[go: up one dir, main page]

CN107105297B - A fast optimization method for intra-frame prediction coding of 3D-HEVC depth map - Google Patents

A fast optimization method for intra-frame prediction coding of 3D-HEVC depth map Download PDF

Info

Publication number
CN107105297B
CN107105297B CN201710357483.4A CN201710357483A CN107105297B CN 107105297 B CN107105297 B CN 107105297B CN 201710357483 A CN201710357483 A CN 201710357483A CN 107105297 B CN107105297 B CN 107105297B
Authority
CN
China
Prior art keywords
pixel
coding
current
row
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710357483.4A
Other languages
Chinese (zh)
Other versions
CN107105297A (en
Inventor
曾焕强
郑惠洁
陈婧
朱建清
蔡灿辉
马凯光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaqiao University
Original Assignee
Huaqiao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaqiao University filed Critical Huaqiao University
Priority to CN201710357483.4A priority Critical patent/CN107105297B/en
Publication of CN107105297A publication Critical patent/CN107105297A/en
Application granted granted Critical
Publication of CN107105297B publication Critical patent/CN107105297B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/597Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding specially adapted for multi-view video sequence encoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/109Selection of coding mode or of prediction mode among a plurality of temporal predictive coding modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/59Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial sub-sampling or interpolation, e.g. alteration of picture size or resolution

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

The invention discloses a kind of fast Optimizations for 3D-HEVC depth map intraframe predictive coding, it include: that the sum of its pixel variance and diagonal pixel absolute value of the difference are calculated to present encoding block CU, according to the sum of the absolute value of the variance of present encoding block and diagonal pixel value difference given threshold, by threshold value comparison, the depth for determining whether to terminate current CU in advance is divided;According to the sum of current prediction block PU outermost ring of pixels absolute value of the difference, whether given threshold belongs to smooth type by threshold value comparison current prediction block PU, to skip SDC coding, further decreases computation complexity.The present invention can be effectively reduced depth map intraframe predictive coding computation complexity under the premise of keeping 3D-HEVC code efficiency.

Description

一种针对3D-HEVC深度图帧内预测编码的快速优化方法A fast optimization method for intra-frame prediction coding of 3D-HEVC depth map

技术领域technical field

本发明涉及视频编码领域,特别是一种针对3D-HEVC深度图帧内预测编码的快速优化方法。The invention relates to the field of video coding, in particular to a fast optimization method for intra-frame predictive coding of a 3D-HEVC depth map.

背景技术Background technique

随着多媒体通信技术和各种视频终端处理能力的快速发展,3D视频越来越在生活中普及。考虑到上一代基于H.264的多视点视频编码标准不能满足当前与日俱增的3D视频数据量的高效压缩,立体视频编码联合组JCT-3V制定了新一代多视点视频编码标准3D-HEVC(3D-High Efficiency Video Coding)。With the rapid development of multimedia communication technology and various video terminal processing capabilities, 3D video is becoming more and more popular in life. Considering that the previous generation of multi-view video coding standards based on H.264 cannot meet the high-efficiency compression of the current increasing 3D video data volume, the stereoscopic video coding joint group JCT-3V has formulated a new generation of multi-view video coding standards 3D-HEVC (3D- High Efficiency Video Coding).

尽管3D-HEVC取得较高的编码效率,但是其存在计算复杂度较高的问题,严重影响其实际应用。目前通用的3D视频格式为纹理视频加深度视频格式(Video Plus Depth),其中深度图对虚拟视点合成具有重要作用。然而深度图编码过程也引入了较大的计算复杂度,其主要耗时模块包括帧内预测编码和帧间预测编码。Although 3D-HEVC achieves high coding efficiency, it has the problem of high computational complexity, which seriously affects its practical application. Currently, the common 3D video format is texture video plus depth video format (Video Plus Depth), in which the depth map plays an important role in virtual viewpoint synthesis. However, the depth map coding process also introduces a large computational complexity, and its main time-consuming modules include intra-frame prediction coding and inter-frame prediction coding.

对于帧内预测编码,现有3D-HEVC采用递归的编码块CU分割算法和众多的PU预测单元。同时,对深度图帧内预测单元计算率失真代价值RD-cost时,需要对预测单元做多种编码操作,包括SDC编码和非SDC编码。若进行SDC编码,则当前预测块的预测残差不需要进行变换量化步骤,直接采用一至两个数值根据深度查找表(Depth Lookup Table,DLT)代替当前预测块的预测残差值。该SDC编码在提高编码性能的同时也引入了一定的计算复杂度。因此,如何在保持3D-HEVC编码效率的前提下,降低深度图帧内预测编码计算复杂度是迫切需要解决的问题。For intra-frame prediction coding, the existing 3D-HEVC uses a recursive coding block CU partition algorithm and numerous PU prediction units. At the same time, when calculating the rate-distortion cost value RD-cost for the depth map intra prediction unit, it is necessary to perform various encoding operations on the prediction unit, including SDC encoding and non-SDC encoding. If SDC coding is performed, the prediction residual of the current prediction block does not need to be transformed and quantized, and one or two values are directly used to replace the prediction residual value of the current prediction block according to the Depth Lookup Table (DLT). The SDC encoding also introduces a certain computational complexity while improving the encoding performance. Therefore, how to reduce the computational complexity of depth map intra-frame prediction coding while maintaining 3D-HEVC coding efficiency is an urgent problem to be solved.

发明内容Contents of the invention

本发明的主要目的在于针对3D-HEVC深度图帧内预测编码块分割递归过程以及SDC编码过程所导致的较大计算负载问题,提出一种针对3D-HEVC深度图帧内预测编码的快速优化方法,在保证编码效率几乎不变的情况下有效降低了编码器计算复杂度。The main purpose of the present invention is to propose a fast optimization method for intra-frame predictive coding of 3D-HEVC depth map in view of the large computational load caused by the recursive process of block segmentation recursive process and SDC coding process of 3D-HEVC depth map , effectively reducing the computational complexity of the encoder while ensuring that the encoding efficiency is almost unchanged.

本发明采用如下技术方案:The present invention adopts following technical scheme:

一种针对3D-HEVC深度图帧内预测编码的快速优化方法,其特征在于,包括如下步骤:A fast optimization method for intra-frame predictive encoding of 3D-HEVC depth maps, characterized in that it comprises the following steps:

1)对当前编码块CU计算其像素方差D以及对角像素差的绝对值之和SD1) Calculate the pixel variance D and the sum SD of the absolute value of the diagonal pixel difference for the current coding block CU;

2)将像素方差D以及对角像素差的绝对值之和SD分别与预设的阈值TD和TSD进行比较判断是否跳过CU分割;若否,则进入步骤3);若是,则进入步骤4);2) Compare the pixel variance D and the sum SD of the absolute value of the diagonal pixel difference with the preset thresholds T D and T SD respectively to determine whether to skip the CU segmentation; if not, go to step 3); if so, then Go to step 4);

3)判断当前编码块CU是否到达最大CU深度,若是,则进行CU分割,回到步骤1);若否,进入步骤4);3) Judging whether the current coding block CU reaches the maximum CU depth, if so, then perform CU segmentation, and return to step 1); if not, enter step 4);

4)计算当前预测块PU外圈像素差的绝对值之和SP并与预设的阈值TP进行比较判断确定预测编码方式。4) Calculate the sum S P of the absolute value of the pixel difference in the outer circle of the current prediction block PU and compare it with the preset threshold T P to determine the predictive coding mode.

优选的,在步骤1)中,所述的像素方差D按下式计算:Preferably, in step 1), the pixel variance D is calculated as follows:

其中Xi表示当前编码单元CU的第i个像素值,M表示当前编码单元CU的像素总数。Wherein Xi represents the i -th pixel value of the current coding unit CU, and M represents the total number of pixels in the current coding unit CU.

优选的,在步骤1)中,所述的对角像素差的绝对值之和SD按下式计算:Preferably, in step 1), the sum SD of the absolute value of the diagonal pixel difference is calculated as follows:

其中,Xi,i表示当前编码单元CU第i行第i列的像素值,Xi,N-i表示当前编码单元CU第i行第N-i列的像素,N表示当前编码单元CU的尺寸宽度值。Wherein, X i,i represents the pixel value of row i, column i of the current coding unit CU, Xi , Ni represents the pixel of row i, column Ni of the current coding unit CU, and N represents the size width value of the current coding unit CU.

优选的,在步骤2)中所述的将像素方差D以及对角像素差的绝对值之和SD分别与预设的阈值TD和TSD进行比较判断,其判断条件为:Preferably, the pixel variance D and the absolute value SD of the diagonal pixel difference described in step 2) are compared and judged with the preset threshold T D and T SD respectively, and its judgment condition is:

D>TD||SD>TSDD>T D ||S D >T SD .

优选的,在步骤4)中,所述当前预测块PU的外圈像素差的绝对值之和SP,计算公式为:Preferably, in step 4), the calculation formula of the sum S P of the absolute values of the outer circle pixel differences of the current prediction block PU is:

其中,X1,j表示的当前预测单元PU第一行第i个像素值,XK,j表示PU的第K行第i个像素。Xi,1表示PU第i行第1列的像素,Xi,K表示PU的第i行第K列像素,K表示当前预测单元PU的尺寸。Wherein, X 1,j represents the i-th pixel value in the first row of the current prediction unit PU, and X K,j represents the i-th pixel in the K-th row of the PU. X i,1 represents the pixel in row i, column 1 of the PU, X i,K represents the pixel in row i, column K of the PU, and K represents the size of the current prediction unit PU.

优选的,在步骤4)中,计算当前编码块CU外圈像素差的绝对值之和SP并与预设的阈值TP进行比较判断,若SP>TP,则采用SDC编码和非SDC编码,若否则采用SDC编码。Preferably, in step 4), the sum S P of the absolute value of the difference between the pixels in the outer circle of the current coding block CU is calculated and compared with the preset threshold T P for judgment. If S P > T P , SDC coding and non- SDC encoding, otherwise adopt SDC encoding.

优选的,在步骤4)中,所述的TP是通过对当前预测块PU进行SDC编码时采样统计后进行均值计算得到。Preferably, in step 4), the T P is obtained by performing mean value calculation after sampling statistics of the current prediction block PU when performing SDC encoding.

由上述对本发明的描述可知,与现有技术相比,本发明具有如下有益效果:As can be seen from the above description of the present invention, compared with the prior art, the present invention has the following beneficial effects:

1、本发明方法利用深度图编码块的方差以及对角像素差值的图像特性进行阈值判定,跳过部分不需要进行分割的CU,简单有效地节省编码时间。1. The method of the present invention uses the variance of the coding block of the depth map and the image characteristics of the diagonal pixel difference to perform threshold judgment, skips some CUs that do not need to be divided, and saves coding time simply and effectively.

2、本发明方法充分利用深度图编码块的平滑特性跳过不必要的非SDC编码,有效地降低计算复杂度。2. The method of the present invention makes full use of the smoothness of the coding block of the depth map to skip unnecessary non-SDC coding, and effectively reduces the computational complexity.

附图说明Description of drawings

图1为本发明的流程图。Fig. 1 is a flowchart of the present invention.

具体实施方式Detailed ways

以下通过具体实施方式对本发明作进一步的描述。The present invention will be further described below through specific embodiments.

参照图1,本发明的一种针对3D-HEVC深度图帧内预测编码的快速优化方法,对编码单元分割以及预测单元SDC编码进行优化改进,具体实施步骤如下:Referring to Fig. 1, a fast optimization method for 3D-HEVC depth map intra-frame prediction coding according to the present invention optimizes and improves coding unit segmentation and prediction unit SDC coding. The specific implementation steps are as follows:

1)对当前输入深度图的编码块CU计算其像素方差D以及对角像素差的绝对值之和SD1) For the coding block CU of the current input depth map, calculate its pixel variance D and the sum SD of the absolute values of diagonal pixel differences.

像素方差D计算公式如下:The formula for calculating the pixel variance D is as follows:

其中Xi表示当前编码单元CU的第i个像素值,M表示当前编码单元CU的像素总数。Wherein Xi represents the i -th pixel value of the current coding unit CU, and M represents the total number of pixels in the current coding unit CU.

当前编码块CU的对角像素差的绝对值之和SD计算公式如下:The calculation formula of the absolute value SD of the diagonal pixel difference of the current coding block CU is as follows:

其中,Xi,i表示当前编码单元CU第i行第i列的像素值,Xi,N-i表示当前编码单元CU第i行第N-i列的像素,N表示当前编码单元CU的尺寸宽度值。Wherein, X i,i represents the pixel value of row i, column i of the current coding unit CU, Xi , Ni represents the pixel of row i, column Ni of the current coding unit CU, and N represents the size width value of the current coding unit CU.

2)设定双阈值TD和TSD,比较阈值与方差D以及对角线像素差的绝对值之和SD,阈值判断的公式为:2) Set double thresholds T D and T SD , compare the threshold with variance D and the sum SD of absolute values of diagonal pixel differences, the formula for threshold judgment is:

D>TD||SD>TSDD>T D ||S D >T SD ;

其中TD和TSD为设定的阈值,阈值的选择由实验统计而得。Among them, T D and T SD are the set thresholds, and the selection of the thresholds is obtained by experiment statistics.

若不满足上述的阈值判断公式,则进入步骤4);若满足上述的阈值判断公式,则进入步骤3)。If the above threshold judgment formula is not satisfied, go to step 4); if the above threshold judgment formula is satisfied, go to step 3).

3)判断当前编码块CU是否到达最大CU深度,若达到,则进行CU分割;若否,则进入步骤4)。3) Judging whether the current coding block CU reaches the maximum CU depth, if so, perform CU segmentation; if not, proceed to step 4).

4)计算当前预测块PU的外圈像素差的绝对值之和SP,计算公式如下:4) Calculate the sum SP of the absolute value of the outer circle pixel difference of the current prediction block PU , the calculation formula is as follows:

其中,X1,j表示的当前预测单元PU第一行第i个像素值,XK,j表示PU的第K行第i个像素。Xi,1表示PU第i行第1列的像素,Xi,K表示PU的第i行第K列像素,K表示当前预测单元PU的尺寸宽度值。预测块PU是HEVC基本预测单元。在帧内预测编码中,当前2N×2N的编码块CU可有2N×2N及N×N两种尺寸预测块PU。Wherein, X 1,j represents the i-th pixel value in the first row of the current prediction unit PU, and X K,j represents the i-th pixel in the K-th row of the PU. X i,1 represents the pixel in row i, column 1 of the PU, X i,K represents the pixel in row i, column K of the PU, and K represents the size and width of the current prediction unit PU. A prediction block PU is an HEVC basic prediction unit. In intra-frame predictive coding, the current 2N×2N coding block CU may have two predictive block PUs of 2N×2N and N×N sizes.

5)设定阈值TP,对SP和TP进行比较,判定最终是否需要跳过SDC编码,阈值判断公式为:5) Set the threshold T P , compare SP and T P , and determine whether to skip SDC coding in the end. The threshold judgment formula is:

SP>TPS P > T P ;

其中TP为设定的阈值,阈值的设置通过对当前预测块PU进行SDC编码时采样统计后进行均值计算而得。若满足该判断公式,对预测块PU进行SDC编码和非SDC编码,若否,则属于平滑类型,对预测块进行SDC编码。Where T P is a set threshold, and the setting of the threshold is obtained by performing mean value calculation after sampling and statistics of the current prediction block PU when performing SDC encoding. If the judgment formula is satisfied, SDC coding and non-SDC coding are performed on the prediction block PU; otherwise, it belongs to the smooth type, and SDC coding is performed on the prediction block.

上述仅为本发明的具体实施方式,但本发明的设计构思并不局限于此,凡利用此构思对本发明进行非实质性的改动,均应属于侵犯本发明保护范围的行为。The above is only a specific embodiment of the present invention, but the design concept of the present invention is not limited thereto, and any insubstantial changes made to the present invention by using this concept should be an act of violating the protection scope of the present invention.

Claims (2)

1.一种针对3D-HEVC深度图帧内预测编码的快速优化方法,其特征在于,包括如下步骤:1. A fast optimization method for 3D-HEVC depth map intra-frame predictive coding, it is characterized in that, comprising the steps: 1)对当前编码块CU计算其像素方差D以及对角像素差的绝对值之和SD;所述的对角像素差的绝对值之和SD按下式计算:1) Calculate the pixel variance D and the sum SD of the absolute value of the diagonal pixel difference for the current coding block CU; the sum SD of the absolute value of the diagonal pixel difference is calculated as follows: 其中,Xi,i表示当前编码单元CU第i行第i列的像素值,Xi,N-i表示当前编码单元CU第i行第N-i列的像素,N表示当前编码单元CU的尺寸宽度值;Wherein, X i,i represents the pixel value of the i-th row and i-th column of the current coding unit CU, Xi , Ni represents the pixel of the i-th row and Ni-th column of the current coding unit CU, and N represents the size width value of the current coding unit CU; 2)将像素方差D以及对角像素差的绝对值之和SD分别与预设的阈值TD和TSD进行比较判断是否跳过CU分割,其判断条件为:2) Compare the pixel variance D and the absolute value SD of the diagonal pixel difference with the preset thresholds T D and T SD respectively to determine whether to skip the CU segmentation, and the judgment conditions are: D>TD||SD>TSD;若满足判断条件,则进入步骤3);若不满足判断条件,则进入步骤4);D>T D ||S D >T SD ; if the judgment condition is met, go to step 3); if the judgment condition is not met, go to step 4); 3)判断当前编码块CU是否到达最大CU深度,若是,则进行CU分割,回到步骤1);若否,进入步骤4);3) Judging whether the current coding block CU reaches the maximum CU depth, if so, then perform CU segmentation, and return to step 1); if not, enter step 4); 4)计算当前预测块PU外圈像素差的绝对值之和SP并与预设的阈值TP进行比较判断确定预测编码方式,SP计算公式为:4) Calculate the sum S P of the absolute value of the pixel difference in the outer circle of the current prediction block PU and compare it with the preset threshold T P to determine the predictive coding method. The calculation formula of S P is: 其中,X1,j表示的当前预测单元PU第一行第i个像素值,XK,j表示PU的第K行第i个像素,Xi,1表示PU第i行第1列的像素,Xi,K表示PU的第i行第K列像素,K表示当前预测单元PU的尺寸;Among them, X 1,j represents the value of the i-th pixel in the first row of the current prediction unit PU, X K,j represents the i-th pixel in the K-th row of the PU, and X i,1 represents the pixel in the i-th row and the first column of the PU , Xi , K represents the i-th row and K-column pixel of the PU, and K represents the size of the current prediction unit PU; 若SP>TP,则采用SDC编码和非SDC编码,若否则采用SDC编码,其中TP是通过对当前预测块PU进行SDC编码时采样统计后进行均值计算得到。If S P > T P , then use SDC coding and non-SDC coding, otherwise use SDC coding, where T P is obtained by performing mean value calculation after SDC coding of the current prediction block PU. 2.如权利要求1所述的一种针对3D-HEVC深度图帧内预测编码的快速优化方法,其特征在于,在步骤1)中,所述的像素方差D按下式计算:2. a kind of fast optimization method for 3D-HEVC depth map intra-frame predictive coding as claimed in claim 1, is characterized in that, in step 1), described pixel variance D is calculated as follows: 其中Xi表示当前编码单元CU的第i个像素值,M表示当前编码单元CU的像素总数。Wherein Xi represents the i -th pixel value of the current coding unit CU, and M represents the total number of pixels in the current coding unit CU.
CN201710357483.4A 2017-05-19 2017-05-19 A fast optimization method for intra-frame prediction coding of 3D-HEVC depth map Active CN107105297B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710357483.4A CN107105297B (en) 2017-05-19 2017-05-19 A fast optimization method for intra-frame prediction coding of 3D-HEVC depth map

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710357483.4A CN107105297B (en) 2017-05-19 2017-05-19 A fast optimization method for intra-frame prediction coding of 3D-HEVC depth map

Publications (2)

Publication Number Publication Date
CN107105297A CN107105297A (en) 2017-08-29
CN107105297B true CN107105297B (en) 2019-08-30

Family

ID=59669880

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710357483.4A Active CN107105297B (en) 2017-05-19 2017-05-19 A fast optimization method for intra-frame prediction coding of 3D-HEVC depth map

Country Status (1)

Country Link
CN (1) CN107105297B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110351556B (en) * 2018-04-02 2021-03-02 腾讯科技(北京)有限公司 Method for determining coding cost of coding unit and related device
CN111586410B (en) * 2020-06-02 2022-04-19 浙江大华技术股份有限公司 Video encoding method, decoding method and related devices thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103327339A (en) * 2013-06-09 2013-09-25 深圳市云宙多媒体技术有限公司 Intra-frame prediction block partition coding method and system
CN104010196A (en) * 2014-03-14 2014-08-27 北方工业大学 3D Quality Scalable Video Coding Based on HEVC
CN104038760A (en) * 2014-06-13 2014-09-10 南京理工大学 Intra-frame wedge segmentation mode selection method and system for 3D (three-dimensional) video depth image

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9998727B2 (en) * 2012-09-19 2018-06-12 Qualcomm Incorporated Advanced inter-view residual prediction in multiview or 3-dimensional video coding

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103327339A (en) * 2013-06-09 2013-09-25 深圳市云宙多媒体技术有限公司 Intra-frame prediction block partition coding method and system
CN104010196A (en) * 2014-03-14 2014-08-27 北方工业大学 3D Quality Scalable Video Coding Based on HEVC
CN104038760A (en) * 2014-06-13 2014-09-10 南京理工大学 Intra-frame wedge segmentation mode selection method and system for 3D (three-dimensional) video depth image

Also Published As

Publication number Publication date
CN107105297A (en) 2017-08-29

Similar Documents

Publication Publication Date Title
CN111147867B (en) Multifunctional video coding CU partition rapid decision-making method and storage medium
CN107147911B (en) Method and device for fast inter-frame coding mode selection based on local luminance compensation LIC
CN101815218B (en) Method for coding quick movement estimation video based on macro block characteristics
CN102857764B (en) The method and apparatus of intra prediction mode process
CN103338370B (en) A kind of multi-view depth video fast encoding method
CN106170093B (en) A coding method for improving intra-frame prediction performance
CN101009835A (en) Background-based motion estimation coding method
CN106937116B (en) Low-complexity video coding method based on adaptive learning of random training set
CN103533355B (en) A kind of HEVC fast encoding method
CN104320658B (en) A kind of HEVC fast encoding methods
US9883200B2 (en) Method of acquiring neighboring disparity vectors for multi-texture and multi-depth video
CN101014129B (en) Video data compression method
CN108712648A (en) A kind of quick inner frame coding method of deep video
CN105898332B (en) For the fast deep figure frame mode decision method of 3D-HEVC coding standards
CN100574447C (en) Fast intraframe predicting mode selecting method based on the AVS video coding
CN103024381B (en) A kind of macro block mode fast selecting method based on proper discernable distortion
CN102857763A (en) Method and device for decoding based on intra prediction
CN103957421A (en) HEVC coding size rapid determining method based on texture complexity
CN103957420B (en) Comprehensive movement estimation modified algorithm of H.264 movement estimation code
CN103327327A (en) Selection method of inter-frame predictive coding units for HEVC
CN104539970A (en) 3D-HEVC interframe coding merge mode fast decision making method
CN102075757B (en) Video foreground object coding method by taking boundary detection as motion estimation reference
CN107018412A (en) A kind of DVC HEVC video transcoding methods based on key frame coding unit partition mode
CN107105297B (en) A fast optimization method for intra-frame prediction coding of 3D-HEVC depth map
CN102196253B (en) Video coding method and device for frame type adaptive selection

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant