CN106952240A - A method for image de-blurring - Google Patents
A method for image de-blurring Download PDFInfo
- Publication number
- CN106952240A CN106952240A CN201710197474.3A CN201710197474A CN106952240A CN 106952240 A CN106952240 A CN 106952240A CN 201710197474 A CN201710197474 A CN 201710197474A CN 106952240 A CN106952240 A CN 106952240A
- Authority
- CN
- China
- Prior art keywords
- model
- image
- distribution
- point spread
- spread function
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/73—Deblurring; Sharpening
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20076—Probabilistic image processing
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20172—Image enhancement details
- G06T2207/20201—Motion blur correction
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Image Processing (AREA)
Abstract
Description
技术领域technical field
本发明涉及图像处理领域,具体地,涉及一种图像去运动模糊方法。The present invention relates to the field of image processing, in particular to an image motion blur removal method.
背景技术Background technique
图像去模糊问题的不适定性通过引入图像先验模型使其良态化,建立合适的图像先验模型成为实现图像去运动模糊的关键。基于统计模型的图像去运动模糊算法具有相对的优势。首先建立关于图像的先验分布模型,然后基于某些特定的准则推导原始图像、点扩散函数和参数等,从而实现图像去运动模糊。The ill-posedness of the image deblurring problem can be well-conditioned by introducing an image prior model, and establishing a suitable image prior model becomes the key to realizing image deblurring. Image deblurring algorithms based on statistical models have relative advantages. Firstly, the prior distribution model about the image is established, and then the original image, point spread function and parameters are derived based on certain specific criteria, so as to achieve image de-blurring.
尽管不同类型图像的灰度分布形状千差万别,但图像梯度分布形状却十分相似。近年来关于自然图像统计特性的研究表明自然图像的梯度分布服从重尾分布(heavy-tailed distribution)即自然图像具有很强的局部连续性,图像中的每一个像素和其周围的像素往往差别不大,只有在图像的边缘才会有较大的跳跃,因此自然图像的这种特征可以用其梯度分布的统计数据来描述。一幅自然图像的梯度值大部分为零或接近于零,其梯度值越接近于零其概率越大,离零越远其概率越小。Although the shape of the gray distribution of different types of images varies greatly, the shape of the image gradient distribution is very similar. In recent years, studies on the statistical characteristics of natural images have shown that the gradient distribution of natural images obeys heavy-tailed distribution, that is, natural images have strong local continuity, and each pixel in the image is often different from its surrounding pixels. Large, there will be a large jump only at the edge of the image, so this feature of the natural image can be described by the statistics of its gradient distribution. The gradient value of a natural image is mostly zero or close to zero, the closer the gradient value is to zero, the greater the probability, and the farther away from zero, the smaller the probability.
这种服从重尾分布的图像梯度分布模型作为图像先验被广泛运用于图像去运动模糊问题中。基于有限混合模型建模优势,Rob Fergus等人利用有限高斯混合模型来逼近这种分布,然而图像大多具有非线性、非高斯特性,并且局限于高斯分布的拟合能力,导致高斯混合模型不能完全、准确、有效地描述这些图像信息。同时有限高斯混合模型对异常值敏感,需要提高其稳健性。This image gradient distribution model subject to heavy-tailed distribution is widely used as image prior in the image motion blur problem. Based on the advantages of finite mixture model modeling, Rob Fergus et al. used finite Gaussian mixture model to approximate this distribution. However, most of the images have nonlinear and non-Gaussian characteristics, and are limited to the fitting ability of Gaussian distribution, so the Gaussian mixture model cannot be completely , Accurately and effectively describe these image information. At the same time, the finite Gaussian mixture model is sensitive to outliers, and its robustness needs to be improved.
在图像去运动模糊领域中,图像先验模型同样依赖于模型中成分函数中的参数如高斯分布的均值和方差,这些参数同样被看作是随机变量,用相应的概率分布对其进行描述。这样做的好处是,当图像复原过程中出现不确定因素时,复原的图像与实际的原始图像误差较小。In the field of image de-blurring, the image prior model also depends on the parameters in the component function of the model, such as the mean and variance of the Gaussian distribution. These parameters are also regarded as random variables and described by the corresponding probability distribution. The advantage of this is that when uncertain factors appear in the process of image restoration, the error between the restored image and the actual original image is small.
模型成分个数的确定是有限混合模型中一个关键问题。在用混合模型对图像梯度分布模型进行建模时,如果选择的模型个数过多时,会产生过拟合,而选择的模型个数过少时,将造成欠拟合,都无法对数据进行准确描述。所以模型个数选择准确度决定图像去运动模糊效果的好坏。Determining the number of model components is a key issue in finite mixture models. When using a mixed model to model the image gradient distribution model, if the number of models selected is too large, overfitting will occur, and when the number of models selected is too small, underfitting will result, and the data cannot be accurately calculated. describe. Therefore, the selection accuracy of the number of models determines the quality of the image de-blurring effect.
目前,已有的模型个数确定方法是根据经验值在一个大的范围选择不同的模型个数进行数据建模,然后根据另外一个模型选择评判准则判断建模结果,选择最好的建模结果对应的模型个数作为最优模型个数。但这类方法依赖于经验值的可靠程度,并且将模型选择和参数估计相分离,增加了计算量。At present, the existing method for determining the number of models is to select different numbers of models in a large range for data modeling based on empirical values, and then judge the modeling results according to another model selection criterion, and select the best modeling results The corresponding model number is taken as the optimal model number. However, such methods depend on the reliability of empirical values, and separate model selection from parameter estimation, which increases the amount of calculation.
综上所述,本申请发明人在实现本申请发明技术方案的过程中,发现上述技术至少存在如下技术问题:To sum up, in the process of realizing the technical solution of the invention of the present application, the inventor of the present application found that the above-mentioned technology has at least the following technical problems:
在现有技术中,现有的图像去运动模糊方法在对模型个数进行确定时,依赖于经验值,存在可靠程度较低,计算量较大的技术问题。In the prior art, the existing image motion blur removal method relies on empirical values when determining the number of models, which has the technical problems of low reliability and large amount of calculation.
发明内容Contents of the invention
本发明提供了一种图像去运动模糊方法,解决了现有的图像去运动模糊方法在对模型个数进行确定时,依赖于经验值,存在可靠程度较低,计算量较大的技术问题,实现了模型个数自适应选择,提高对图像梯度分布的拟合度,实现精准的图像去运动模糊的技术效果。The present invention provides an image de-blurring method, which solves the technical problems that the existing image de-blurring method relies on empirical values when determining the number of models, and has a low degree of reliability and a large amount of calculation. It realizes the adaptive selection of the number of models, improves the fitting degree of the image gradient distribution, and realizes the technical effect of precise image motion blur removal.
为解决上述技术问题,本申请提供了一种图像去运动模糊方法,所述方法包括:In order to solve the above technical problems, the present application provides a method for image motion blur removal, the method comprising:
步骤1:建立基于狄利克雷过程的无限学生-t分布混合模型,作为图像梯度分布模型和点扩散函数模型,根据观测图像自动获得无限学生-t分布混合模型个数;Step 1: Establish an infinite Student-t distribution mixture model based on the Dirichlet process, as an image gradient distribution model and a point spread function model, and automatically obtain the number of infinite Student-t distribution mixture models according to the observed image;
步骤1:建立基于狄利克雷过程的无限学生-t分布混合模型,作为图像梯度分布模型和点扩散函数模型,能根据观测图像自动获得混合模型个数,;Step 1: Establish an infinite Student-t distribution mixture model based on the Dirichlet process, as an image gradient distribution model and a point spread function model, which can automatically obtain the number of mixture models according to the observed image;
数学模型如下:The mathematical model is as follows:
其中,是似然函数,p(h)分别表示图像在梯度域的先验分布和点扩散函数的先验分布,是原始清晰图像在梯度域的真实值,h是点扩散函数的真实值,为原始清晰图像在梯度域的估计值,为点扩散函数的估计值。in, is the likelihood function, p(h) respectively represent the prior distribution of the image in the gradient domain and the prior distribution of the point spread function, is the real value of the original clear image in the gradient domain, h is the real value of the point spread function, is the estimated value of the original clear image in the gradient domain, is an estimate of the point spread function.
步骤2:将图像梯度分布模型和点扩散函数模型分别作为图像先验模型和点扩散函数先验模型,采用最大后验估计方法对图像进行去运动模糊处理,并利用变分贝叶斯推断估计模型参数。Step 2: Use the image gradient distribution model and the point spread function model as the image prior model and the point spread function prior model respectively, use the maximum a posteriori estimation method to de-blur the image, and use the variational Bayesian inference to estimate Model parameters.
图像梯度分布服从重尾分布,利用混合模型拟合该分布,建立图像梯度分布模型。其中模型成分函数是学生-t分布,模型成分个数趋于无穷。The image gradient distribution obeys the heavy-tailed distribution, and the mixture model is used to fit the distribution, and the image gradient distribution model is established. The model component function is a Student-t distribution, and the number of model components tends to infinity.
数学模型如下:The mathematical model is as follows:
其中,St()表示学生-t分布,均值为0,Λh表示点扩散函数分布的精度,w表示点扩散函数分布的自由度,Λf表示原始清晰图像在梯度域分布的精度,v表示原始清晰图像在梯度域分布的自由度,π()表示标签概率比例系数。Among them, St() represents the student-t distribution, the mean value is 0, Λ h represents the accuracy of the point spread function distribution, w represents the degree of freedom of the point spread function distribution, Λ f represents the accuracy of the original clear image distribution in the gradient domain, and v represents The degree of freedom of the distribution of the original clear image in the gradient domain, π() represents the label probability scale coefficient.
进一步的,利用无限学生-t分布混合模型拟合点扩散函数,建立点扩散函数模型,点扩散函数数学模型为:Further, the infinite Student-t distribution mixed model is used to fit the point spread function, and the point spread function model is established. The mathematical model of the point spread function is:
其中,St(·)表示学生-t分布,均值为0,Λ表示精度,v表示自由度,π(·)表示标签概率比例系数。Among them, St(·) represents the Student-t distribution with a mean of 0, Λ represents the accuracy, v represents the degree of freedom, and π(·) represents the label probability scale coefficient.
基于狄利克雷过程,建立图像梯度分布模型和点扩散函数模型中的参数先验模型,具体包括:Based on the Dirichlet process, the parameter prior model in the image gradient distribution model and point spread function model is established, including:
利用狄利克雷过程先验假设自动推断模型成分个数并拟合图像梯度分布模型和点扩散函数分布模型成分参数。Using the Dirichlet process prior assumption to automatically infer the number of model components and fit the image gradient distribution model and point spread function distribution model component parameters.
一个随机抽样分布G首先从一个Dirichlet过程中得到,然后我们从G中得到一个独立同分布的序列在给定时,第N个样本的分布可用式表示A random sampling distribution G is first obtained from a Dirichlet process, then we obtain from G an i.i.d. sequence given When , the distribution of the Nth sample can be expressed by
式中,假设表示的不同值的集合,nj表示值为θj的变量的数目。表示集中在质量点θj的数量。取θj值的概率为与前面取值不一样的概率为因此序列产生的‘成分’数目可能是可数无限的。通过将相同取值的划分到一组而得到集合{1,2,...N-1}的聚类。In the formula, suppose express The set of different values of , n j represents the number of variables whose value is θ j . Indicates the number concentrated in mass point θ j . The probability of taking the value of θj is The probability of being different from the previous value is Therefore the sequence The number of 'ingredients' produced may be countably infinite. by adding the same value Divide into a group to get the clustering of the set {1,2,...N-1}.
Dirichlet过程的折棍表示可由式(1)、式(2)、式(3)、式(4)和式(5)定义:The folding stick representation of the Dirichlet process can be defined by formula (1), formula (2), formula (3), formula (4) and formula (5):
Vj|α~Beta(1,α) (3)V j |α~Beta(1,α) (3)
强度参数α对确定的模型‘成分’数时起了非常重要的作用。当α→0时,整个棍折断分成一个成分,也就是新参数从基本分布G0得到的概率非常大。反之,当α→∞时,棍的长度变成无限小,G收敛到实际分布。The strength parameter α plays a very important role in determining the number of model 'components'. When α→0, the whole stick is broken into one component, that is, the probability that the new parameters are obtained from the basic distribution G 0 is very high. Conversely, when α→∞, the length of the stick becomes infinitely small, and G converges to the actual distribution.
从折棍模型看出,我们可以把DP看着是一个无限混合模型。数据x从Dirichlet过程中得到,同时引入隐藏变量z,其值等于j表示数据x与参数相关联。关于随机混合尺度G0的Dirichlet过程先验混合模型称为Dirichlet过程混合(Dirichlet Process Mixture,DPM)。数据集从基于折棍表示的DPM模型产生的过程如(6)至(9)所示:From the zigzagging model, we can view DP as an infinite mixture model. The data x is obtained from the Dirichlet process, and a hidden variable z is introduced at the same time, whose value is equal to j to indicate that the data x and parameters Associated. The Dirichlet process prior mixture model on the random mixing scale G 0 is called Dirichlet Process Mixture (Dirichlet Process Mixture, DPM). data set The process generated from the DPM model based on the zigzag stick representation is shown in (6) to (9):
Vn|α~Beta(1,α),n={1,2,…} (6)V n |α~Beta(1,α),n={1,2,…} (6)
zn|{V1,V1,…}~Mult(π(V)) (8)z n |{V 1 ,V 1 ,…}~Mult(π(V)) (8)
式中Mult表示多项式分布。成员函数通常选择高斯分布。Where Mult represents a multinomial distribution. member function Usually a Gaussian distribution is chosen.
进一步的,基于MAP估计准则,利用变分贝叶斯推断估计图像梯度分布模型和点扩散函数模型中的参数,实现图像去运动模糊具体包括:Further, based on the MAP estimation criterion, the variational Bayesian inference is used to estimate the parameters in the image gradient distribution model and the point spread function model, and the realization of image de-blurring includes:
首先,初始化图像梯度分布模型和点扩散函数模型中的模型参数:CXFirst, initialize the model parameters in the image gradient distribution model and point spread function model: CX
利用K-mean算法得到精度矩阵和噪声分布的精度初始值<Λnoise>=1、原始清晰图像f的初值为观测图像g<f>=g、点扩散函数的初值 Accuracy matrix obtained by K-mean algorithm with The initial value of the precision of the noise distribution <Λ noise >=1, the initial value of the original clear image f is the observed image g<f>=g, the initial value of the point spread function
然后,进行EM算法中的E步骤,计算隐含参数的变分后验q(zf)和q(zh);Then, carry out the E step in the EM algorithm to calculate the variational posterior q(z f ) and q(z h ) of the hidden parameters;
然后,进行EM算法中的M步骤,计算其他参数的变分后验 Then, the M step in the EM algorithm is performed to calculate the variational posterior of other parameters
然后,计算下界Lt(q),t表示迭代次数,Lt(q)是第t次迭代的下界,Lt-1(q)是第t-1次迭代的下界,ε是阈值若满足则循环结束,否则跳转到EM算法中的E步骤。Then, calculate the lower bound L t (q), where t represents the number of iterations, L t (q) is the lower bound of the t-th iteration, L t-1 (q) is the lower bound of the t-1th iteration, and ε is the threshold if it satisfies Then the loop ends, otherwise jump to step E in the EM algorithm.
相较于高斯分布,学生t-分布具有更长尾,因此它提供了对高斯分布的一个健壮的替代。Tzikas等人利用有限学生t-分布混合模型来逼近这种服从重尾分布的图像梯度分布。The Student's t-distribution has longer tails than the Gaussian distribution, so it provides a robust alternative to the Gaussian distribution. Tzikas et al. use a finite student's t-distribution mixture model to approximate this heavy-tailed image gradient distribution.
本申请针对有限混合模型对图像梯度分布模型建模时存在模型个数需事先设定的缺点,提出自适应模型个数选择方法,使得模型个数不依赖于经验值,能从观测数据中自动获取,提高模型对图像梯度分布的拟合度。This application aims at the disadvantage that the number of models needs to be set in advance when the finite mixture model is used to model the image gradient distribution model, and proposes an adaptive model number selection method, so that the number of models does not depend on the empirical value, and can be automatically obtained from the observation data. Acquired to improve the fit of the model to the gradient distribution of the image.
建立的自适应模型个数选择一方面实现模型成分个数无需根据经验值事先确定,而是自动地从图像中获取;另一方面真实反应不同图像结构的梯度分布。The selection of the number of adaptive models established on the one hand realizes that the number of model components does not need to be determined in advance according to empirical values, but is automatically obtained from the image; on the other hand, it truly reflects the gradient distribution of different image structures.
利用狄利克雷过程先验假设自动推断模型成分个数并精确地拟合各模型成分参数,并用学生t-分布作为模型成分函数。Using Dirichlet process prior assumptions to automatically infer the number of model components and accurately fit the parameters of each model component, and use Student's t-distribution as the model component function.
针对建立有效可靠的自适应模型选择所面临的主要问题,本申请技术路线引入狄利克雷过程混合模型。Aiming at the main problems faced in establishing an effective and reliable adaptive model selection, the technical route of this application introduces the Dirichlet process hybrid model.
对于模型选择问题,狄利克雷过程混合模型对预先未知模型成员个数提供了一个非参数的贝叶斯框架,将一个复杂分布分解为无限个分布分量,并确定各分布权重。这样,在设定拟合误差范围内,分量的个数可以自动确定。狄利克雷过程混合模型是一种混合模型。混合模型成员数目被看作一个随机变量,它的值能够自适应的从观测数据中得到。For the model selection problem, the Dirichlet process mixture model provides a non-parametric Bayesian framework for the unknown number of model members in advance, decomposes a complex distribution into infinite distribution components, and determines the weight of each distribution. In this way, within the set fitting error range, the number of components can be automatically determined. A Dirichlet process mixture model is a type of mixture model. The number of members in the mixture model is treated as a random variable whose value can be adaptively obtained from the observation data.
引入狄利克雷过程混合模型意味着模型个数具有无限性。事实上因观测图像数据有限,所以模型个数应该是有限的,相应的模型成分权重和模型参数也是有限的。为了解决这个问题,考虑构造狄利克雷过程的截断的折棍表示,将截断应用在变分分布而不是狄利克雷过程。学生t-分布与高斯分布相比较,它拥有更长的尾部,因此它具有更好的健壮性更抗噪,所以该模型选择学生t-分布作为模型成员函数。The introduction of the Dirichlet process mixture model means that the number of models is infinite. In fact, due to the limited observation image data, the number of models should be limited, and the corresponding model component weights and model parameters are also limited. To address this issue, consider constructing a truncated broken stick representation of the Dirichlet process, applying the truncation to the variational distribution instead of the Dirichlet process. Compared with the Gaussian distribution, the Student's t-distribution has a longer tail, so it has better robustness and anti-noise, so the model chooses the Student's t-distribution as the model member function.
通过建立折棍表示的基于学生t-分布模型实现自适应模型选择,模型个数能从图像中自动获取,并且由自适应模型选择得到不同图像结构的梯度分布模型的模型个数真值。The self-adaptive model selection is realized by establishing the student's t-distribution model represented by the folding stick, the number of models can be obtained automatically from the image, and the true value of the model number of the gradient distribution model of different image structures can be obtained by the self-adaptive model selection.
本申请提供的一个或多个技术方案,至少具有如下技术效果或优点:One or more technical solutions provided by this application have at least the following technical effects or advantages:
实现了模型个数自适应选择,提高对图像梯度分布的拟合度,实现精准的图像去运动模糊的技术效果。It realizes the adaptive selection of the number of models, improves the fitting degree of the image gradient distribution, and realizes the technical effect of precise image motion blur removal.
附图说明Description of drawings
此处所说明的附图用来提供对本发明实施例的进一步理解,构成本申请的一部分,并不构成对本发明实施例的限定;The drawings described here are used to provide a further understanding of the embodiments of the present invention, constitute a part of the application, and do not constitute a limitation to the embodiments of the present invention;
图1是本申请中图像去运动模糊方法的流程示意图。FIG. 1 is a schematic flowchart of an image motion blur removal method in the present application.
具体实施方式detailed description
本发明提供了一种图像去运动模糊方法,解决了现有的图像去运动模糊方法在对模型个数进行确定时,依赖于经验值,存在可靠程度较低,计算量较大的技术问题,实现了模型个数自适应选择,提高对图像梯度分布的拟合度,实现精准的图像去运动模糊的技术效果。The present invention provides an image de-blurring method, which solves the technical problems that the existing image de-blurring method relies on empirical values when determining the number of models, and has a low degree of reliability and a large amount of calculation. It realizes the adaptive selection of the number of models, improves the fitting degree of the image gradient distribution, and realizes the technical effect of precise image motion blur removal.
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行进一步的详细描述。需要说明的是,在相互不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。In order to understand the above-mentioned purpose, features and advantages of the present invention more clearly, the present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments. It should be noted that, under the condition of not conflicting with each other, the embodiments of the present application and the features in the embodiments can be combined with each other.
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用其他不同于在此描述范围内的其他方式来实施,因此,本发明的保护范围并不受下面公开的具体实施例的限制。In the following description, many specific details are set forth in order to fully understand the present invention. However, the present invention can also be implemented in other ways different from the scope of this description. Therefore, the protection scope of the present invention is not limited by the following disclosure. The limitations of specific examples.
具体数学模型为:The specific mathematical model is:
根据最大后验估计原理可得到原始清晰图像在梯度域的估计值和点扩散函数的估计值如下式:According to the principle of maximum a posteriori estimation, the estimated value of the original clear image in the gradient domain can be obtained and an estimate of the point spread function as follows:
式中,是似然函数,p(h)分别表示图像在梯度域的先验分布和点扩散函数的先验分布。In the formula, is the likelihood function, p(h) represent the prior distribution of the image in the gradient domain and the prior distribution of the point spread function, respectively.
图像先验分布可由无限学生-t混合模型(iSMM,infinite student’s-t MixtureModel)拟合,如下式:The image prior distribution can be fitted by an infinite student-t mixture model (iSMM, infinite student’s-t MixtureModel), as follows:
式中,St(·)表示学生-t分布,均值为0,Λf表示精度,v表示自由度,π(·)表示标签概率比例系数。In the formula, St(·) represents the Student-t distribution with a mean of 0, Λf represents the accuracy, v represents the degree of freedom, and π(·) represents the label probability proportional coefficient.
同样,点扩散函数的先验分布也由iSMM拟合,如下式:Similarly, the prior distribution of the point spread function is also fitted by iSMM, as follows:
式中,St(·)表示学生-t分布,均值为0,Λ表示精度,v表示自由度,π(·)表示标签概率比例系数。In the formula, St(·) represents the Student-t distribution with a mean of 0, Λ represents the accuracy, v represents the degree of freedom, and π(·) represents the label probability proportional coefficient.
考虑均值为0,方差为的高斯白噪声,如下式:Consider a mean of 0 and a variance of Gaussian white noise, as follows:
式中,N(·)表示高斯分布,均值为0,Λnoise表示精度。In the formula, N(·) represents Gaussian distribution with a mean value of 0, and Λ noise represents precision.
对于许多实际应用的概率,得到它们的后验分布或精确的计算概率分布的期望经常是不可行的。为了得到后验分布或期望,采用近似策略变分贝叶斯推理(VariationalBayesian Inference)。For many practical applications of probability, it is often not feasible to obtain their posterior distribution or to compute the expectation of the probability distribution exactly. In order to obtain the posterior distribution or expectation, an approximate strategy, Variational Bayesian Inference (Variational Bayesian Inference) is used.
用表示隐含变量和未知参数的集合。use Represents a collection of hidden variables and unknown parameters.
为了便于变分贝叶斯推理,应该将适当的先验分布加在这些参数上。当均值已知时,参数Λ的共轭先验分布为伽马分布:To facilitate variational Bayesian inference, appropriate prior distributions should be imposed on these parameters. When the mean is known, the conjugate prior distribution of the parameter Λ is a gamma distribution:
p(Λnoise)=Gam(Λnoise|ae,be) (-3)p(Λ noise )=Gam(Λ noise |a e ,b e ) (-3)
将伽马分布作用于超参,这是由于它与棍的长度是共轭关系:Apply the gamma distribution to the hyperparameter due to its conjugate relationship with the length of the stick:
由于没有共轭先验作用于v,因此把学生-t分布中的变量v看作参数而不是随机变量。Since there is no conjugate prior on v, the variable v in the Student-t distribution is treated as a parameter rather than a random variable.
观测数据和未知随机变量的联合分布如式:data observation and an unknown random variable The joint distribution of is as follows:
p(h,Φh)=p(h|Φh)p(Φh)p(h,Φ h )=p(h|Φ h )p(Φ h )
=p(h|zh,Λh,uh)p(Λh)p(uh|vh)p(zh|Vh)=p(h|z h ,Λ h ,u h )p(Λ h )p(u h |v h )p(z h |V h )
p(Vh|αh)p(αh)) (-8)p(V h |α h )p(α h )) (-8)
式中In the formula
包括更新模型参数的方法和更新点扩散函数和梯度图的方法:Includes methods for updating model parameters and methods for updating point spread functions and gradient maps:
用一系列变分后验分布来近似参数集合的真实后验分布。由于参数集合的无限性,用变分贝叶斯推理这些参数的后验概率实际上是不可行的。为了解决这个问题,考虑截断的折棍表示。在以前的文献中主要有两种截断的折棍表示。一种是截断应用在基于采样的推理来截断Dirichlet过程,另一种是将截断应用在变分分布而不是Dirichlet过程。在变分贝叶斯推理中选择的是第二种截断类型。此处的模型是完整的,仅仅是变分分布被截断。首先固定一个值K并设置关于V的变分后验有的性质q(VK)=1,意味着当k>K时,πk(V)=0。K是变分参数,它能够自由设置,因此它不是先验模型的一部分。Approximates the true posterior distribution for a set of parameters with a family of variational posterior distributions. Due to the infinite set of parameters, it is practically infeasible to reason about the posterior probabilities of these parameters with Variational Bayes. To solve this problem, consider the truncated zigzag representation. There are mainly two kinds of truncated zigzag representations in the previous literature. One is to apply truncation to sampling-based inference to truncate Dirichlet processes, and the other is to apply truncation to variational distributions instead of Dirichlet processes. It is the second truncation type that is chosen in variational Bayesian inference. The model here is complete, only the variational distribution is truncated. First fix a value K and set the variational posterior on V to have the property q(V K )=1, which means that when k>K, π k (V)=0. K is a variational parameter, which can be set freely, so it is not part of the prior model.
对于变分贝叶斯推理中,观测数据X的对数似然函数logp(X)的定义如式(-9):For variational Bayesian inference, the logarithmic likelihood function logp(X) of observed data X is defined as formula (-9):
logp(X)=L(q)+KL(q||p) (-9)logp(X)=L(q)+KL(q||p) (-9)
其中函数L(q)和KL(q||p)的定义分别如式(-10)和式(-11)所示:The definitions of functions L(q) and KL(q||p) are shown in formula (-10) and formula (-11) respectively:
函数KL(q||p)称为真实后验概率p(Φ|X)与近似后验概率q(Φ)的Kullback-Leibler散度(KL散度)。KL(q||p)≥0当且仅当q(Φ)=p(Φ|X)时等号成立。因此L(q)称为logp(X)的下界。q(Φ)最大化下界相当于最小化KL散度。The function KL(q||p) is called the Kullback-Leibler divergence (KL divergence) of the true posterior probability p(Φ|X) and the approximate posterior probability q(Φ). KL(q||p)≥0 if and only if q(Φ)=p(Φ|X). Therefore L(q) is called the lower bound of logp(X). Maximizing the lower bound on q(Φ) is equivalent to minimizing the KL divergence.
在变分后验推理中,后验分布采用与先验分布同样的形式。变分分布簇假设分解为式(-12)所式:In variational posterior inference, the posterior distribution takes the same form as the prior distribution. The variational distribution cluster hypothesis is decomposed into formula (-12):
根据式(-6)、(-7)、(-8)、(-10)和(-12)可以写成(-13)的表示形式。According to formula (-6), (-7), (-8), (-10) and (-12) can be written as (-13) expression.
通过依次迭代的关于q(Φ)的每个分解因子,变分分布q(Φ)能够最大化L(q),同时将其他的因子固定的情况下得到变分分布q(Φ)。这个推导过程是一个迭代过程。用<·>表示相关变量关于变分分布的期望。By sequentially iterating each decomposition factor of q(Φ), the variational distribution q(Φ) can maximize L(q), while the other factors are fixed to obtain the variational distribution q(Φ). This derivation process is an iterative process. Use <·> to denote the expectation of the relevant variable with respect to the variational distribution.
关于的导数,其结果见公式(-14):about The derivative of , the result is shown in the formula (-14):
由于每个观察数据和h的隐含随机变量和的变分分布应该满足公式(-20)和(-21)中定义的:Since each observation and the implicit random variable of h with The variational distribution of should satisfy formulas (-20) and (-21) defined in:
根据公式(-20)和(-21)中定义的限制条件,变分分布和重新写成公式(-22)和(-23)所定义的表达式。According to the constraints defined in equations (-20) and (-21), the variational distribution with Rewrite the expressions defined by equations (-22) and (-23).
式中ρnj和τmi的定义如式(-24)和(-25)所示:The definitions of ρ nj and τ mi in the formula are shown in formulas (-24) and (-25):
对于变分后验和推导得到它的分布为伽马分布,其结果如式(-26)和(-27)所示:For the variational posterior with Its distribution is derived as a gamma distribution, and the results are shown in formulas (-26) and (-27):
参数和分别在式(-28)(-29)和(-30)(-31)(-47)中表示。parameter with Represented in formulas (-28)(-29) and (-30)(-31)(-47), respectively.
得到的变分后验分布和是伽马分布,其分布分别如式(-32)和(-33)所示:The resulting variational posterior distribution with is the gamma distribution, and its distribution is shown in formulas (-32) and (-33):
参数和定义分别如式(-34)、(-35)和(-36)、(-37)所示:parameter with The definitions are shown in formulas (-34), (-35) and (-36), (-37) respectively:
变分后验分布和被推导出服从beta分布,其定义如式(-38)(-39)所示:Variational posterior distribution with It is derived to obey the beta distribution, and its definition is shown in the formula (-38) (-39):
参数和的定义分别如式(-40)(-41)和(-42)(-43)所示:parameter with The definitions of are shown in formulas (-40)(-41) and (-42)(-43) respectively:
变分后验分布q(αf)和q(αh)服从伽马分布,其分布如公式(-44)和(-45)所示:The variational posterior distributions q(α f ) and q(α h ) obey the gamma distribution, and their distributions are shown in formulas (-44) and (-45):
参数和的定义分别如式(-46)(-47)(-48)(-49)所示:parameter with The definitions of are shown in formula (-46)(-47)(-48)(-49):
通过设置完全数据的对数似然函数的梯度为零,得到公式(-50)(-51)和(-52)(-53)所表示的非线性等式,通过求解非线性等式得到新的值。By setting the gradient of the logarithmic likelihood function of the complete data to zero, the nonlinear equations represented by the formulas (-50)(-51) and (-52)(-53) are obtained, and the new equations are obtained by solving the nonlinear equations value.
得到的变分后验分布q(Λnoise)是伽马分布,其分布分别如式(-54)所示The obtained variational posterior distribution q(Λ noise ) is a gamma distribution, and its distribution is shown in formula (-54)
公式(-14)至(-54)的后验概率的期望表达式在(a-1)-(a-22)中给出。Expected expressions for the posterior probabilities of equations (-14) to (-54) are given in (a-1)-(a-22).
基于变分分布,在式中定义的下界可写作式(-55)中定义的等式Based on the variational distribution, the lower bound defined in Eq. can be written as the equation defined in Eq. (-55)
下界的值可以通过计算式(-55)得到。式(-55)中的每项表达式在(b-1)-(b-27)中详细给出。每次变分推理结束,模型的收敛都可通过下界的值进行判断。The value of the lower bound can be obtained by calculating formula (-55). Each expression in formula (-55) is given in detail in (b-1)-(b-27). At the end of each variational inference, the convergence of the model can be judged by the value of the lower bound.
本模型的变分贝叶斯推理描述如下。The variational Bayesian inference of this model is described as follows.
1.初始化:1. Initialization:
利用K-mean算法得到精度矩阵和<Λnoise>=1、<f>=g和 Accuracy matrix obtained by K-mean algorithm with <Λ noise >=1, <f>=g and
2.E步骤:2. Step E:
设公式(-13)关于隐含变量和的梯度等于零得到隐含变量和的变分后验分布,变分后验分布由公式(-22)、(-26)和(-23)、(-27)表示。关于变量和h的变分后验分布分别在公式(-14)和(-17)中定义。Let formula (-13) be about hidden variable with The gradient of is equal to zero to get the hidden variable with The variational posterior distribution of , the variational posterior distribution is represented by formulas (-22), (-26) and (-23), (-27). about variables The variational posterior distributions for and h are defined in Equations (-14) and (-17), respectively.
3.M步骤:3. M step:
推导得到的关于随机变量{μf,Λf,Vf,αf}和{μh,Λh,Vh,αh}的变分后验分布表示分别在公式(-26)、(-32)、(-38)、(-44)和(-27)、(-33)、(-39)、(-44)中定义。The derived variational posterior distributions of random variables {μ f , Λ f , V f , α f } and {μ h , Λ h , V h , α h } are expressed in formulas (-26), (- 32), (-38), (-44) and (-27), (-33), (-39), (-44).
解非线性等式(-50)和(-52)得到超级参数wf和wh的值。Solving the nonlinear equations (-50) and (-52) yields the values of the hyperparameters wf and wh .
计算下界Lt(q)(上标t表示迭代次数),如果满足公式(-56)的条件,则循环结束,否则跳转到E步骤。Calculate the lower bound L t (q) (the superscript t represents the number of iterations), if the condition of formula (-56) is satisfied, the loop ends, otherwise jump to step E.
返回值:和h。return value: and h.
本节给出变分后验分布期望的公式。This section gives the formulation of the expectation of the variational posterior distribution.
式中,Tr(·)表示矩阵的迹,ψ(·)表示双伽马函数。In the formula, Tr(·) represents the trace of the matrix, and ψ(·) represents the double gamma function.
<lnp(Λnoise)>=aelnbe-ψ(ae)+(ae-1)<lnΛnoise>-be<Λnoise> (b-8)<lnp(Λ noise )>=a e lnb e -ψ(a e )+(a e -1)<lnΛ noise >-b e <Λ noise > (b-8)
上述本申请实施例中的技术方案,至少具有如下的技术效果或优点:The above-mentioned technical solutions in the embodiments of the present application have at least the following technical effects or advantages:
实现了模型个数自适应选择,提高对图像梯度分布的拟合度,实现精准的图像去运动模糊的技术效果。It realizes the adaptive selection of the number of models, improves the fitting degree of the image gradient distribution, and realizes the technical effect of precise image motion blur removal.
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。While preferred embodiments of the invention have been described, additional changes and modifications to these embodiments can be made by those skilled in the art once the basic inventive concept is appreciated. Therefore, it is intended that the appended claims be construed to cover the preferred embodiment as well as all changes and modifications which fall within the scope of the invention.
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。Obviously, those skilled in the art can make various changes and modifications to the present invention without departing from the spirit and scope of the present invention. Thus, if these modifications and variations of the present invention fall within the scope of the claims of the present invention and equivalent technologies thereof, the present invention also intends to include these modifications and variations.
Claims (6)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201710197474.3A CN106952240A (en) | 2017-03-29 | 2017-03-29 | A method for image de-blurring |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201710197474.3A CN106952240A (en) | 2017-03-29 | 2017-03-29 | A method for image de-blurring |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN106952240A true CN106952240A (en) | 2017-07-14 |
Family
ID=59474145
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201710197474.3A Pending CN106952240A (en) | 2017-03-29 | 2017-03-29 | A method for image de-blurring |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN106952240A (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108681995A (en) * | 2018-05-20 | 2018-10-19 | 北京联合大学 | A method of motion blur is gone based on variation Bayesian Estimation |
| CN111243045A (en) * | 2020-01-10 | 2020-06-05 | 杭州电子科技大学 | Image generation method based on Gaussian mixture model prior variation self-encoder |
| CN111665725A (en) * | 2020-06-24 | 2020-09-15 | 哈尔滨工业大学 | Robust parameter identification method for electromechanical positioning system for measuring random data loss |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050119829A1 (en) * | 2003-11-28 | 2005-06-02 | Bishop Christopher M. | Robust bayesian mixture modeling |
| CN106023236A (en) * | 2016-06-16 | 2016-10-12 | 华侨大学 | Truncated Dirichlet process infinite Student'st' hybrid model-based brain nuclear magnetic resonance image segmentation method |
-
2017
- 2017-03-29 CN CN201710197474.3A patent/CN106952240A/en active Pending
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050119829A1 (en) * | 2003-11-28 | 2005-06-02 | Bishop Christopher M. | Robust bayesian mixture modeling |
| CN106023236A (en) * | 2016-06-16 | 2016-10-12 | 华侨大学 | Truncated Dirichlet process infinite Student'st' hybrid model-based brain nuclear magnetic resonance image segmentation method |
Non-Patent Citations (3)
| Title |
|---|
| TAISONG XIONG、ZHANG YI: "《The Infinite Hidden Markov Random Field Model Based on Student’s t-distribution》", 《2012 IEEE 12TH INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION TECHNOLOGY》 * |
| XIN WEI、CHUNGUANG LI: "《The infiniteStudent’s t-mixture forrobustmodeling》", 《SIGNAL PROCESSING》 * |
| 刘宇: "《基于局部加权全变差和连续核的盲去模糊》", 《中国优秀硕士论文全文数据库 信息科技辑》 * |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108681995A (en) * | 2018-05-20 | 2018-10-19 | 北京联合大学 | A method of motion blur is gone based on variation Bayesian Estimation |
| CN111243045A (en) * | 2020-01-10 | 2020-06-05 | 杭州电子科技大学 | Image generation method based on Gaussian mixture model prior variation self-encoder |
| CN111243045B (en) * | 2020-01-10 | 2023-04-07 | 杭州电子科技大学 | Image generation method based on Gaussian mixture model prior variation self-encoder |
| CN111665725A (en) * | 2020-06-24 | 2020-09-15 | 哈尔滨工业大学 | Robust parameter identification method for electromechanical positioning system for measuring random data loss |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Giordano et al. | Consistency of Bayesian inference with Gaussian process priors in an elliptic inverse problem | |
| Steinbring et al. | S 2 KF: The smart sampling Kalman filter | |
| Vihola | Robust adaptive Metropolis algorithm with coerced acceptance rate | |
| Bhargava | The geometric sieve and the density of squarefree values of invariant polynomials | |
| Atchadé et al. | Bayesian computation for statistical models with intractable normalizing constants | |
| Miles | pymcmcstat: A python package for bayesian inference using delayed rejection adaptive metropolis | |
| CN106952240A (en) | A method for image de-blurring | |
| Hodgkinson et al. | Stochastic normalizing flows | |
| Boukouvalas et al. | An efficient multivariate generalized Gaussian distribution estimator: Application to IVA | |
| Cai et al. | Metropolis–Hastings algorithms with adaptive proposals | |
| Shawky et al. | Bayesian and non-Bayesian estimations on the exponentiated gamma distribution | |
| Barthelmé et al. | ABC-EP: Expectation Propagation for Likelihoodfree Bayesian Computation. | |
| Wang et al. | A brief tour of bayesian sampling methods | |
| Fakih et al. | On the Cahn–Hilliard equation with mass source for biological applications | |
| Tamborrino et al. | Empirical density estimation based on spline quasi-interpolation with applications to copulas clustering modeling | |
| Turek et al. | On MAP and MMSE estimators for the co-sparse analysis model | |
| Aeckerle-Willems et al. | Sup-norm adaptive simultaneous drift estimation for ergodic diffusions | |
| Shevchenko | Addressing the bias in Monte Carlo pricing of multi-asset options with multiple barriers through discrete sampling | |
| Andrieu et al. | Monte Carlo sampling with integrator snippets | |
| Sadok et al. | Image restoration using Weibull particle filters | |
| Urry et al. | Replica theory for learning curves for Gaussian processes on random graphs | |
| CN105956599B (en) | Synthetic aperture radar image modeling method and device | |
| JP6689737B2 (en) | Analysis device, analysis method, and program | |
| Susam et al. | On construction of Bernstein-Bézier type bivariate Archimedean copula | |
| Korl et al. | AR model parameter estimation: from factor graphs to algorithms |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170714 |
|
| RJ01 | Rejection of invention patent application after publication |