[go: up one dir, main page]

CN107104046B - Preparation method of gallium nitride Schottky diode - Google Patents

Preparation method of gallium nitride Schottky diode Download PDF

Info

Publication number
CN107104046B
CN107104046B CN201610099349.4A CN201610099349A CN107104046B CN 107104046 B CN107104046 B CN 107104046B CN 201610099349 A CN201610099349 A CN 201610099349A CN 107104046 B CN107104046 B CN 107104046B
Authority
CN
China
Prior art keywords
metal
gallium nitride
ohmic
passivation layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610099349.4A
Other languages
Chinese (zh)
Other versions
CN107104046A (en
Inventor
刘美华
孙辉
林信南
陈建国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Shenzhen Founder Microelectronics Co Ltd
Original Assignee
Peking University
Peking University Founder Group Co Ltd
Shenzhen Founder Microelectronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University, Peking University Founder Group Co Ltd, Shenzhen Founder Microelectronics Co Ltd filed Critical Peking University
Priority to CN201610099349.4A priority Critical patent/CN107104046B/en
Publication of CN107104046A publication Critical patent/CN107104046A/en
Application granted granted Critical
Publication of CN107104046B publication Critical patent/CN107104046B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D8/00Diodes
    • H10D8/01Manufacture or treatment
    • H10D8/051Manufacture or treatment of Schottky diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D8/00Diodes
    • H10D8/60Schottky-barrier diodes 
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D99/00Subject matter not provided for in other groups of this subclass

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

本发明提供的一种氮化镓肖特基二极管的制备方法,通过在氮化镓外延片的表面沉积钝化层;制备氮化镓肖特基二极管的阴极;在该钝化层的中心进行干法刻蚀,形成肖特基接触孔;在该肖特基接触孔内,该钝化层的表面和该阴极的表面沉积金属钛,形成欧姆金属层;对该欧姆金属层进行光刻,刻蚀和退火处理,形成呈栅状结构的欧姆金属结构;制备氮化镓肖特基二极管的阳极;其中,欧姆金属结构呈栅状结构,且被阳极包裹。从而实现在不影响氮化镓肖特基二极管输出性能的情况下,减小肖特基结面积,从而减小肖特基接触电阻,提高氮化镓肖特基二极管的器件性能和寿命。

Figure 201610099349

The present invention provides a method for preparing a gallium nitride Schottky diode, which comprises depositing a passivation layer on the surface of a gallium nitride epitaxial wafer; preparing a cathode of a gallium nitride Schottky diode; dry etching to form a Schottky contact hole; in the Schottky contact hole, metal titanium is deposited on the surface of the passivation layer and the surface of the cathode to form an ohmic metal layer; photolithography is performed on the ohmic metal layer, Etching and annealing are performed to form an ohmic metal structure with a grid structure; an anode of a gallium nitride Schottky diode is prepared; wherein, the ohmic metal structure is a grid structure and is wrapped by the anode. Therefore, the Schottky junction area can be reduced without affecting the output performance of the gallium nitride Schottky diode, thereby reducing the Schottky contact resistance, and improving the device performance and life of the gallium nitride Schottky diode.

Figure 201610099349

Description

氮化镓肖特基二极管的制备方法Preparation method of gallium nitride Schottky diode

技术领域technical field

本发明涉及半导体技术领域,尤其涉及一种氮化镓肖特基二极管的制备方法。The invention relates to the technical field of semiconductors, in particular to a method for preparing a gallium nitride Schottky diode.

背景技术Background technique

肖特基二极管是利用金属接触半导体层制成的一种半导体器件。其和传统意义上的半导体二极管相比,具有于反向恢复时间极短的特点,因此,肖特基二极管广泛应用于开关电源、变频器、驱动器等电路中。氮化镓材料是第三代宽禁带半导体材料,由于其具有大禁带宽度、高电子饱和速率、高击穿电场,较高热导率,耐腐蚀和抗辐射等特点,其成为制备短波光电子器件和高压高频率大功率器件的最佳材料。综上,使用氮化镓材料制备的肖特基二极管结合了上述条特技二极管和氮化镓材料的优势,具有高频、低损耗的特点,在开关功率系统中有很好的应用前景。A Schottky diode is a semiconductor device made with metal contacting a semiconductor layer. Compared with semiconductor diodes in the traditional sense, it has the characteristics of extremely short reverse recovery time. Therefore, Schottky diodes are widely used in switching power supplies, frequency converters, drivers and other circuits. Gallium nitride material is the third-generation wide bandgap semiconductor material. Because of its large band gap, high electron saturation rate, high breakdown electric field, high thermal conductivity, corrosion resistance and radiation resistance, it has become a popular choice for the preparation of short-wave optoelectronics. The best material for devices and high-voltage high-frequency high-power devices. In conclusion, the Schottky diode made of gallium nitride material combines the advantages of the above-mentioned strip trick diode and gallium nitride material, has the characteristics of high frequency and low loss, and has good application prospects in switching power systems.

在现有的氮化镓肖特基二极管的制备中,阳极金属与氮化镓材料接触形成了肖特基接触,而阴极金属与氮化镓材料接触形成了欧姆接触。但是,由于制备用的阳极金属与阴极金属的金属材料和制备工艺的差异,肖特基接触电阻将远大于欧姆接触电阻,这就导致在使用氮化镓肖特基二极管时,将造成由于大的肖特基接触电阻产生大能耗,进而产生大量热量,降低二极管寿命。In the preparation of the existing gallium nitride Schottky diode, the anode metal contacts the gallium nitride material to form a Schottky contact, and the cathode metal contacts the gallium nitride material to form an ohmic contact. However, due to the difference in the metal materials and preparation processes of the anode metal and cathode metal used for preparation, the Schottky contact resistance will be much greater than the ohmic contact resistance, which leads to the use of gallium nitride Schottky diodes. The Schottky contact resistance produces a large amount of energy consumption, which in turn generates a large amount of heat and reduces the life of the diode.

发明内容SUMMARY OF THE INVENTION

本发明提供了一种氮化镓肖特基二极管的制备方法,用以解决现有的氮化镓肖特基二极管的制备过程中,产生的肖特基接触电阻将远大于欧姆接触电阻的问题,实现降低肖特基接触电阻,提高氮化镓肖特基二极管寿命的有益效果。The invention provides a preparation method of a gallium nitride Schottky diode, which is used to solve the problem that the Schottky contact resistance generated during the preparation process of the existing gallium nitride Schottky diode will be far greater than the ohmic contact resistance , to achieve the beneficial effects of reducing the Schottky contact resistance and improving the life of the gallium nitride Schottky diode.

本发明提供的氮化镓肖特基二极管的制备方法,包括:The preparation method of the gallium nitride Schottky diode provided by the present invention includes:

在氮化镓外延片的表面沉积钝化层;Deposit a passivation layer on the surface of the GaN epitaxial wafer;

制备所述氮化镓肖特基二极管的阴极;preparing the cathode of the gallium nitride Schottky diode;

在所述钝化层的中心进行干法刻蚀,形成肖特基接触孔;dry etching is performed in the center of the passivation layer to form a Schottky contact hole;

在所述肖特基接触孔内,所述钝化层的表面和所述阴极的表面沉积金属钛,形成欧姆金属层;对所述欧姆金属层进行光刻,刻蚀和退火处理,形成呈栅状结构的欧姆金属结构;In the Schottky contact hole, metal titanium is deposited on the surface of the passivation layer and the surface of the cathode to form an ohmic metal layer; photolithography, etching and annealing are performed on the ohmic metal layer to form a ohmic metal layer. Ohmic metal structure with grid structure;

制备所述氮化镓肖特基二极管的阳极;preparing the anode of the gallium nitride Schottky diode;

其中,所述欧姆金属结构呈栅状结构,且被所述阳极包裹。Wherein, the ohmic metal structure is a grid structure and is wrapped by the anode.

进一步地,在上述制备方法中,所述制备所述氮化镓肖特基二极管的阴极,包括:Further, in the above preparation method, the preparation of the cathode of the gallium nitride Schottky diode includes:

对所述钝化层进行干法刻蚀,形成两个欧姆接触孔;dry etching the passivation layer to form two ohmic contact holes;

在两个所述欧姆接触孔内和所述钝化层的表面沉积第一金属,形成第一金属层;depositing a first metal in the two ohmic contact holes and on the surface of the passivation layer to form a first metal layer;

对所述第一金属层进行光刻,刻蚀和退火处理,形成所述阴极。Photolithography, etching and annealing are performed on the first metal layer to form the cathode.

进一步地,在上述制备方法中,所述在两个所述欧姆接触孔内和所述钝化层的表面沉积第一金属,形成第一金属层,包括:Further, in the above preparation method, the first metal is deposited in the two ohmic contact holes and on the surface of the passivation layer to form the first metal layer, comprising:

采用电子束蒸发工艺,在两个所述欧姆接触孔内和所述钝化层的表面依次沉积金属钛,金属铝,金属镍和金属铜,形成所述第一金属层。Using an electron beam evaporation process, metal titanium, metal aluminum, metal nickel and metal copper are sequentially deposited in the two ohmic contact holes and on the surface of the passivation layer to form the first metal layer.

进一步地,在上述制备方法中,所述制备所述氮化镓肖特基二极管的阳极,包括:Further, in the above preparation method, the preparation of the anode of the gallium nitride Schottky diode includes:

在所述肖特基接触孔内,所述钝化层的表面,所述阴极的表面和所述欧姆金属结构的表面沉积第二金属,形成第二金属层;In the Schottky contact hole, a second metal is deposited on the surface of the passivation layer, the surface of the cathode and the surface of the ohmic metal structure to form a second metal layer;

对所述第二金属层进行光刻和刻蚀,形成所述阳极。Photolithography and etching are performed on the second metal layer to form the anode.

进一步地,在上述制备方法中,所述在所述肖特基接触孔内,所述钝化层的表面,所述阴极的表面和所述欧姆金属结构的表面沉积第二金属,形成第二金属层,包括:Further, in the above preparation method, the second metal is deposited on the surface of the passivation layer, the surface of the cathode and the surface of the ohmic metal structure in the Schottky contact hole to form a second metal. Metal layers, including:

采用电子束蒸发工艺,在所述肖特基接触孔内,所述钝化层的表面,所述阴极的表面和所述欧姆金属结构的表面依次沉积金属镍和金属铜,形成所述第二金属层。Using the electron beam evaporation process, in the Schottky contact hole, the surface of the passivation layer, the surface of the cathode and the surface of the ohmic metal structure are sequentially deposited metal nickel and metal copper to form the second metal layer.

进一步地,在上述制备方法中,所述退火处理为在氮气的条件下,采用840℃的退火温度进行退火时间为30s的退火工艺。Further, in the above preparation method, the annealing process is an annealing process with an annealing time of 30 s at an annealing temperature of 840° C. under nitrogen conditions.

进一步地,在上述制备方法中,所述在氮化镓外延片的表面沉积钝化层,包括:Further, in the above preparation method, the deposition of the passivation layer on the surface of the gallium nitride epitaxial wafer includes:

采用低压力化学气相沉积法在所述氮化镓外延片的表面沉积氮化硅,形成所述钝化层。The passivation layer is formed by depositing silicon nitride on the surface of the gallium nitride epitaxial wafer by using a low pressure chemical vapor deposition method.

进一步地,在上述制备方法中,所述欧姆金属结构的栅条个数包括3个。Further, in the above preparation method, the number of grid bars of the ohmic metal structure includes three.

进一步地,在上述制备方法中,所述欧姆金属结构的厚度为30纳米。Further, in the above preparation method, the thickness of the ohmic metal structure is 30 nanometers.

进一步地,在上述制备方法中,在所述在氮化镓外延片的表面沉积钝化层之前,还包括:Further, in the above preparation method, before the passivation layer is deposited on the surface of the gallium nitride epitaxial wafer, the method further includes:

依次制备所述氮化镓外延片的衬底,缓冲层和势垒层。The substrate of the gallium nitride epitaxial wafer, the buffer layer and the barrier layer are sequentially prepared.

本发明提供的一种氮化镓肖特基二极管的制备方法,通过在氮化镓外延片的表面沉积钝化层;制备氮化镓肖特基二极管的阴极;在该钝化层的中心进行干法刻蚀,形成肖特基接触孔;在该肖特基接触孔内,该钝化层的表面和该阴极的表面沉积金属钛,形成欧姆金属层;对该欧姆金属层进行光刻,刻蚀和退火处理,形成呈栅状结构的欧姆金属结构;制备氮化镓肖特基二极管的阳极;其中,欧姆金属结构呈栅状结构,且被阳极包裹。通过本发明提供的制备方法,在制备阳极前,在肖特基接触孔内制备呈栅状结构的欧姆金属结构,并使该欧姆金属结构被阳极包裹,从而实现在不影响氮化镓肖特基二极管输出性能的情况下,减小肖特基结面积,从而减小肖特基接触电阻,提高氮化镓肖特基二极管的器件性能和寿命。The present invention provides a method for preparing a gallium nitride Schottky diode, which comprises depositing a passivation layer on the surface of a gallium nitride epitaxial wafer; preparing a cathode of a gallium nitride Schottky diode; dry etching to form a Schottky contact hole; in the Schottky contact hole, metal titanium is deposited on the surface of the passivation layer and the surface of the cathode to form an ohmic metal layer; photolithography is performed on the ohmic metal layer, Etching and annealing are performed to form an ohmic metal structure with a grid structure; an anode of a gallium nitride Schottky diode is prepared; wherein, the ohmic metal structure is a grid structure and is wrapped by the anode. According to the preparation method provided by the present invention, before preparing the anode, an ohmic metal structure with a grid structure is prepared in the Schottky contact hole, and the ohmic metal structure is wrapped by the anode, so as to realize the gallium nitride Schottky without affecting the In the case of the output performance of the base diode, the Schottky junction area is reduced, thereby reducing the Schottky contact resistance, and improving the device performance and life of the gallium nitride Schottky diode.

附图说明Description of drawings

图1为本发明实施例一提供的一种氮化镓肖特基二极管的制备方法的流程示意图;FIG. 1 is a schematic flowchart of a method for manufacturing a gallium nitride Schottky diode according to Embodiment 1 of the present invention;

图2为本发明实施例二提供的一种氮化家肖特基二极管的制备方法的流程示意图;FIG. 2 is a schematic flowchart of a method for preparing a Nitrided Schottky diode according to Embodiment 2 of the present invention;

图3为执行实施例二的步骤200后的氮化镓肖特基二极管剖面结构示意图;FIG. 3 is a schematic cross-sectional structural diagram of a gallium nitride Schottky diode after performing step 200 of the second embodiment;

图4为执行实施例二的步骤201后的氮化镓肖特基二极管剖面结构示意图;FIG. 4 is a schematic cross-sectional structural diagram of a gallium nitride Schottky diode after step 201 of the second embodiment;

图5为执行实施例二的步骤202后的氮化镓肖特基二极管剖面结构示意图;FIG. 5 is a schematic cross-sectional structure diagram of the GaN Schottky diode after step 202 of the second embodiment;

图6为执行实施例二的步骤203后的氮化镓肖特基二极管剖面结构示意图;6 is a schematic cross-sectional structural diagram of a GaN Schottky diode after step 203 of the second embodiment;

图7为执行实施例二的步骤204后的氮化镓肖特基二极管剖面结构示意图;FIG. 7 is a schematic cross-sectional structural diagram of the GaN Schottky diode after step 204 of the second embodiment;

图8为执行实施例二的步骤205后的氮化镓肖特基二极管剖面结构示意图;FIG. 8 is a schematic cross-sectional structural diagram of a gallium nitride Schottky diode after step 205 of the second embodiment;

图9为执行实施例二的步骤206后的氮化镓肖特基二极管剖面结构示意图;FIG. 9 is a schematic cross-sectional structural diagram of a gallium nitride Schottky diode after step 206 of the second embodiment;

图10为执行实施例二的步骤207后的氮化镓肖特基二极管剖面结构示意图;FIG. 10 is a schematic cross-sectional structural diagram of the GaN Schottky diode after step 207 of the second embodiment;

图11为执行实施例二的步骤208后的氮化镓肖特基二极管剖面结构示意图。FIG. 11 is a schematic cross-sectional structure diagram of the gallium nitride Schottky diode after step 208 of the second embodiment is performed.

具体实施方式Detailed ways

为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purposes, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments These are some embodiments of the present invention, but not all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.

图1为本发明实施例一提供的一种氮化镓肖特基二极管的制备方法的流程示意图,如图1所示制备方法包括如下步骤:FIG. 1 is a schematic flowchart of a method for preparing a gallium nitride Schottky diode according to Embodiment 1 of the present invention. As shown in FIG. 1, the preparation method includes the following steps:

步骤101、在氮化镓外延片的表面沉积钝化层。Step 101, depositing a passivation layer on the surface of the gallium nitride epitaxial wafer.

步骤102、制备氮化镓肖特基二极管的阴极。Step 102, preparing the cathode of the gallium nitride Schottky diode.

具体的,首先在氮化镓外延片的表面沉积钝化层,例如,可以采用低压力化学气相沉积法在氮化镓外延片的表面沉积氮化硅,从而形成钝化层;其中,钝化层的厚度可为30纳米。而对氮化镓肖特基二极管的阴极的制备工艺可以采用目前的成熟制备工艺,本领域技术人员可根据实际情况自行选择,本发明对此不进行限定。Specifically, a passivation layer is first deposited on the surface of the gallium nitride epitaxial wafer. For example, a low pressure chemical vapor deposition method can be used to deposit silicon nitride on the surface of the gallium nitride epitaxial wafer to form a passivation layer; wherein the passivation layer is The thickness of the layer may be 30 nanometers. For the preparation process of the cathode of the gallium nitride Schottky diode, the current mature preparation process can be adopted, and those skilled in the art can choose according to the actual situation, which is not limited in the present invention.

步骤103、在钝化层的中心进行干法刻蚀,形成肖特基接触孔。Step 103 , dry etching is performed in the center of the passivation layer to form a Schottky contact hole.

步骤104、在肖特基接触孔内,钝化层的表面和阴极的表面沉积金属钛,形成欧姆金属层;对欧姆金属层进行光刻,刻蚀和退火处理,形成呈栅状结构的欧姆金属结构。Step 104: In the Schottky contact hole, metal titanium is deposited on the surface of the passivation layer and the surface of the cathode to form an ohmic metal layer; photolithography, etching and annealing are performed on the ohmic metal layer to form an ohmic gate-like structure. Metal structure.

具体的,在完成阴极的制备之后,在钝化层的中心处,对该钝化层进行干法刻蚀,形成深至氮化镓外延片的表面的肖特基接触孔。在该肖特基接触孔内,钝化层的表面和阴极的表面沉积金属钛,从而形成欧姆金属层;对该欧姆金属层进行光刻,刻蚀和退火处理,形成呈栅状结构的欧姆金属结构。其中,退火处理具体可为在氮气的条件下,采用840℃的退火温度进行退火时间为30s的退火工艺。而欧姆金属结构的栅条个数包括3个,欧姆金属结构的厚度为30纳米。Specifically, after the preparation of the cathode is completed, dry etching is performed on the passivation layer at the center of the passivation layer to form a Schottky contact hole deep to the surface of the gallium nitride epitaxial wafer. In the Schottky contact hole, metal titanium is deposited on the surface of the passivation layer and the surface of the cathode to form an ohmic metal layer; the ohmic metal layer is subjected to photolithography, etching and annealing treatment to form an ohmic gate-like structure. Metal structure. The annealing treatment may specifically be an annealing process with an annealing time of 30s at an annealing temperature of 840° C. under the condition of nitrogen. The number of gate bars of the ohmic metal structure includes 3, and the thickness of the ohmic metal structure is 30 nanometers.

步骤105、制备氮化镓肖特基二极管的阳极,使欧姆金属结构被阳极包裹。Step 105, preparing the anode of the gallium nitride Schottky diode, so that the ohmic metal structure is wrapped by the anode.

在肖特基接触孔内,沿欧姆金属结构的表面制备氮化镓肖特基二极管的阳极,使该欧姆金属结构被阳极包裹。而对氮化镓肖特基二极管的阳极的制备工艺可以采用目前的成熟制备工艺,本领域技术人员可根据实际情况自行选择,本发明对此不进行限定。In the Schottky contact hole, the anode of the gallium nitride Schottky diode is prepared along the surface of the ohmic metal structure, so that the ohmic metal structure is wrapped by the anode. For the preparation process of the anode of the gallium nitride Schottky diode, the current mature preparation process can be adopted, and those skilled in the art can choose according to the actual situation, which is not limited in the present invention.

本发明实施例一提供一种氮化镓肖特基二极管的制备方法,通过在氮化镓外延片的表面沉积钝化层;制备氮化镓肖特基二极管的阴极;在该钝化层的中心进行干法刻蚀,形成肖特基接触孔;在该肖特基接触孔内,该钝化层的表面和该阴极的表面沉积金属钛,形成欧姆金属层;对该欧姆金属层进行光刻,刻蚀和退火处理,形成呈栅状结构的欧姆金属结构;制备氮化镓肖特基二极管的阳极;其中,欧姆金属结构呈栅状结构,且被阳极包裹。通过本发明提供的制备方法,在制备阳极前,在肖特基接触孔内制备呈栅状结构的欧姆金属结构,并使该欧姆金属结构被阳极包裹,从而实现在不影响氮化镓肖特基二极管输出性能的情况下,减小肖特基结面积,从而减小肖特基接触电阻,提高氮化镓肖特基二极管的器件性能和寿命。Embodiment 1 of the present invention provides a method for preparing a gallium nitride Schottky diode, which includes depositing a passivation layer on the surface of a gallium nitride epitaxial wafer; preparing a cathode of a gallium nitride Schottky diode; The center is dry-etched to form a Schottky contact hole; in the Schottky contact hole, metal titanium is deposited on the surface of the passivation layer and the surface of the cathode to form an ohmic metal layer; Etching, etching and annealing treatments are used to form an ohmic metal structure in a grid structure; an anode for a gallium nitride Schottky diode is prepared; wherein, the ohmic metal structure is a grid structure and is wrapped by the anode. According to the preparation method provided by the present invention, before preparing the anode, an ohmic metal structure with a grid structure is prepared in the Schottky contact hole, and the ohmic metal structure is wrapped by the anode, so as to realize the gallium nitride Schottky without affecting the In the case of the output performance of the base diode, the Schottky junction area is reduced, thereby reducing the Schottky contact resistance, and improving the device performance and life of the gallium nitride Schottky diode.

为了进一步说明本发明提供的氮化镓肖特基二极管的制备方法,在图1所示制备方法的基础上,图2为本发明实施例二提供的一种氮化家肖特基二极管的制备方法的流程示意图,图2所示的实施例二对氮化镓肖特基二极管的制备方法进行详细的描述。In order to further illustrate the preparation method of the gallium nitride Schottky diode provided by the present invention, on the basis of the preparation method shown in FIG. 1 , FIG. 2 is the preparation of a gallium nitride Schottky diode provided in the second embodiment of the present invention A schematic flowchart of the method, the second embodiment shown in FIG. 2 describes the preparation method of the gallium nitride Schottky diode in detail.

步骤200、依次制备氮化镓外延片的衬底,缓冲层和势垒层。Step 200 , prepare the substrate of the gallium nitride epitaxial wafer, the buffer layer and the barrier layer in sequence.

在图1所示方法中的步骤101之前,还可包括步骤200。具体的,图3为执行实施例二的步骤200后的氮化镓肖特基二极管剖面结构示意图,如图3所示,通过采用沉积的工艺依次制备氮化镓外延片中的衬底11,缓冲层12和势垒层13,其中,衬底11的材质采用硅元素制备,其厚度可为625微米;缓冲层12的材质采用化合物氮化镓制备,其厚度可为3微米;势垒层13的材质采用化合物氮化镓铝制备,其厚度可为25微米。通过步骤200,制备出氮化镓外延片,为后续器件其他部件的制备奠定基础。Before step 101 in the method shown in FIG. 1 , step 200 may also be included. Specifically, FIG. 3 is a schematic cross-sectional structure diagram of a gallium nitride Schottky diode after performing step 200 of the second embodiment. As shown in FIG. 3 , the substrate 11 in the gallium nitride epitaxial wafer is sequentially prepared by using a deposition process. The buffer layer 12 and the barrier layer 13, wherein the material of the substrate 11 is made of silicon element, and its thickness can be 625 microns; the material of the buffer layer 12 is made of compound gallium nitride, and its thickness can be 3 microns; the barrier layer The material of 13 is made of compound aluminum gallium nitride, and its thickness can be 25 microns. Through step 200, a gallium nitride epitaxial wafer is prepared, which lays a foundation for the preparation of other components of the subsequent device.

步骤201、在氮化镓外延片中的势垒层的表面沉积钝化层。Step 201 , depositing a passivation layer on the surface of the barrier layer in the gallium nitride epitaxial wafer.

具体的,图4为执行实施例二的步骤201后的氮化镓肖特基二极管剖面结构示意图,如图4所示,在氮化镓外延片中的势垒层13的表面沉积钝化层14。步骤201的执行方法与图1中的步骤101相同,在此不做赘述。Specifically, FIG. 4 is a schematic cross-sectional structure diagram of a gallium nitride Schottky diode after performing step 201 of the second embodiment. As shown in FIG. 4 , a passivation layer is deposited on the surface of the barrier layer 13 in the gallium nitride epitaxial wafer. 14. The execution method of step 201 is the same as that of step 101 in FIG. 1 , and details are not described here.

步骤202、对钝化层进行干法刻蚀,形成两个欧姆接触孔。Step 202 , dry etching the passivation layer to form two ohmic contact holes.

步骤203、在两个欧姆接触孔内和钝化层的表面沉积第一金属,形成第一金属层。Step 203 , depositing a first metal in the two ohmic contact holes and on the surface of the passivation layer to form a first metal layer.

步骤204、对第一金属层进行光刻,刻蚀和退火处理,形成阴极。Step 204 , performing photolithography, etching and annealing on the first metal layer to form a cathode.

上述图1所示方法中的步骤102具体可包括步骤202-204。具体的,图5为执行实施例二的步骤202后的氮化镓肖特基二极管剖面结构示意图,如图5所示,通过采用干法刻蚀的工艺,在氮化镓肖特基二极管的钝化层14的边缘处,对钝化层14进行刻蚀并形成两个中心对称的欧姆接触孔15,而每个欧姆接触孔15的直径可采用5微米。Step 102 in the above method shown in FIG. 1 may specifically include steps 202-204. Specifically, FIG. 5 is a schematic cross-sectional structure diagram of the gallium nitride Schottky diode after step 202 of the second embodiment. As shown in FIG. 5 , by using a dry etching process, the gallium nitride Schottky diode At the edge of the passivation layer 14, the passivation layer 14 is etched to form two center-symmetric ohmic contact holes 15, and the diameter of each ohmic contact hole 15 can be 5 microns.

图6为执行实施例二的步骤203后的氮化镓肖特基二极管剖面结构示意图,如图6所示,首先在两个欧姆接触孔15内和钝化层14的表面沉积第一金属,形成第一金属层16。进一步地,可采用电子束蒸发工艺,在两个欧姆接触孔15内和钝化层14的表面依次沉积金属钛,金属铝,金属镍和金属铜,以形成第一金属层16,该第一金属层16的厚度可采用300纳米。FIG. 6 is a schematic cross-sectional structure diagram of a gallium nitride Schottky diode after step 203 of Embodiment 2 is performed. As shown in FIG. 6 , first metal is deposited in the two ohmic contact holes 15 and on the surface of the passivation layer 14 , The first metal layer 16 is formed. Further, an electron beam evaporation process may be used to sequentially deposit metal titanium, metal aluminum, metal nickel and metal copper in the two ohmic contact holes 15 and on the surface of the passivation layer 14 to form the first metal layer 16 . The thickness of the metal layer 16 may be 300 nm.

图7为执行实施例二的步骤204后的氮化镓肖特基二极管剖面结构示意图,如图7所示,在形成第一金属层16之后,对第一金属层16采用光刻,刻蚀和退火处理的工艺,形成阴极17。具体的,通过对第一金属层16进行光刻和刻蚀,使仅有欧姆接触孔15内及其边缘部分的第一金属层16被保留,再通过进行退火处理,使形成钛,铝,镍和铜的合金,而第一金属层16与势垒层13中的氮化镓铝进行反应之后也可以在其接触面上形成合金,从而得到具有较低欧姆接触电阻的阴极17。其中,光刻的程序包括了涂胶、曝光和显影,而退火处理具体可采用在氮气的条件下,采用840℃的退火温度进行退火时间为30s的退火工艺。FIG. 7 is a schematic cross-sectional structure diagram of the gallium nitride Schottky diode after step 204 of the second embodiment is performed. As shown in FIG. 7 , after the first metal layer 16 is formed, the first metal layer 16 is subjected to photolithography and etching. and an annealing process to form the cathode 17 . Specifically, by performing photolithography and etching on the first metal layer 16, only the first metal layer 16 in the ohmic contact hole 15 and its edge portion is retained, and then annealing is performed to form titanium, aluminum, An alloy of nickel and copper, and the first metal layer 16 reacts with the aluminum gallium nitride in the barrier layer 13 to form an alloy on its contact surface, thereby obtaining a cathode 17 with lower ohmic contact resistance. Among them, the photolithography procedure includes glue coating, exposure and development, and the annealing process can be specifically performed under the condition of nitrogen gas, and an annealing process with an annealing time of 30s at an annealing temperature of 840° C. can be used.

步骤205、在钝化层的中心进行干法刻蚀,形成肖特基接触孔。Step 205 , dry etching is performed in the center of the passivation layer to form a Schottky contact hole.

步骤206、在肖特基接触孔内,钝化层的表面和阴极的表面沉积金属钛,形成欧姆金属层;对欧姆金属层进行光刻,刻蚀和退火处理,形成呈栅状结构的欧姆金属结构。Step 206: In the Schottky contact hole, metal titanium is deposited on the surface of the passivation layer and the surface of the cathode to form an ohmic metal layer; photolithography, etching and annealing are performed on the ohmic metal layer to form an ohmic gate-like structure. Metal structure.

图8为执行实施例二的步骤205后的氮化镓肖特基二极管剖面结构示意图,图9为执行实施例二的步骤206后的氮化镓肖特基二极管剖面结构示意图。如图8所示,在钝化层14的中心进行干法刻蚀,形成肖特基接触孔18;在肖特基接触孔18内,钝化层14的表面和阴极17的表面沉积金属钛,形成欧姆金属层;图9所示,对欧姆金属层进行光刻,刻蚀和退火处理,形成呈栅状结构的欧姆金属结构19。其中,欧姆金属结构19中的栅条个数包括3个,欧姆金属结构19的厚度可采用30纳米。步骤205和步骤206的执行方法分别与图1中的步骤103和步骤104相同,在此不做赘述。FIG. 8 is a schematic cross-sectional structure diagram of the GaN Schottky diode after performing step 205 of the second embodiment, and FIG. 9 is a cross-sectional structure schematic diagram of the GaN Schottky diode after performing the step 206 of the second embodiment. As shown in FIG. 8 , dry etching is performed in the center of the passivation layer 14 to form a Schottky contact hole 18 ; in the Schottky contact hole 18 , metal titanium is deposited on the surface of the passivation layer 14 and the surface of the cathode 17 , to form an ohmic metal layer; as shown in FIG. 9 , photolithography, etching and annealing are performed on the ohmic metal layer to form an ohmic metal structure 19 having a grid-like structure. The number of gate bars in the ohmic metal structure 19 includes three, and the thickness of the ohmic metal structure 19 can be 30 nanometers. The execution methods of step 205 and step 206 are respectively the same as that of step 103 and step 104 in FIG. 1 , and will not be repeated here.

步骤207、在肖特基接触孔内,钝化层的表面,阴极的表面和欧姆金属结构的表面沉积第二金属,形成第二金属层。Step 207: In the Schottky contact hole, a second metal is deposited on the surface of the passivation layer, the surface of the cathode and the surface of the ohmic metal structure to form a second metal layer.

步骤208、对第二金属层进行光刻和刻蚀,形成阳极。Step 208 , performing photolithography and etching on the second metal layer to form an anode.

上述图1所示方法中的步骤105具体可包括步骤207和步骤208。图10为执行实施例二的步骤207后的氮化镓肖特基二极管剖面结构示意图,如图10所示,在制备完欧姆金属结构19之后,在肖特基接触孔18内,钝化层14的表面,阴极17的表面以及欧姆金属结构19的表面沉积第二金属,形成第二金属层20。具体的,可采用电子束蒸发工艺,在肖特基接触孔18内,钝化层14的表面,阴极17的表面和欧姆金属结构19的表面依次沉积金属镍和金属铜,形成第二金属层20,其中,该第二金属层20的厚度可采用300纳米。Step 105 in the above method shown in FIG. 1 may specifically include step 207 and step 208 . FIG. 10 is a schematic cross-sectional structure diagram of the gallium nitride Schottky diode after step 207 of the second embodiment. As shown in FIG. 10 , after the ohmic metal structure 19 is prepared, in the Schottky contact hole 18 , a passivation layer is formed. A second metal is deposited on the surface of the cathode 14 , the surface of the cathode 17 and the surface of the ohmic metal structure 19 to form the second metal layer 20 . Specifically, an electron beam evaporation process can be used to sequentially deposit metallic nickel and metallic copper on the surface of the passivation layer 14 , the surface of the cathode 17 and the surface of the ohmic metal structure 19 in the Schottky contact hole 18 to form the second metal layer 20, wherein the thickness of the second metal layer 20 can be 300 nanometers.

图11为执行实施例二的步骤208后的氮化镓肖特基二极管剖面结构示意图,如图11所示,在形成第二金属层20之后,对该第二金属层20采用光刻和刻蚀的工艺,仅保留位于肖特基接触孔18处及其边缘的第二金属层20,并形成阳极21,其中,光刻的程序包括了涂胶、曝光和显影,阳极21的厚度可采用300纳米。需要说明的是,形成的阳极21与氮化镓外延片中的势垒层13接触形成肖特基接触,同时还将欧姆金属结构19完全覆盖,使欧姆金属结构19与空气隔绝,用以减小肖特基接触电阻,提高氮化镓肖特基二极管的器件性能和寿命。FIG. 11 is a schematic cross-sectional structure diagram of the gallium nitride Schottky diode after step 208 of the second embodiment. As shown in FIG. 11 , after the second metal layer 20 is formed, photolithography and etching are used for the second metal layer 20 . In the etching process, only the second metal layer 20 located at the Schottky contact hole 18 and its edges is retained, and an anode 21 is formed. The photolithography process includes glue coating, exposure and development. The thickness of the anode 21 can be adopted 300 nm. It should be noted that the formed anode 21 is in contact with the barrier layer 13 in the gallium nitride epitaxial wafer to form a Schottky contact, and at the same time, the ohmic metal structure 19 is completely covered to isolate the ohmic metal structure 19 from the air to reduce Small Schottky contact resistance improves device performance and lifetime of GaN Schottky diodes.

本发明实施例二提供了一种氮化镓肖特基二极管的制备方法,通过依次制备氮化镓外延片的衬底,缓冲层和势垒层;在氮化镓外延片的表面沉积钝化层;对钝化层进行干法刻蚀,形成两个欧姆接触孔;在两个欧姆接触孔内和钝化层的表面沉积第一金属,形成第一金属层;对第一金属层进行光刻,刻蚀和退火处理,形成阴极;在钝化层的中心进行干法刻蚀,形成肖特基接触孔;在肖特基接触孔内,钝化层的表面和阴极的表面沉积金属钛,形成欧姆金属层;对欧姆金属层进行光刻,刻蚀和退火处理,形成呈栅状结构的欧姆金属结构;在肖特基接触孔内,钝化层的表面,阴极的表面和欧姆金属结构的表面沉积第二金属,形成第二金属层;对第二金属层进行光刻和刻蚀,形成阳极,使该欧姆金属结构被阳极包裹,从而实现在不影响氮化镓肖特基二极管输出性能的情况下,减小肖特基结面积,从而减小肖特基接触电阻,提高氮化镓肖特基二极管的器件性能和寿命。The second embodiment of the present invention provides a preparation method of a gallium nitride Schottky diode, by sequentially preparing a substrate, a buffer layer and a barrier layer of a gallium nitride epitaxial wafer; depositing passivation on the surface of the gallium nitride epitaxial wafer dry etching the passivation layer to form two ohmic contact holes; depositing a first metal in the two ohmic contact holes and on the surface of the passivation layer to form a first metal layer; Etching, etching and annealing treatment to form a cathode; dry etching is performed in the center of the passivation layer to form a Schottky contact hole; in the Schottky contact hole, metal titanium is deposited on the surface of the passivation layer and the surface of the cathode , form an ohmic metal layer; perform photolithography, etching and annealing on the ohmic metal layer to form an ohmic metal structure with a grid-like structure; in the Schottky contact hole, the surface of the passivation layer, the surface of the cathode and the ohmic metal A second metal is deposited on the surface of the structure to form a second metal layer; photolithography and etching are performed on the second metal layer to form an anode, so that the ohmic metal structure is wrapped by the anode, so as to achieve a Schottky diode without affecting the gallium nitride. In the case of output performance, the Schottky junction area is reduced, thereby reducing the Schottky contact resistance, and improving the device performance and life of the gallium nitride Schottky diode.

最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention, but not to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: The technical solutions described in the foregoing embodiments can still be modified, or some or all of the technical features thereof can be equivalently replaced; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the technical solutions of the embodiments of the present invention. scope.

Claims (8)

1.一种氮化镓肖特基二极管的制备方法,其特征在于,包括:1. a preparation method of gallium nitride Schottky diode, is characterized in that, comprises: 在氮化镓外延片的表面沉积钝化层;Deposit a passivation layer on the surface of the GaN epitaxial wafer; 制备所述氮化镓肖特基二极管的阴极;preparing the cathode of the gallium nitride Schottky diode; 在所述钝化层的中心进行干法刻蚀,形成肖特基接触孔;dry etching is performed in the center of the passivation layer to form a Schottky contact hole; 在所述肖特基接触孔内,所述钝化层的表面和所述阴极的表面沉积金属钛,形成欧姆金属层;对所述欧姆金属层进行光刻,刻蚀和退火处理,形成呈栅状结构的欧姆金属结构;In the Schottky contact hole, metal titanium is deposited on the surface of the passivation layer and the surface of the cathode to form an ohmic metal layer; photolithography, etching and annealing are performed on the ohmic metal layer to form a ohmic metal layer. Ohmic metal structure with grid structure; 制备所述氮化镓肖特基二极管的阳极;preparing the anode of the gallium nitride Schottky diode; 其中,所述欧姆金属结构呈栅状结构,且被所述阳极包裹;Wherein, the ohmic metal structure is a grid structure and is wrapped by the anode; 所述制备所述氮化镓肖特基二极管的阴极,包括:The preparation of the cathode of the gallium nitride Schottky diode includes: 对所述钝化层进行干法刻蚀,形成两个欧姆接触孔;在两个所述欧姆接触孔内和所述钝化层的表面沉积第一金属,形成第一金属层;对所述第一金属层进行光刻,刻蚀和退火处理,形成所述阴极;performing dry etching on the passivation layer to form two ohmic contact holes; depositing a first metal in the two ohmic contact holes and on the surface of the passivation layer to form a first metal layer; The first metal layer is subjected to photolithography, etching and annealing treatment to form the cathode; 所述制备所述氮化镓肖特基二极管的阳极,包括:The preparation of the anode of the gallium nitride Schottky diode includes: 在所述肖特基接触孔内,所述钝化层的表面,所述阴极的表面和所述欧姆金属结构的表面沉积第二金属,形成第二金属层;对所述第二金属层进行光刻和刻蚀,形成所述阳极。In the Schottky contact hole, a second metal is deposited on the surface of the passivation layer, the surface of the cathode and the surface of the ohmic metal structure to form a second metal layer; Photolithography and etching to form the anode. 2.根据权利要求1所述的制备方法,其特征在于,所述在两个所述欧姆接触孔内和所述钝化层的表面沉积第一金属,形成第一金属层,包括:2 . The preparation method according to claim 1 , wherein the depositing a first metal in the two ohmic contact holes and on the surface of the passivation layer to form the first metal layer comprises: 3 . 采用电子束蒸发工艺,在两个所述欧姆接触孔内和所述钝化层的表面依次沉积金属钛,金属铝,金属镍和金属铜,形成所述第一金属层。Using an electron beam evaporation process, metal titanium, metal aluminum, metal nickel and metal copper are sequentially deposited in the two ohmic contact holes and on the surface of the passivation layer to form the first metal layer. 3.根据权利要求2所述的制备方法,其特征在于,所述在所述肖特基接触孔内,所述钝化层的表面,所述阴极的表面和所述欧姆金属结构的表面沉积第二金属,形成第二金属层,包括:3 . The preparation method according to claim 2 , wherein in the Schottky contact hole, the surface of the passivation layer, the surface of the cathode and the surface of the ohmic metal structure are deposited. 4 . The second metal, forming the second metal layer, includes: 采用电子束蒸发工艺,在所述肖特基接触孔内,所述钝化层的表面,所述阴极的表面和所述欧姆金属结构的表面依次沉积金属镍和金属铜,形成所述第二金属层。Using the electron beam evaporation process, in the Schottky contact hole, the surface of the passivation layer, the surface of the cathode and the surface of the ohmic metal structure are sequentially deposited metal nickel and metal copper to form the second metal layer. 4.根据权利要求1-3任一项所述的制备方法,其特征在于,所述退火处理为在氮气的条件下,采用840℃的退火温度进行退火时间为30s的退火工艺。4 . The preparation method according to claim 1 , wherein the annealing treatment is an annealing process with an annealing time of 30 s at an annealing temperature of 840° C. under nitrogen conditions. 5 . 5.根据权利要求1-3任一项所述的制备方法,其特征在于,所述在氮化镓外延片的表面沉积钝化层,包括:5. The preparation method according to any one of claims 1-3, wherein the deposition of a passivation layer on the surface of the gallium nitride epitaxial wafer comprises: 采用低压力化学气相沉积法在所述氮化镓外延片的表面沉积氮化硅,形成所述钝化层。The passivation layer is formed by depositing silicon nitride on the surface of the gallium nitride epitaxial wafer by using a low pressure chemical vapor deposition method. 6.根据权利要求1-3任一项所述的制备方法,其特征在于,所述欧姆金属结构的栅条个数包括3个。6 . The preparation method according to claim 1 , wherein the number of grid bars of the ohmic metal structure includes three. 7 . 7.根据权利要求1-3任一项所述的制备方法,其特征在于,所述欧姆金属结构的厚度为30纳米。7 . The preparation method according to claim 1 , wherein the thickness of the ohmic metal structure is 30 nanometers. 8 . 8.根据权利要求1-3任一项所述的制备方法,其特征在于,在所述在氮化镓外延片的表面沉积钝化层之前,还包括:8. The preparation method according to any one of claims 1-3, characterized in that, before said depositing a passivation layer on the surface of the gallium nitride epitaxial wafer, further comprising: 依次制备所述氮化镓外延片的衬底,缓冲层和势垒层。The substrate of the gallium nitride epitaxial wafer, the buffer layer and the barrier layer are sequentially prepared.
CN201610099349.4A 2016-02-23 2016-02-23 Preparation method of gallium nitride Schottky diode Active CN107104046B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610099349.4A CN107104046B (en) 2016-02-23 2016-02-23 Preparation method of gallium nitride Schottky diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610099349.4A CN107104046B (en) 2016-02-23 2016-02-23 Preparation method of gallium nitride Schottky diode

Publications (2)

Publication Number Publication Date
CN107104046A CN107104046A (en) 2017-08-29
CN107104046B true CN107104046B (en) 2020-06-09

Family

ID=59658463

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610099349.4A Active CN107104046B (en) 2016-02-23 2016-02-23 Preparation method of gallium nitride Schottky diode

Country Status (1)

Country Link
CN (1) CN107104046B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109346532A (en) * 2018-09-26 2019-02-15 深圳市晶相技术有限公司 Semiconductor device and method of making the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102544117A (en) * 2010-12-09 2012-07-04 三星电机株式会社 Nitride based semiconductor device
CN103441140A (en) * 2008-08-05 2013-12-11 住友电气工业株式会社 Schottky barrier diode

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8026568B2 (en) * 2005-11-15 2011-09-27 Velox Semiconductor Corporation Second Schottky contact metal layer to improve GaN Schottky diode performance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103441140A (en) * 2008-08-05 2013-12-11 住友电气工业株式会社 Schottky barrier diode
CN102544117A (en) * 2010-12-09 2012-07-04 三星电机株式会社 Nitride based semiconductor device

Also Published As

Publication number Publication date
CN107104046A (en) 2017-08-29

Similar Documents

Publication Publication Date Title
CN110379857B (en) Switching device containing p-type gallium oxide thin layer and preparation method thereof
CN103077891B (en) Super-junction-based gallium nitride HEMT (High Electron Mobility Transistor) device and preparation method thereof
CN111430457B (en) A GaN/two-dimensional AlN heterojunction rectifier on a silicon substrate and a preparation method thereof
CN103904135A (en) Schottky diode and manufacturing method thereof
JP2002164570A (en) Gallium nitride based compound semiconductor device
CN111192825A (en) Silicon carbide Schottky diode and method of making the same
CN115312604A (en) Fin-type gallium oxide PN diode with high voltage resistance and low on-resistance and preparation method
CN108206220B (en) Preparation method of diamond Schottky diode
CN117457710A (en) Schottky diode based on p-type Ga2O3 and preparation method
CN115360235B (en) Gallium nitride Schottky barrier diode and manufacturing method thereof
JP5445899B2 (en) Schottky barrier diode
CN107230722A (en) HEMT and preparation method thereof
CN107104046B (en) Preparation method of gallium nitride Schottky diode
CN111192927B (en) Gallium oxide Schottky diode and manufacturing method thereof
CN114038750A (en) A kind of preparation method of gallium nitride power device
CN112614887A (en) Enhanced AlGaN-GaN vertical super-junction HEMT and preparation method thereof
CN107104047A (en) The manufacture method of gallium nitride Schottky diode
CN109346405A (en) A kind of preparation method of GaN-based SBD flip chip
CN112086353B (en) Schottky diode preparation method and Schottky diode
CN115083921A (en) Gallium oxide Schottky diode preparation method and gallium oxide Schottky diode
CN107104176A (en) The preparation method and gallium nitride diode of gallium nitride diode
CN119630005B (en) Low-cost thermally enhanced gallium nitride Schottky barrier diode and preparation method thereof
WO2019165975A1 (en) Method for preparing ohmic contact electrode of gan-based device
CN109461655A (en) Nitride high electronic migration rate transistor fabrication process with multi-gate structure
CN113921600B (en) Low-resistance ohmic electrode structure on n-type AlGaN and preparation method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220805

Address after: 100871 No. 5, the Summer Palace Road, Beijing, Haidian District

Patentee after: Peking University

Patentee after: SHENZHEN FOUNDER MICROELECTRONICS Co.,Ltd.

Address before: 100871 No. 5, the Summer Palace Road, Beijing, Haidian District

Patentee before: Peking University

Patentee before: PEKING UNIVERSITY FOUNDER GROUP Co.,Ltd.

Patentee before: SHENZHEN FOUNDER MICROELECTRONICS Co.,Ltd.