorly spheroidized and can pose a risk of rapid outflow of molten metal from cracks.
中国专利CN106242565A公开了一种耐磨ZrO2-Al2O3复相陶瓷颗粒及其制备方法和应用,属于陶瓷复合材料制备技术领域,耐磨ZrO2-Al2O3复相陶瓷颗粒组成成分的质量分数为:10%~90%的稳定ZrO2以及10%~90%的Al2O3;采用电熔融、水冷制备得表面粗糙、粒径为0.5~7mm的高耐磨性ZrO2-Al2O3复相陶瓷颗粒,生产效率高,性能稳定,并将耐磨ZrO2-Al2O3复相陶瓷颗粒应用于制备钢铁基复合材料的增强体,能显著增强复合材料耐磨性。但是该专利中ZrO2-Al2O3复相陶瓷颗粒主要改善了材料耐磨性能,没有涉及改善陶瓷材料的抗热震性能;需要在1800℃以上电熔融、水冷制备,其制备过程能耗高;并且仅涉及0.5~7mm的ZrO2-Al2O3耐磨陶瓷颗粒,没有涉及以该材料为基体制备抗热震块体。Chinese patent CN106242565A discloses a wear-resistant ZrO 2 -Al 2 O 3 composite ceramic particle and its preparation method and application, belonging to the technical field of ceramic composite material preparation, and the composition of the wear-resistant ZrO 2 -Al 2 O 3 composite ceramic particle The mass fraction is: 10% to 90% of stable ZrO 2 and 10% to 90% of Al 2 O 3 ; high wear resistance ZrO 2 - Al 2 O 3 composite ceramic particles have high production efficiency and stable performance, and the application of wear-resistant ZrO 2 -Al 2 O 3 composite ceramic particles to the reinforcement of steel-based composite materials can significantly enhance the wear resistance of composite materials . However, the ZrO 2 -Al 2 O 3 composite ceramic particles in this patent mainly improve the wear resistance of the material, and do not involve improving the thermal shock resistance of the ceramic material; it needs to be prepared by electric melting and water cooling above 1800°C, and the preparation process consumes energy High; and it only involves ZrO 2 -Al 2 O 3 wear-resistant ceramic particles of 0.5-7 mm, and does not involve the preparation of thermal shock-resistant blocks using this material as a matrix.
中国专利CN101209925B公开了一种提高氧化铝/氧化钛复相精细陶瓷材料弯曲强度和断裂韧性的方法,解决了现有Al2O3/TiO2复相陶瓷的弯曲强度、断裂韧性和硬度性能低的问题。该方法的步骤是:在球磨机中用去离子水做介质将精细氧化铝和氧化钛纳米粉体、改性剂、粘结剂聚乙烯醇混合成均匀浆料;然后喷雾干燥再造粒;随后对所得粉体进行热处理;经过热处理的粉体进行预压成型;坯料进行冷等静压成型后烧结。上述方法实现了精细陶瓷材料制备过程中陶瓷的低温快速烧结,明显降低了生产的成本,同时提高了产品的弯曲强度、断裂韧性和硬度。该专利主要改善了现有Al2O3/TiO2复相陶瓷的弯曲强度、断裂韧性和硬度性能低的问题,并有低温快速烧结的优点,同时没有涉及改善陶瓷材料的抗热震性能和高温抗侵蚀性能,特别是在1000~1500℃烧结的材料,耐高温性能不够,不适用于高温合金雾化制粉漏嘴;并且主要原料采用纳米氧化铝和纳米氧化钛粉体,成本较高。Chinese patent CN101209925B discloses a method for improving the bending strength and fracture toughness of alumina/titanium oxide composite fine ceramic materials, which solves the low bending strength, fracture toughness and hardness of existing Al 2 O 3 /TiO 2 composite ceramics The problem. The steps of the method are: using deionized water as a medium in a ball mill to mix fine aluminum oxide and titanium oxide nanopowders, modifiers, and binder polyvinyl alcohol into a uniform slurry; then spray drying and then granulate; The obtained powder is heat-treated; the heat-treated powder is pre-pressed; the blank is sintered after cold isostatic pressing. The above method realizes the low-temperature rapid sintering of ceramics in the preparation process of fine ceramic materials, obviously reduces the production cost, and improves the bending strength, fracture toughness and hardness of the product at the same time. This patent mainly improves the problems of low bending strength, fracture toughness and hardness of the existing Al 2 O 3 /TiO 2 composite ceramics, and has the advantages of low-temperature rapid sintering, and does not involve improving the thermal shock resistance and High-temperature corrosion resistance, especially for materials sintered at 1000-1500 °C, the high-temperature resistance is not enough, and it is not suitable for high-temperature alloy atomization powder-making nozzles; and the main raw materials are nano-alumina and nano-titanium oxide powders, and the cost is relatively high.
发明内容Contents of the invention
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种抗热震复相陶瓷材料及基于该材料的陶瓷漏嘴的制备。The object of the present invention is to provide a thermal shock-resistant composite ceramic material and the preparation of a ceramic leak nozzle based on the material in order to overcome the above-mentioned defects in the prior art.
本发明的目的可以通过以下技术方案来实现:The purpose of the present invention can be achieved through the following technical solutions:
一种抗热震复相陶瓷材料,由含下述质量分数的原料制成:Al2O3 69.01%~76.00%、ZrO2 17.01%~24.13%、SiO2 5.29%~5.97%、MgO 0.05%~0.89%或Y2O30.05%~1.33%、TiO2 0.05%~0.19%、结合剂0.5%~1.5%。所述的结合剂为PVA、甲基纤维素或糊精中的一种或几种。所述的结合剂为PVA、甲基纤维素或糊精中的一种或几种。A thermal shock-resistant composite ceramic material, made of raw materials containing the following mass fractions: Al 2 O 3 69.01%-76.00%, ZrO 2 17.01%-24.13%, SiO 2 5.29%-5.97%, MgO 0.05% ~0.89% or Y 2 O 3 0.05%~1.33%, TiO 2 0.05%~0.19%, binder 0.5%~1.5%. The binding agent is one or more of PVA, methylcellulose or dextrin. The binding agent is one or more of PVA, methylcellulose or dextrin.
原料中的Al2O3一部分形成耐高温的刚玉相基质相,其余部分与原料中含有的SiO2形成材料的莫来石相,低于所述的加入量,将会造成材料的耐高温性和机械强度下降;Al2O3加入量过多,复合材料中的刚玉相/莫来石比例过高,将会造成材料的抗热震性下降。 Part of the Al2O3 in the raw material forms a high temperature resistant corundum phase matrix phase, and the rest forms the mullite phase of the material with the SiO2 contained in the raw material. If the addition amount is lower than the stated amount, it will cause the high temperature resistance of the material and mechanical strength decrease; too much Al 2 O 3 is added, and the ratio of corundum phase/mullite in the composite material is too high, which will cause the thermal shock resistance of the material to decrease.
原料中加入的17.01%~24.13%ZrO2与材料中的氧化铝形成复合增韧基质材料,起提高材料的机械性能和抗热震性的作用,并可提高复合材料的高温抗侵蚀性能。The 17.01% -24.13 % ZrO2 added to the raw material forms a composite toughening matrix material with the alumina in the material, which can improve the mechanical properties and thermal shock resistance of the material, and can improve the high temperature corrosion resistance of the composite material.
原料中加入的少量的MgO或Y2O3、TiO2主要是起烧结助剂和氧化锆稳定剂的作用。A small amount of MgO or Y 2 O 3 , TiO 2 added to the raw material is mainly used as a sintering aid and a zirconia stabilizer.
进一步地,所述的抗热震复相陶瓷材料含有α-氧化铝相(刚玉相)、氧化锆相和莫来石相。氧化锆相和刚玉相在复相材料中为基质相,具有耐高温、耐腐蚀的特点。氧化锆相均匀分布在刚玉基质相中,在烧结过程中,随温度冷却,四方相氧化锆部分或全部转变成单斜氧化锆,并伴随一定的体积膨胀,在Al2O3和ZrO2晶界处产生压应力,起到复合增韧的作用。莫来石是Al2O3和SiO2在高温下生成的矿物,晶体为细针状。膨胀系数(25~1000℃)5.3×10-6/℃,具有良好的抗热震性,在本发明的材料中,针状莫来石穿插分布在基质相之间,进一步提高了本发明的复相陶瓷漏嘴的抗热震性能。Further, the thermal shock resistant multi-phase ceramic material contains α-alumina phase (corundum phase), zirconia phase and mullite phase. The zirconia phase and the corundum phase are the matrix phases in the composite material, which have the characteristics of high temperature resistance and corrosion resistance. The zirconia phase is evenly distributed in the corundum matrix phase. During the sintering process, as the temperature cools, part or all of the tetragonal zirconia transforms into monoclinic zirconia, accompanied by a certain volume expansion. In Al 2 O 3 and ZrO 2 crystals Compressive stress is generated at the boundary, which plays the role of composite toughening. Mullite is a mineral produced by Al 2 O 3 and SiO 2 at high temperature, and its crystal is fine needle. Expansion coefficient (25-1000°C) 5.3×10 -6 /°C, good thermal shock resistance, in the material of the present invention, acicular mullite is interspersed and distributed between the matrix phases, which further improves the thermal shock resistance of the present invention Thermal Shock Resistance of Composite Ceramic Nozzles.
所述的抗热震复相陶瓷材料的制备方法,包括以下步骤:The preparation method of the thermal shock resistant composite ceramic material comprises the following steps:
1)将含下述质量分数的原料:Al2O3 69.01%~76.00%、ZrO2 17.01%~24.13%、SiO2 5.29%~5.97%、MgO 0.05%~0.89%或Y2O3 0.05%~1.33%、TiO2 0.05%~0.19%、结合剂0.5%~1.5%加水混合,加水量占原料与水总重量的4-6%;1) Raw materials containing the following mass fractions: Al 2 O 3 69.01%-76.00%, ZrO 2 17.01%-24.13%, SiO 2 5.29%-5.97%, MgO 0.05%-0.89% or Y 2 O 3 0.05% ~1.33%, TiO 2 0.05%~0.19%, binder 0.5%~1.5%, mixed with water, the amount of water added accounts for 4-6% of the total weight of raw materials and water;
2)将上述混合成分经90~220MPa等静压成型,在1630~1680℃温度范围高温烧结,随炉自然降温,制得抗热震复相陶瓷材料。2) The above mixed components are isostatically pressed at 90-220MPa, sintered at a high temperature in the temperature range of 1630-1680°C, and cooled naturally with the furnace to obtain a thermal shock-resistant composite ceramic material.
本发明还提供基于所述抗热震复相陶瓷材料的陶瓷漏嘴。The invention also provides a ceramic spout based on the thermal shock resistant multiphase ceramic material.
所述的陶瓷漏嘴的制备方法,包括以下步骤:The preparation method of the ceramic leak nozzle comprises the following steps:
1)将含下述质量分数的原料:Al2O3 69.01%~76.00%、ZrO2 17.01%~24.13%、SiO2 5.29%~5.97%、MgO 0.05%~0.89%或Y2O3 0.05%~1.33%、TiO2 0.05%~0.19%、结合剂0.5%~1.5%加水混合,加水量占原料与水总重量的4-6%;1) Raw materials containing the following mass fractions: Al 2 O 3 69.01%-76.00%, ZrO 2 17.01%-24.13%, SiO 2 5.29%-5.97%, MgO 0.05%-0.89% or Y 2 O 3 0.05% ~1.33%, TiO 2 0.05%~0.19%, binder 0.5%~1.5%, mixed with water, the amount of water added accounts for 4-6% of the total weight of raw materials and water;
2)将上述混合成分经90~220MPa等静压成型为漏嘴,在1630~1680℃温度范围高温烧结,制得抗热震复相陶瓷漏嘴。2) The above-mentioned mixed components are isostatically pressed at 90-220MPa to form a leak nozzle, and then sintered at a high temperature in the temperature range of 1630-1680°C to obtain a thermal shock-resistant composite ceramic leak nozzle.
所述的陶瓷漏嘴主要用于高温合金雾化制粉。The ceramic leak nozzle is mainly used for high-temperature alloy atomization powder making.
本发明通过对原料与原料配比进行优化选择,并在原料选择的基础上,优化高温烧结的工艺,使得材料含有α-氧化铝相、氧化锆相和莫来石相。本发明中高温烧结的温度与时间对于材料的性能有重要影响,如果在其他温度烧结会产生不良的烧成结果,温度过低或保温时间过短,会产生欠烧,材料的机械性能降低;温度过高或保温时间过长,会产生烧结变形。The invention optimizes the ratio of raw materials and raw materials, and optimizes the high-temperature sintering process on the basis of raw material selection, so that the material contains α-alumina phase, zirconia phase and mullite phase. The temperature and time of high-temperature sintering in the present invention have an important influence on the performance of the material. If sintering at other temperatures will produce poor firing results, if the temperature is too low or the holding time is too short, under-firing will occur and the mechanical properties of the material will be reduced; If the temperature is too high or the holding time is too long, sintering deformation will occur.
所述的抗热震复相陶瓷材料含有α-氧化铝相、氧化锆相和莫来石相,具有耐高温、耐熔融金属侵蚀,以及抗热震性能优越等特点,尤其适用于制成抗热震复相陶瓷漏嘴,因此,本发明提供了一种基于抗热震复相陶瓷材料的陶瓷漏嘴,克服了传统陶瓷漏嘴的缺点,所述的抗热震复相陶瓷漏嘴用于高温合金雾化制粉。The thermal shock-resistant composite ceramic material contains α-alumina phase, zirconia phase and mullite phase, and has the characteristics of high temperature resistance, molten metal erosion resistance, and excellent thermal shock resistance, and is especially suitable for making anti-corrosion Thermal shock composite phase ceramic nozzle, therefore, the present invention provides a ceramic nozzle based on thermal shock resistant composite phase ceramic material, which overcomes the shortcomings of traditional ceramic nozzles, and the thermal shock resistant composite phase ceramic nozzle is used for superalloy mist chemical powder.
与现有技术相比,本发明的有益效果是:提供的抗热震复相陶瓷材料,由于含有相当数量的较低热膨胀系数莫来石相和抗侵蚀性能好、强度高的氧化锆,具有耐高温、耐熔融金属侵蚀,以及抗热震性能优越等特点;克服了传统的陶瓷漏嘴缺点,适用用于高温合金雾化制粉。Compared with the prior art, the beneficial effect of the present invention is: the provided thermal shock-resistant composite ceramic material has a considerable amount of mullite phase with a relatively low thermal expansion coefficient and zirconia with good corrosion resistance and high strength. It has the characteristics of high temperature resistance, molten metal corrosion resistance, and thermal shock resistance; it overcomes the shortcomings of traditional ceramic leak nozzles, and is suitable for high-temperature alloy atomization powder production.
附图说明Description of drawings
图1:抗热震复相陶瓷漏嘴X-Ray图谱及分析结果;Figure 1: X-Ray spectrum and analysis results of thermal shock resistant composite ceramic leak nozzle;
图2:采用本发明陶瓷漏嘴制成的高温合金粉末SEM照片。Fig. 2: SEM photo of superalloy powder made by adopting the ceramic leak nozzle of the present invention.
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明进行详细说明。The present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments.
实施例1Example 1
按比例称取含氧化钇部分稳定的氧化锆、氧化铝、氧化硅、氧化钛原料:原料的化学组分质量分数为,Al2O3 69.02%、ZrO2 23.63%、SiO2 5.80%、Y2O3 1.33%、TiO20.19%、PVA结合剂0.5%;加入5%的水,将原料混合,过筛、造粒,然后再加入到模具中,再经220MPa等静压成型,在1630℃的温度下保温3h烧成,即制得抗热震复合陶瓷漏嘴毛坯,再经机加工,使其外形尺寸达到雾化法制备高温合金粉末装置装配要求。所得复合陶瓷材料矿相分析结果见图1,应用结果和相关数据见表1。Weigh the raw materials of zirconia, alumina, silicon oxide and titanium oxide partially stabilized with yttrium oxide in proportion: the chemical composition mass fractions of the raw materials are: Al 2 O 3 69.02%, ZrO 2 23.63%, SiO 2 5.80%, Y 2 O 3 1.33%, TiO 2 0.19%, PVA binder 0.5%; add 5% water, mix the raw materials, sieve, granulate, and then add to the mold, and then 220MPa isostatic pressing molding, at 1630 The temperature is kept at ℃ for 3 hours and fired to produce a thermal shock-resistant composite ceramic leak nozzle blank, which is then machined to make its external dimensions meet the assembly requirements of the device for preparing superalloy powders by atomization. The mineral phase analysis results of the obtained composite ceramic materials are shown in Figure 1, and the application results and related data are shown in Table 1.
实施例2Example 2
按比例称取含氧化镁部分稳定的氧化锆、氧化铝、氧化硅、氧化钛原料。原料的化学组分质量分数为,Al2O3 76%、ZrO2 17.36%、SiO2 5.97%、MgO 0.62%、TiO2 0.05%、糊精结合剂1.5%;加入5%的水,将原料混合,过筛、造粒,然后再加入到模具中,再经90MPa等静压成型,在1670℃的温度下保温2.5h烧成,即制得抗热震复合陶瓷漏嘴毛坯,再经机加工,使其外形尺寸达到雾化法制备高温合金粉末装置装配要求。应用结果和相关数据见表1。The raw materials of zirconia, alumina, silicon oxide and titanium oxide containing magnesia partially stabilized are weighed in proportion. The chemical composition mass fraction of the raw material is: Al 2 O 3 76%, ZrO 2 17.36%, SiO 2 5.97%, MgO 0.62%, TiO 2 0.05%, dextrin binder 1.5%; add 5% water, the raw material Mix, sieve, and granulate, then add to the mold, and then form by isostatic pressing at 90MPa, keep warm for 2.5h at a temperature of 1670°C and fire to obtain a thermal shock-resistant composite ceramic leak nozzle blank, and then machined , so that its external dimensions can meet the assembly requirements of the device for preparing superalloy powder by atomization method. The application results and related data are shown in Table 1.
实施例3Example 3
按比例称取含氧化镁部分稳定的氧化锆、氧化铝、氧化硅、氧化钛原料:原料的化学组分质量分数为:Al2O3 74.02%、ZrO2 19.30%、SiO2 5.84%、MgO 0.71%、TiO2 0.08%、甲基纤维素结合剂0.8%;加入5%的水,将原料混合,过筛、造粒,然后再加入到模具中,再经160MPa等静压成型,在1670℃的温度下保温2.5h烧成,即制得抗热震复合陶瓷漏嘴毛坯,再经机加工,使其外形尺寸达到雾化法制备高温合金粉末装置装配要求。应用结果和相关数据见表1。Weigh the zirconia, aluminum oxide, silicon oxide, and titanium oxide materials containing magnesia partially stabilized in proportion: the chemical composition mass fractions of the raw materials are: Al 2 O 3 74.02%, ZrO 2 19.30%, SiO 2 5.84%, MgO 0.71%, TiO 2 0.08%, methyl cellulose binder 0.8%; add 5% water, mix the raw materials, sieve, granulate, then add to the mold, and then 160MPa isostatic pressing molding, at 1670 The temperature is kept at ℃ for 2.5h and fired, and the thermal shock-resistant composite ceramic leak nozzle blank is obtained, and then machined to make its outer dimension meet the assembly requirements of the device for preparing superalloy powder by atomization method. The application results and related data are shown in Table 1.
实施例4Example 4
按比例称取氧化钇部分稳定的氧化锆、氧化铝、氧化硅、氧化钛原料:原料的化学组分质量分数为,Al2O3 74.55%、ZrO2 18.95%、SiO2 5.29%、Y2O3 0 1.07%、MgO 0.05%、TiO2 0.08%、PVA结合剂0.6%;加入5%的水,将原料混合,过筛、造粒,然后再加入到模具中,再经100MPa等静压成型,在1660℃的温度下保温3h烧成,即制得抗热震复合陶瓷漏嘴毛坯,再经机加工,使其外形尺寸达到雾化法制备高温合金粉末装置装配要求。应用结果和相关数据见表1。Weigh the raw materials of zirconia, alumina, silicon oxide and titanium oxide partially stabilized by yttrium oxide in proportion: the chemical composition mass fractions of the raw materials are: Al 2 O 3 74.55%, ZrO 2 18.95%, SiO 2 5.29%, Y 2 O 3 0 1.07%, MgO 0.05%, TiO 2 0.08%, PVA binder 0.6%; add 5% water, mix the raw materials, sieve, granulate, then add to the mold, and then press 100MPa isostatically Molded, kept at a temperature of 1660°C for 3 hours and fired to obtain a thermal shock-resistant composite ceramic leak nozzle blank, and then machined to make its external dimensions meet the assembly requirements of the device for preparing superalloy powders by atomization. The application results and related data are shown in Table 1.
实施例5Example 5
按比例称取氧化钇部分稳定的氧化锆和氧化镁部分稳定的氧化锆、氧化铝、氧化硅、氧化钛原料:原料的化学组分质量分数为,Al2O3 74.63%、ZrO2 18.91%、SiO2 5.50%、Y2O3 0.53%、MgO 0.35%、TiO2 0.08%、PVA结合剂0.6%;加入5%的水,将原料混合,过筛、造粒,然后再加入到模具中,再经100MPa等静压成型,在1660℃的温度下保温3h烧成,即制得抗热震复合陶瓷漏嘴毛坯,再经机加工,使其外形尺寸达到雾化法制备高温合金粉末装置装配要求。应用结果和相关数据见表1。Weigh yttria-stabilized zirconia and magnesia-stabilized zirconia, alumina, silicon oxide, and titania raw materials in proportion: the chemical composition mass fractions of the raw materials are: Al 2 O 3 74.63%, ZrO 2 18.91% , SiO 2 5.50%, Y 2 O 3 0.53%, MgO 0.35%, TiO 2 0.08%, PVA binder 0.6%; add 5% water, mix the raw materials, sieve, granulate, and then add to the mold , and then isostatically pressed at 100MPa, and fired at a temperature of 1660°C for 3 hours to obtain a thermal shock-resistant composite ceramic leak nozzle blank, and then machined to make its shape and size meet the atomization method to prepare superalloy powder. Require. The application results and related data are shown in Table 1.
实施例6Example 6
按比例称取氧化镁部分稳定的氧化锆、氧化铝、氧化硅、氧化钛原料:原料的化学组分质量分数为,Al2O3 69.02%、ZrO2 24.13%、SiO2 5.80%、MgO 0.89%、TiO2 0.12%、PVA结合剂0.5%,加入5%的水,将原料混合,过筛、造粒,然后再加入到模具中,再经100MPa等静压成型,在1660℃的温度下保温3h烧成,即制得抗热震复合陶瓷漏嘴毛坯,再经机加工,使其外形尺寸达到雾化法制备高温合金粉末装置装配要求。应用结果和相关数据见表1。Weigh zirconia, aluminum oxide, silicon oxide, and titanium oxide raw materials that are partially stabilized by magnesium oxide in proportion: the chemical composition mass fraction of raw materials is: Al 2 O 3 69.02%, ZrO 2 24.13%, SiO 2 5.80%, MgO 0.89 %, TiO 2 0.12%, PVA binder 0.5%, add 5% water, mix the raw materials, sieve, granulate, and then add to the mold, and then 100MPa isostatic pressing, at a temperature of 1660 ℃ After 3 hours of heat preservation and firing, the blank of thermal shock-resistant composite ceramic leak nozzle is obtained, and then machined to make its external dimension meet the assembly requirements of the device for preparing superalloy powder by atomization method. The application results and related data are shown in Table 1.
表1 抗热震复合陶瓷漏嘴材料分析与应用结果Table 1 Analysis and application results of thermal shock resistant composite ceramic leak nozzle materials
取实施例1-6制备的抗热震复合陶瓷漏嘴,在雾化法制备高温合金粉末装置装上,在上端和内侧与1500℃高温熔融合金接触,下端面及下端外侧10~70℃高速风冷条件下,进行应用和考核。结果显示,实施例1-6复合陶瓷漏嘴与高温熔融合金接触面没有出现熔融金属侵蚀,整体结构稳定,也不出现任何开裂、掉渣现象。实施例1制备的抗热震复合陶瓷漏嘴雾化制备的高温合金粉末球形度>0.9(见图2),实施例2-6制备的抗热震复合陶瓷漏嘴雾化制备的高温合金粉末球形度也都>0.9。Take the thermal shock-resistant composite ceramic leak nozzle prepared in Examples 1-6, install it in the device for preparing high-temperature alloy powder by atomization method, contact the upper end and inner side with 1500 ° C high-temperature molten alloy, and the lower end surface and the outer side of the lower end 10 ~ 70 ° C high-speed wind Under cold conditions, for application and assessment. The results show that the contact surface between the composite ceramic nozzle and the high-temperature molten alloy in Examples 1-6 does not appear molten metal erosion, the overall structure is stable, and there is no cracking or slag dropping. The sphericity of the superalloy powder prepared by atomization of the thermal shock-resistant composite ceramic nozzle prepared in Example 1 is >0.9 (see Figure 2), and the sphericity of the superalloy powder prepared by atomization of the thermal shock-resistant composite ceramic nozzle prepared in Examples 2-6 Also all > 0.9.
以上实施例表明本发明的复合陶瓷漏嘴性能稳定,抗热震性好,耐火度高,雾化制备的高温合金粉末球形度好,纯度高,适用于3D打印。具有耐高温、耐熔融金属侵蚀,以及抗热震性能优越等特点;克服了传统的陶瓷漏嘴的缺点,适合用于高温合金雾化制粉,有广阔的应用前景。The above examples show that the composite ceramic leak nozzle of the present invention has stable performance, good thermal shock resistance, high refractoriness, high-temperature alloy powder prepared by atomization has good sphericity and high purity, and is suitable for 3D printing. It has the characteristics of high temperature resistance, molten metal corrosion resistance, and superior thermal shock resistance; it overcomes the shortcomings of traditional ceramic leak nozzles, and is suitable for high-temperature alloy atomization powder making, and has broad application prospects.
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。The above descriptions of the embodiments are for those of ordinary skill in the art to understand and use the invention. It is obvious that those skilled in the art can easily make various modifications to these embodiments, and apply the general principles described here to other embodiments without creative effort. Therefore, the present invention is not limited to the above-mentioned embodiments. Improvements and modifications made by those skilled in the art according to the disclosure of the present invention without departing from the scope of the present invention should fall within the protection scope of the present invention.
Claims (7)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201710217529.2A CN106927840B (en) | 2017-04-05 | 2017-04-05 | Thermal shock resistant complex phase ceramic material and preparation of ceramic discharge spout based on same |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201710217529.2A CN106927840B (en) | 2017-04-05 | 2017-04-05 | Thermal shock resistant complex phase ceramic material and preparation of ceramic discharge spout based on same |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN106927840A CN106927840A (en) | 2017-07-07 |
| CN106927840B true CN106927840B (en) | 2019-12-10 |
Family
ID=59426265
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201710217529.2A Active CN106927840B (en) | 2017-04-05 | 2017-04-05 | Thermal shock resistant complex phase ceramic material and preparation of ceramic discharge spout based on same |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN106927840B (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN113956024B (en) * | 2021-11-29 | 2023-02-28 | 上海材料研究所 | A thermal shock resistant composite ceramic material |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1162580A (en) * | 1996-12-23 | 1997-10-22 | 唐山市燕山产业有限公司 | Wear resistant sintered zirconium boule composite and manufacture thereof |
| CN101300207A (en) * | 2005-09-26 | 2008-11-05 | 圣戈班欧洲设计研究中心 | Sintered refractory product exhibiting enhanced thermal shock resistance |
-
2017
- 2017-04-05 CN CN201710217529.2A patent/CN106927840B/en active Active
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1162580A (en) * | 1996-12-23 | 1997-10-22 | 唐山市燕山产业有限公司 | Wear resistant sintered zirconium boule composite and manufacture thereof |
| CN101300207A (en) * | 2005-09-26 | 2008-11-05 | 圣戈班欧洲设计研究中心 | Sintered refractory product exhibiting enhanced thermal shock resistance |
Also Published As
| Publication number | Publication date |
|---|---|
| CN106927840A (en) | 2017-07-07 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN103496990B (en) | High-temperature thermal-shock-resistant magnesia alumina spinel-zirconia complex-phase material and preparation method thereof | |
| CN103304227B (en) | Alumina-based ceramic core for directional solidification and preparation method thereof | |
| CN101386546B (en) | Self-reacting alumina-base composite ceramic mold core for fine casting and preparation method thereof | |
| CN101182193B (en) | A kind of preparation method of in-situ self-toughened alumina ceramics | |
| CN101913886B (en) | 95 chromium-aluminum-zirconium brick for coal water slurry pressurized gasifier and preparation method thereof | |
| CN113956024B (en) | A thermal shock resistant composite ceramic material | |
| CN108137412B (en) | Zirconia-spinel fused particles and refractory products obtained from said particles | |
| CN108424124B (en) | A kind of magnesia whisker in-situ synthesis of spinel reinforced magnesia-based crucible and preparation method thereof | |
| CN102424595A (en) | Preparation method of hard corrosion-resistant alumina fiberboard furnace material | |
| CN112830791A (en) | A kind of high-entropy ceramic and its preparation method and application | |
| CN109369196A (en) | A kind of quartz ramming material for induction furnace and preparation method thereof | |
| CN117088686A (en) | Modified zirconia coating and preparation method thereof | |
| CN108546093A (en) | Short fine magnesium oxide-based crucible of enhancing of a kind of aluminium oxide and preparation method thereof | |
| CN106927840B (en) | Thermal shock resistant complex phase ceramic material and preparation of ceramic discharge spout based on same | |
| CN109422537A (en) | Continuous casting is with exempting to toast refractory material and preparation method thereof | |
| CN103771878B (en) | A kind of method for making of andalusite brick | |
| CN101486572A (en) | Process for preparing ZrO2-Al2TiO5 composite material | |
| CN111925192A (en) | A method for preparing aluminum titanate-magnesium oxide composite ceramics based on 3D printing technology | |
| CN107417271A (en) | A kind of preparation method of the bar-shaped brilliant enhancing dimension stone of magnesia alumina spinel of rare earth aluminium (silicon) hydrochlorate | |
| CN103693979A (en) | Zirconium oxide composite boron nitride refractory product | |
| CN108503342A (en) | A kind of Carbon-free refractories and its preparation method and application | |
| CN102336575A (en) | Powder composition for heat insulation pouring materials and heat insulation pouring materials using the same | |
| WO2022193611A1 (en) | Basic porous ceramic matrix and preparation method therefor, electronic cigarette atomization core and electronic cigarette | |
| CN102503418B (en) | A kind of low temperature liquid phase sintering La2Zr2O7 ceramics and sintering method | |
| CN107399959B (en) | A kind of preparation method of alumina-magnesia-calcia composite material enhanced by nano-oxide |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| CP01 | Change in the name or title of a patent holder |
Address after: 200437 No. 99, Handan Road, Shanghai, Hongkou District Patentee after: Shanghai Material Research Institute Co.,Ltd. Address before: 200437 No. 99, Handan Road, Shanghai, Hongkou District Patentee before: SHANGHAI Research Institute OF MATERIALS |
|
| CP01 | Change in the name or title of a patent holder |