CN107076778B - High-speed self-adaptive multi-loop mode imaging atomic force microscope - Google Patents
High-speed self-adaptive multi-loop mode imaging atomic force microscope Download PDFInfo
- Publication number
- CN107076778B CN107076778B CN201580049517.2A CN201580049517A CN107076778B CN 107076778 B CN107076778 B CN 107076778B CN 201580049517 A CN201580049517 A CN 201580049517A CN 107076778 B CN107076778 B CN 107076778B
- Authority
- CN
- China
- Prior art keywords
- sample
- offset
- average
- imaging
- controller
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 128
- 239000000523 sample Substances 0.000 claims abstract description 211
- 238000012876 topography Methods 0.000 claims abstract description 59
- 238000000034 method Methods 0.000 claims abstract description 50
- 230000003993 interaction Effects 0.000 claims description 33
- 238000004422 calculation algorithm Methods 0.000 claims description 16
- 238000010079 rubber tapping Methods 0.000 claims description 10
- 238000006073 displacement reaction Methods 0.000 claims description 8
- 238000005457 optimization Methods 0.000 claims description 5
- 230000003252 repetitive effect Effects 0.000 claims description 5
- 238000012937 correction Methods 0.000 claims description 4
- 238000001514 detection method Methods 0.000 claims description 2
- 238000004630 atomic force microscopy Methods 0.000 description 35
- 238000010586 diagram Methods 0.000 description 18
- 230000001965 increasing effect Effects 0.000 description 12
- 230000008901 benefit Effects 0.000 description 9
- 230000008859 change Effects 0.000 description 9
- 230000010355 oscillation Effects 0.000 description 8
- 238000005070 sampling Methods 0.000 description 7
- 230000003044 adaptive effect Effects 0.000 description 6
- 238000013459 approach Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 238000011002 quantification Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 3
- 238000009527 percussion Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000008713 feedback mechanism Effects 0.000 description 2
- 229920001684 low density polyethylene Polymers 0.000 description 2
- 239000004702 low-density polyethylene Substances 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 230000005483 Hooke's law Effects 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 238000013139 quantization Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01Q—SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
- G01Q10/00—Scanning or positioning arrangements, i.e. arrangements for actively controlling the movement or position of the probe
- G01Q10/04—Fine scanning or positioning
- G01Q10/06—Circuits or algorithms therefor
- G01Q10/065—Feedback mechanisms, i.e. wherein the signal for driving the probe is modified by a signal coming from the probe itself
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01Q—SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
- G01Q60/00—Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
- G01Q60/24—AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes
- G01Q60/32—AC mode
- G01Q60/34—Tapping mode
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
- Microscoopes, Condenser (AREA)
Abstract
Description
技术领域technical field
本公开大致涉及在保留超高像素品质的固有特性并且减少了各个模式的探针-样本相互作用力的同时,在一个或更多动态模式(DM)下以增加的速度运行原子力显微镜(AFM)的系统和方法,所述动态模式包括但不限于敲击模式(TM)与非接触模式(NCM)以及峰值力模式(PFM)与接触模式(CM)。更具体地,本公开大致涉及在量化样本形貌(sampletopography)中考虑探针的平均偏移(或接触模式中的偏移)的变化的系统和方法,本公开使用并结合了:(i)内-外反馈回路,用于在相应的成像模式中将平均悬臂偏移调节在保持稳定的探针-样本相互作用所需的最小水平附近;(ii)在线迭代前馈控制器;(iii)振动振幅比的在线优化;以及(iv)用于探针振动发生器(它可以使振动振幅的设定点(set-point)最小化)以及用于均方根探针振荡振幅反馈控制器的反馈控制器。The present disclosure generally relates to operating atomic force microscopy (AFM) at increased speed in one or more dynamic modes (DMs) while preserving the inherent properties of ultra-high pixel quality and reducing probe-sample interaction forces for each mode Systems and methods for dynamic modes including, but not limited to, percussion mode (TM) and non-contact mode (NCM) and peak force mode (PFM) and contact mode (CM). More specifically, the present disclosure relates generally to systems and methods for accounting for changes in the mean shift (or shift in a contact pattern) of a probe in quantifying sample topography, using and incorporating: (i) Inner-outer feedback loops to adjust the average cantilever offset around the minimum level required to maintain stable probe-sample interactions in the corresponding imaging modalities; (ii) an online iterative feedforward controller; (iii) On-line optimization of vibration amplitude ratio; and (iv) for probe vibration generators (which minimize the set-point of vibration amplitude) and for rms probe vibration amplitude feedback controllers feedback controller.
背景技术Background technique
AFM是一种具有纳米量级范围的分辨率的高分辨率扫描探针显微镜。在原子力显微镜中。在原子力显微镜中,在其端部具有尖锐的尖端(探针)的微型悬臂可以用于扫描样本的表面。当尖端开始接近样本表面时,根据胡克定律,尖端与样本之间的力可能导致悬臂的偏移。通常,测量悬臂的偏移以获取样本的形貌。AFM is a high-resolution scanning probe microscope with resolution in the nanometer range. in an atomic force microscope. In atomic force microscopy, a microcantilever with a sharp tip (probe) at its end can be used to scan the surface of a sample. As the tip begins to approach the sample surface, according to Hooke's law, the force between the tip and the sample may cause a deflection of the cantilever. Typically, the deflection of the cantilever is measured to obtain the topography of the sample.
可以在包括接触模式(CM,也称作静态模式)及多种动态模式(包括但不限于TM、PFM以及NCM)的多个成像模式中运行AFM。在动态模式成像中,驱动悬臂以便以固定的振荡振幅垂直振荡。由于当尖端接近样本表面时作用于悬臂的相互作用力,振荡的振幅可能减小。在传统的DM成像中,微处理器、数字信号处理器或基于现场可编程门阵列(FGPA)的系统以及下线控制算法(underline control algorithm)通常用于控制样本上方的悬臂高度,以便在悬臂在样本表面上扫描时保持固定的振荡振幅(如在TM和NCM成像中)或固定峰值斥力振幅(如在PFM成像中)。假设在扫描期间悬臂振荡振幅良好地保持在理想的设定点值,则利用悬臂在垂直方向上的RMS位移产生DM显微镜中的样本形貌图像。AFM can be run in a variety of imaging modes including contact mode (CM, also known as static mode) as well as a variety of dynamic modes including, but not limited to, TM, PFM, and NCM. In dynamic mode imaging, the cantilever is driven to oscillate vertically with a fixed oscillation amplitude. The amplitude of the oscillations may decrease due to the interaction forces acting on the cantilever as the tip approaches the sample surface. In conventional DM imaging, a microprocessor, digital signal processor or field programmable gate array (FGPA) based system and an underline control algorithm are often used to control the height of the cantilever above the sample so that the A fixed oscillation amplitude (as in TM and NCM imaging) or a fixed peak repulsion amplitude (as in PFM imaging) is maintained while scanning across the sample surface. The RMS displacement of the cantilever in the vertical direction is used to generate images of the sample topography in the DM microscope, assuming that the cantilever oscillation amplitude is well maintained at the ideal set-point value during the scan.
相比于CM成像技术,由于降低了毛细作用力、摩擦力与剪力以及接触压力,DM成像模式成像通常提供更好的图像质量和更低的样本失真。但是,DM成像速度趋于大幅度减慢,因为增加成像速度可以导致探针与样本之间相互作用的损失和/或悬臂敲击振动的衰减(特别是当样本尺寸较大时)。Compared to CM imaging techniques, DM imaging mode imaging generally provides better image quality and lower sample distortion due to reduced capillary forces, friction and shear forces, and contact pressure. However, DM imaging speed tends to slow down considerably, as increasing the imaging speed can result in a loss of probe-sample interaction and/or attenuation of cantilever knock vibrations (especially when the sample size is larger).
与大多数测量设备一样,AFM时常需要在质量与获取速度之间取舍。也就是说,一些当前可用的AFM可以以亚埃分辨率扫描表面。这些扫描仪仅能够扫描比较小的样本面积,尽管如此,也仅能处于比较低的扫描速率。例如,传统的商业TM成像AFM一般要求通常是长达十分钟的总扫描时间,以便在高分辨率(例如,512×512像素)和低探针-样本相互作用力下覆盖几微米的面积。PFM的成像速度一般与TM的成像速度相当,而NCM的成像速度一般比TM慢。这主要是因为TM和PFM运行在排斥力层或排斥力与引力区域之间中间层中,但NCM纯粹的运行在吸引力区域并且探针悬停在样本表面的更上面,并且探针-样本相互作用力在引力区域对于探针-样本间距更加敏感。因为探针-样本相互作用力在吸引区域中对探针-样本间距更加敏感,所以非接触模式成像往往比敲击模式成像更慢。AFM扫描速度的实际极限是在保持足够低的探针-样本相互作用力以使得不会损伤尖端和/或样本或不使尖端和/或样本产生不可忽略的损伤的时候可以扫描样本的最大速度的结果。Like most measurement devices, AFMs often require a trade-off between quality and acquisition speed. That said, some currently available AFMs can scan surfaces at sub-Angstrom resolution. These scanners are only capable of scanning relatively small sample areas, however, only at relatively low scan rates. For example, conventional commercial TM imaging AFM typically requires a total scan time of typically up to ten minutes to cover an area of several microns at high resolution (eg, 512 x 512 pixels) and low probe-sample interaction forces. The imaging speed of PFM is generally comparable to that of TM, while the imaging speed of NCM is generally slower than that of TM. This is mainly because TM and PFM operate in the repulsive force layer or the middle layer between the repulsive force and the attractive force region, but the NCM operates purely in the attractive force region and the probe hovers further above the sample surface, and the probe-sample The interaction force is more sensitive to the probe-sample distance in the gravitational region. Because probe-sample interaction forces are more sensitive to probe-sample spacing in the region of attraction, non-contact mode imaging tends to be slower than tapping mode imaging. The practical limit to AFM scan speed is the maximum speed at which the sample can be scanned while keeping the probe-sample interaction force low enough to not damage the tip and/or sample or cause non-negligible damage to the tip and/or sample the result of.
因此,需要具有可控相互作用力且适合于使大尺寸样本成像的高速DM成像和/或CM成像技术。Therefore, there is a need for high-speed DM imaging and/or CM imaging techniques with controllable interaction forces and suitable for imaging large size samples.
发明内容SUMMARY OF THE INVENTION
公开了使用高速动态模式原子力显微镜使样本成像的方法。该方法可以包括:在样本的表面上方扫描悬臂探针的尖端;经由第一反馈控制器中产生的第一信号来调节所述尖端的振动振幅,以便保持恒定在设定点值(Aset);测量所述尖端的平均敲击偏移;经由第二反馈控制器中产生的第二信号来调节所述平均敲击偏移;跟踪并测量在调节期间对所测量的平均敲击偏移的调节。所述方法还包括基于所述第一信号、所述第二信号和所测量的对悬臂探针的所述平均敲击偏移的调节生成所述样本的图像形貌。在实施例中,高速动态模式原子力显微镜可以包括下述的一个或多个:敲击模式、非接触模式和峰值力敲击模式。A method of imaging a sample using a high-speed dynamic mode atomic force microscope is disclosed. The method may include: scanning the tip of the cantilever probe over the surface of the sample; adjusting the vibration amplitude of the tip via a first signal generated in a first feedback controller so as to remain constant at a set point value (A set ) ; measure the average tap excursion of the tip; adjust the average tap excursion via a second signal generated in a second feedback controller; track and measure the average tap excursion measured during adjustment adjust. The method also includes generating an image topography of the sample based on the first signal, the second signal, and the measured adjustment to the average tap offset of the cantilever probe. In an embodiment, the high-speed dynamic mode atomic force microscope may include one or more of the following: a tapping mode, a non-contact mode, and a peak force tapping mode.
在某些实施例中,调节所述平均敲击偏移可以包括:使用Aset与自由振幅的比来确定所需的平均偏移,以及将所测量的平均敲击偏移调节至所需的平均偏移。在实施例中,所需的平均偏移被确定为使Aset与自由振幅的比在大约10%至30%之间。In some embodiments, adjusting the average tap offset may include: using the ratio of A set to free amplitude to determine a desired average offset, and adjusting the measured average tap offset to the desired Average offset. In an embodiment, the desired average excursion is determined such that the ratio of A set to free amplitude is between about 10% and 30%.
在一些实施例中,所述第二反馈控制器可以包括内外反馈回路结构。外部反馈回路可以调节所述平均敲击偏移,以及嵌套在所述外部回路中的内部回路可以执行跟踪和测量在调节期间对所测量的平均敲击偏移的调节。在实施例中,所述外部反馈回路是比例积分微分(PID)型控制器,具有PID参数KP、KI和KD。在至少一个实施例中,所述PID型控制器可以采用下列算法:In some embodiments, the second feedback controller may include an inner and outer feedback loop structure. An outer feedback loop can adjust the average tap offset, and an inner loop nested within the outer loop can perform tracking and measurement adjustments to the measured average tap offset during adjustment. In an embodiment, the outer feedback loop is a proportional-integral-derivative (PID) type controller with PID parameters Kp , KI and KD . In at least one embodiment, the PID-type controller may employ the following algorithms:
dTM-set(j+1)=kIdTM-set(j)+kPeTM(j)+kD[eTM(j-1)-eTM(j)]d TM-set (j+1)=k I d TM-set (j)+k P e TM (j)+k D [e TM (j-1)-e TM (j)]
其中eTM(j)=dTM-d-dTM(j),其中j=2...N-1where e TM (j) = d TM - d - d TM (j), where j = 2...N-1
在实施例中,所述PID参数具有以下值:KP=1、KI=1以及KD=ρ,其中ρ是样本逐点梯度因子。在实施例中,ρ<1。In an embodiment, the PID parameters have the following values: K P =1, K I =1 and K D =ρ, where ρ is the sample pointwise gradient factor. In an embodiment, p<1.
可选地和/或附加地,所述PID型控制器采用下列算法:Alternatively and/or additionally, the PID-type controller employs the following algorithms:
dset,0=dset,org,d set, 0 = d set, org ,
其中其中t∈[0,Tscan],in where t∈[0, Tscan ],
在一些实施例中,所述方法还可以包括基于所测量的平均偏移和Aset与自由振幅的振动振幅比之间的实时关系在线优化Aset。该方法还可以包括经由第三反馈控制器预测用于跟踪所述平均敲击偏移调节的下一行样本形貌和下一行跟踪错误。在一些实施例中,所述方法还可以包括使用所述下一行样本形貌和所述下一行跟踪错误的预测以便在具有提供突然的动态变化的特征(包括断崖和边缘)的样本表面的区域中减少跟踪错误。在至少一个实施例中,使用所述下一行样本形貌和所述下一行跟踪错误的所述预测以便减少跟踪错误包括:使用以下公式获取下一行所需的轨迹:In some embodiments, the method may further include optimizing Aset online based on the measured average excursion and the real-time relationship between Aset and the vibration amplitude ratio of the free amplitude. The method may also include predicting, via a third feedback controller, a next-line sample topography and a next-line tracking error for tracking the average tap offset adjustment. In some embodiments, the method may further include using the next row of sample topographies and the next row to track erroneous predictions for regions with sample surfaces that provide features that provide sudden dynamic changes, including cliffs and edges reduce tracking errors. In at least one embodiment, using the next row of sample topography and the prediction of the next row of tracking errors in order to reduce tracking errors comprises obtaining the desired trajectory for the next row using the following formula:
hffd,k+1(j)=hk(j)+α[dTM,k(j)-dTM-d],j=1,...Nl.h ffd, k+1 (j)=h k (j)+α[d TM, k (j)-d TM-d ], j=1, . . . N l .
在一个实施例中,可以基于所述特征的估测高度调整α的值。In one embodiment, the value of a may be adjusted based on the estimated height of the feature.
可选地和/或附加地,所述前馈控制器还可以包括零相位低通滤波器,配置为过滤噪声,以免被反馈至所述前馈控制器。Optionally and/or additionally, the feedforward controller may further include a zero-phase low-pass filter configured to filter noise from being fed back to the feedforward controller.
在一些实施例中,所述第三反馈控制器可以是前馈控制器,包括数据驱动的迭代学习控制器。所述前馈控制器实施下列算法以获取控制输入:In some embodiments, the third feedback controller may be a feedforward controller, including a data-driven iterative learning controller. The feedforward controller implements the following algorithms to obtain control inputs:
Uff,0(jω)=0,U ff,0 (jω)=0,
ek(jω)=Hffd,k+1(jω)-Zk(jω)e k (jω)=H ffd, k+1 (jω)-Z k (jω)
在某些实施例中,获取所述下一行所需的轨迹还可以包括对第一行执行重复性扫描,直到达到收敛,以及使用所述收敛作为下一个扫描行的迭代的初始输入。In some embodiments, obtaining the desired trajectory for the next line may also include performing repetitive scans of the first line until convergence is reached, and using the convergence as an initial input for an iteration of the next scan line.
在本公开的另一个方案中,公开了一种使用高速动态模式原子力显微镜以使样本成像的方法。该方法可以包括在样本的表面上方扫描悬臂探针的尖端;经由第一反馈控制器中产生的第一信号来调节所述尖端的振动振幅,以便保持恒定在设定点值(Aset)。所述方法还可以包括测量所述尖端的平均敲击偏移;经由第二反馈控制器中产生的第二信号来调节所述平均敲击偏移;,跟踪并测量在调节期间对所测量的平均敲击偏移的调节;经由第三反馈控制器预测用于跟踪所述平均敲击偏移调节的下一行样本形貌和下一行跟踪错误;在调节所述平均敲击偏移中使用所述预测的下一行样本形貌和下一行跟踪错误;以及基于所述第一信号、所述第二信号和所测量的对悬臂探针的所述平均敲击偏移的调节来生成所述样本的图像形貌。In another aspect of the present disclosure, a method of imaging a sample using a high-speed dynamic mode atomic force microscope is disclosed. The method may include scanning the tip of the cantilever probe over the surface of the sample; adjusting the vibration amplitude of the tip via a first signal generated in a first feedback controller so as to remain constant at a set point value ( Aset ). The method may further include measuring an average tap offset of the tip; adjusting the average tap offset via a second signal generated in a second feedback controller; and tracking and measuring the measured change during adjustment. Adjustment of the average tap offset; predicting the next-line sample topography and next-line tracking error for tracking the average tap offset adjustment via a third feedback controller; using all the predicted next-line sample topography and the next-line tracking error; and generating the sample based on the first signal, the second signal, and the measured adjustment to the average tap offset of the cantilever probe image shape.
在某些实施例中,所述方法还可以包括在线迭代控制,施加于z压电致动器以便保持稳定的敲击。在实施例中,施加所述在线迭代控制包括通过在线逐点调节以调节Aset。In certain embodiments, the method may also include on-line iterative control applied to the z piezoelectric actuator to maintain a stable tap. In an embodiment, applying the on-line iterative control includes adjusting A set by on-line point-by-point adjustment.
在某些实施例中,调节所述平均敲击偏移可以包括:使用Aset与自由振幅的比来确定所需的平均偏移;以及将所测量的平均敲击偏移调节至所需的平均偏移。在实施例中,所述所需的平均偏移被确定为使得Aset与自由振幅的比在大约10%至30%中。In certain embodiments, adjusting the average tap offset may include: using the ratio of A set to free amplitude to determine a desired average offset; and adjusting the measured average tap offset to the desired Average offset. In an embodiment, the desired average offset is determined such that the ratio of A set to free amplitude is in the range of about 10% to 30%.
在一些实施例中,所述第二反馈控制器可以包括内外反馈回路结构。外部反馈回路调节所述平均敲击偏移,以及嵌套在所述外部回路中的内部回路可以执行跟踪和测量在调节期间对所测量的平均敲击偏移的调节。在实施例中,所述外部反馈回路是比例积分微分(PID)型控制器,具有PID参数KP、KI和KD。在至少一个实施例中,所述PID型控制器采用下列算法:In some embodiments, the second feedback controller may include an inner and outer feedback loop structure. An outer feedback loop adjusts the average tap offset, and an inner loop nested within the outer loop may perform tracking and measurement of adjustments to the measured average tap offset during adjustment. In an embodiment, the outer feedback loop is a proportional-integral-derivative (PID) type controller with PID parameters Kp , KI and KD . In at least one embodiment, the PID-type controller employs the following algorithm:
dTM-set(j+1)=kIdTM-set(j)+kPeTM(j)+kD[eTM(j-1)-eTM(j)]d TM-set (j+1)=k I d TM-set (j)+k P e TM (j)+k D [e TM (j-1)-e TM (j)]
其中eTM(j)=dTM-d-dTM(j),其中j=2...N-1where e TM (j) = d TM - d - d TM (j), where j = 2...N-1
在实施例中,所述PID参数具有以下值:KP=1、KI=1以及KD=ρ,其中ρ是样本逐点梯度因子。在实施例中,ρ<1。In an embodiment, the PID parameters have the following values: K P =1, K I =1 and K D =ρ, where ρ is the sample pointwise gradient factor. In an embodiment, p<1.
可选地和/或附加地,所述PID型控制器可以采用下列算法:Alternatively and/or additionally, the PID-type controller may employ the following algorithms:
dset,0=dset,org,d set, 0 = d set, org ,
其中其中t∈[0,Tscan],in where t∈[0, Tscan ],
在一些实施例中,所述方法还包括使用所述下一行样本形貌和所述下一行跟踪错误的预测以便在具有提供突然的动态变化的特征(包括断崖和边缘)的样本表面的区域中减少跟踪错误。在至少一个实施例中,使用所述下一行样本形貌和所述下一行跟踪错误的所述预测以便减少跟踪错误可以包括:使用以下公式获取下一行所需的轨迹:In some embodiments, the method further comprises using the next row of sample topography and the next row to track erroneous predictions in areas with sample surfaces that provide features that provide sudden dynamic changes, including cliffs and edges Reduce tracking errors. In at least one embodiment, using the next-row sample topography and the prediction of the next-row tracking error in order to reduce the tracking error may include obtaining the desired trajectory for the next-row using the following formula:
hffd,k+1(j)=hk(j)+α[dTM,k(j)-dTM-d],j=1,...Nl.h ffd, k+1 (j)=h k (j)+α[d TM, k (j)-d TM-d ], j=1, . . . N l .
在实施例中,可以基于所述特征的估测高度调整α的值。In an embodiment, the value of a may be adjusted based on the estimated height of the feature.
可选地和/或附加地,所述前馈控制器还可以包括零相位低通滤波器,配置为过滤噪声,以免被反馈至所述前馈控制器。Optionally and/or additionally, the feedforward controller may further include a zero-phase low-pass filter configured to filter noise from being fed back to the feedforward controller.
在一些实施例中,所述第三反馈控制器可以是前馈控制器,包括数据驱动的迭代学习控制器。所述前馈控制器可以实施下列算法以获取控制输入:In some embodiments, the third feedback controller may be a feedforward controller, including a data-driven iterative learning controller. The feedforward controller may implement the following algorithms to obtain control inputs:
Uff,0(jω)=0,U ff,0 (jω)=0,
ek(jω)=Hffd,k+1(jω)-Zk(jω)e k (jω)=H ffd, k+1 (jω)-Z k (jω)
在某些实施例中,获取所述下一行所需的轨迹还可以包括在第一行执行重复性扫描,直到达到收敛;以及使用所述收敛作为下一个扫描行的迭代的初始输入。In some embodiments, acquiring the desired trajectory for the next line may further include performing repetitive scans on the first line until convergence is achieved; and using the convergence as an initial input for an iteration of the next scan line.
附图说明Description of drawings
当参考本文的下列详细描述时,本公开将更便于理解,且本文所陈述的对象之外的对象也将变得显而易见。这类描述参照附图,其中The present disclosure will be better understood and objects other than those set forth herein will become apparent when reference is made to the following detailed description herein. Such description refers to the accompanying drawings, in which
图1A示出了示例性现有技术DM成像AFM显微镜框图。Figure 1A shows a block diagram of an exemplary prior art DM imaging AFM microscope.
图1B示出了示例性现有技术接触模式成像AFM显微镜框图。Figure IB shows a block diagram of an exemplary prior art contact mode imaging AFM microscope.
图1C是示出了根据实施例的TM成像AFM显微镜中关于探针-样本距离的探针-样本相互作用力的示例性关系的曲线图。1C is a graph showing an exemplary relationship of probe-sample interaction force with respect to probe-sample distance in a TM imaging AFM microscope according to an embodiment.
图2是根据实施例的包括两个样本点的示例性样本表面形貌以及在两个样本点处的TM偏移的偏移的示意图。2 is a schematic diagram of an exemplary sample surface topography including two sample points and the offset of the TM offset at the two sample points, according to an embodiment.
图3A是根据第一实施例的本公开的示例性自适应多回路模式成像AFM控制框图的示图。3A is a diagram of an exemplary adaptive multi-loop mode imaging AFM control block diagram of the present disclosure in accordance with a first embodiment.
图3B是根据第二实施例的本公开的示例性自适应多回路模式成像AFM控制框图的示图。3B is a diagram of an exemplary adaptive multi-loop mode imaging AFM control block diagram of the present disclosure, according to a second embodiment.
图3C是根据第三实施例的本公开的示例性自适应多回路模式成像AFM控制框图的示图,所述示例性自适应多回路模式成像AFM控制可以并入接触模式AFM。3C is a diagram of an exemplary adaptive multi-loop mode imaging AFM control block diagram that may be incorporated into a contact mode AFM according to a third embodiment of the present disclosure.
图3D是根据第四实施例的本公开的示例性自适应多回路模式成像AFM控制框图的示图,所述示例性自适应多回路模式成像AFM控制可以并入敲击模式AFM。3D is a diagram of an exemplary adaptive multi-loop mode imaging AFM control block diagram of the present disclosure, which may be incorporated into percussion mode AFM, according to a fourth embodiment.
图4是示出了根据实施例的平均偏移中由断崖引起的尖峰(spike)以及使用了本公开的迭代前馈控制的所述由断崖引起的尖峰的减量。4 is a graph illustrating a cliff-induced spike in an average offset according to an embodiment and the decrement of the cliff-induced spike using the iterative feedforward control of the present disclosure.
图5是示出了根据实施例的用于量化样本形貌的自适应多回路模式成像的方法的流程图。5 is a flowchart illustrating a method for adaptive multi-loop mode imaging for quantifying sample topography, according to an embodiment.
图6是示出了平均TM偏移振幅和RMS振动振幅与悬臂的自由振动振幅的比之间的示例性关系的曲线图。6 is a graph showing an exemplary relationship between the average TM offset amplitude and the ratio of the RMS vibration amplitude to the free vibration amplitude of the cantilever.
图7是根据实施例的示例性原子力显微镜系统的示意图。7 is a schematic diagram of an exemplary atomic force microscope system, according to an embodiment.
具体实施方式Detailed ways
容易理解的是,本文大致描述且在附图中说明的实施例的部件可以以多种不同的配置来布置并设计。因而,正如图中所表示的,下述各实施例的详细描述并非旨在限制本公开的范围,而仅仅是各实施例的代表。虽然附图示出了实施例的多个方案,但除非特别指明,附图无需按比例绘制。It will be readily understood that the components of the embodiments generally described herein and illustrated in the accompanying drawings may be arranged and designed in many different configurations. Thus, as indicated in the figures, the following detailed description of the various embodiments is not intended to limit the scope of the present disclosure, but is merely representative of the various embodiments. Although the drawings illustrate various aspects of the embodiments, the drawings are not necessarily drawn to scale unless otherwise indicated.
在不脱离本公开的精神或实质特征的情况下,本公开可以实施为其他的具体形式。所述实施例在各个方面均被认为是说明性的。因此,本公开的范围由所附权利要求来表明。落入权利要求的等同含义及范围内的所有变化均包含在权利要求的范围内。The present disclosure may be embodied in other specific forms without departing from the spirit or essential characteristics of the present disclosure. The described embodiments are considered to be illustrative in all respects. Accordingly, the scope of the present disclosure is indicated by the appended claims. All changes that come within the meaning and range of equivalency of the claims are included within the scope of the claims.
本说明书通篇引用的特征、优点或相似语言并不意味着凭借本公开可以实现的所有特征和优点应当或存在在本公开的任何单独实施例中。相反,可以认为涉及特征和优点的语言是指在相关实施例中所描述的具体特征、优点或特性至少包括在本公开的至少一个实施例中。因而,遍及本说明书的特征、优点及相似语言的讨论可以但并非必须被认为是相同的实施例。Reference throughout this specification to features, advantages, or similar language does not imply that all features and advantages that may be realized by virtue of the present disclosure should or are present in any single embodiment of the present disclosure. Rather, language referring to features and advantages may be considered to mean that a particular feature, advantage or characteristic described in the relevant embodiment is included in at least one embodiment of the present disclosure. Thus, discussions of the features, advantages, and similar language throughout this specification may, but are not necessarily, considered to be the same embodiment.
而且,可以以任何适当的方式在一个或多个实施例中结合本公开所述的特征、优点和特性。根据本文的描述,相关领域的技术人员将会意识到的是,在脱离具体实施例的一个或多个具体特征或优点的情况下可以实施本公开。在其它情况下,可以在某些实施例中认识到在本公开的所有实施例中可能没有提及的其它特征和优点。Furthermore, the features, advantages and characteristics described in this disclosure may be combined in any suitable manner in one or more embodiments. From the description herein, one skilled in the relevant art will appreciate that the present disclosure may be practiced without one or more of the specific features or advantages of a specific embodiment. In other instances, other features and advantages may be realized in certain embodiments that may not be mentioned in all embodiments of the present disclosure.
本说明书通篇引用的“一个实施例”、“实施例”或相似语言是指结合相关实施例所描述的具体特征、结构或特性至少包括在本公开的一个实施例中。因此,词语“在一个实施例中”、“在实施例中”和遍及本说明书的相似语言可以但并非必须均被认为是相同的实施例。Reference throughout this specification to "one embodiment," "an embodiment," or similar language means that a particular feature, structure, or characteristic described in connection with the associated embodiment is included in at least one embodiment of the present disclosure. Thus, the words "in one embodiment," "in an embodiment," and similar language throughout this specification may, but do not necessarily, all refer to the same embodiment.
如本文件所使用的,除非上下文另有清楚地指明,单数形式的“一”、“一个”及“该”包括复数指代。除非另有定义,本文所用的所有技术和科学术语具有与本领域一般技术人员所通常理解的含义相同的含义。如本文件所使用的,词语“包括”表示“包括但不限于”。As used in this document, the singular forms "a," "an," and "the" include plural referents unless the context clearly dictates otherwise. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art. As used in this document, the word "including" means "including but not limited to".
本公开仅以示例的方式提供用于增加TM模式成像的速度的实施例的应用。对于本领域技术人员应当理解的是,在不脱离本公开原理的情况下,实施例也可以用于增加其它种类的AFM的速度,例如诸如是PFM或NCM。The present disclosure provides, by way of example only, applications of embodiments for increasing the speed of TM mode imaging. It should be understood by those skilled in the art that embodiments may also be used to increase the speed of other kinds of AFM, such as PFM or NCM, for example, without departing from the principles of the present disclosure.
现在参考图1A,提供了一种示例性现有技术DM成像AFM框图。正如上文所提及的,激活DM成像中的悬臂探针以持续振动。振动可以引起探针尖端与样本表面105相互作用。振动解调器308可以用于测量相关的振幅或幅值(例如,TM成像中的RMS敲击振幅、PFM成像中的峰值力振幅(即斥力的振幅)以及NCM成像中的RMS振荡振幅)。在TM或NCM成像的情况下,锁相放大器109可以用于在任何规定时间测量振动均方根(RMS)振幅。在PFM成像中,微分器可以用于在各个时间段中测量探针振动的最大排斥振幅。振动的振幅可以依照样本形貌改变,因为当探针靠近表面时作用于探针上的力的相互作用(范德华力、偶极矩之间的相互作用、静电力等)使该振荡的振幅随着尖端靠近样本而减小。可以利用反馈控制器102(例如,RMS z-反馈控制器)来保持振幅在整个成像过程中恒定在所需的设定点值Aset。反馈控制器可以使用压电致动器103来保持振幅恒定在Aset。可以测量压电致动器103中的位移来量化样本形貌。在动态模式成像和PFM成像中,可以显著地避免由探针在样本表面的上方滑动(如在CM模式成像中)所引起的探针磨损和/或样本损坏,因而具有更高的样本分辨率。Referring now to FIG. 1A, an exemplary prior art DM imaging AFM block diagram is provided. As mentioned above, the cantilever probe in DM imaging is activated to continuously vibrate. Vibration can cause the probe tip to interact with the sample surface 105 .
如图1B所示,探针-样本相互作用力(其进而控制振幅)是非线性的,并且是探针-样本距离的函数。因此,更高成像速度下探针-样本距离的变化可能导致振动(敲击)的衰减或失去探针-样本接触。As shown in Figure IB, the probe-sample interaction force, which in turn controls the amplitude, is non-linear and a function of probe-sample distance. Therefore, changes in probe-sample distance at higher imaging speeds may result in attenuation of vibrations (tapping) or loss of probe-sample contact.
一般,在DM成像中,需要获取振动的多个时间段,以测量振幅(例如,TM成像中的敲击振幅、PFM成像中的峰值力振幅或NCM成像中的振荡振幅)。这可能在反馈控制回路中引发时间延迟,并且被测的振幅可以与悬臂探针的实际瞬时敲击振幅不同(滞后)。反馈控制器102上的时间延迟的不利效果仅在低扫描速度的情况下变得可以忽略。Typically, in DM imaging, multiple time periods of vibration need to be acquired to measure amplitude (eg, tap amplitude in TM imaging, peak force amplitude in PFM imaging, or oscillation amplitude in NCM imaging). This can induce a time delay in the feedback control loop, and the measured amplitude can be different (lag) from the actual instantaneous tap amplitude of the cantilever probe. The adverse effect of the time delay on the
作为示例,在现有技术中,TM成像(应当注意的是TM模式成像仅作为示例使用)模块已经通过选择大的自由振动振幅(Afree)和较小的敲击振幅设定点(Aset)而竭力增加了成像速度。但是,这导致了大的探针-样本相互作用力,因为现有技术模块通常忽略了悬臂偏移和和偏移中的变化,这导致了高成像速度下的图像失真。决定探针-样本相互作用力与悬臂偏移之间的关系的公式是:As an example, in the prior art, the TM imaging (it should be noted that TM mode imaging is used only as an example) module has been selected by selecting a large free vibration amplitude (A free ) and a small tapping amplitude set point (A set ) and try to increase the imaging speed. However, this results in large probe-sample interaction forces, as state-of-the-art modules typically ignore changes in cantilever offset and offset, which results in image distortion at high imaging speeds. The formula that determines the relationship between the probe-sample interaction force and cantilever deflection is:
Ft-s(t)=-kcdtot(t)=-kc[dTM(t)+(Adefcos(ω0t+φ))-Afreecos(ω0t)] ——(1)F ts (t)=-k c d tot (t)=-k c [d TM (t)+(A def cos(ω 0 t+φ))-A free cos(ω 0 t)] ——( 1)
其中,kc是悬臂的弹性常数,dtot(t)悬臂的总偏移,dTM(t)是单位时间段的平均悬臂偏移(TM-偏移),Adef(t)是瞬时敲击振幅,φ和Afree分别是悬臂对于激发(excitation)的响应的相移和悬臂自由振幅。where k c is the elastic constant of the cantilever, d tot (t) is the total deflection of the cantilever, d TM (t) is the average cantilever deflection per unit time period (TM-offset), and A def (t) is the instantaneous knock The strike amplitude, φ and Afree are the phase shift of the cantilever response to excitation and the cantilever free amplitude, respectively.
现在参考图2,示出了典型的样本形貌量化。样本的示例可以包括聚叔丁基丙烯酸丁酯(PtBA)、聚丙乙烯-低密度聚乙烯(PS-LDPE)、苯乙烯(SBS)、聚丙烯膜(celgard)和生物样本。可以从大约1平方微米(sq.μm)至10000平方微米中选择样本尺寸。可以使用本领域已知技术为AFM成像制备样本,为简单起见,此处未公开。考虑到TM偏移(205和206),样本表面(202)上任意两点(203和204)之间的高度差可以表示为:Referring now to Figure 2, a typical sample topography quantification is shown. Examples of samples may include poly-tert-butyl acrylate (PtBA), polypropylene-low density polyethylene (PS-LDPE), styrene (SBS), polypropylene film (celgard), and biological samples. The sample size can be selected from approximately 1 square micrometer (sq. μm) to 10,000 square micrometers. Samples can be prepared for AFM imaging using techniques known in the art, which are not disclosed here for simplicity. Considering the TM offsets (205 and 206), the height difference between any two points (203 and 204) on the sample surface (202) can be expressed as:
h1-0=[z(x1,y1)–z(x0,y0)]+ε[dTM(x1,y1)–dTM(x0,y0)]--------(2)h 1-0 =[z(x 1 ,y 1 )–z(x 0 ,y 0 )]+ε[d TM (x 1 ,y 1 )–d TM (x 0 ,y 0 )]--- -----(2)
其中:in:
z(x,y)=点(x,y)处z压电位移;z(x,y)=z piezoelectric displacement at point (x,y);
dTM(x,y)=点(x,y)处的平均偏移;以及d TM (x, y) = average offset at point (x, y); and
ε=取决于探针-样本相互作用机制的接触常数。当探针-样本相互作用由远距离的吸引力支配时(例如,Adef/Afree∈(0.5,0.8)),ε=-1,当排斥的探针-样本相互作用力出现时ε=1,以及当敲击振幅接近自由振动振幅时,即Adef≈Afree时,-1<<ε<0,。ε = Contact constant depending on the probe-sample interaction mechanism. When the probe-sample interaction is dominated by a distant attractive force (eg, A def /A free ∈ (0.5, 0.8)), ε = -1, when the repulsive probe-sample interaction force occurs ε = 1, and -1<<ε<0, when the percussion amplitude is close to the free vibration amplitude, that is, when A def ≈A free .
因而,上述公式(2)意味着可以相对于一个固定参考点(例如,点0—为了方便,称为第一成像样本点)来获取整个成像区域的样本形貌。在不失普遍性的情况下,在一些实施例中,高度和偏移基准点0可以设置为z(x0,y0)=0和dTM(x0,y0)=dTM-d,其中,dTM-d是对应处于设定点值时的探针振动振幅的平均偏移,因而,样本表面形貌可以量化为:Thus, the above formula (2) means that the topography of the sample in the entire imaging area can be acquired with respect to a fixed reference point (eg,
h(x,y)=z(x,y)+ε[dTM(x,y)-dTM-d]=z(x,y)+εΔdTM(x,y)--------(3)h(x,y)=z(x,y)+ε[d TM (x,y)-d TM-d ]=z(x,y)+εΔd TM (x,y)------ --(3)
因此,处于低成像速度时,悬臂探针可以在振动振幅的控制下在其中精确地跟踪样本形貌(即Adef紧密地围绕设定点值,平均偏移ΔdTM(x,y)变化足够小并且dTM(x,y)≈dTM-d)。因此,h(x,y)≈z(x,y),并且样本形貌可以被精确地量化成各个样本点处所测量的压电位移。Therefore, at low imaging speeds, the cantilever probe can accurately track the sample topography in it under the control of the vibration amplitude (ie, A def closely surrounds the setpoint value, and the average offset Δd TM (x,y) varies enough small and d TM (x,y)≈d TM-d ). Thus, h(x,y)≈z(x,y), and the sample topography can be accurately quantified as piezoelectric displacements measured at each sample point.
但是,随着成像速度的增加,保持Adef≈Afree这种严格的条件是困难的。注意到的是,即使小扫描速度的增加(振动振幅的变化小),瞬时振幅Adef的变化也不能忽略,因此,平均偏移的变化仍然可能是明显的。这类平均偏移变化通常不在常规DM成像中计算,并且导致图像失真并限制成像速度。However, maintaining the strict condition of A def ≈ A free is difficult as the imaging speed increases. Note that even with a small scan speed increase (small change in vibration amplitude), the change in the instantaneous amplitude A def cannot be ignored, so the change in the mean offset may still be noticeable. Such mean shift changes are not typically calculated in conventional DM imaging, and cause image distortions and limit imaging speed.
因此,正如本公开所描述的,通过在样本形貌量化中考虑平均偏移可以增加成像速度。Therefore, as described in this disclosure, imaging speed can be increased by considering the mean shift in sample topography quantification.
图1B示出了接触模式AFM框图并且可能与成像的动态模式稍有不同。首先,在接触模式中,探针尖端被“拖着”穿过样本的表面,并且直接使用悬臂的偏移,或者更普遍地,使用保持悬臂偏移(即,探针-样本相互作用力)紧密地在设定点值附近所需的反馈信号可以测量表面的轮廓。因为静态信号的测量可能易于发生噪声和漂移,使用低刚度悬臂来提高偏移信号。靠近样本的表面,吸引力可能相当强,导致尖端“咬合”到表面。因而,接触模式AFM几乎总是在总体来说力是排斥力的深度进行,即与任何吸附层下面的固体表面稳固的“接触”。此外,在接触模式成像中,可能不激发悬臂的振动模式,并且样本变形可以假定是可以忽略的。因此,不同于DM成像,接触模式成像中的d(x,y)可以表示偏移而不是平均偏移,并且可能不需要接触常数ε。考虑到成像的接触模式和DM模式之间的这些差别,样本表面(202)上,任意两个点(203和204)之间的高度差可以表示为:Figure IB shows a contact mode AFM block diagram and may differ slightly from the dynamic mode of imaging. First, in contact mode, the probe tip is "dragged" across the surface of the sample, and the deflection of the cantilever is used directly, or more generally, the deflection of the cantilever is maintained (i.e., the probe-sample interaction force) The desired feedback signal closely around the set point value can measure the profile of the surface. Because measurements of static signals can be prone to noise and drift, a low-stiffness cantilever is used to improve the offset signal. Close to the surface of the sample, the attraction can be quite strong, causing the tip to "bite" to the surface. Thus, contact mode AFM is almost always performed at a depth where the force is generally repulsive, ie a firm "contact" with the solid surface beneath any adsorption layer. Furthermore, in contact mode imaging, the vibrational modes of the cantilever may not be excited, and sample deformation can be assumed to be negligible. Therefore, unlike DM imaging, d(x,y) in contact mode imaging may represent shift rather than average shift, and the contact constant ε may not be required. Considering these differences between the contact mode and DM mode of the imaging, the height difference between any two points (203 and 204) on the sample surface (202) can be expressed as:
h1-0=h1-0=[z(x1,y1)–z(x0,y0)]+[d(x1,y1)–d(x0,y0)]--------(2A)h 1-0 =h 1-0 =[z(x 1 ,y 1 )–z(x 0 ,y 0 )]+[d(x 1 ,y 1 )–d(x 0 ,y 0 )]- -------(2A)
其中,in,
z(x0,y0)=样本点(x0,y0)的z轴位置;z(x 0 , y 0 ) = the z-axis position of the sample point (x 0 , y 0 );
z(x1,y1)=样本点(x1,y1)的z轴位置;z(x 1 , y 1 ) = the z-axis position of the sample point (x 1 , y 1 );
d(x0,y0)=样本点(x0,y0)处的悬臂偏移;以及d(x 0 , y 0 ) = cantilever offset at sample point (x 0 , y 0 ); and
d(x1,y1)=样本点(x1,y1)处的悬臂偏移。d(x 1 , y 1 ) = cantilever offset at sample point (x 1 , y 1 ).
从而,通过选择z(x0,y0)=0和d(x0,y0)=dset(设定点偏移(set-pointdeflection)),样本表面形貌可以量化为:Thus, by choosing z(x 0 , y 0 ) = 0 and d(x 0 , y 0 ) = d set (set-point deflection), the sample surface topography can be quantified as:
h(x,y)=z(x,y)+[d(x,y)-dset]--------(3A)h(x,y)=z(x,y)+[d(x,y)-d set ]-------(3A)
因此,如本公开所描述的,通过在样本形貌量化中考虑偏移可以增加成像速度。Therefore, imaging speed can be increased by accounting for shift in sample topography quantification, as described in this disclosure.
在第一个实施例中,本公开描述改进了成像速度的AFM,它包括成像模块,除了在保持探针振动的同时调节振动振幅的反馈回路(如关于图1A所讨论的),成像模块可以使用内外回路结构的控制回路来操作,从而调节平均悬臂偏移。在另一个实施例中,数据驱动的在线迭代前馈控制器可以被集成至内外回路结构以进一步改善样本形貌的跟踪。In a first embodiment, the present disclosure describes an AFM with improved imaging speed that includes an imaging module that, in addition to a feedback loop (as discussed with respect to FIG. 1A ) that adjusts vibration amplitude while maintaining probe vibration, may The average cantilever excursion is adjusted using a control loop of the inner and outer loop configuration to operate. In another embodiment, a data-driven online iterative feedforward controller can be integrated into the inner and outer loop structures to further improve the tracking of sample topography.
在第一方案中,如下面所讨论地计算并调节悬臂偏移的振动,本公开可以在自适应多回路成像(AML成像)AFM中增加成像速度。In a first approach, the present disclosure may increase imaging speed in adaptive multi-loop imaging (AML imaging) AFM by calculating and adjusting the vibration of the cantilever offset as discussed below.
现在参考图3A,提供了用于在AFM中提高成像速度的示例性AML成像模块的框图。如图3所示,AML成像模块可以包括:(i)振动振幅反馈控制回路(300);(ii)反馈控制(320),在内外回路结构中用于调节平均偏移;(iii)振动振幅比的在线优化(314);(iv)用于探针振动生成器的反馈控制器(它使振动振幅最小化)(370);以及(v)在线迭代前馈控制器(310),用于在跟踪样本形貌时克服振动振幅反馈回路的时间延迟。Referring now to FIG. 3A, a block diagram of an exemplary AML imaging module for enhancing imaging speed in AFM is provided. As shown in Figure 3, the AML imaging module may include: (i) a vibration amplitude feedback control loop (300); (ii) a feedback control (320) in the inner and outer loop structures for adjusting the mean offset; (iii) vibration amplitude online optimization of the ratio (314); (iv) a feedback controller for the probe vibration generator (which minimizes vibration amplitude) (370); and (v) an online iterative feedforward controller (310) for Overcome the time delay of the vibration amplitude feedback loop when tracking sample topography.
振动振幅控制回路320可以使用振动解调器(例如,如果是TM成像就是锁相放大器)304和关于之前图1A所讨论的振动振幅控制器301来将AML成像振动振幅调节在设定点值处。振动解调器303可以测量平均振动振幅或峰值力振幅,并且反馈控制器301可以使用z压电致动器302来调节振幅。用于执行这种控制回路的技术和相关技术在本领域是公知的,因此,除了可能有助于理解系统的运行的细节或理解系统的运行所需的细节,本文不进行进一步的详细描述。The vibration
除了振动振幅反馈控制器,内外回路结构320还可以通过在每个敲击周期中将悬臂的平均(垂直)位置调节为紧密围绕理想值来调节平均偏移,从而保持稳定的敲击。特别地,外部回路350可以实时地调节平均偏移设定点,内部回路360可以使用控制器306跟踪所调节的平均偏移设定点。控制器306可以是诸如PID型控制器的反馈控制器。In addition to the vibration amplitude feedback controller, the inner and
外部回路可以采用下述PID型(比例积分微分型)控制来调节平均偏移设定点dTM-set(·):The outer loop can use the following PID-type (proportional-integral-derivative) control to adjust the average offset set point d TM-set ( ):
dTM-set(j+1)=kIdTM-set(j)+kPeTM(j)+kD[eTM(j-1)-eTM(j)]d TM-set (j+1)=k I d TM-set (j)+k P e TM (j)+k D [e TM (j-1)-e TM (j)]
其中eTM(j)=dTM-d-dTM(j),其中j=2...N-1,——(4)where e TM (j) = d TM - d - d TM (j), where j = 2...N-1, - (4)
其中:in:
N=每个图像的采样周期总数;N = total number of sampling periods for each image;
dTM-d=期望平均偏移;d TM-d = expected mean offset;
dTM(j)=当前采样点的平均偏移;以及d TM (j) = average offset of the current sampling point; and
KP、KI和KD是PID参数。K P , K I and K D are PID parameters.
可以通过所选敲击振幅设定点与自由振幅的比Aset/Afree来判断期望的平均偏移dTM-d。特别地,可以事前测量dTM-d与Adef/Afree的关系。dTM-d与Adef/Afree的关系可以类似于以Adef/Afree~50%为中心的抛物线曲线。The desired mean offset d TM-d can be judged by the ratio of the selected tap amplitude set point to free amplitude, A set /A free . In particular, the relationship between d TM-d and A def /A free can be measured in advance. The relationship of d TM-d to A def /A free may resemble a parabolic curve centered on A def /A free ~50%.
虽然本公开使用了PID控制器,但是对于本领域的技术人员来说,应当理解的是在不脱离本公开原则的情况下可以使用不同类型的控制器。Although the present disclosure uses a PID controller, it will be understood by those skilled in the art that different types of controllers may be used without departing from the principles of the present disclosure.
在实施例中,PID参数KP=1、KI=1以及KD=ρ,其中ρ可以是样本逐点梯度因子。在实施例中,ρ<1。应当理解的是这些PID值是示例性的值,为了更好的性能它们可以是可调整的。In an embodiment, the PID parameters K P =1, K I =1 and K D =ρ, where ρ may be the sample pointwise gradient factor. In an embodiment, p<1. It should be understood that these PID values are exemplary values and may be adjustable for better performance.
图6描绘了用于敲击模式情况的示例性dTM-d相对于Adef/Afree的曲线600,其中,当敲击比Adef/Afree<10%时尖端-样本相互作用力显著增加,当Adef/Afree大于80%时,增加扫描速度可能快速导致脱离。根据实施例,对于如图5所示的dTM-d相对于Adef/Afree的曲线,可以选择所需的平均偏移使得相应的Adef/Afree优选在10%至30%之间(601)。尽管本公开是基于图6所示的曲线,但对于本领域的技术人员来说,应当理解的是在不脱离本公开原则的情况下,可以为不同的样本和/或悬臂优选不同的敲击比,这取决于具体测量的dTM-d与Adef/Afree。FIG. 6 depicts a plot 600 of an exemplary d TM-d versus A def /A free for the tap mode case, where the tip-sample interaction force is significant when the tap ratio A def /A free < 10% Increase, when A def /A free is greater than 80%, increasing the scan speed may quickly lead to detachment. According to an embodiment, for the curve of d TM-d versus A def /A free as shown in Figure 5, the desired average offset can be chosen such that the corresponding A def /A free is preferably between 10% and 30% (601). Although the present disclosure is based on the graph shown in Figure 6, it will be understood by those skilled in the art that different taps may be preferred for different samples and/or cantilevers without departing from the principles of the present disclosure ratio, depending on the specific measured d TM-d versus A def /A free .
此外,应当理解的是,可能存在外部回路可以实时调节平均偏移设定点的其他方法。前述内容仅列出了数量有限的示例,本文的实施例不限于这些示例。Furthermore, it should be appreciated that there may be other ways in which the outer loop can adjust the average offset setpoint in real time. The foregoing lists only a limited number of examples to which the embodiments herein are not limited.
应当注意的是,根据公式(1)和(3),尽管可以在样本形貌量化中单独计算平均偏移来增加AML成像AFM的速度,但是在成像期间不能改善样本相貌的跟踪。因此,随着成像速度的增加,探针-样本相互作用力可能显著的改变并导致脱离接触和/或消除敲击。在第二方案中,本公开因而公开了实施于z压电致动器302的在线迭代前馈控制,以便保持样本形貌的跟踪。It should be noted that according to equations (1) and (3), although the average shift can be calculated separately in sample topography quantification to increase the speed of AML imaging AFM, it does not improve the tracking of sample topography during imaging. Therefore, as the imaging speed increases, the probe-sample interaction force may change significantly and lead to disengagement and/or elimination of knocking. In a second aspect, the present disclosure thus discloses on-line iterative feedforward control implemented on the
可以调整探针RMS振动振幅的设置点(图3A、图3B和图3D中的Aset)来计算相比于RMS振动振幅关系的不确定性和平均偏移的变化(如图6所示)。处于稳定状态的RMS振动振幅和平均偏移dTM可以在成像过程中被实时测量,然后用于构建在选择的所需平均偏移dTM-d附近的平均偏移相对于振幅的曲线的部分。稳定状态平均偏移dTM和RMS振动振幅可以通过在大于平均偏移反馈控制回路的时间常数和RMS振动振幅回路的时间常数的一段时间内对所测数据求平均数来分别获取。然后,基于实时测量的dTM相对于Adef/Afree的曲线,振幅设定优化控制器314可以通过在dTM相对于Adef/Afree的曲线上对对应于所需平均偏移dTM-d的值设置振动振幅设定点Aset来更新RMS振动振幅Aset的设定点。The set point of the probe RMS vibration amplitude (Aset in Figure 3A, Figure 3B, and Figure 3D) can be adjusted to calculate the uncertainty compared to the RMS vibration amplitude relationship and the change in mean offset (as shown in Figure 6) . The RMS vibration amplitude at steady state and the mean offset d TM can be measured in real time during imaging and then used to construct the portion of the mean offset versus amplitude curve around the chosen desired mean offset d TM - d . The steady state mean offset dTM and RMS vibration amplitude can be obtained by averaging the measured data over a period of time greater than the time constant of the mean offset feedback control loop and the time constant of the RMS vibration amplitude loop, respectively. Then, based on the real-time measured d TM vs. A def /A free curve, the amplitude
如图3A所示,对应z压电致动器302的在线迭代前馈控制器308可以被集成至振动振幅反馈回路330。具体地,通过在线实施下述高阶无模型的基于差分反转的迭代控制(HOMDIIC)算法来获取前馈控制输入:As shown in FIG. 3A , an online
Uff,0(jω)=0, ——(5)U ff, 0 (jω)=0, ——(5)
ek(jω)=Hffd,k+1(jω)-Zk(jω) (8)e k (jω)=H ffd, k+1 (jω)-Z k (jω) (8)
其中:in:
λ=预选的常数,用于确保迭代的收敛;λ = preselected constant to ensure convergence of iterations;
Uff+fb,k(·)=施加于z压电致动器的总控制输入(反馈+前馈),即, 参见图3; Uff+fb,k (·)=total control input (feedback+feedforward) applied to the z piezoactuator, i.e., See Figure 3;
Zk(·)=第k扫描行所测量的z压电位移;以及Z k (·) = z piezoelectric displacement measured at scan line k; and
Hffdk+1(·)=z压电在第k+1扫描行处需要跟踪的预定轨迹。H ffdk+1 (·)=z piezoelectric predetermined track that needs to be tracked at the k+1th scan line.
上述控制定则中的比和 本质上等于z压电致动器的频率响应的逆变换,并且可以在整个成像过程中逐行反复地更新。迭代方案的中的预先获得固定模式上的这种数据驱动的在线更新的逆变换可以出现更好的鲁棒性和跟踪性能。最终,时间域Uff+fb,k+1(t)中前馈输出可以经由傅里叶逆变换来获得并在第k+1行的扫描期间被使用。The ratio in the above control rule and Essentially equal to the inverse transform of the frequency response of the z-piezo actuator, and can be iteratively updated row by row throughout the imaging process. The inverse transform of this data-driven online update on a pre-obtained fixed pattern in an iterative scheme can yield better robustness and tracking performance. Finally, the feedforward output in the time domain Uff+fb,k+1 (t) can be obtained via an inverse Fourier transform and used during the scan of
此外,对于本领域技术人员来说,应当理解的是存在在线前馈控制回路310可以控制样本形貌跟踪的其他方法,并且前述内容仅列出了一个示例性算法,本发明的实施例不限于这些示例。In addition, for those skilled in the art, it should be understood that there are other methods in which the online
平均偏移相比于敲击振幅可以更快地响应样本形貌变化。但是,由于悬臂和悬臂夹具(将悬臂连接到压电致动器)的柔量(compliance),在平均偏移变化与形貌轮廓的变化之间仍然可能存在时间延迟。随着扫描速度的增加,这样的时间延迟(虽然很小)可能变得重要,因此,在探针已经通过了这些样本位置后,平均偏移的尖峰才可能达到他们的(局部的)峰值。即使使用先进的反馈控制,这样的偏移尖峰可能依然存在。The average shift can respond more quickly to changes in sample topography than the tap amplitude. However, due to the compliance of the cantilever and the cantilever clamp (connecting the cantilever to the piezoelectric actuator), there may still be a time delay between the average shift change and the topographic profile change. Such time delays, albeit small, may become important as the scan speed increases, so that the average shifted peaks may not reach their (local) peaks until the probe has passed these sample locations. Even with advanced feedback control, such offset spikes may persist.
因而,根据实施例,AML成像模块中的前馈控制器308可以采用数据驱动的迭代控制算法(例如,公式5至8所给出的算法),以便在高速成像期间显著改善样本形貌的跟踪。此外和/或可选地,前馈控制器308可以使用对下一行的样本形貌和样本跟踪错误的预测,以便显著的减少在具有突然和剧烈的变化的样本区域(例如,具有如图4所示的断崖(cliff)和/或边缘(edge)的区域)附近的跟踪错误(即,悬臂偏移变化)。具体地,通过将数据驱动迭代控制器与下一行的基于预测的预定轨迹(如之前所讨论的)结合,前馈控制器308可以显著的减少在具有断崖和/或边缘的区域附近的悬臂偏移的变化。如图4所示,在方块状的多段的采样区的“断崖”和“边缘”附近出现了大的尖峰。这些尖峰的振幅可以通过使用数据驱动的迭代前馈控制而显著减小,然后可以通过在前馈控制中结合跟踪错误的预测来进一步减少,如图4所示。Thus, according to an embodiment, the
预测的样本形貌和预测的下一行平均偏移跟踪错误可以通过前馈控制器308来计算,以便跟踪修改的预定轨迹Hffd,k(·),如公式7中所示。修改的预定轨迹(用于轨迹的前馈控制数据)使z压电能够驱动悬臂,以便对形貌变化提前响应(即,预驱动),因而减少了偏移尖峰的振幅。例如,在第k行扫描的结尾,第k+1行的样本形貌轮廓可以使用第k扫描行的样本形貌轮廓(经由公式5量化)来预测(即hk+1(t)≈hk(t))。这样的近似是合理的,因为在具有足够的扫描线的情况下,行与行的形貌变化很小。相似地,如果对相同的样本形貌施加相同的控制,则第k+1扫描行上的平均偏移跟踪错误可以被预测成第k行上的平均偏移跟踪错误dTM,k(·)–dTM-d(即跟踪错误(tracking error))。然后,下一行的预定轨迹Hffd,k+1(t)可以将前述两个预测结合来获取,如下:The predicted sample topography and predicted next row mean offset tracking error may be calculated by the
hffd,k+1(j)=hk(j)+α[dTM,k(j)-dTM-d],j=1,...Nl. ——(9)h ffd, k+1 (j)=h k (j)+α[d TM, k (j)-d TM-d ], j=1, . . . N l . ——(9)
其中,in,
Nl=每个图像行的总采样点;以及N l = total sample points per image line; and
α=校正因子。a=correction factor.
可以在上述迭代算法(公式9)中引入平均偏移,以便在对陡峭且大的形貌变化(垂直变化)的采样区进行成像时减小相互作用力的振幅。在某些实施例中,可以基于样本表面特征的预估高度来调整校正因子α。An average offset can be introduced in the iterative algorithm described above (Equation 9) to reduce the amplitude of the interaction force when imaging sample regions with steep and large topographical changes (vertical changes). In some embodiments, the correction factor α may be adjusted based on the estimated height of the sample surface features.
在实施例中,上述定义的迭代方案在成像过程中可以重复使用以扫描第一行,直到达到收敛(即,直到两个连续的迭代之间的z压电位移差足够小,例如接近于噪声水平(noise level))。在某些实施例中,可以对第一行执行2到3个重复性扫描,以便能够在无需迭代的情况下来扫描样本的其余部分。在另一些实施例中,可以对第一行执行7到8个重复性扫描。然后,收敛的输入可以在下一个扫描行上用作迭代的初始输入。保持迭代输入的校正速率(即,收敛速率)比由样本形貌变化所引起的逐行的输入变化快,可以仅需要更新一次迭代控制输入(即无需迭代,样本的其余部分就可以成像)。z压电动态的这种使用可以提供较大的“工作”带宽(即,高速下更好的跟踪性能),因为反馈控制趋于降低开放回路带宽。In an embodiment, the iterative scheme defined above may be reused during imaging to scan the first row until convergence is reached (ie, until the z-piezoelectric displacement difference between two consecutive iterations is sufficiently small, eg, close to noise, level (noise level). In some embodiments, 2 to 3 repetitive scans may be performed on the first row to be able to scan the rest of the sample without iteration. In other embodiments, 7 to 8 repetitive scans may be performed on the first row. The converged input can then be used as the initial input for the iteration on the next scanline. Keeping the correction rate (ie, convergence rate) of the iterative input faster than the line-by-line input changes caused by sample topography changes, it may be possible to update the iterative control input only once (ie, the rest of the sample can be imaged without iteration). This use of z-piezodynamics can provide a larger "working" bandwidth (ie, better tracking performance at high speeds) because feedback control tends to reduce open-loop bandwidth.
在某些实施例中,为了避免噪声经由前馈频道反馈到闭合回路中,前馈控制输入Uff,k+1(·)可以通过零相位的低通滤波器 In some embodiments, to avoid noise feedback into the closed loop via the feedforward channel, the feedforward control input Uff,k+1 (·) may be passed through a zero-phase low-pass filter
其中:in:
以及 as well as
由于整个下一行前馈控制输入是本来就知道的,所以上述非因果(noncausal)零相位滤波器可以在线实现。Since the entire next row feedforward control input is known inherently, the above noncausal zero-phase filter can be implemented online.
在实施例中,Adef/Afree可以等于20%,使得dTM-d可以接近于零。在另一些实施例中,Adef/Afree可以等于30%,使得dTM-d可以接近于零。在另一些实施例中,Adef/Afree可以在20%至30%之间,使得dTM-d可以接近于零。In an embodiment, A def /A free may be equal to 20%, so that d TM-d may be close to zero. In other embodiments, A def /A free may be equal to 30%, such that d TM-d may be close to zero. In other embodiments, A def /A free may be between 20% and 30%, such that d TM-d may be close to zero.
应当注意到的是,虽然通过在成像期间计算平均偏移并执行样本形貌的前馈跟踪可以增加AML成像AFM的速度,但敲击振幅始终保持恒定在预定值Aset。因此,成像速度可以增加且探针-样本相互作用力可以改变,这可能导致不稳定的敲击和在信号中的增加的噪声。因而在第三个方案中,本公开公开了一种施加于z压电致动器302的在线迭代控制,以便保持稳定的敲击。It should be noted that while the speed of the AML imaging AFM can be increased by calculating the mean offset and performing feedforward tracking of the sample topography during imaging, the tap amplitude is always kept constant at the predetermined value Aset . Therefore, imaging speed can be increased and probe-sample interaction forces can be changed, which can lead to unstable tapping and increased noise in the signal. Thus, in a third aspect, the present disclosure discloses an on-line iterative control applied to the
图3B根据本公开的实施例示出了示例性AML成像模块框图。如图3B所示,可以通过添加反馈回路340来修改图3A所示振动振幅反馈控制回路330,以便通过自适应地调整敲击振幅来进一步减少探针-样本相互作用力。3B illustrates an exemplary AML imaging module block diagram in accordance with an embodiment of the present disclosure. As shown in Figure 3B, the vibration amplitude
在一些实施例中,振动振幅(即,TM成像中的敲击振幅、PFM成像中的峰值力振幅或NCM成像中的振动振幅)可以被紧密地保持在保持稳定的敲击和理想的信噪比所需的最小振幅附近。特别地,外部回路340可以使用控制器301在线并逐点(即,Aset可能不是预定常数)调节来调节振动振幅Aset的设定点。在某些实施例中,先逐点调节自由振荡振幅Afree,然后基于之前所测量的任何给出的平均“平均偏移”值处的Afree与Aset关系来确定相应的Aset就可以调节Aset。控制器301可以是反馈控制器,例如PID型控制器。In some embodiments, the vibration amplitude (ie, the tap amplitude in TM imaging, the peak force amplitude in PFM imaging, or the vibration amplitude in NCM imaging) can be tightly maintained to maintain a stable tap and ideal signal-to-noise than the required minimum amplitude. In particular, the
在某些实施例中,控制器301可以是PID型控制器,它使用下列公式来调节Aset:In some embodiments,
Afree(j+1)=kiaAfree(j)+kpaea(j)+kda[ea(j-1)-ea(j)]A free (j+1)=k ia A free (j)+k pa e a (j)+k da [e a (j-1)-e a (j)]
其中ea(j)=Amin-Adef(j),其中j=2...N-1,——(11)where e a (j)=A min -A def (j), where j=2...N-1,——(11)
其中:in:
N=每个图像的采样周期总数;N = total number of sampling periods for each image;
Amin=所需振动振幅的下限,用以保持所需的信噪比和悬臂的稳定敲击;A min = the lower limit of the desired vibration amplitude to maintain the desired signal-to-noise ratio and stable tapping of the cantilever;
Adef(j)=当前采样点的振动振幅;以及A def (j) = vibration amplitude at the current sampling point; and
Kia,、Kpa和Kda是PID控制参数。Kia, Kpa and Kda are PID control parameters.
采样点(j+1)处的所需振动振幅设定点Aset(j+1)可以基于预先测量的关系来确定,该关系使用下列公式将使用公式(11)所确定的采样点(j+1)处的自由振动振幅Afree(j+1)与平均偏移dTM-d联系起来:The desired vibration amplitude set point A set (j+1) at sampling point (j+1) can be determined based on a pre-measured relationship that will use the sampling point (j) determined by equation (11) using the following formula: The free vibration amplitude A free (j+1) at +1) is related to the mean offset d TM-d :
Aset(j+1)=f(Afree(j+1),dTM-d) ------------(12)A set (j+1)=f(A free (j+1),d TM-d ) ------------(12)
其中:in:
f(Afree(j+1),dTM-d)=在给出的平均偏移值处定义了Afree与Aset关系的函数。f(A free (j+1), d TM-d ) = a function that defines the relationship of A free to A set at the given mean offset value.
关系可以被预先确定,即可能不需要f(Afree(j+1),dTM-d)的显式表达式,并且可以通过实验确定以获取数值关系。The relationship can be predetermined, ie an explicit expression of f(A free (j+1),d TM-d ) may not be required, and can be determined experimentally to obtain a numerical relationship.
在某些实施例中,所需的平均偏移可以选择实际上尽可能接近于零的常数。In some embodiments, the desired average offset may be chosen as a constant as close to zero as practical.
应当注意的是,虽然本公开说明了AML成像模块在各种动态模式AFM(例如,敲击模式)中的并入和使用,但是,在不脱离本公开原则的情况下AML成像模块还可以被并入在接触模式AFM中,以便增加成像速度。图3C根据本公开的实施例示出了并入接触模式AFM中的示例性AML成像模块框图。It should be noted that while this disclosure illustrates the incorporation and use of AML imaging modules in various dynamic modes of AFM (eg, tapping mode), AML imaging modules may also be used without departing from the principles of this disclosure. Incorporated in contact mode AFM for increased imaging speed. 3C illustrates a block diagram of an exemplary AML imaging module incorporated into a contact mode AFM, according to an embodiment of the present disclosure.
正如图1B之前所讨论的,在接触模式成像中,通过在样本形貌量化中考虑偏移可以增加成像速度。因此,如图3C所示,在接触模式成像中,内外反馈回路(325)可以逐行调节偏移设定点(不同于DM成像中的逐点)以保持偏移,从而将探针-样本相互作用力保持在扫描期间保持稳定接触所需的最低水平附近。具体地,外部回路355可以实时调节偏移设置点,内部回路365可以使用控制器365来跟踪被调节过的偏移设定点。控制器365可以是反馈控制器,例如PID型控制器。As discussed earlier in Figure 1B, in contact mode imaging, imaging speed can be increased by accounting for offset in sample topography quantification. Thus, as shown in Figure 3C, in contact mode imaging, the inner and outer feedback loops (325) can adjust the offset set point line by line (as opposed to point by point in DM imaging) to maintain the offset, thereby connecting probe-sample The interaction force is kept near the minimum level required to maintain stable contact during the scan. Specifically, the outer loop 355 can adjust the offset set point in real time, and the inner loop 365 can use the controller 365 to track the adjusted offset set point. Controller 365 may be a feedback controller, such as a PID-type controller.
外部回路可以采用下述法向力的基于梯度的求最小值来调节偏移设定点,如公式所述:The outer loop can adjust the offset setpoint using gradient-based minimization of the normal force as described below:
dset,0=dset,org, ——(13)d set, 0 = d set, org , ——(13)
其中其中t∈[0,Tscan],——(15)in where t∈[0, T scan ],——(15)
其中:in:
dset,0=第一扫描行上的偏移设定点;d set,0 = offset set point on the first scan line;
dset,k=第k扫描行上的偏移设定点;d set,k = offset set point on scan line k;
dk+1(t)=在第k+1扫描线处的预测检测的最小值;d k+1 (t)=minimum of predicted detections at scan
D*min=保持稳定的排斥性末端-样本相互作用所需的最小偏移/力(即,阈值);D* min = minimum deflection/force (ie, threshold) required to maintain a stable repulsive end-sample interaction;
Tscan=扫描周期;T scan = scan period;
dset,org=在成像过程之前所选的原始偏移设定点;以及d set,org = original offset set point selected prior to the imaging process; and
ρ∈[0,1]=梯度因子,可以调节以改善成像质量。ρ∈[0,1]=gradient factor, which can be adjusted to improve imaging quality.
在接触模式成像中,用于压电致动器302的数据驱动的迭代前馈控制回路310可以用与之前所讨论的DM成像模块中的前馈控制回路一样的方法运行。例如,下一行所需的轨迹Hffd,k+1(t)可以使用公式5、6和9来获取。In contact mode imaging, the data-driven iterative
图3D根据本公开实施例示出了用在敲击模式AFM中的示例性AML成像模块框图。成像模块可以用与关于图3A的成像模块所示的方式一样的方式运行。3D illustrates a block diagram of an exemplary AML imaging module for use in a tap-mode AFM, according to embodiments of the present disclosure. The imaging module may function in the same manner as shown with respect to the imaging module of Figure 3A.
在某些实施例中,上述公开的信号可以通过数据采集系统获取,例如在MatlabxPC目标环境下。其他示例可以包括基于DSP的数据采集和计算系统,基于FPGA的数据采集和计算系统或本领域已知的任何其它类似系统。In some embodiments, the signals disclosed above may be acquired by a data acquisition system, such as in a MatlabxPC target environment. Other examples may include DSP-based data acquisition and computing systems, FPGA-based data acquisition and computing systems, or any other similar systems known in the art.
总之,可以使用图4所示的实验结果来解释并理解本公开的AML成像技术相对于当前成像技术(包括DM成像和CM成像)的优点和功效,图4中,比较了使用当前成像技术和AML成像技术对方块状的多个段的校准样本进行的成像。图4A示出了待成像样本形貌的横截面。由于阶梯状的样本特征,精确地跟踪各段的边缘可能是困难的。例如,如图4B所示,在悬臂偏移信号(即,探针-样本相互作用力的变化)中,当使用仅具有反馈的传统成像技术时,大尖峰可能出现在样本的上下边缘上。因此,使用传统成像技术所测量的图像轮廓(如图4C所示)无法捕捉样本轮廓的边缘(将图4A与图4C比较)。但是,如图4E所示,使用AML成像技术可以减少悬臂偏移中的大尖峰。使用数据驱动的迭代前馈控制并结合使用迭代控制中预测的下一行样本轮廓和预测的下一行跟踪错误以及附加的平均偏移反馈回路(用于DM成像)和设定点优化可以实现这种改进。因此,可以显著的改进样本形貌的跟踪(参见图4F),特别是在上下边缘附近。此外,通过使用利用了跟踪的样本形貌和悬臂偏移的本公开的样本形貌量化(公式(3)和公式(3a)),可以进一步改进由AML成像技术所获取的样本形貌,并且可以更接近于原始的样本形貌,如图4D所示。In conclusion, the advantages and efficacy of the AML imaging techniques of the present disclosure relative to current imaging techniques, including DM imaging and CM imaging, can be explained and understood using the experimental results shown in Figure 4, which compares the use of current imaging techniques and AML imaging of a calibration sample with multiple segments in a square shape. Figure 4A shows a cross-section of the topography of the sample to be imaged. Accurately tracking the edges of segments can be difficult due to the stepped sample features. For example, as shown in Figure 4B, in the cantilever excursion signal (ie, the change in probe-sample interaction force), large spikes may appear on the upper and lower edges of the sample when using conventional imaging techniques with only feedback. Consequently, image contours measured using conventional imaging techniques (shown in Figure 4C) cannot capture the edges of the sample contour (compare Figure 4A with Figure 4C). However, as shown in Figure 4E, large spikes in cantilever excursions can be reduced using the AML imaging technique. This can be achieved using data-driven iterative feedforward control in combination with predicted next-line sample contours and predicted next-line tracking errors in iterative control with an additional mean-offset feedback loop (for DM imaging) and set-point optimization. Improve. Consequently, the tracking of the topography of the sample can be significantly improved (see Fig. 4F), especially near the upper and lower edges. Furthermore, by using the sample topography quantification of the present disclosure (Equation (3) and Equation (3a)) utilizing tracked sample topography and cantilever offset, the sample topography obtained by AML imaging techniques can be further improved, and can be closer to the original sample morphology, as shown in Figure 4D.
现在参见图5,公开了如上所讨论的实施例中的基于本AML成像模式的运行原理的算法的示例性流程图。在步骤501中,高频脉动压电可以启动探针振动来引发探针-样本相互作用。逻辑可以继续进行到502,以便使用振动解调器304来实时测量探针振动的瞬时振幅。在步骤503中测量值可以被提供给振动振幅反馈控制器301,使得控制器可以将探针振动振幅调节到所需的Aset。Referring now to FIG. 5, an exemplary flowchart of an algorithm based on the operating principles of the present AML imaging modality in the embodiments discussed above is disclosed. In
在步骤504中,逻辑可以在外部回路350中测量平均偏移,并在步骤505中使用反馈控制器305调节它。在步骤506中,逻辑还可以跟踪内部回路360的平均偏移调节。正如所讨论的,最佳调节值是通过实验确定的,例如,在运行AFM系统之前通过实验确定。In
在步骤507中,逻辑还可以基于z压电位移和平均偏移量化样本形貌。量化之后,逻辑还可以在步骤508中使用数据驱动的在线迭代前馈控制回路310预测下一行样本形貌和下一行跟踪错误,并且在步骤509中基于该预测预驱动z压电。In
在步骤510中,可以使用控制器314来在线优化振动振幅的设定点,使得振动的设定点可以基于实时测量的平均偏移和振动振幅比关系而更新,以便计算平均偏移振幅和振动振幅比之间的关系中的不确定性和变化。In
在步骤511中,可以调节自由振动振幅以使与振动相关的尖端-样本相互作用力最小化。可以使用PID控制器312,以便利用实时测量的振动振幅与预先选择的最小振动振幅之间的差,从而更新自由振动振幅。In
现在参考图7,根据实施例的AFM系统包括微型悬臂708,在其端部具有尖锐的探针711,该探针可以用于扫描样本712的表面。悬臂在其另一端部由基座(悬臂夹持器)707支撑。当探针开始接近样本表面时,尖端和样本之间的力可能导致悬臂的偏移。悬臂的偏移可以用包括激光器710和光电二极管(探测器)709阵列的光学装置来测量。Referring now to FIG. 7 , an AFM system according to an embodiment includes a
在监测探针-样本相互作用的时候,扫描器701可能在探针711和样本712之间产生相对运动。在某些实施例中,扫描器可以是扫描探针显微镜(SPM)扫描器。这样,可以获取样本的图像或其他测量。扫描器701可以包括一个或多个致动器,它通常在三个正交方向(XYZ)中产生运动。扫描器701可以是单个集成单元,例如在所有三个轴上移动样品或探针的压电管致动器。可选地,扫描器可以是多个单独的致动器的组件。在一些实施例中,扫描器可以被分成多个部件,例如移动样本的xy致动器和移动探针的独立的z致动器。根据上述所讨论的公开,在关于样本表面的探针扫描中,可以采用控制器714,它包括用于控制SPM扫描器701以驱动z压电致动器的反馈机制,所述控制器714可以安装在基座707中。来自光电二极管709的信号被传送到控制器714。反馈机制包括关于图3A所讨论的AML成像模块。
虽然本公开的实施例采用了使用z压电致动器(沿垂直轴)在横向的x-y方向中的样本跟踪,但是应当理解的是,对于本领域技术人员,根据本公开所公开的原理,样本跟踪可以在其他方向中执行。While the embodiments of the present disclosure employ sample tracking in the lateral x-y direction using a z piezoelectric actuator (along the vertical axis), it should be understood to those skilled in the art that, in accordance with the principles disclosed in this disclosure, Sample tracking can be performed in other directions.
控制器614可以是系统的中央处理单元的一部分,并且可以执行执行程序所需的计算和逻辑运算。单独或与一个或多个其他元件结合的处理单元可以是处理装置、计算装置或处理器,正如本公开中所使用的这类术语。正如本文件及权利要求书中所使用的,术语“处理器(processor)”可以指单一的处理器或一组处理器中任意数量的处理器。只读存储器(ROM)和随机存取存储器(RAM)构成存储器设备的示例。附加的存储器设备可以包括例如外部或内部磁盘驱动器、硬盘驱动器、闪存、USB驱动器或用作数据存储设备的其它类型的设备。如前所述,所述各种驱动器和控制器是可选的装置。另外,存储器设备可以被配置为包括用于存储任何软件模块或指令、辅助数据、事件数据的独立的文件,用于存储列联表组和/或回归模型的公共文件,或者用于存储上述所讨论的信息的一个或多个数据库。The controller 614 may be part of the central processing unit of the system and may perform the calculations and logic operations required to execute the programs. A processing unit, alone or in combination with one or more other elements, may be a processing device, computing device, or processor, as such terms are used in this disclosure. As used in this document and in the claims, the term "processor" may refer to a single processor or any number of processors in a group of processors. Read only memory (ROM) and random access memory (RAM) constitute examples of memory devices. Additional memory devices may include, for example, external or internal disk drives, hard drives, flash memory, USB drives, or other types of devices used as data storage devices. As previously mentioned, the various drivers and controllers are optional devices. Additionally, the memory device may be configured to include separate files for storing any software modules or instructions, auxiliary data, event data, common files for storing sets of contingency tables and/or regression models, or for storing all of the above. One or more databases of discussed information.
用于执行与如上所述的过程相关联的任何功能性步骤的程序指令、软件或交互模块可以存储在ROM和/或RAM中。可选地,程序指令可以存储在诸如光盘、数字磁盘、闪存、内存卡、USB驱动器,光盘存储介质和/或其它记录介质的非暂时性计算机可读介质上。Program instructions, software or interaction modules for performing any functional steps associated with the processes described above may be stored in ROM and/or RAM. Alternatively, the program instructions may be stored on a non-transitory computer readable medium such as an optical disk, digital disk, flash memory, memory card, USB drive, optical disk storage medium and/or other recording medium.
在某些实施例中,成像速度从大约0.1Hz至40Hz中选择。在某些其它实施例中,成像速度可以取决于诸如样品的尺寸、样本的形貌和AFM的类型的因素。In certain embodiments, the imaging speed is selected from about 0.1 Hz to 40 Hz. In certain other embodiments, the imaging speed may depend on factors such as the size of the sample, the topography of the sample, and the type of AFM.
在实施例中,添加的平均偏移反馈回路310以及前馈控制器320在AML成像过程中可以大幅度加快样本形貌的跟踪。将平均偏移保持在期望值附近,进而有助于将RMS敲击振幅保持在设定点附近。另外,通过将敲击振幅保持在相应的平均偏移是最小的水平附近,可以最小化一次平均探针-样本相互作用力。此外,通过最佳预测样本形貌轮廓的预测和快速的收敛,前馈控制器在扫描速度增加时突然发生样本形貌变化的情况下进一步减小了敲击振幅的振荡。因此,此处本公开的TM偏移回路在成像期间跟踪样本形貌,同时保持平均探针-样本力接近最小。In an embodiment, the addition of an average offset
以上公开的特征和功能以及替代方案可以结合到许多其它不同的系统或应用中。本领域技术人员可以作出各种目前未预见的或未预期到的替代方案、修改、变化或改进,它们中的每一个均将包含在本公开的实施例中。The above-disclosed features and functions, and alternatives, may be incorporated into many other different systems or applications. Various presently unforeseen or unanticipated alternatives, modifications, changes or improvements may be made by those skilled in the art, each of which is to be included in the embodiments of the present disclosure.
Claims (22)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201462024163P | 2014-07-14 | 2014-07-14 | |
| US62/024,163 | 2014-07-14 | ||
| PCT/US2015/040273 WO2016010963A1 (en) | 2014-07-14 | 2015-07-14 | High speed adaptive-multi-loop mode imaging atomic force microscopy |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN107076778A CN107076778A (en) | 2017-08-18 |
| CN107076778B true CN107076778B (en) | 2020-08-04 |
Family
ID=55078963
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201580049517.2A Active CN107076778B (en) | 2014-07-14 | 2015-07-14 | High-speed self-adaptive multi-loop mode imaging atomic force microscope |
Country Status (4)
| Country | Link |
|---|---|
| US (1) | US10041970B2 (en) |
| EP (1) | EP3170008B1 (en) |
| CN (1) | CN107076778B (en) |
| WO (1) | WO2016010963A1 (en) |
Families Citing this family (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI847994B (en) * | 2018-08-10 | 2024-07-11 | 美商布魯克奈米公司 | High speed atomic force profilometry of large areas |
| US12091313B2 (en) | 2019-08-26 | 2024-09-17 | The Research Foundation For The State University Of New York | Electrodynamically levitated actuator |
| DE102019131421A1 (en) * | 2019-11-21 | 2021-05-27 | Bruker Nano Gmbh | Measuring device for a scanning probe microscope and method for examining a measurement sample using a scanning probe microscope with a scanning probe microscope |
| US11079405B1 (en) * | 2020-05-05 | 2021-08-03 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method and apparatus for detecting ferroelectric signal |
| CA3211423A1 (en) * | 2021-03-15 | 2022-09-22 | Arindam Phani | Transitional tapping atomic force microscopy for high-resolution imaging |
| WO2024035890A2 (en) * | 2022-08-10 | 2024-02-15 | Rutgers, The State University Of New Jersey | Active vibration cancellation and control for scanning probe microscopy |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2004340772A (en) * | 2003-05-16 | 2004-12-02 | Jeol Ltd | Scanning probe microscope |
| CN101711342A (en) * | 2007-05-07 | 2010-05-19 | 威科仪器公司 | The closed loop controller and the method that are used for fast scanning probe microscopy |
| CN102439462A (en) * | 2008-11-13 | 2012-05-02 | 布鲁克纳米公司 | Method and apparatus for operating a scanning probe microscope |
| CN102844666A (en) * | 2009-12-01 | 2012-12-26 | 布鲁克纳米公司 | Method and apparatus of operating scanning probe microscope |
| US8370961B1 (en) * | 2011-09-30 | 2013-02-05 | Agilent Technologies, Inc. | Providing a topographic signal of sample using atomic force microscope |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6760573B2 (en) * | 2002-07-09 | 2004-07-06 | Qualcomm Incorporated | Frequency tracking using inner and outer loops |
| CN103998999B (en) | 2011-10-24 | 2018-03-13 | Abb研究有限公司 | For adjusting the method and system of multivariable PID controller |
| US8973161B2 (en) * | 2012-06-22 | 2015-03-03 | Rutgers, The State University Of New Jersey | Method and apparatus for nanomechanical measurement using an atomic force microscope |
-
2015
- 2015-07-14 WO PCT/US2015/040273 patent/WO2016010963A1/en active Application Filing
- 2015-07-14 US US15/326,237 patent/US10041970B2/en active Active
- 2015-07-14 EP EP15822414.7A patent/EP3170008B1/en active Active
- 2015-07-14 CN CN201580049517.2A patent/CN107076778B/en active Active
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2004340772A (en) * | 2003-05-16 | 2004-12-02 | Jeol Ltd | Scanning probe microscope |
| CN101711342A (en) * | 2007-05-07 | 2010-05-19 | 威科仪器公司 | The closed loop controller and the method that are used for fast scanning probe microscopy |
| CN102439462A (en) * | 2008-11-13 | 2012-05-02 | 布鲁克纳米公司 | Method and apparatus for operating a scanning probe microscope |
| CN102844666A (en) * | 2009-12-01 | 2012-12-26 | 布鲁克纳米公司 | Method and apparatus of operating scanning probe microscope |
| US8370961B1 (en) * | 2011-09-30 | 2013-02-05 | Agilent Technologies, Inc. | Providing a topographic signal of sample using atomic force microscope |
Also Published As
| Publication number | Publication date |
|---|---|
| US20170199219A1 (en) | 2017-07-13 |
| EP3170008A4 (en) | 2018-06-06 |
| EP3170008A1 (en) | 2017-05-24 |
| US10041970B2 (en) | 2018-08-07 |
| CN107076778A (en) | 2017-08-18 |
| EP3170008B1 (en) | 2024-05-08 |
| WO2016010963A1 (en) | 2016-01-21 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN107076778B (en) | High-speed self-adaptive multi-loop mode imaging atomic force microscope | |
| Clayton et al. | A review of feedforward control approaches in nanopositioning for high-speed SPM | |
| Mahmood et al. | Making a commercial atomic force microscope more accurate and faster using positive position feedback control | |
| RU2571446C2 (en) | Method to use semi-contact mode with fixed peak of force for measurement of physical properties of sample | |
| Ren et al. | High-speed adaptive contact-mode atomic force microscopy imaging with near-minimum-force | |
| Rana et al. | High-speed AFM image scanning using observer-based MPC-Notch control | |
| Xie et al. | High-speed AFM imaging via iterative learning-based model predictive control | |
| Ren et al. | High-speed atomic force microscope imaging: Adaptive multiloop mode | |
| Ahmad et al. | Adaptive AFM scan speed control for high aspect ratio fast structure tracking | |
| Wu et al. | A current cycle feedback iterative learning control approach for AFM imaging | |
| Ren et al. | Adaptive-scanning, near-minimum-deformation atomic force microscope imaging of soft sample in liquid: Live mammalian cell example | |
| Yi et al. | Active control of acoustics-caused nano-vibration in atomic force microscope imaging | |
| Yan et al. | A control approach to high-speed probe-based nanofabrication | |
| Ando | Toward the next generation of HS-AFM | |
| Zhang et al. | Real-time scan speed control of the atomic force microscopy for reducing imaging time based on sample topography | |
| US9645169B2 (en) | Measurement apparatus and method with adaptive scan rate | |
| Balantekin | High-speed dynamic atomic force microscopy by using a Q-controlled cantilever eigenmode as an actuator | |
| Fairbairn et al. | Improving the scan rate and image quality in tapping mode atomic force microscopy with piezoelectric shunt control | |
| Kim et al. | Iteration-based scan-trajectory design and control with output-oscillation minimization: Atomic force microscope example | |
| Chen et al. | High-speed large-range dynamic-mode atomic force microscope imaging: Adaptive tapping approach via Field Programmable Gate Array | |
| Coşar | Nonlinear controller design for high speed dynamic atomic force microscope system | |
| Wessels et al. | Fast and gentle side approach for atomic force microscopy | |
| Gorugantu et al. | A new dynamic imaging mode for high-resolution and high-bandwidth atomic force microscopy | |
| Belikov et al. | Afm image based pattern detection for adaptive drift compensation and positioning at the nanometer scale | |
| Yi et al. | A finite-impulse-response-based approach to control acoustic-caused probe-vibration in atomic force microscope imaging |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |