CN107029352B - Stimulation pulse amplitude adjusting module and implantable neural stimulation system with same - Google Patents
Stimulation pulse amplitude adjusting module and implantable neural stimulation system with same Download PDFInfo
- Publication number
- CN107029352B CN107029352B CN201710284050.0A CN201710284050A CN107029352B CN 107029352 B CN107029352 B CN 107029352B CN 201710284050 A CN201710284050 A CN 201710284050A CN 107029352 B CN107029352 B CN 107029352B
- Authority
- CN
- China
- Prior art keywords
- amplitude
- stimulation
- unit
- pulse
- final
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000000638 stimulation Effects 0.000 title claims abstract description 105
- 230000001537 neural effect Effects 0.000 title 1
- 230000007383 nerve stimulation Effects 0.000 claims abstract description 21
- 230000003247 decreasing effect Effects 0.000 claims description 10
- 230000003750 conditioning effect Effects 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 5
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 10
- 230000008859 change Effects 0.000 description 7
- 230000006872 improvement Effects 0.000 description 6
- 210000004556 brain Anatomy 0.000 description 5
- 239000003990 capacitor Substances 0.000 description 4
- 230000002457 bidirectional effect Effects 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 210000004281 subthalamic nucleus Anatomy 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 208000018737 Parkinson disease Diseases 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 210000003710 cerebral cortex Anatomy 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 210000000278 spinal cord Anatomy 0.000 description 1
- 210000001186 vagus nerve Anatomy 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/3605—Implantable neurostimulators for stimulating central or peripheral nerve system
- A61N1/3606—Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
- A61N1/36103—Neuro-rehabilitation; Repair or reorganisation of neural tissue, e.g. after stroke
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/372—Arrangements in connection with the implantation of stimulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/372—Arrangements in connection with the implantation of stimulators
- A61N1/375—Constructional arrangements, e.g. casings
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Rehabilitation Therapy (AREA)
- Electrotherapy Devices (AREA)
Abstract
Description
技术领域technical field
本发明涉及植入式医疗领域,尤其涉及一种刺激脉冲幅值调节模块及具有其的植入式神经刺激系统。The invention relates to the field of implantable medicine, in particular to a stimulation pulse amplitude adjustment module and an implantable nerve stimulation system having the same.
背景技术Background technique
植入式医疗系统近年来在医学临床上得到越来越广泛的应用,通常包括植入式神经刺激系统(包括脑深部刺激系统DBS,植入式脑皮层刺激系统CNS,植入式脊髓电刺系统激SCS,植入式骶神经刺激系统SNS,植入式迷走神经刺激系统VNS等)、植入式心脏刺激系统(俗称心脏起搏器)、植入式药物输注系统(IDDS)等。Implantable medical systems have been widely used in clinical medicine in recent years, usually including implantable neurostimulation systems (including deep brain stimulation system DBS, implantable cerebral cortex stimulation system CNS, implantable spinal cord stimulation system) System stimulation SCS, implantable sacral nerve stimulation system SNS, implantable vagus nerve stimulation system VNS, etc.), implantable cardiac stimulation system (commonly known as pacemaker), implantable drug infusion system (IDDS), etc.
植入式神经刺激系统如图1所示,通常包括以下几个组件:若干个刺激电极触点30(这里以左脑电极触点及右脑电极触点为例)、电极导线33、延伸导线34、脉冲发生器35以及程控仪36。The implantable neurostimulation system is shown in Figure 1, and usually includes the following components: a number of stimulation electrode contacts 30 (here, the left brain electrode contacts and the right brain electrode contacts are taken as examples), electrode leads 33, and extension leads 34 , a
以深脑部刺激系统DBS为例,脉冲发生器35通过延伸导线34、电极导线33和刺激电极触点30将电脉冲传导到脑部STN(Subthalamic Nucleus,底丘脑核)核团以达到治疗帕金森疾病的目的。Taking the deep brain stimulation system DBS as an example, the
程控仪36则是用来调节脉冲发生器35的各刺激参数的,刺激参数包括脉冲幅值,脉冲宽度(即脉宽)和脉冲频率等。The
结合图2,是典型的双向脉冲刺激波形,即相对于“电压零伏参考线”,同时有正向刺激电压和负向刺激电压。Combined with Figure 2, it is a typical bidirectional pulse stimulation waveform, that is, relative to the "voltage zero volt reference line", there are positive stimulation voltage and negative stimulation voltage at the same time.
其中,真正起到治疗作用的是负向刺激电压。Among them, the real therapeutic effect is the negative stimulation voltage.
图2是恒压脉冲刺激微观波形,然而,在实际运用中,负向刺激电压的脉冲幅值PA并不是恒定的。Figure 2 shows the microscopic waveform of constant voltage pulse stimulation. However, in practice, the pulse amplitude PA of the negative stimulation voltage is not constant.
结合图2中的放大图,随着时间的推移,一预定刺激周期PT内的负向脉冲幅值PA呈现梯形状态,即脉冲幅值PA递减,也就是说,此时并不是真正的恒压刺激,会给病人带来不好的治疗体验。Combined with the enlarged view in Figure 2, as time goes by, the negative pulse amplitude PA in a predetermined stimulation period PT presents a trapezoidal state, that is, the pulse amplitude PA decreases, that is to say, it is not a real constant voltage at this time. Stimulation will bring a bad treatment experience to the patient.
上述现象是由于植入式神经刺激系统内的电容上电量变化引起的,即:The above phenomenon is caused by the change of charge on the capacitor in the implantable neurostimulation system, namely:
Q=I*Δt=C*ΔV,则ΔV=I*Δt/C。Q=I*Δt=C*ΔV, then ΔV=I*Δt/C.
其中,Q为电容上的电量;C为电容容值;I为刺激电流或由刺激电压除以电阻所得的电流值;Δt为一预定刺激周期PT内时间的变化量,亦即脉冲宽度PW;ΔV是电压变化量,亦即脉冲幅值PA的变化量。Among them, Q is the electric quantity on the capacitor; C is the capacitance value of the capacitor; I is the stimulation current or the current value obtained by dividing the stimulation voltage by the resistance; Δt is the time change in a predetermined stimulation period PT, that is, the pulse width PW; ΔV is the amount of voltage variation, that is, the variation of the pulse amplitude PA.
由此可知,脉冲宽度PW越宽,脉冲幅值PA的变化量越大,也就是说,脉冲幅值PA会随着脉冲宽度PW的增大而减少。It can be seen from this that the wider the pulse width PW, the greater the variation of the pulse amplitude PA, that is, the pulse amplitude PA will decrease with the increase of the pulse width PW.
另外,结合图3,是典型的脉冲刺激宏观波形。In addition, in conjunction with Fig. 3, it is a typical macroscopic waveform of pulse stimulation.
可以看到,在开启和关闭刺激时,脉冲幅值PA的变化比较突然,脉冲幅值PA在刺激开启和关闭时刻呈现陡升和陡降状态,如此,病人会感觉比较难受,这也给病人带来了不好的治疗体验。It can be seen that when the stimulation is turned on and off, the change of the pulse amplitude PA is relatively sudden, and the pulse amplitude PA presents a state of steep rise and steep drop when the stimulation is turned on and off. Brought a bad treatment experience.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种刺激脉冲幅值调节模块及具有其的植入式神经刺激系统。The purpose of the present invention is to provide a stimulation pulse amplitude adjustment module and an implantable nerve stimulation system having the same.
为实现上述发明目的之一,本发明一实施方式提供一种植入式神经刺激脉冲幅值调节模块,包括:In order to achieve one of the above purposes of the invention, an embodiment of the present invention provides an implantable nerve stimulation pulse amplitude adjustment module, including:
初始幅值产生单元,其用于产生刺激脉冲的初始幅值,所述刺激脉冲包括正向刺激脉冲及负向刺激脉冲;an initial amplitude generating unit, which is used for generating an initial amplitude of a stimulation pulse, the stimulation pulse includes a positive stimulation pulse and a negative stimulation pulse;
调节单元,其用于产生幅值配置值;an adjustment unit for generating an amplitude configuration value;
处理单元,其用于将所述负向刺激脉冲对应的初始幅值与所述幅值配置值叠加而产生最终幅值;a processing unit, configured to superimpose the initial amplitude corresponding to the negative stimulation pulse and the amplitude configuration value to generate a final amplitude;
其中,所述调节单元包括微观调节单元,所述微观调节单元用于产生微观幅值配置值,于一预定刺激周期内,所述处理单元将所述初始幅值与所述微观幅值配置值叠加而产生微观最终幅值,所述微观最终幅值为递增幅值,所述调节模块用于实现恒压刺激。Wherein, the adjustment unit includes a micro-adjustment unit, and the micro-adjustment unit is used to generate a micro-amplitude configuration value, and within a predetermined stimulation period, the processing unit compares the initial amplitude value with the micro-amplitude configuration value The microscopic final amplitude is generated by superposition, and the microscopic final amplitude is an incremental amplitude, and the adjustment module is used to realize constant pressure stimulation.
作为本发明一实施方式的进一步改进,所述调节模块还包括控制单元,所述控制单元用于产生微观使能信号,当所述微观使能信号为高电平时,所述微观调节单元产生所述微观幅值配置值。As a further improvement of an embodiment of the present invention, the adjustment module further includes a control unit, the control unit is configured to generate a micro-enable signal, and when the micro-enable signal is at a high level, the micro-adjustment unit generates the Describe the micro-amplitude configuration value.
作为本发明一实施方式的进一步改进,所述调节单元包括宏观调节单元,所述宏观调节单元用于产生宏观幅值配置值,于一包括若干预定刺激周期的刺激阶段内,所述处理单元将所述初始幅值与所述宏观幅值配置值叠加而产生对应若干预定刺激周期的若干宏观最终幅值,所述若干宏观最终幅值呈渐变趋势。As a further improvement of an embodiment of the present invention, the adjustment unit includes a macro adjustment unit, and the macro adjustment unit is configured to generate a macro amplitude configuration value, and in a stimulation stage including several predetermined stimulation cycles, the processing unit will The initial amplitude value and the macroscopic amplitude configuration value are superimposed to generate several macroscopic final amplitudes corresponding to several predetermined stimulation periods, and the several macroscopic final amplitudes show a gradual trend.
作为本发明一实施方式的进一步改进,所述若干宏观最终幅值包括递增趋势和/或递减趋势。As a further improvement of an embodiment of the present invention, the plurality of macroscopic final amplitudes include an increasing trend and/or a decreasing trend.
作为本发明一实施方式的进一步改进,所述调节模块还包括控制单元,所述控制单元用于产生宏观使能信号,当所述宏观使能信号为高电平时,所述宏观调节单元产生所述宏观幅值配置值。As a further improvement of an embodiment of the present invention, the adjustment module further includes a control unit, and the control unit is configured to generate a macro-enable signal. When the macro-enable signal is at a high level, the macro adjustment unit generates the macro-enable signal. Describe the macro-amplitude configuration value.
为实现上述发明目的之一,本发明一实施方式提供一种植入式神经刺激脉冲幅值调节模块,包括:In order to achieve one of the above purposes of the invention, an embodiment of the present invention provides an implantable nerve stimulation pulse amplitude adjustment module, including:
初始幅值产生单元,其用于产生刺激脉冲的初始幅值;an initial amplitude generating unit for generating an initial amplitude of the stimulation pulse;
微观调节单元,其用于产生微观幅值配置值;a micro-adjustment unit for generating micro-amplitude configuration values;
宏观调节单元,其用于产生宏观幅值配置值;a macro-adjustment unit for generating macro-amplitude configuration values;
处理单元,于一预定刺激周期内,所述处理单元将所述初始幅值与所述微观幅值配置值叠加而产生微观最终幅值,且于一包括若干预定刺激周期的刺激阶段内,所述处理单元将所述微观最终幅值与所述宏观幅值配置值叠加而产生对应若干预定刺激周期的若干宏观最终幅值,所述微观最终幅值为递增幅值,所述调节模块用于实现恒压刺激。A processing unit, in a predetermined stimulation period, the processing unit superimposes the initial amplitude value and the microscopic amplitude configuration value to generate a microscopic final amplitude value, and in a stimulation stage including a plurality of predetermined stimulation periods, the The processing unit superimposes the microscopic final amplitude and the macroscopic amplitude configuration value to generate a plurality of macroscopic final amplitudes corresponding to several predetermined stimulation cycles, and the microscopic final amplitude is an incremental amplitude, and the adjustment module is used for Achieve constant pressure stimulation.
作为本发明一实施方式的进一步改进,所述若干宏观最终幅值包括递增趋势和/或递减趋势。As a further improvement of an embodiment of the present invention, the plurality of macroscopic final amplitudes include an increasing trend and/or a decreasing trend.
作为本发明一实施方式的进一步改进,所述调节模块还包括高频时钟及分频单元,所述高频时钟经过所述分频单元后产生高频分时钟及低频分时钟,所述高频分时钟用于控制所述微观调节单元,所述低频分时钟用于控制所述初始幅值产生单元及所述宏观调节单元。As a further improvement of an embodiment of the present invention, the adjustment module further includes a high-frequency clock and a frequency dividing unit, and the high-frequency clock generates a high-frequency divided clock and a low-frequency divided clock after passing through the frequency dividing unit. The sub-clock is used to control the micro-adjustment unit, and the low-frequency sub-clock is used to control the initial amplitude generating unit and the macro-adjustment unit.
为实现上述发明目的之一,本发明一实施方式提供一种植入式神经刺激系统,包括如上任意一项技术方案所述的植入式神经刺激脉冲幅值调节模块、脉冲发生器及刺激电极触点,所述脉冲发生器根据所述调节模块产生的所述最终幅值而产生刺激脉冲,且所述脉冲发生器将所述刺激脉冲输出至所述刺激电极触点。In order to achieve one of the above purposes of the invention, an embodiment of the present invention provides an implantable nerve stimulation system, including the implantable nerve stimulation pulse amplitude adjustment module, a pulse generator and a stimulation electrode contact as described in any one of the above technical solutions. point, the pulse generator generates stimulation pulses according to the final amplitude generated by the conditioning module, and the pulse generator outputs the stimulation pulses to the stimulation electrode contacts.
与现有技术相比,本发明的有益效果在于:本发明一实施方式通过调节模块实现脉冲幅值的有效调节,从而提高治疗效果,改善病人治疗体验。Compared with the prior art, the beneficial effect of the present invention is that: an embodiment of the present invention realizes the effective adjustment of the pulse amplitude through the adjustment module, thereby improving the treatment effect and improving the treatment experience of the patient.
附图说明Description of drawings
图1是现有技术植入式神经刺激系统示意图;1 is a schematic diagram of a prior art implantable nerve stimulation system;
图2是现有技术双向脉冲刺激波形微观图;2 is a microscopic diagram of a bidirectional pulse stimulation waveform in the prior art;
图3是现有技术双向脉冲刺激波形宏观图;Fig. 3 is the macroscopic view of prior art bidirectional pulse stimulation waveform;
图4是本发明一实施方式刺激脉冲幅值调节模块示意图;4 is a schematic diagram of a stimulation pulse amplitude adjustment module according to an embodiment of the present invention;
图5是本发明一实施方式刺激脉冲幅值微观调节示意图;FIG. 5 is a schematic diagram of microscopic adjustment of stimulation pulse amplitude according to an embodiment of the present invention;
图6是本发明一实施方式微观调节单元示意图;6 is a schematic diagram of a micro-adjustment unit according to an embodiment of the present invention;
图7是本发明一实施方式刺激脉冲幅值宏观调节示意图;FIG. 7 is a schematic diagram of macroscopic adjustment of stimulation pulse amplitude according to an embodiment of the present invention;
图8是本发明一实施方式刺激脉冲幅值宏观调节几种形态示意图;8 is a schematic diagram of several forms of macroscopic adjustment of the stimulus pulse amplitude according to an embodiment of the present invention;
图9是本发明一实施方式宏观调节单元示意图。FIG. 9 is a schematic diagram of a macro adjustment unit according to an embodiment of the present invention.
具体实施方式Detailed ways
以下将结合附图所示的具体实施方式对本发明进行详细描述。但这些实施方式并不限制本发明,本领域的普通技术人员根据这些实施方式所做出的结构、方法、或功能上的变换均包含在本发明的保护范围内。The present invention will be described in detail below with reference to the specific embodiments shown in the accompanying drawings. However, these embodiments do not limit the present invention, and structural, method, or functional changes made by those skilled in the art according to these embodiments are all included in the protection scope of the present invention.
本发明一实施方式提供一种植入式神经刺激系统(参考图1)。An embodiment of the present invention provides an implantable neurostimulation system (refer to FIG. 1 ).
结合图4,植入式神经刺激系统包括刺激脉冲幅值调节模块100、脉冲发生器(未标示)及刺激电极触点(未标示)。Referring to FIG. 4 , the implantable nerve stimulation system includes a stimulation pulse
其中,所述脉冲发生器根据所述调节模块100产生的所述最终幅值(PA1’和/或PA2’)而产生刺激脉冲,且所述脉冲发生器将所述刺激脉冲输出至所述刺激电极触点。Wherein, the pulse generator generates stimulation pulses according to the final amplitude values (PA1' and/or PA2') generated by the
植入式神经刺激系统的其他说明(例如植入式神经刺激系统还包括电极导线、延伸导线以及程控仪等等)可以参考图1的说明,在此不再赘述。For other descriptions of the implantable neurostimulation system (for example, the implantable neurostimulation system further includes electrode leads, extension leads, and programmers, etc.), reference may be made to the description of FIG. 1 , which will not be repeated here.
在本实施方式中,所述刺激脉冲幅值调节模块100包括初始幅值产生单元10、调节单元11及处理单元12。In this embodiment, the stimulation pulse
初始幅值产生单元10用于产生刺激脉冲的初始幅值PA。The initial
调节单元11用于产生幅值配置值(PA1和/或PA2)。The
处理单元12用于将所述初始幅值PA与所述幅值配置值(PA1和/或PA2)叠加而产生最终幅值(PA1’和/或PA2’)。The
这里,可以通过调节模块100实现脉冲幅值的有效调节,从而提高治疗效果,改善病人治疗体验。Here, the pulse amplitude can be effectively adjusted by the
在本实施方式中,处理单元12可为与门单元。In this embodiment, the
在本实施方式中,所述调节单元11包括微观调节单元11a。In this embodiment, the
所述微观调节单元11a用于产生微观幅值配置值PA1,结合图5,于一预定刺激周期PT内,所述处理单元12将所述初始幅值PA与所述微观幅值配置值PA1叠加而产生微观最终幅值PA1’。The
所述调节模块100还包括控制单元13,所述控制单元13用于产生微观使能信号Micro_EN,当所述微观使能信号Micro_EN为高电平时,所述微观调节单元11a产生所述微观幅值配置值PA1。The
也就是说,通过微观使能信号Micro_EN的控制,可以保证微观幅值配置值PA1的产生时间与一预定刺激周期PT内初始幅值PA的产生时间一一对应,如此,可以实现初始幅值PA与微观幅值配置值PA1叠加的精确性。That is to say, through the control of the micro-enable signal Micro_EN, the generation time of the micro-amplitude configuration value PA1 can be guaranteed to correspond one-to-one with the generation time of the initial amplitude PA in a predetermined stimulation period PT. In this way, the initial amplitude PA can be realized. Accuracy of stacking with micro-amplitude configuration value PA1.
需要说明的是,这里的初始幅值PA、微观幅值配置值PA1及微观最终幅值PA1’都是指预先设定的幅值,例如是在脉冲发生器里写入的一串关于幅值控制的数字,且初始幅值PA、微观幅值配置值PA1及微观最终幅值PA1’均是指负向刺激的脉冲幅值。It should be noted that the initial amplitude PA, the micro-amplitude configuration value PA1 and the micro-final amplitude PA1' all refer to preset amplitudes, for example, a series of information about the amplitudes written in the pulse generator. The initial amplitude PA, the microscopic amplitude configuration value PA1 and the microscopic final amplitude PA1' all refer to the pulse amplitude of negative stimulation.
参图5中的波形1,以恒压刺激为例,脉冲幅值的初始幅值PA为恒定幅值。Referring to
参波形2,通过叠加微观幅值配置值PA1,得到微观最终幅值PA1’,微观最终幅值PA1’为递增幅值。For
参波形3,由于植入式神经刺激系统内的电容上电量变化的影响,当脉冲发生器将微观最终幅值PA1’输出时,实际输出的是如波形3所示的微观实际幅值PA1”,微观实际幅值PA1”为恒压幅值。With reference to waveform 3, due to the influence of the change in the amount of electricity on the capacitor in the implantable neurostimulation system, when the pulse generator outputs the microscopic final amplitude PA1', the actual output is the microscopic actual amplitude PA1" shown in waveform 3. , the microscopic actual amplitude PA1” is the constant voltage amplitude.
可以理解的,参背景技术的说明,由于电容电量变化的影响,脉冲发生器实际输出的脉冲幅值会产生逐渐减小效应,本实施方式的脉冲发生器最终实际输出的是对应微观最终幅值PA1’的脉冲幅值,由于微观最终幅值PA1’呈递增趋势,这与电容电量变化而引起的幅值的减小效应是可以相互抵消的,如此,脉冲发生器实际输出的微观实际幅值PA”为恒压幅值,从而在预定刺激周期PT内实现真正的恒压刺激,增加了治疗效果,且降低了副作用。It can be understood that, referring to the description of the background art, due to the influence of the change of the capacitance, the pulse amplitude actually output by the pulse generator will have a gradually decreasing effect. The actual output of the pulse generator in this embodiment is the corresponding microscopic final amplitude. The pulse amplitude of PA1', because the microscopic final amplitude PA1' shows an increasing trend, this and the reduction effect of the amplitude caused by the change of the capacitance can cancel each other. In this way, the microscopic actual amplitude of the actual output of the pulse generator PA" is the constant pressure amplitude, so that true constant pressure stimulation is realized within the predetermined stimulation period PT, the therapeutic effect is increased, and the side effects are reduced.
当然,微观实际幅值PA”不限定为恒压幅值,例如可以根据患者的实际情况调整微观幅值配置值PA1,从而实现任意脉冲幅值,进一步提高治疗的灵活性。Of course, the microscopic actual amplitude PA" is not limited to the constant voltage amplitude. For example, the microscopic amplitude configuration value PA1 can be adjusted according to the actual situation of the patient, so as to realize any pulse amplitude and further improve the flexibility of the treatment.
在本实施方式中,结合图6,所述微观调节单元11a为微观寄存器,微观寄存器包含若干微观寄存位111a(Microscopic Reg 1~Microscopic Reg n),每一微观寄存位111a可以存储一个微观幅值配置值PA1,微观幅值配置值PA1实质是一连串渐变的幅值,而若干微观寄存位111a内存储的微观幅值配置值PA1占用的时长对应一个脉冲宽度PW所限定的时长。In this embodiment, referring to FIG. 6 , the
可以理解的,当处理单元12将初始幅值PA、微观幅值配置值PA1叠加产生微观最终幅值PA1’时,微观最终幅值PA1’呈现阶梯状,当微观寄存位111a数量足够大时,微观最终幅值PA1’呈线性变化。It can be understood that when the
在本实施方式中,所述调节单元11还包括宏观调节单元11b。In this embodiment, the
结合图4,所述调节模块100还包括高频时钟HIGH CLOCK及分频单元14。With reference to FIG. 4 , the
所述高频时钟HIGH CLOCK经过所述分频单元14后产生高频分时钟HIGH CLOCK1及低频分时钟LOW CLOCK1,所述高频分时钟HIGH CLOCK1用于控制所述微观调节单元11a,所述低频分时钟LOW CLOCK1用于控制所述初始幅值产生单元10及所述宏观调节单元11b。The high-frequency clock HIGH CLOCK passes through the
高频分时钟HIGH CLOCK1的频率是低频分时钟LOW CLOCK1的整数倍,但不以此为限。The frequency of the high-frequency sub-clock HIGH CLOCK1 is an integer multiple of the low-frequency sub-clock LOW CLOCK1, but not limited thereto.
这里,采用高频时钟HIGH CLOCK及分频单元14,具有如下优势:(1)降低系统的复杂度和成本,采用一个时钟输入,仅需一个输入管脚及一个时钟晶振,结构简单;(2)保证高频分时钟HIGH CLOCK1和低频分时钟LOW CLOCK1是同源时钟,这对于时序的精确控制是非常有利的。Here, using the high-frequency clock HIGH CLOCK and the
在本实施方式中,所述宏观调节单元11b用于产生宏观幅值配置值PA2,结合图7,于一包括若干预定刺激周期PT的刺激阶段内,所述处理单元12将所述初始幅值PA与所述宏观幅值配置值PA2叠加而产生对应若干预定刺激周期PT的若干宏观最终幅值PA2’,所述若干宏观最终幅值PA2’呈渐变趋势。In this embodiment, the
所述控制单元13还用于产生宏观使能信号Macro_EN,当所述宏观使能信号Macro_EN为高电平时,所述宏观调节单元11b产生所述宏观幅值配置值PA2。The
也就是说,通过宏观使能信号Macro_EN的控制,可以保证宏观幅值配置值PA2的产生时间与刺激阶段内的若干预定刺激周期PT的若干初始幅值PA的产生时间一一对应,如此,可以实现若干初始幅值PA与若干宏观幅值配置值PA2叠加的精确性。That is to say, through the control of the macro-enable signal Macro_EN, it can be ensured that the generation time of the macro-amplitude configuration value PA2 corresponds to the generation time of several initial amplitude values PA of several predetermined stimulation periods PT in the stimulation stage. Accuracy of superposition of several initial amplitude values PA and several macroscopic amplitude configuration values PA2 is achieved.
需要说明的是,这里的初始幅值PA、宏观幅值配置值PA2及宏观最终幅值PA2’都是指预先设定的幅值,例如是在脉冲发生器里写入的一串关于幅值控制的数字,且初始幅值PA、宏观幅值配置值PA2及宏观最终幅值PA2’均是指负向刺激的脉冲幅值。It should be noted that the initial amplitude PA, the macro amplitude configuration value PA2 and the macro final amplitude PA2' here all refer to preset amplitudes, such as a series of information about the amplitudes written in the pulse generator. The number of control, and the initial amplitude PA, macro amplitude configuration value PA2 and macro final amplitude PA2' all refer to the pulse amplitude of negative stimulation.
参图7中的波形4,以恒压刺激为例,脉冲幅值的初始幅值PA为恒定幅值。Referring to waveform 4 in FIG. 7 , taking constant voltage stimulation as an example, the initial amplitude PA of the pulse amplitude is a constant amplitude.
参波形5,通过叠加宏观幅值配置值PA2,得到宏观最终幅值PA2’,若干个预定刺激周期PT内的若干个宏观最终幅值PA2’呈渐变趋势,这里以一段时间的递增趋势及另一段时间内的递减趋势为例。With reference to waveform 5, the macroscopic final amplitude PA2' is obtained by superimposing the macroscopic amplitude configuration value PA2. Several macroscopic final amplitudes PA2' in several predetermined stimulation periods PT show a gradual trend. Here, the increasing trend for a period of time and another Take, for example, a decreasing trend over a period of time.
参波形6,当微观调节单元11a未进行幅值调节时,参放大图,此时实际输出的若干个宏观实际幅值PA2”中的每一宏观实际幅值PA2”都呈递减趋势。Referring to waveform 6, when the
参波形7,当微观调节单元11a进行了幅值调节时,参放大图,此时实际输出的若干个宏观实际幅值PA2”中的每一宏观实际幅值PA2”都是恒压幅值。Referring to waveform 7, when the
可以理解的,脉冲发生器实际输出的脉冲幅值在宏观上呈渐变趋势,通过宏观幅值配置值PA2的合理设定,渐变趋势包括递增趋势和/或递减趋势。It can be understood that the pulse amplitude actually output by the pulse generator shows a macroscopically gradual trend, and through the reasonable setting of the macroscopic amplitude configuration value PA2, the gradual change trend includes an increasing trend and/or a decreasing trend.
结合图8,列举了在宏观上脉冲发生器实际输出的脉冲幅值的情形。With reference to Fig. 8, the situation of the pulse amplitude actually output by the pulse generator is listed on a macroscopic level.
参波形8,在刺激开始及关闭时刻,脉冲幅值分别呈现递增趋势及递减趋势,而在刺激中间时刻,脉冲幅值恒定不变,如此,实现脉冲幅值在刺激开始时缓慢增加,同时在刺激关闭时缓慢减小,可以有效改善病人的治疗体验,提高治疗质量。For waveform 8, the pulse amplitude shows an increasing trend and a decreasing trend respectively at the start and end of the stimulation, while at the middle of the stimulation, the pulse amplitude is constant. Slowly reducing the stimulus when it is turned off can effectively improve the patient's treatment experience and improve the quality of treatment.
参波形9,其与波形8的区别在于只有在刺激开始时刻脉冲幅值呈现递增趋势,在其他时刻脉冲幅值恒定不变。The difference between the parameter waveform 9 and the waveform 8 is that the pulse amplitude shows an increasing trend only at the start of stimulation, and the pulse amplitude is constant at other times.
参波形10,其与波形8的区别在于只有在刺激关闭时刻脉冲幅值呈现递减趋势,在其他时刻脉冲幅值恒定不变。The difference between the
当然,脉冲幅值的宏观情形还可为其他形态,可根据实际情况而定。Of course, the macroscopic situation of the pulse amplitude can also be other forms, which can be determined according to the actual situation.
在本实施方式中,结合图9,所述宏观调节单元11b为宏观寄存器,宏观寄存器包含若干微观寄存位111b(Macroscopic Reg 1~Macroscopic Reg n),每一宏观寄存位111b可以存储一个宏观幅值配置值PA2,宏观幅值配置值PA2实质是一连串间隔分布且渐变的幅值,而每一宏观寄存位111b内存储的宏观幅值配置值PA2占用的时长对应一个脉冲宽度PW所限定的时长,则若干宏观寄存位111b内存储的宏观幅值配置值PA2占用的总时长对应若干个间隔脉冲宽度PW所限定的总时长。In this embodiment, referring to FIG. 9 , the
在本实施方式中,微观调节单元11a及宏观调节单元11b可以单独调节,也可以是共同调节,具体可根据实际情况而定。In this embodiment, the
当微观调节单元11a及宏观调节单元11b共同调节时,于一预定刺激周期PT内,所述处理单元12将所述初始幅值PA与所述微观幅值配置值PA1叠加而产生微观最终幅值PA1’,且于一包括若干预定刺激周期PT的刺激阶段内,所述处理单元12将所述微观最终幅值PA1’与所述宏观幅值配置PA2叠加而产生对应若干预定刺激周期PT的若干宏观最终幅值PA2’,此时实际输出的是宏观上呈渐变趋势、微观上呈恒压趋势的脉冲幅值。When the
可以理解的是,微观调节单元11a及宏观调节单元11b的调节过程没有明确的先后关系。It can be understood that there is no clear sequence relationship between the adjustment processes of the
应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施方式中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。It should be understood that although this specification is described in terms of embodiments, not every embodiment only includes an independent technical solution, and this description in the specification is only for the sake of clarity, and those skilled in the art should take the specification as a whole, and each The technical solutions in the embodiments can also be appropriately combined to form other embodiments that can be understood by those skilled in the art.
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施方式的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施方式或变更均应包含在本发明的保护范围之内。The series of detailed descriptions listed above are only specific descriptions for the feasible embodiments of the present invention, and they are not used to limit the protection scope of the present invention. Changes should all be included within the protection scope of the present invention.
Claims (9)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201710284050.0A CN107029352B (en) | 2017-04-26 | 2017-04-26 | Stimulation pulse amplitude adjusting module and implantable neural stimulation system with same |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201710284050.0A CN107029352B (en) | 2017-04-26 | 2017-04-26 | Stimulation pulse amplitude adjusting module and implantable neural stimulation system with same |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN107029352A CN107029352A (en) | 2017-08-11 |
| CN107029352B true CN107029352B (en) | 2020-10-13 |
Family
ID=59535151
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201710284050.0A Active CN107029352B (en) | 2017-04-26 | 2017-04-26 | Stimulation pulse amplitude adjusting module and implantable neural stimulation system with same |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN107029352B (en) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107800406B (en) * | 2017-11-22 | 2021-08-24 | 北京品驰医疗设备有限公司 | High-frequency pulse stimulation signal generation method, pulse stimulation method and equipment |
| CN109954206B (en) * | 2017-12-22 | 2024-11-22 | 景昱医疗科技(苏州)股份有限公司 | Adaptive voltage regulation module and implantable neural stimulation system having the same |
Family Cites Families (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5018522A (en) * | 1987-10-26 | 1991-05-28 | Medtronic, Inc. | Ramped waveform non-invasive pacemaker |
| US7359751B1 (en) * | 2004-05-05 | 2008-04-15 | Advanced Neuromodulation Systems, Inc. | Clinician programmer for use with trial stimulator |
| US8457734B2 (en) * | 2006-08-29 | 2013-06-04 | Cardiac Pacemakers, Inc. | System and method for neural stimulation |
| US9259571B2 (en) * | 2009-10-21 | 2016-02-16 | Medtronic, Inc. | Electrical stimulation therapy using decaying current pulses |
| CN104485926B (en) * | 2014-12-12 | 2017-09-19 | 杭州爱司米医疗器械有限公司 | A kind of overshot waveform generating system treated for micro-current and its application method |
| CN104888346B (en) * | 2014-12-21 | 2020-10-13 | 徐志强 | Method and device for performing nerve stimulation on coma brain |
-
2017
- 2017-04-26 CN CN201710284050.0A patent/CN107029352B/en active Active
Also Published As
| Publication number | Publication date |
|---|---|
| CN107029352A (en) | 2017-08-11 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| AU2015321740B2 (en) | System for calibrating dorsal horn stimulation | |
| AU2017324876B2 (en) | Passive charge recovery circuitry for an implantable medical device | |
| US9155891B2 (en) | Current management system for a stimulation output stage of an implantable neurostimulation system | |
| Popovych et al. | Control of neuronal synchrony by nonlinear delayed feedback | |
| Noorsal et al. | A neural stimulator frontend with high-voltage compliance and programmable pulse shape for epiretinal implants | |
| CN106139397B (en) | A kind of implanted electric pulse stimulation system | |
| US11013912B2 (en) | Neurostimulation system for delivering selectivity modes | |
| CN108939294B (en) | Self-adaptive control module, implantable nerve stimulation system and control method | |
| US20110230936A1 (en) | Electrical stimulation based on phase response mapping | |
| CN101115524A (en) | Method and device for desynchronizing neuronal brain activity, and control unit and method for treating neurological and/or psychiatric diseases | |
| WO2004047911A2 (en) | Surface stimulation for tremor control | |
| AU2012286586B2 (en) | Device and circuitry for controlling delivery of stimulation signals | |
| CN107029352B (en) | Stimulation pulse amplitude adjusting module and implantable neural stimulation system with same | |
| CN105288849B (en) | A kind of implantable neural electrical stimulator with modulating mode | |
| CN106039564B (en) | Implantable neural electrical stimulation control device, system and method | |
| US12172001B2 (en) | Selective electrical modulation of neural populations | |
| US12357831B2 (en) | Voltage regulating module and implantable nerve stimulation system | |
| EP4313260A1 (en) | Multi-electrode spinal cord stimulation therapy | |
| CA2707351C (en) | Improved cranial-electro stimulator | |
| CN109954206B (en) | Adaptive voltage regulation module and implantable neural stimulation system having the same | |
| van Dongen et al. | System Design of Neural Stimulators | |
| Sun et al. | Establishment of a Mathematical Model for Parkinson’s Disease Based on Complex Neural Networks and Design of Deep Brain Electrical Stimulation Treatment Plans | |
| Kussener et al. | Implantable electrostimulation system in freely moving rodent for DBS treatment | |
| AU2023365363A1 (en) | Implantable medical device (imd) including sensing amplifier circuitry | |
| Hirschmann et al. | Improving deep brain stimulation: timing makes all the difference |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| CP03 | Change of name, title or address |
Address after: Building C16, biological nano Park, 218 Xinghu street, Suzhou Industrial Park, Jiangsu Province Patentee after: Jingyu Medical Technology (Suzhou) Co.,Ltd. Address before: 215123 C16, biological nano Park, 218 Xinghu street, Suzhou Industrial Park, Jiangsu Province Patentee before: SCENERAY Co.,Ltd. |
|
| CP03 | Change of name, title or address |