CN107039658B - A low-cost method for mass production of metal plates - Google Patents
A low-cost method for mass production of metal plates Download PDFInfo
- Publication number
- CN107039658B CN107039658B CN201710134283.2A CN201710134283A CN107039658B CN 107039658 B CN107039658 B CN 107039658B CN 201710134283 A CN201710134283 A CN 201710134283A CN 107039658 B CN107039658 B CN 107039658B
- Authority
- CN
- China
- Prior art keywords
- metal plate
- metal
- ink
- plate
- etching
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 61
- 239000002184 metal Substances 0.000 title claims abstract description 61
- 238000000034 method Methods 0.000 title claims abstract description 31
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 24
- 238000005530 etching Methods 0.000 claims abstract description 62
- 238000005260 corrosion Methods 0.000 claims abstract description 28
- 238000012545 processing Methods 0.000 claims abstract description 17
- 238000001035 drying Methods 0.000 claims abstract description 7
- 239000012467 final product Substances 0.000 claims abstract description 3
- 238000007639 printing Methods 0.000 claims abstract description 3
- 230000008569 process Effects 0.000 claims description 22
- 239000010935 stainless steel Substances 0.000 claims description 14
- 229910001220 stainless steel Inorganic materials 0.000 claims description 14
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 10
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 7
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 5
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 5
- 238000005498 polishing Methods 0.000 claims description 5
- 238000007650 screen-printing Methods 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- 239000010936 titanium Substances 0.000 claims description 5
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 4
- 239000004677 Nylon Substances 0.000 claims description 4
- 230000002378 acidificating effect Effects 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical group [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910017604 nitric acid Inorganic materials 0.000 claims description 4
- 229920001778 nylon Polymers 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 claims description 3
- 230000001680 brushing effect Effects 0.000 claims description 3
- 238000005238 degreasing Methods 0.000 claims description 3
- 238000005406 washing Methods 0.000 claims description 3
- 239000008367 deionised water Substances 0.000 claims description 2
- 229910021641 deionized water Inorganic materials 0.000 claims description 2
- 229920000728 polyester Polymers 0.000 claims description 2
- 238000005480 shot peening Methods 0.000 claims 1
- 238000011161 development Methods 0.000 abstract description 13
- 239000000446 fuel Substances 0.000 description 25
- 239000000243 solution Substances 0.000 description 24
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 239000010410 layer Substances 0.000 description 12
- 238000005096 rolling process Methods 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 239000002826 coolant Substances 0.000 description 3
- 230000003628 erosive effect Effects 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 239000007800 oxidant agent Substances 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 239000010963 304 stainless steel Substances 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 229910000589 SAE 304 stainless steel Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000003487 electrochemical reaction Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 239000007770 graphite material Substances 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- FYMBCBXJSPPHJQ-UHFFFAOYSA-N [Br].[V] Chemical compound [Br].[V] FYMBCBXJSPPHJQ-UHFFFAOYSA-N 0.000 description 1
- SKAXWKNRKROCKK-UHFFFAOYSA-N [V].[Ce] Chemical compound [V].[Ce] SKAXWKNRKROCKK-UHFFFAOYSA-N 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- UPHIPHFJVNKLMR-UHFFFAOYSA-N chromium iron Chemical compound [Cr].[Fe] UPHIPHFJVNKLMR-UHFFFAOYSA-N 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000011231 conductive filler Substances 0.000 description 1
- 239000012809 cooling fluid Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000003014 ion exchange membrane Substances 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- IXQWNVPHFNLUGD-UHFFFAOYSA-N iron titanium Chemical compound [Ti].[Fe] IXQWNVPHFNLUGD-UHFFFAOYSA-N 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000001259 photo etching Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- ing And Chemical Polishing (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种液流电池与燃料电池金属极板的开发与制造,尤其是涉及一种低成本批量生产金属极板的方法。The invention relates to the development and manufacture of a metal electrode plate of a liquid flow battery and a fuel cell, in particular to a low-cost mass production method of the metal electrode plate.
背景技术Background technique
液流电池、燃料电池等需要流体参与的发电装置均包括正负极材料、电解质隔膜和供应反应物质和冷却液流体的极板。极板的成本、性能与耐久性极大地影响着液流电池和燃料电池的商业化推广与应用。Power generation devices that require fluid participation, such as flow batteries and fuel cells, all include positive and negative electrode materials, electrolyte membranes, and plates for supplying reactive substances and cooling fluids. The cost, performance and durability of the electrode plate greatly affect the commercialization and application of flow batteries and fuel cells.
液流电池按变价元素体系的不同,可以分为如全钒、全铬、全铁、钛-铁、铬-铁、钒-铈,以及钒-溴等多种类型,但均需要通过将包含不同价态的阴阳离子的溶液通过极板上的流道分别引入正极和负极,发生电化学反应进行充放电。液流电池正/负极电对电位差大,可逆性好,副反应小,溶解度高且稳定,易于制备,价格便宜,环境友好,腐蚀性小。如果能大幅降低离子交换膜和极板等关键材料与部件的制造成本,其在储能领域将有着广阔的应用前景,非常适于大规模的风能、太阳能、潮汐能等可再生能源的规模开发与利用。在新能源的推广应用、实现稳定供电方面具备重要意义。According to the different valence element systems, flow batteries can be divided into various types such as all-vanadium, all-chromium, all-iron, titanium-iron, chromium-iron, vanadium-cerium, and vanadium-bromine, etc. The solutions of anions and cations with different valence states are respectively introduced into the positive electrode and the negative electrode through the flow channel on the electrode plate, and an electrochemical reaction occurs to charge and discharge. Flow batteries have large positive/negative potential difference, good reversibility, small side reactions, high and stable solubility, easy preparation, low price, environmental friendliness, and low corrosiveness. If the manufacturing cost of key materials and components such as ion exchange membranes and polar plates can be greatly reduced, it will have broad application prospects in the field of energy storage, and is very suitable for large-scale development of renewable energy such as wind energy, solar energy, and tidal energy. and use. It is of great significance in the promotion and application of new energy and the realization of stable power supply.
燃料电池又包括直接甲醇燃料电池(DMFC)、氢/空(氧)燃料电池(PEFC)、固体氧化物燃料电池(SOFC)、熔融碳酸盐燃料电池(MCFC)、磷酸燃料电池(PAFC)等多种类型。燃料电池以空气或纯氧作为氧化剂,以甲醇、氢气、甲烷和肼等作为燃料,分别在电池的正极和负极发生电化学反应,从而得到电能。因其能量转换效率高、清洁无污染、功率密度高等优点,越来越受到各国政府、能源企业和汽车制造厂商的重视,纷纷开发基于PEMFC的移动电源、发电装置、各种类型的发电站和车用发动机。Fuel cells include direct methanol fuel cells (DMFC), hydrogen/air (oxygen) fuel cells (PEFC), solid oxide fuel cells (SOFC), molten carbonate fuel cells (MCFC), phosphoric acid fuel cells (PAFC), etc. Many types. The fuel cell uses air or pure oxygen as the oxidant and methanol, hydrogen, methane and hydrazine as the fuel. Because of its high energy conversion efficiency, cleanliness and pollution-free, and high power density, it has attracted more and more attention from governments, energy companies and automobile manufacturers in various countries. car engine.
液流电池和燃料电池同样需要极板导入液态或气态的反应物质,在某些低温燃料电池中还需要导入冷却介质。作为液流电池和燃料电池的重要组成部件,极板占据了其超过60%的重量,以及整个电堆30%以上的成本。因此,降低极板的成本对于液流电池和燃料电池的商业化推广和应用也具有深远的意义。Flow batteries and fuel cells also require the introduction of liquid or gaseous reaction substances into the plates, and in some low-temperature fuel cells, cooling medium is also required. As an important component of flow batteries and fuel cells, the electrode plate occupies more than 60% of its weight and more than 30% of the cost of the entire stack. Therefore, reducing the cost of the electrode plate also has far-reaching significance for the commercialization and application of flow batteries and fuel cells.
极板的功能主要有:(1)收集反应产生的电流并将其从一个单电池的阳极传导到下一个单电池的阴极;(2)分隔氧化剂和还原剂,并在正极和负极表面均匀地分配反应剂;(3)排出生成产物;(4)如有必要,引入冷却介质,确保电堆的温度稳定,并分布均匀;(5)分隔并支撑液流电池或燃料电池中的各组电解质和催化剂。The main functions of the plate are: (1) collect the current generated by the reaction and conduct it from the anode of one single cell to the cathode of the next single cell; (2) separate the oxidant and the reducing agent, and evenly distribute it on the surface of the positive and negative electrodes. Distribute the reactants; (3) Discharge the generated products; (4) If necessary, introduce a cooling medium to ensure that the temperature of the stack is stable and evenly distributed; (5) Separate and support each group of electrolytes in a flow battery or fuel cell and catalyst.
为了达到上述要求,液流电池和燃料电池的极板必须具有以下要求:(1)高的导电性,以更有效地传导电子;(2)良好的密封性,来阻隔相邻单电池之间的反应物质;(3)抗腐蚀性;(4)较好的抗弯强度和抗压强度;(5)低的制造成本。因此,极板的研究进展对于提升发电装置的比功率密度、降低其制造成本作用显著,对整个液流电池和燃料电池的产业化都具有重要影响,这使得关于极板的材料和加工工艺的研究成为国内外的热点。In order to meet the above requirements, the plates of flow batteries and fuel cells must have the following requirements: (1) high electrical conductivity to conduct electrons more efficiently; (2) good sealing to block adjacent cells (3) Corrosion resistance; (4) Better flexural strength and compressive strength; (5) Low manufacturing cost. Therefore, the research progress of the electrode plate plays a significant role in improving the specific power density of the power generation device and reducing its manufacturing cost, and has an important impact on the industrialization of the entire flow battery and fuel cell, which makes the material and processing technology of the electrode plate. Research has become a hot spot at home and abroad.
极板的材料双极板材料大致可分为如下几类:纯石墨材料、聚合物/导电填料复合材料、碳/碳复合材料、金属材料等。石墨具有优良的导电性和耐腐蚀性,但纯石墨材料本身成本较高,且其质脆,加工难度大,这限制了其大规模的应用。Plate material Bipolar plate materials can be roughly divided into the following categories: pure graphite materials, polymer/conductive filler composite materials, carbon/carbon composite materials, metal materials, etc. Graphite has excellent electrical conductivity and corrosion resistance, but the cost of pure graphite material itself is high, and its brittleness makes it difficult to process, which limits its large-scale application.
由于金属具有导电性好、电化学活性高、机械性能优良等特点,传统上常用金属作为电极材料。能作为液流电池和燃料电池的双极板金属材料包括:金、铅、钛、钛基铂、不锈钢、铝和镍基合金等。Metals are traditionally used as electrode materials due to their good electrical conductivity, high electrochemical activity, and excellent mechanical properties. Bipolar plate metal materials that can be used as flow batteries and fuel cells include: gold, lead, titanium, titanium-based platinum, stainless steel, aluminum, and nickel-based alloys.
由于阴阳极反应物的分布以及压降对电池的影响较大,这两个因素成为极板流道的设计与加工时的重要考量。一般地,流道可以分为以下四种形式:单路蛇形流道,平行流道,多路蛇形流道,复合流道等。蛇形流道的压降大,流体的分散性较好。平行流道的压降较小,但流体的分散性没有蛇形流道好。多蛇形流道和复合流道则可以综合以上两者的优点。Since the distribution of the cathode and anode reactants and the pressure drop have a great influence on the battery, these two factors have become important considerations in the design and processing of the plate flow channel. Generally, the flow channel can be divided into the following four forms: single-channel serpentine flow channel, parallel flow channel, multi-channel snake-shaped flow channel, compound flow channel, etc. The pressure drop of the serpentine flow channel is large, and the dispersion of the fluid is better. The pressure drop of the parallel channel is smaller, but the dispersion of the fluid is not as good as that of the serpentine channel. Multi-serpentine runners and composite runners can combine the advantages of the above two.
传统的金属板成型加工工艺包括辊压、冲压等。辊压和冲压工艺能实现极板流道的辊压成形,连续制造,生产效率较高,大批量生产时可摊薄模具开发成本,降低综合制造成本。但是辊压时,接触面积变小,压力不均匀,难免会产生板面变形;辊子的制造精度会影响极板最后的成形精度。Traditional sheet metal forming processes include rolling, stamping, etc. The rolling and stamping process can realize the rolling forming of the plate flow channel, continuous manufacturing, and high production efficiency. In mass production, the mold development cost can be diluted and the comprehensive manufacturing cost can be reduced. However, when rolling, the contact area becomes smaller and the pressure is uneven, which will inevitably cause deformation of the plate surface; the manufacturing accuracy of the roller will affect the final forming accuracy of the pole plate.
冲压成型工艺则依赖于平板状模具的一次或多次冲压薄金属板而成。板料冲压成形生产效率高,便于实现自动化,批量生产能显著降低成本,因此受到广大研究者的关注。The stamping process relies on one or more stampings of a thin sheet of metal from a flat die. Sheet metal stamping has high production efficiency, is easy to realize automation, and can significantly reduce costs in mass production, so it has attracted the attention of many researchers.
辊压与冲压成型工艺除了模具精度要求高,制造成本高外,还存在其它不足之处,比如:正反面凹凸对称,不能独立设计;不适于复杂设计的流道加工;通孔需二次加工,不能一次成型;应力分布不均,表面易变形,给后续密表面抗蚀性处理、密封件制作及组装造成不便等。In addition to the high precision requirements of the mold and the high manufacturing cost, the rolling and stamping forming process also has other shortcomings, such as: the front and back sides are symmetrical, and cannot be independently designed; it is not suitable for the processing of complex design runners; through holes need secondary processing , cannot be formed at one time; the stress distribution is uneven, and the surface is easily deformed, which causes inconvenience to the subsequent treatment of dense surface corrosion resistance, seal production and assembly.
另一方面,金属极板的成形属于微成形技术范畴,采用辊压与冲压时金属的延展性极大,变形区域范围极宽,变形的尺寸细节相对很小但数量又多。所以在进行整个极板成形的有限元模拟与设计时,需要划分大量的网格,往往需要花费很长时间甚至出现无法模拟的情况。在进行板材加工之前,建模方案的选择、工艺参数的优化、成形模具的设计等方面还有很多的工作需要开展,这就造成了高昂的模具开发成本。因此,可以这样说,在社会对于新能源的需求日趋迫切的今天,高昂的金属板模具开发的时间与经济成本,成为制约液流电池与燃料电池发展的一大瓶颈。On the other hand, the forming of metal plates belongs to the category of micro forming technology. When rolling and stamping are used, the ductility of metal is extremely large, the range of deformation area is extremely wide, and the size and details of deformation are relatively small but numerous. Therefore, during the finite element simulation and design of the entire plate forming, a large number of meshes need to be divided, which often takes a long time or even cannot be simulated. Before plate processing, there is still a lot of work to be done in the selection of modeling scheme, the optimization of process parameters, and the design of forming molds, which results in high mold development costs. Therefore, it can be said that in today's increasingly urgent society's demand for new energy, the high time and economic cost of metal plate mold development has become a major bottleneck restricting the development of flow batteries and fuel cells.
鉴于上述两种工艺的局限性,极有必要开发一种低开发与制造成本、简单、高效的金属极板成形工艺。In view of the limitations of the above two processes, it is extremely necessary to develop a simple and efficient metal plate forming process with low development and manufacturing costs.
发明内容SUMMARY OF THE INVENTION
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种低成本批量生产金属极板的方法。The purpose of the present invention is to provide a method for mass production of metal electrode plates at low cost in order to overcome the above-mentioned defects of the prior art.
本发明的目的可以通过以下技术方案来实现:The object of the present invention can be realized through the following technical solutions:
一种低成本批量生产金属极板的方法,包括以下步骤:A method for mass production of metal electrode plates at low cost, comprising the following steps:
(1)取待加工的金属板进行表面预处理;(1) Take the metal plate to be processed for surface pretreatment;
(2)将防蚀层油墨印刷至步骤(1)得到的处理干净的金属板上,并烘干;(2) printing the anti-corrosion layer ink on the cleaned metal plate obtained in step (1), and drying;
(3)取设计好加工图案的图形胶片遮盖金属板,对金属板上的防蚀层油墨进行曝光和显影,露出需要蚀刻的部分;(3) Take the graphic film with the designed processing pattern to cover the metal plate, and expose and develop the ink of the anti-corrosion layer on the metal plate to expose the part that needs to be etched;
(4)采用蚀刻溶液对需要蚀刻的部分进行加工,蚀刻出相应图形;(4) use etching solution to process the part that needs to be etched, and etch out the corresponding graphics;
(5)褪除防蚀层油墨,烘干,即得到一次加工完成的金属极板;(5) remove the ink of the anti-corrosion layer, and dry it to obtain the metal pole plate processed at one time;
(6)重复步骤(2)~步骤(5)0次或1次以上,即得到最终产品金属极板。(6) Repeat steps (2) to (5) 0 or more times to obtain the final product metal electrode plate.
作为优选的实施方案,所述的金属板的材质为铝、不锈钢、镍或钛。As a preferred embodiment, the material of the metal plate is aluminum, stainless steel, nickel or titanium.
作为优选的实施方案,步骤(1)中金属板预处理的工艺包括刷板、脱脂、除氧化皮、水洗和干燥,其中,除氧化皮选用滚光、振光、喷丸、磨光、化学抛光或机械抛光中一种。As a preferred embodiment, the process of metal plate pretreatment in step (1) includes brushing, degreasing, descaling, water washing and drying, wherein, for descaling, rolling, vibrating, shot blasting, polishing, chemical Either polished or mechanically polished.
作为优选的实施方案,步骤(2)中防蚀层油墨采用丝网印刷至金属板上,其中,丝网印刷的环境为洁净无尘空间,丝网为目数100-200目的单丝网,其材质为不锈钢、尼龙或聚酯。As a preferred embodiment, in step (2), the anti-corrosion layer ink is screen printed on the metal plate, wherein, the screen printing environment is a clean and dust-free space, and the screen is a single wire screen with a mesh number of 100-200, It is available in stainless steel, nylon or polyester.
作为优选的实施方案,步骤(4)中所述的蚀刻溶液为碱性蚀刻液或酸性蚀刻液,其中,所述的碱性蚀刻液以氢氧化钠为主蚀刻剂,所述的酸性蚀刻液的主蚀刻剂为盐酸、硝酸、磷酸、氢氟酸、三氯化铁、铬酸、硫酸、草酸、醋酸中的一种或多种。As a preferred embodiment, the etching solution described in step (4) is an alkaline etching solution or an acidic etching solution, wherein, the alkaline etching solution is mainly sodium hydroxide etchant, and the acidic etching solution The main etchant is one or more of hydrochloric acid, nitric acid, phosphoric acid, hydrofluoric acid, ferric chloride, chromic acid, sulfuric acid, oxalic acid and acetic acid.
作为更优选的实施方案,步骤(4)中所述的蚀刻溶液为酸性蚀刻液,其配方为:盐酸65g/L,硝酸190g/L,硝酸铵135g/L,磷酸80g/L,其余为去离子水。As a more preferred embodiment, the etching solution described in the step (4) is an acidic etching solution, and its formula is: hydrochloric acid 65g/L, nitric acid 190g/L, ammonium nitrate 135g/L, phosphoric acid 80g/L, and the rest are to remove Ionized water.
作为优选的实施方案,步骤(4)中蚀刻的方式为立式蚀刻,蚀刻溶液在金属板上的停留时间为5-15min,蚀刻时的温度为45-55℃。为保证蚀刻的深度,减少侧腐蚀,可以采用立式蚀刻,使蚀刻溶液在金属板表面分布均匀,各处流速一致。As a preferred embodiment, the etching method in step (4) is vertical etching, the residence time of the etching solution on the metal plate is 5-15min, and the temperature during etching is 45-55°C. In order to ensure the depth of etching and reduce side corrosion, vertical etching can be used, so that the etching solution is evenly distributed on the surface of the metal plate, and the flow rate is consistent everywhere.
作为优选的实施方案,步骤(5)中褪除防蚀层油墨后,在50℃~150℃下烘烤0.5~2小时。蚀刻后,还需要去除防蚀的保护层油墨。对于耐碱性油墨,采用稀硫酸溶液去除;对于耐酸性油墨,则采用氢氧化钠溶液去除。As a preferred embodiment, after removing the ink on the anti-corrosion layer in step (5), bake at 50°C to 150°C for 0.5 to 2 hours. After etching, it is also necessary to remove the anti-corrosion protective layer ink. For alkali-resistant ink, use dilute sulfuric acid solution to remove; for acid-resistant ink, use sodium hydroxide solution to remove.
作为优选的实施方案,加工得到的金属极板上的极板流道的槽深在0.4mm以上,且槽深:槽宽=0.7~0.9:1。为了降低电化学反应过程中燃料、氧化剂及冷却介质等流体的流动阻力,蚀刻得到的极板流道必须足够深,一般槽深要达到0.4mm以上。与此同时,为了保证良好的接触面积,还必须保证足够的槽宽。因此槽深度与宽度的比例需要控制在合理的范围,一般要求槽深:槽宽=0.7~0.9:1。As a preferred embodiment, the groove depth of the electrode plate flow channel on the obtained metal electrode plate is more than 0.4 mm, and the groove depth: groove width=0.7-0.9:1. In order to reduce the flow resistance of fluids such as fuel, oxidant and cooling medium during the electrochemical reaction, the electrode plate flow channel obtained by etching must be deep enough, and generally the groove depth should reach more than 0.4mm. At the same time, in order to ensure a good contact area, a sufficient groove width must also be ensured. Therefore, the ratio of groove depth to width needs to be controlled within a reasonable range. Generally, groove depth: groove width = 0.7 to 0.9:1.
作为优选的实施方案,步骤(3)中图形胶片上的防蚀层油墨的线条预留有防蚀宽度补偿。蚀刻过程中的侧腐蚀率也需要保持在极低的水平,侧蚀过程如图4所示。侧蚀宽度越小,则加工得到的流道的精度越高。因此,侧蚀宽度是金属极板加工过程中需要重点控制的一个因素。侧蚀宽度与蚀刻溶液的配方、流速、蚀刻机的喷射方式、主蚀刻液的浓度、操作温度及使用时间等蚀刻条件有直接的关系。侧蚀宽度与深度的关系如图4所示,标记金属极板为8,防蚀层标号为9。如果通过实验到的蚀刻深度为h,侧蚀宽度为a,则可计算得出侧蚀因子F=a/h。如果上述蚀刻溶液配方、流速和温度等蚀刻条件及蚀刻因子F固定时,侧蚀宽度则完全取决于金属板的蚀刻深度;蚀刻深度越深,侧蚀量也会越大。反之,要想在保证较高的蚀刻深度与流道(或脊)宽度的情况下,就必须尽量降低侧蚀因子F,这就需要调整各种蚀刻条件,其中最重要的是优化蚀刻溶液的配方。另一方面,在蚀刻时可以提前在防蚀层的线条宽度上做出补偿。比如要想使蚀刻得到的脊宽为L1,则防蚀层线条的宽度L2须进行放大补偿,其值可由下式计算得到:As a preferred embodiment, in step (3), the lines of the ink on the anti-corrosion layer on the graphic film are reserved for the anti-corrosion width compensation. The side etching rate during the etching process also needs to be kept at a very low level. The side etching process is shown in Figure 4. The smaller the side erosion width, the higher the precision of the processed flow channel. Therefore, the width of side etching is a factor that needs to be controlled in the process of metal plate processing. The side etching width is directly related to the etching conditions such as the formula of the etching solution, the flow rate, the spray method of the etching machine, the concentration of the main etching solution, the operating temperature and the use time. The relationship between the width and depth of side etching is shown in Figure 4, the metal plate is marked as 8, and the anti-corrosion layer is marked as 9. If the etching depth obtained through experiments is h and the side etching width is a, then the undercut factor F=a/h can be calculated. If the above etching solution formulation, flow rate, temperature and other etching conditions and etching factor F are fixed, the width of the undercut depends entirely on the etching depth of the metal plate; the deeper the etching depth, the greater the amount of undercut. On the contrary, in order to ensure a high etching depth and flow channel (or ridge) width, it is necessary to reduce the side etching factor F as much as possible, which requires adjustment of various etching conditions, the most important of which is to optimize the etching solution. formula. On the other hand, the line width of the resist layer can be compensated in advance during etching. For example, if the ridge width obtained by etching is L 1 , the width L 2 of the resist line must be enlarged and compensated, and its value can be calculated by the following formula:
L2=L1+h×F×2。L 2 =L 1 +h×F×2.
与现有技术相比,本发明采用光化学蚀刻的加工方法,结合机械制图、丝印、曝光、显影与化学蚀刻等过程,制造金属极板,与辊压与冲压成型工艺不同的是,本发明是通过蚀刻溶液对金属基材的腐蚀作用,形成共用通道、定位孔与流道,从而舍弃可能产生变形与内应力的任何机械加工过程,因此开发周期短、不论大批量还是小批量制造成本都极低、正反面流道可以独立设计、加工精度高、表面平整、几乎没有残余应力;可实现液流电池与燃料电池极板的快速开发与低成本制造。Compared with the prior art, the present invention adopts the processing method of photochemical etching, and combines the processes of mechanical drawing, screen printing, exposure, development and chemical etching to manufacture metal plates. Through the corrosion effect of the etching solution on the metal substrate, common channels, positioning holes and flow channels are formed, so as to abandon any mechanical processing process that may produce deformation and internal stress, so the development cycle is short, and the manufacturing cost is extremely high regardless of large or small batches. Low, front and back flow channels can be independently designed, with high machining accuracy, smooth surface, and almost no residual stress; it can realize rapid development and low-cost manufacturing of flow battery and fuel cell plates.
附图说明Description of drawings
图1为本发明的加工工艺流程图;Fig. 1 is the processing technology flow chart of the present invention;
图2为金属极板的侧面剖视图;Fig. 2 is the side sectional view of metal pole plate;
图3为金属极板的脊与槽示意图;Fig. 3 is the ridge and groove schematic diagram of metal pole plate;
图4为金属极板加工加工侧蚀发生示意图。FIG. 4 is a schematic diagram of the occurrence of side erosion during the processing of the metal electrode plate.
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明进行详细说明。The present invention will be described in detail below with reference to the accompanying drawings and specific embodiments.
针对氢/空质子交换膜燃料电池电堆中一侧通空气,一侧通冷却水的双极板的加工,本实施例提供了一种金属双极板加工过程的示例。本领域技术人员应该明白,本发明除了能用于氢/空质子交换膜燃料电池外,还能用于其它类型的燃料电池和各种液流电池;除了用于304不锈钢外,还可以用于其它各种类型的不锈钢和镍、铝、钛等各种金属及其合金。This embodiment provides an example of a metal bipolar plate processing process for the processing of a bipolar plate with air on one side and cooling water on the other side in a hydrogen/air proton exchange membrane fuel cell stack. Those skilled in the art should understand that the present invention can be used for other types of fuel cells and various flow batteries besides hydrogen/air proton exchange membrane fuel cells; in addition to 304 stainless steel, it can also be used for Various other types of stainless steel and nickel, aluminum, titanium and other metals and their alloys.
下述实施例中的防蚀层油墨采用耐酸性掩膜油墨。The anti-corrosion layer ink in the following examples adopts acid-resistant mask ink.
图1是本发明所述的金属极板的加工工艺流程图,根据金属极板上蚀刻的共用通道、定位孔与流道等结构,可以采用两次蚀刻加工法,即先加工共用通道和定位孔等通孔结构,再加工流道,其具体包括以下几个步骤:Fig. 1 is the processing technology flow chart of the metal electrode plate of the present invention, according to the structures such as the shared channel etched on the metal electrode plate, the positioning hole and the flow channel, can adopt the etching processing method twice, namely first process the shared channel and the positioning Hole and other through-hole structures, and then process the flow channel, which specifically includes the following steps:
(1)金属板表面处理(1) Surface treatment of metal plate
将304不锈钢板置于前处理生产线上,按步骤进行刷板、脱脂、除氧化皮、水洗等工序,最后在干燥箱中110℃下烘5分钟至全部干燥。The 304 stainless steel plate is placed on the pretreatment production line, and the steps of brushing, degreasing, descaling, and water washing are carried out according to the steps.
(2)第一次丝网印刷(2) The first screen printing
用150目单丝尼龙网,将耐酸性掩膜油墨印刷至表面处理后的不锈钢板在上,然后在烘箱150℃下烘烤30分钟至完全干燥;Use 150 mesh monofilament nylon mesh to print the acid-resistant mask ink on the surface-treated stainless steel plate, and then bake it in an oven at 150°C for 30 minutes until it is completely dry;
(3)第一次曝光(3) First exposure
利用预先制备好的、带共用通道、定位孔等通孔图案的透明胶片遮盖在不锈钢板之上,在曝光机中对油墨进行曝光。胶片透光部分的油墨被曝光,其余部分则被遮蔽。The stainless steel plate is covered with a pre-prepared transparent film with a common channel, positioning holes and other through-hole patterns, and the ink is exposed in an exposure machine. The ink in the light-transmitting part of the film is exposed, and the rest is masked.
(4)第一次显影(4) The first development
将油墨被曝光后的不锈钢板浸泡在显影液中,10分钟后,即显露出需要蚀刻的各通孔部分,而不需要蚀刻的部分被未曝过光的油墨(即防蚀层)保护起来了。Immerse the exposed stainless steel plate in the developer solution, and after 10 minutes, the parts of the through holes that need to be etched are exposed, and the parts that do not need to be etched are protected by the unexposed ink (ie, the anti-corrosion layer). .
(5)第一次蚀刻(5) The first etching
在立式蚀刻机中,采用蚀刻溶液蚀刻出相应的金属板通孔。在蚀刻过程中,调节蚀刻机的运行速度为1米/分,温度50±5℃,喷射压力控制在3bar。蚀刻时间15分钟,得到所需的各通孔。In a vertical etcher, the corresponding metal plate through holes are etched with an etching solution. During the etching process, the operating speed of the etching machine was adjusted to 1 m/min, the temperature was 50 ± 5 °C, and the injection pressure was controlled at 3 bar. The etching time was 15 minutes to obtain the desired vias.
本蚀刻溶液的主配方如下:盐酸65g/L,硝酸190g/L,硝酸铵135g/L,磷酸80g/L,其余为去离子水。The main formula of this etching solution is as follows: hydrochloric acid 65g/L, nitric acid 190g/L, ammonium nitrate 135g/L, phosphoric acid 80g/L, and the rest are deionized water.
(6)第一次褪除防蚀层(6) Remove the anti-corrosion layer for the first time
用20%NaOH水溶液去除防蚀层油墨,并烘干。The resist ink was removed with 20% NaOH aqueous solution and dried.
(7)第二次丝网印刷(7) Second screen printing
同样地,采用150目单丝尼龙网,将耐酸性掩膜油墨印刷至已蚀刻出通孔的不锈钢板上,然后在烘箱150℃下烘烤30分钟至完全干燥;Similarly, using a 150-mesh monofilament nylon mesh, the acid-resistant masking ink was printed on the stainless steel plate with the through holes etched, and then baked in an oven at 150 °C for 30 minutes until it was completely dry;
(8)第二次曝光(8) Second exposure
将带流场等图案的透明胶片遮盖在不锈钢板上,对油墨进行曝光。A transparent film with patterns such as flow fields is covered on a stainless steel plate to expose the ink.
(9)第二次显影(9) Second development
将油墨被曝光后的不锈钢板浸泡在显影液中,10分钟后,即显露出需要蚀刻的流道。The stainless steel plate after the ink has been exposed is immersed in the developing solution, and after 10 minutes, the flow channel that needs to be etched is revealed.
(10)第二次蚀刻(10) Second etching
在立式蚀刻机中,采用与第一次蚀刻一样的工艺参数与蚀刻液,蚀刻出相应的流道(如图2所示,可见成型的金属极板包括脊a1、脊b2、流道a2、流道b4、密封槽5、通孔a6和通孔b7等)。蚀刻时间8分钟。In the vertical etching machine, the same process parameters and etching solution as the first etching are used to etch the corresponding flow channels (as shown in Figure 2, it can be seen that the formed metal plate includes ridge a1, ridge b2, flow channel a2 , flow channel b4, sealing groove 5, through hole a6 and through hole b7, etc.).
(11)第二次褪除防蚀层(11) The second time to remove the anti-corrosion layer
用20%NaOH水溶液去除防蚀层油墨,并烘干。The resist ink was removed with 20% NaOH aqueous solution and dried.
(12)烘干(12) Drying
将蚀刻成型的不锈钢板置于烘箱中,150℃下烘烤30分钟至完全干燥,并排除金属晶格中可能进入的氢气。The etched stainless steel plate was placed in an oven and baked at 150 °C for 30 minutes until it was completely dry, and the hydrogen that might have entered the metal lattice was excluded.
如图3所示,蚀刻得到的不锈钢板,厚度为1.0±0.01mm。空气侧流道槽深0.5±0.05mm,槽宽0.6±0.05mm,脊宽0.5±0.05mm。水侧流道槽深0.3±0.05mm,槽宽1.5±0.05mm,脊宽1.0±0.05mm。经测量,其空气侧蚀率为0.20,水侧为0.33。As shown in Fig. 3, the stainless steel plate obtained by etching has a thickness of 1.0±0.01mm. The air side flow channel groove depth is 0.5±0.05mm, the groove width is 0.6±0.05mm, and the ridge width is 0.5±0.05mm. The groove depth of the water side channel is 0.3±0.05mm, the groove width is 1.5±0.05mm, and the ridge width is 1.0±0.05mm. After measurement, the air side erosion rate is 0.20, and the water side is 0.33.
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。The foregoing description of the embodiments is provided to facilitate understanding and use of the invention by those of ordinary skill in the art. It will be apparent to those skilled in the art that various modifications to these embodiments can be readily made, and the generic principles described herein can be applied to other embodiments without inventive step. Therefore, the present invention is not limited to the above-mentioned embodiments, and improvements and modifications made by those skilled in the art according to the disclosure of the present invention without departing from the scope of the present invention should all fall within the protection scope of the present invention.
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201710134283.2A CN107039658B (en) | 2017-03-08 | 2017-03-08 | A low-cost method for mass production of metal plates |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201710134283.2A CN107039658B (en) | 2017-03-08 | 2017-03-08 | A low-cost method for mass production of metal plates |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN107039658A CN107039658A (en) | 2017-08-11 |
| CN107039658B true CN107039658B (en) | 2020-07-28 |
Family
ID=59533688
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201710134283.2A Active CN107039658B (en) | 2017-03-08 | 2017-03-08 | A low-cost method for mass production of metal plates |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN107039658B (en) |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110507229A (en) * | 2019-08-18 | 2019-11-29 | 应伟明 | A manufacturing method of a composite hard thawing cutting board and a composite hard thawing cutting board |
| CN112349924B (en) * | 2020-09-21 | 2022-03-18 | 中国科学院大连化学物理研究所 | Etching processing method of conductive partition plate with gas-liquid distribution flow field |
| CN112680730A (en) * | 2020-12-01 | 2021-04-20 | 上海易慧机电科技有限公司 | Stainless steel product mark etching method |
| CN113140654A (en) * | 2021-03-31 | 2021-07-20 | 扬州工业职业技术学院 | Preparation method of solar cell metal base |
Citations (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1164296A (en) * | 1994-10-12 | 1997-11-05 | H动力公司 | Fuel cells employing integrated fluid management platelet technology |
| CN101009976A (en) * | 2007-01-26 | 2007-08-01 | 上海美维科技有限公司 | Method for improving the line precision in the etching technology |
| CN101021009A (en) * | 2007-03-09 | 2007-08-22 | 湖南大学 | Nickel pre-coating process and nickel pre-coating solution for magnesium alloy surface |
| CN101173360A (en) * | 2006-10-31 | 2008-05-07 | 佛山市顺德区汉达精密电子科技有限公司 | Stainless steel etching technique |
| CN101222057A (en) * | 2007-12-04 | 2008-07-16 | 大连理工大学 | A manufacturing process for preparing a metal flow field plate for a micro fuel cell |
| CN201347410Y (en) * | 2009-02-09 | 2009-11-18 | 新鋐源科技股份有限公司 | Vertical etching mechanism |
| CN102108512A (en) * | 2009-12-25 | 2011-06-29 | 比亚迪股份有限公司 | Chemical etching liquid for metals and etching method |
| CN102732252A (en) * | 2012-06-21 | 2012-10-17 | 江阴润玛电子材料股份有限公司 | Novel aqua regia system ITO (indium tin oxide) etching solution and its preparation method |
| CN102747367A (en) * | 2011-02-15 | 2012-10-24 | 三星电子株式会社 | Non-halogenated etchant and method of manufacturing display substrate using the non-halogenated etchant |
| CN103255416A (en) * | 2013-05-14 | 2013-08-21 | 广东工业大学 | Etching method and etching polishing liquid |
| CN103374725A (en) * | 2013-06-27 | 2013-10-30 | 天长市京发铝业有限公司 | Chemical etching process of aluminum plate |
| CN104233302A (en) * | 2014-09-15 | 2014-12-24 | 南通万德科技有限公司 | Etching liquid and application thereof |
| CN105295923A (en) * | 2015-11-25 | 2016-02-03 | 江阴江化微电子材料股份有限公司 | High generation tablet personal computer ITO etching solution |
| CN105970225A (en) * | 2016-07-01 | 2016-09-28 | 苏州博洋化学股份有限公司 | Aluminum etching agent and preparation method thereof |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6890677B2 (en) * | 1999-05-06 | 2005-05-10 | Sandia Corporation | Fuel cell and membrane |
| KR100691453B1 (en) * | 2005-12-21 | 2007-03-12 | 삼성전기주식회사 | Flexible Fuel Cell |
| CN100397687C (en) * | 2006-08-25 | 2008-06-25 | 中国科学院上海微系统与信息技术研究所 | Cathode flow field plate and manufacturing method of self-breathing miniature proton exchange membrane fuel cell |
| CN101071871B (en) * | 2007-06-05 | 2010-05-19 | 山东大学 | Composite bipolar plate for micro fuel cell and preparation method thereof |
-
2017
- 2017-03-08 CN CN201710134283.2A patent/CN107039658B/en active Active
Patent Citations (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1164296A (en) * | 1994-10-12 | 1997-11-05 | H动力公司 | Fuel cells employing integrated fluid management platelet technology |
| CN101173360A (en) * | 2006-10-31 | 2008-05-07 | 佛山市顺德区汉达精密电子科技有限公司 | Stainless steel etching technique |
| CN101009976A (en) * | 2007-01-26 | 2007-08-01 | 上海美维科技有限公司 | Method for improving the line precision in the etching technology |
| CN101021009A (en) * | 2007-03-09 | 2007-08-22 | 湖南大学 | Nickel pre-coating process and nickel pre-coating solution for magnesium alloy surface |
| CN101222057A (en) * | 2007-12-04 | 2008-07-16 | 大连理工大学 | A manufacturing process for preparing a metal flow field plate for a micro fuel cell |
| CN201347410Y (en) * | 2009-02-09 | 2009-11-18 | 新鋐源科技股份有限公司 | Vertical etching mechanism |
| CN102108512A (en) * | 2009-12-25 | 2011-06-29 | 比亚迪股份有限公司 | Chemical etching liquid for metals and etching method |
| CN102747367A (en) * | 2011-02-15 | 2012-10-24 | 三星电子株式会社 | Non-halogenated etchant and method of manufacturing display substrate using the non-halogenated etchant |
| CN102732252A (en) * | 2012-06-21 | 2012-10-17 | 江阴润玛电子材料股份有限公司 | Novel aqua regia system ITO (indium tin oxide) etching solution and its preparation method |
| CN103255416A (en) * | 2013-05-14 | 2013-08-21 | 广东工业大学 | Etching method and etching polishing liquid |
| CN103374725A (en) * | 2013-06-27 | 2013-10-30 | 天长市京发铝业有限公司 | Chemical etching process of aluminum plate |
| CN104233302A (en) * | 2014-09-15 | 2014-12-24 | 南通万德科技有限公司 | Etching liquid and application thereof |
| CN105295923A (en) * | 2015-11-25 | 2016-02-03 | 江阴江化微电子材料股份有限公司 | High generation tablet personal computer ITO etching solution |
| CN105970225A (en) * | 2016-07-01 | 2016-09-28 | 苏州博洋化学股份有限公司 | Aluminum etching agent and preparation method thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| CN107039658A (en) | 2017-08-11 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN100561786C (en) | A manufacturing process for preparing a metal flow field plate for a micro fuel cell | |
| CN107039658B (en) | A low-cost method for mass production of metal plates | |
| Lin et al. | An investigation of coated aluminium bipolar plates for PEMFC | |
| JP6438664B2 (en) | Method for manufacturing membrane electrode assembly | |
| CN101514462A (en) | Ultra-pure water membrane electrolyser | |
| CN104795574A (en) | Metal bipolar plates of fuel cell and fuel cell | |
| CN102255065B (en) | Preparing method of silver-plated negative electrode lug for soft packet or polymer lithium ion power battery | |
| CN101447572A (en) | Fractal micro-channel bipolar plate used in proton exchange membrane fuel cell and processing method thereof | |
| CN111769308A (en) | Universal activation method for proton exchange membrane fuel cell stack | |
| CN113328111A (en) | Stainless steel bipolar plate with chromium-based nitride composite coating and preparation method thereof | |
| US20080199767A1 (en) | Corrosion-resistant interconnects for fuel cells | |
| CN105529469A (en) | Graphene lithium battery and preparation method thereof | |
| CN209947950U (en) | Bipolar plate with Taiji pattern flow field structure in liquid fuel cell, monocell and portable electronic product | |
| CN206789622U (en) | A kind of flow battery or fuel cell used metal electrode plate | |
| CN110931819B (en) | A method of electrochemical etching to prepare flow field of metal bipolar plate of fuel cell | |
| CN110875482A (en) | Method for preparing carbon film on surface of stainless steel bipolar plate by using graphite as carbon source | |
| CN116377469B (en) | Preparation method of PEM water electrolysis anode oxygen plate | |
| CN101764175B (en) | Method for manufacturing silicon solar cells | |
| CN103361660A (en) | Method for pre-treating stainless steel bipolar plate of proton exchange membrane fuel cell | |
| JP2011090937A (en) | Separator for fuel cell and method of manufacturing the same | |
| CN209947951U (en) | A flow field structure bipolar plate, single battery, green energy vehicle, electronic equipment, mobile communication terminal | |
| CN115051003A (en) | Borohydride ion conductor electrolyte material and preparation method and application thereof | |
| CN208189716U (en) | planar fuel cell module | |
| CN101579632A (en) | Nickel palladium/ silicon microchannel catalyst and application thereof on preparing electrode of integratable direct methanol fuel cell | |
| JP2000021425A (en) | Current collector for fuel cells |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |