CN107106848A - Pattern switching is carried out by ventricular leadless pacing devices - Google Patents
Pattern switching is carried out by ventricular leadless pacing devices Download PDFInfo
- Publication number
- CN107106848A CN107106848A CN201580061066.4A CN201580061066A CN107106848A CN 107106848 A CN107106848 A CN 107106848A CN 201580061066 A CN201580061066 A CN 201580061066A CN 107106848 A CN107106848 A CN 107106848A
- Authority
- CN
- China
- Prior art keywords
- event
- ventricular
- processing module
- pacing
- atrial
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/362—Heart stimulators
- A61N1/365—Heart stimulators controlled by a physiological parameter, e.g. heart potential
- A61N1/36592—Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by the heart rate variability
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/362—Heart stimulators
- A61N1/365—Heart stimulators controlled by a physiological parameter, e.g. heart potential
- A61N1/368—Heart stimulators controlled by a physiological parameter, e.g. heart potential comprising more than one electrode co-operating with different heart regions
- A61N1/3688—Heart stimulators controlled by a physiological parameter, e.g. heart potential comprising more than one electrode co-operating with different heart regions configured for switching the pacing mode, e.g. from AAI to DDD
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/372—Arrangements in connection with the implantation of stimulators
- A61N1/375—Constructional arrangements, e.g. casings
- A61N1/3756—Casings with electrodes thereon, e.g. leadless stimulators
Landscapes
- Health & Medical Sciences (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Physiology (AREA)
- Biophysics (AREA)
- Electrotherapy Devices (AREA)
Abstract
在一些示例中,无引线起搏设备(以下称为“LPD”)被配置成用于植入患者心脏的心室中,并且被配置成用于响应于检测到一个或多个感测事件而在房室同步起搏模式和异步心室起搏模式之间切换,所述感测事件例如可能是感测不足事件。在一些示例中,LPD被配置成用于:响应于针对阈值数目的心动周期而确定在心房激动事件处开始的心室事件检测窗口内未检测到心室去极化,从无起搏感测模式切换到房室同步起搏模式。
In some examples, a leadless pacing device (hereinafter "LPD") is configured for implantation in a ventricle of a patient's heart and is configured for Switching between an atrioventricular synchronous pacing mode and an asynchronous ventricular pacing mode, the sensed event may be an undersensing event, for example. In some examples, the LPD is configured to switch from the no-pacing sensing mode in response to determining for a threshold number of cardiac cycles that no ventricular depolarization is detected within a ventricular event detection window beginning at an atrial activation event to atrioventricular synchronized pacing mode.
Description
技术领域technical field
本公开涉及心脏起搏,并且更具体地涉及使用无引线起搏设备进行心脏起搏。The present disclosure relates to cardiac pacing, and more particularly to cardiac pacing using leadless pacing devices.
背景技术Background technique
可植入起搏器可以向患者的心脏递送起搏脉冲并且监测所述患者的心脏状况。在一些示例中,所述可植入起搏器包括脉冲发生器以及一根或多根电引线。所述脉冲发生器可以例如植入在患者胸部中的小口袋中。所述电引线可以耦合至脉冲发生器,所述脉冲发生器可以包含生成起搏脉冲和/或感测心脏电活动的电路。所述电引线可以从所述脉冲发生器延伸至目标部位(例如,心房和/或心室),从而使得在电引线的远端处的电极被定位在目标部位处。所述脉冲发生器可以向所述目标部位提供电刺激和/或经由电极监测所述目标部位处的心脏电活动。Implantable pacemakers can deliver pacing pulses to a patient's heart and monitor the condition of the patient's heart. In some examples, the implantable pacemaker includes a pulse generator and one or more electrical leads. The pulse generator may, for example, be implanted in a small pocket in the patient's chest. The electrical leads may be coupled to a pulse generator, which may contain circuitry to generate pacing pulses and/or sense electrical activity of the heart. The electrical leads may extend from the pulse generator to a target site (eg, atria and/or ventricles) such that electrodes at the distal ends of the electrical leads are positioned at the target site. The pulse generator may provide electrical stimulation to the target site and/or monitor electrical activity of the heart at the target site via electrodes.
还提出了一种用于感测电活动和/或向心脏递送治疗电信号的无引线起搏设备。所述无引线起搏设备可以包括在其外壳上的一个或多个电极,所述一个或多个电极用于递送治疗电信号和/或感测心脏的固有去极化。所述无引线起搏设备可以定位在心脏之内或之外,并且在一些示例中可以经由固定机构被锚定到心脏的壁上。A leadless pacing device for sensing electrical activity and/or delivering therapeutic electrical signals to the heart has also been proposed. The leadless pacing device may include one or more electrodes on its housing for delivering therapeutic electrical signals and/or sensing intrinsic depolarization of the heart. The leadless pacing device may be positioned inside or outside the heart, and in some examples may be anchored to the wall of the heart via a fixation mechanism.
发明内容Contents of the invention
本公开描述了一种无引线起搏设备(以下称为“LPD”),所述无引线起搏设备被配置成用于植入患者的心脏的心室中,并且被配置成用于响应于检测到一个或多个心室感测不足事件而从无起搏感测模式切换到房室同步起搏模式。在一些示例中,所述LPD还被配置成用于响应于检测到一个或多个心房感测不足事件而在房室同步起搏模式与异步心室起搏模式之间切换。在房室同步起搏模式下,所述LPD对向患者的心脏的心室递送起搏脉冲相对于可能是导致心房收缩的事件的心房激动事件进行定时。在所述异步心室起搏模式下,所述LPD被配置成用于:如果在从检测到先前的固有心室去极化开始或从递送先前的心室起搏脉冲开始的VV间期内未检测到固有心室去极化,则递送心室起搏脉冲。The present disclosure describes a leadless pacing device (hereinafter "LPD") configured for implantation in a ventricle of a patient's heart, and configured for detecting Switching from no-paced sensing mode to atrioventricular-synchronized pacing mode upon one or more ventricular undersensing events. In some examples, the LPD is further configured to switch between an atrioventricular synchronous pacing mode and an asynchronous ventricular pacing mode in response to detecting one or more atrial undersensing events. In the atrioventricular synchronized pacing mode, the LPD times the delivery of pacing pulses to the ventricles of the patient's heart relative to atrial activation events that may be events that result in atrial contraction. In the asynchronous ventricular pacing mode, the LPD is configured to: Intrinsic ventricular depolarization, a ventricular pacing pulse is delivered.
在一些示例中,虽然所述LPD处于房室同步起搏模式下,但是包括所述LPD的治疗系统的处理模块可以例如基于电心脏信号来判定是否在心室激动事件处开始的心房激动事件检测窗口内检测到心脏的心房激动事件。响应于确定在所述心房激动事件检测窗口内检测到所述心房激动事件,并且响应于进一步确定在所检测到的心房激动事件之后(例如,在从检测到心房激动事件开始的房室(AV)间期内)未检测到心室激动事件,所述处理模块可以根据所述房室同步起搏模式来控制所述LPD递送心室起搏脉冲。然而,如果所述处理模块在所述心房激动事件检测窗口内没有检测到心房激动事件并且确定在阈值数目的心动周期的心房激动事件检测窗口内未检测到心房激动事件,则所述处理模块可以检测到感测不足事件。响应于检测到所述感测不足事件,所述处理模块可以控制所述LPD从所述房室同步起搏模式切换到异步心室起搏模式。In some examples, while the LPD is in an atrioventricular synchronized pacing mode, a processing module of a therapy system including the LPD may determine whether an atrial activation event detection window begins at a ventricular activation event, e.g., based on electrical cardiac signals Atrial activating events of the heart are detected. In response to determining that the atrial activating event is detected within the atrial activating event detection window, and in response to further determining that after the detected atrial activating event (e.g., within the atrioventricular (AV) ) interval) no ventricular activation event is detected, and the processing module may control the LPD to deliver ventricular pacing pulses according to the atrioventricular synchronous pacing mode. However, if the processing module detects no atrial activating event within the atrial activating event detection window and determines that no atrial activating event is detected within the atrial activating event detection window of a threshold number of cardiac cycles, the processing module may An undersensing event was detected. In response to detecting the undersensing event, the processing module may control the LPD to switch from the atrioventricular synchronous pacing mode to an asynchronous ventricular pacing mode.
在一方面,本公开涉及一种方法,所述方法包括:由处理模块接收由无引线起搏设备在所述无引线起搏设备处于无起搏感测模式的时候感测到的患者的电心脏信号;由所述处理模块并基于所述电心脏信号来检测心房激动事件;由所述处理模块并基于所述电心脏信号来确定在所述心房激动事件处开始的心室事件检测窗口内未检测到心室感测事件;以及由所述处理模块基于确定在所述心室事件检测窗口内未检测到所述心室感测事件来控制所述无引线起搏设备从所述无起搏感测模式切换到房室同步起搏模式,其中,控制所述无引线起搏设备切换到所述房室同步起搏模式的操作包括控制所述无引线起搏设备根据所述房室同步起搏模式向所述患者递送起搏脉冲。In one aspect, the present disclosure relates to a method comprising: receiving, by a processing module, electrical signals of a patient sensed by a leadless pacing device while the leadless pacing device is in a no-pace sensing mode. a cardiac signal; detecting, by the processing module and based on the electrical cardiac signal, an atrial activation event; determining, by the processing module and based on the electrical cardiac signal, that no ventricular event detection window begins at the atrial activation event detecting a ventricular sensing event; and controlling, by the processing module, the leadless pacing device from the no-pacing sensing mode based on a determination that the ventricular sensing event was not detected within the ventricular event detection window Switching to the atrioventricular synchronous pacing mode, wherein the operation of controlling the leadless pacing device to switch to the atrioventricular synchronous pacing mode includes controlling the leadless pacing device to switch to the atrioventricular synchronous pacing mode according to the atrioventricular synchronous pacing mode The patient delivers pacing pulses.
在另一方面,本公开涉及一种无引线起搏系统,所述引线起搏系统包括:无引线起搏设备,所述无引线起搏设备被配置成用于感测电心脏信号并且被配置成用于在无起搏感测模式和房室起搏模式下操作;以及处理模块,所述处理模块被配置成用于接收由无引线起搏设备在所述无引线起搏设备处于无起搏感测模式的时候感测到的电心脏信号,基于所述电心脏信号来检测心房激动事件,基于所述电心脏信号来确定在所述心房激动事件处开始的心室事件检测窗口内未检测到心室感测事件,以及基于确定在所述心室事件检测窗口内未检测到所述心室感测事件来控制所述无引线起搏设备从所述无起搏感测模式切换到房室同步起搏模式,其中,所述处理模块被配置成用于至少通过控制所述无引线起搏设备根据所述房室同步起搏模式向所述患者输送起搏脉冲来控制所述无引线起搏设备切换到所述房室同步起搏模式。In another aspect, the present disclosure relates to a leadless pacing system comprising: a leadless pacing device configured to sense electrical cardiac signals and configured to configured to operate in a no-pace sensing mode and an atrioventricular pacing mode; and a processing module configured to receive data from a leadless pacing device when the leadless pacing device is in a no-pace mode. an electrical cardiac signal sensed while in the beat sensing mode, an atrial activation event is detected based on the electrical cardiac signal, an atrial activation event is determined to be detected within a ventricular event detection window starting at the atrial activation event based on the electrical cardiac signal to a ventricular sensing event, and controlling the leadless pacing device to switch from the no-pacing sensing mode to atrioventricular synchronization based on determining that the ventricular sensing event is not detected within the ventricular event detection window pacing mode, wherein the processing module is configured to control the leadless pacing device at least by controlling the leadless pacing device to deliver pacing pulses to the patient according to the atrioventricular synchronized pacing mode Switch to the AV synchronized pacing mode.
在另一方面,本公开涉及一种系统,包括:用于基于由所述无引线起搏设备在无引线起搏设备处于无起搏感测模式的时候感测到的电心脏信号来检测心房激动事件的装置;用于基于所述电心脏信号来确定在所述心房激动事件处开始的心室事件检测窗口内未检测到心室感测事件的装置;以及用于至少通过控制所述无引线起搏设备根据所述房室同步起搏模式向所述患者递送起搏脉冲而基于确定在所述心室事件检测窗口内未检测到所述心室感测事件来控制所述无引线起搏设备从所述无起搏感测模式切换到房室同步起搏模式的装置。In another aspect, the present disclosure relates to a system comprising: for detecting atrial means for an activating event; means for determining, based on the electrical cardiac signal, that a ventricular sensing event has not been detected within a ventricular event detection window beginning at the atrial activating event; The pacing device is controlled to deliver pacing pulses to the patient according to the atrioventricular synchronized pacing mode based on determining that the ventricular sensed event is not detected within the ventricular event detection window. A device for switching from the non-pacing sensing mode to the atrioventricular synchronous pacing mode.
在另一方面,本公开涉及一种包括指令的计算机可读存储介质,所述指令在由处理模块执行时使得所述处理模块进行以下操作:基于由无引线起搏设备在所述无引线起搏设备处于无起搏感测模式的时候感测到的电心脏信号来检测心房激动事件;基于所述电心脏信号来确定在所述心房激动事件处开始的心室事件检测窗口内未检测到心室感测事件;以及基于确定在所述心室事件检测窗口内未检测到所述心室感测事件来控制所述无引线起搏设备从所述无起搏感测模式切换到房室同步起搏模式,其中,控制所述无引线起搏设备切换到所述房室同步起搏模式的操作包括控制所述无引线起搏设备根据所述房室同步起搏模式向所述患者递送起搏脉冲。In another aspect, the present disclosure relates to a computer-readable storage medium comprising instructions that, when executed by a processing module, cause the processing module to: detecting an atrial activation event from an electrical cardiac signal sensed while the pacing device is in a no-pacing sensing mode; determining, based on the electrical cardiac signal, that no ventricles were detected within a ventricular event detection window beginning at the atrial activation event sensing an event; and controlling the leadless pacing device to switch from the no-pacing sensing mode to an atrioventricular synchronized pacing mode based on determining that the ventricular sensing event is not detected within the ventricular event detection window , wherein the operation of controlling the leadless pacing device to switch to the atrioventricular synchronous pacing mode includes controlling the leadless pacing device to deliver pacing pulses to the patient according to the atrioventricular synchronous pacing mode.
在另一方面,本公开涉及一种方法,所述方法包括:由处理模块接收由无引线起搏设备在所述无引线起搏设备处于房室同步起搏模式的时候感测到的电心脏信号;由处理模块来检测第一心房激动事件;由处理模块并基于所述电心脏信号来确定在所述第一心房激动事件处开始的检测窗口内未检测到第二心房激动事件;以及由所述处理模块来控制所述无引线起搏设备基于确定在所述检测窗口内未检测到所述第二心房激动事件而根据异步心室起搏模式向患者的心室递送起搏脉冲。In another aspect, the present disclosure relates to a method comprising: receiving, by a processing module, an electrical cardiac signal sensed by a leadless pacing device while the leadless pacing device is in an atrioventricular synchronized pacing mode. signal; detecting, by the processing module, a first atrial activating event; determining, by the processing module and based on the electrical cardiac signal, that a second atrial activating event was not detected within a detection window beginning at the first atrial activating event; and by The processing module controls the leadless pacing device to deliver pacing pulses to a ventricle of the patient according to an asynchronous ventricular pacing mode based on determining that the second atrial activation event is not detected within the detection window.
另一方面,本公开涉及一种无引线起搏系统,所述系统包括:In another aspect, the present disclosure relates to a leadless pacing system comprising:
无引线起搏设备,所述无引线起搏设备被配置成用于感测电心脏信号并且被配置成用于向患者的心脏递送起搏治疗;以及处理模块,所述处理模块被配置成用于基于所述电心脏信号并且在所述无引线起搏设备处于房室同步起搏模式的时候检测第一心房激动事件,基于所述电心脏信号来确定在所述第一心房激动事件处开始的检测窗口内未检测到第二心房激动事件,以及基于确定在所述检测窗口内未检测到所述第二心房激动事件而根据异步心室起搏模式控制所述无引线起搏设备向患者的心室递送起搏脉冲。a leadless pacing device configured to sense electrical cardiac signals and to deliver pacing therapy to the patient's heart; and a processing module configured to use determining a start at the first atrial activation event based on the electrical cardiac signal and upon detecting a first atrial activation event based on the electrical cardiac signal and while the leadless pacing device is in an atrioventricular synchronized pacing mode A second atrial activating event is not detected within the detection window, and based on determining that the second atrial activating event is not detected within the detection window, controlling the delivery of the leadless pacing device to the patient according to an asynchronous ventricular pacing mode The ventricles deliver pacing pulses.
在另一方面,本公开涉及一种系统,所述系统包括:用于基于由无引线起搏设备在所述无引线起搏设备处于房室同步起搏模式的时候感测到的电心脏信号来检测第一心房激动事件的装置;用于基于所述电心脏信号来确定在所述第一心房激动事件处开始的检测窗口内未检测到第二心房激动事件的装置;以及用于控制所述无引线起搏设备基于确定在所述检测窗口内未检测到所述第二心房激动事件而根据异步心室起搏模式向患者的心室递送起搏脉冲的装置。In another aspect, the present disclosure relates to a system comprising: a system for determining a cardiac signal based on an electrical cardiac signal sensed by a leadless pacing device while the leadless pacing device is in an atrioventricular synchronized pacing mode. means for detecting a first atrial activating event; means for determining, based on the electrical cardiac signal, that a second atrial activating event has not been detected within a detection window beginning at the first atrial activating event; and means for controlling the Means for the leadless pacing device to deliver pacing pulses to a ventricle of a patient according to an asynchronous ventricular pacing mode based on determining that the second atrial activation event is not detected within the detection window.
在另一方面,本公开涉及一种包括指令的计算机可读存储介质,所述指令在由处理模块执行时使得所述处理模块进行以下操作:基于由无引线起搏设备在所述无引线起搏设备处于房室同步起搏模式的时候感测到的电心脏信号来检测第一心房激动事件;基于所述电心脏信号来确定在所述第一心房激动事件处开始的检测窗口内未检测到第二心房激动事件;以及控制所述无引线起搏设备基于确定在所述检测窗口内未检测到所述第二心房激动事件而根据异步心室起搏模式向患者的心室递送起搏脉冲。In another aspect, the present disclosure relates to a computer-readable storage medium comprising instructions that, when executed by a processing module, cause the processing module to: detecting a first atrial activation event based on an electrical cardiac signal sensed while the pacing device is in an atrioventricular synchronized pacing mode; and determining, based on the electrical cardiac signal, that no to a second atrial activating event; and controlling the leadless pacing device to deliver pacing pulses to a ventricle of the patient according to an asynchronous ventricular pacing mode based on determining that the second atrial activating event is not detected within the detection window.
另一方面,本公开涉及一种计算机可读存储介质,其包括可由处理器执行的计算机可读指令。所述指令致使可编程处理器执行在此描述的任何全部或部分的技术。所述指令可以是,例如,软件指令,诸如用于限定软件或计算机程序的那些指令。计算机可读介质可以是计算机可读存储介质,诸如存储设备(例如,磁盘驱动器、或光学驱动器)、存储器(例如,闪存、只读存储器(ROM)、或随机存取存储器(RAM))或存储指令(例如,以计算机程序或其他可执行的形式)以致使可编程处理器执行在此描述的技术的任何其他类型的易失性或非易失性存储器。在一些示例中,所述计算机可读介质是一种制品并且是非瞬态的。In another aspect, the present disclosure relates to a computer-readable storage medium including computer-readable instructions executable by a processor. The instructions cause a programmable processor to perform all or part of any of the techniques described herein. The instructions may be, for example, software instructions, such as those defining a software or computer program. The computer-readable medium can be a computer-readable storage medium, such as a storage device (e.g., a magnetic disk drive, or an optical drive), a memory (e.g., flash memory, read-only memory (ROM), or random-access memory (RAM)), or a storage Any other type of volatile or nonvolatile memory with instructions (eg, in a computer program or other executable form) to cause a programmable processor to perform the techniques described herein. In some examples, the computer readable medium is a work of manufacture and is non-transitory.
以下附图和描述中阐述了一个或多个示例的细节。通过本说明书和附图以及权利要求书,其他特征、目的、和优点将变得明显。The details of one or more examples are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings, and from the claims.
附图说明Description of drawings
图1是展示了被配置成用于递送房室同步起搏和异步心室起搏的示例无引线起搏设备的概念图。1 is a conceptual diagram illustrating an example leadless pacing device configured to deliver atrioventricular synchronous pacing and asynchronous ventricular pacing.
图2是展示了包括图1的示例无引线起搏设备的无引线起搏系统的概念图。FIG. 2 is a conceptual diagram illustrating a leadless pacing system including the example leadless pacing device of FIG. 1 .
图3A是展示了包括被配置成用于递送房室同步起搏和异步心室起搏的无引线起搏设备的另一个示例性无引线起搏系统的概念图。3A is a conceptual diagram illustrating another exemplary leadless pacing system including a leadless pacing device configured to deliver atrioventricular synchronous pacing and asynchronous ventricular pacing.
图3B是展示了图3A的无引线起搏设备的概念图。3B is a conceptual diagram illustrating the leadless pacing device of FIG. 3A.
图4是展示了图1的示例无引线起搏设备的示例配置的功能框图。4 is a functional block diagram illustrating an example configuration of the example leadless pacing device of FIG. 1 .
图5是展示了患者中的正常传导定时的时序图。Figure 5 is a timing diagram illustrating normal conduction timing in a patient.
图6A是展示了用于控制无引线起搏设备从无起搏感测模式切换到房室同步起搏模式的示例性技术的时序图。6A is a timing diagram illustrating an exemplary technique for controlling a leadless pacing device to switch from a no-pace sensing mode to an atrioventricular synchronized pacing mode.
图6B是展示了用于控制无引线起搏设备从无起搏感测模式切换到房室同步起搏模式的另一个示例性技术的时序图。6B is a timing diagram illustrating another exemplary technique for controlling a leadless pacing device to switch from a no-pace sensing mode to an atrioventricular synchronized pacing mode.
图7是用于控制植入心脏的心室中的无引线起搏设备从无起搏感测模式切换到房室同步起搏模式的示例性技术的流程图。7 is a flowchart of an exemplary technique for controlling switching of a leadless pacing device implanted in a ventricle of a heart from a no-pace sensing mode to an atrioventricular synchronized pacing mode.
图8是根据房室同步起搏模式向心脏的心室递送起搏脉冲的示例性技术的流程图。8 is a flowchart of an exemplary technique for delivering pacing pulses to the ventricles of a heart according to an atrioventricular synchronized pacing mode.
图9是展示了异步心室起搏的示例的时序图。9 is a timing diagram illustrating an example of asynchronous ventricular pacing.
图10是根据异步心室起搏模式向心脏的心室递送起搏脉冲的示例性技术的流程图。10 is a flowchart of an exemplary technique for delivering pacing pulses to the ventricles of a heart according to an asynchronous ventricular pacing mode.
图11是用于控制植入心脏的心室的无引线起搏设备从房室同步起搏模式切换到异步心室起搏模式的示例性技术的流程图。11 is a flowchart of an exemplary technique for controlling a leadless pacing device implanted in a ventricle of a heart to switch from an atrioventricular synchronous pacing mode to an asynchronous ventricular pacing mode.
图12是展示了图11的技术的示例性应用的时序图。FIG. 12 is a timing diagram illustrating an example application of the technique of FIG. 11 .
具体实施方式detailed description
在一些情况下,双腔室可植入起搏器被植入患者胸腔的袋内,并耦合至右心房引线和右心室引线。所述右心房引线从所述袋中的可植入起搏器延伸至患者心脏的右心房,并将一个或多个电极定位在右心房内。所述右心室引线从所述袋中的可植入起搏器延伸至患者心脏的右心室,并将一个或多个电极定位在右心室内。In some instances, a dual chamber implantable pacemaker is implanted in a pocket in the patient's chest and coupled to a right atrial lead and a right ventricular lead. The right atrial lead extends from the implantable pacemaker in the bag to the right atrium of the patient's heart and positions one or more electrodes within the right atrium. The right ventricle lead extends from the implantable pacemaker in the bag to the right ventricle of the patient's heart and positions one or more electrodes within the right ventricle.
这种双腔室可植入起搏器通过植入右心房的一个或多个电极或植入右心室的一个或多个电极感测对应的心脏电活动,例如对应的心脏电描记图。具体地,这种双腔室可植入起搏器通过右心房内植入的一个或多个电极检测固有心房去极化并通过右心室内植入的一个或多个电极检测固有心室去极化。所述可植入起搏器还可以分别通过右心房和右心室内的一个或多个电极向右心房和右心室递送起搏脉冲。Such a dual chamber implantable pacemaker senses corresponding cardiac electrical activity, such as a corresponding cardiac electrogram, via one or more electrodes implanted in the right atrium or one or more electrodes implanted in the right ventricle. Specifically, this dual chamber implantable pacemaker detects intrinsic atrial depolarization via one or more electrodes implanted in the right atrium and intrinsic ventricular depolarization via one or more electrodes implanted in the right ventricle change. The implantable pacemaker can also deliver pacing pulses to the right atrium and right ventricle through one or more electrodes in the right atrium and right ventricle, respectively.
由于感测心房电活动和心室电活动两者的能力,此类双腔室可植入起搏器可能能够提供房室同步起搏。对于伴随间歇性AV节传导的患者,可能更优选的是禁止心室起搏并允许在固有心房去极化或心房起搏之后的时间(称为AV间期)发生固有心室去极化。双腔室可植入起搏器的此类房室同步起搏被称为VDD编程模式,并且可以用于具有各种程度的AV阻滞的患者。Due to the ability to sense both atrial and ventricular electrical activity, such dual chamber implantable pacemakers may be able to provide atrioventricular synchronized pacing. For patients with intermittent AV nodal conduction, it may be more preferable to inhibit ventricular pacing and allow intrinsic ventricular depolarization to occur at a time (termed the AV interval) following intrinsic atrial depolarization or atrial pacing. This type of AV-synchronized pacing of a dual-chamber implantable pacemaker is known as the VDD programming mode and can be used in patients with various degrees of AV block.
可替代地,双腔室可植入起搏器可以提供异步心室起搏。如果患者的心率变得不规则,则异步心室起搏可能是优选的。根据异步心室起搏模式,如果在从检测到先前固有去极化或递送了先前固有心室起搏脉冲时开始的“VV间期”内未检测到固有心室去极化,则双腔室可植入起搏器递送心室起搏脉冲。如果VV间期是速率自适应的(即,所述可植入起搏器可感测到患者心率的变化并相应地改变VV间期),则由双腔室可植入心脏起搏器进行的此类异步心室起搏被称为VVI编程模式或VVIR编程模式。Alternatively, a dual-chamber implantable pacemaker can provide asynchronous ventricular pacing. Asynchronous ventricular pacing may be preferred if the patient's heart rate becomes irregular. According to the asynchronous ventricular pacing mode, if no intrinsic ventricular depolarization is detected within the "VV interval" from when the previous intrinsic depolarization was detected or when the previous intrinsic ventricular pacing pulse was delivered, the dual chamber implantable A pacemaker delivers ventricular pacing pulses. If the VV interval is rate adaptive (i.e., the implantable pacemaker can sense changes in the patient's heart rate and change the VV interval accordingly), then performed by a dual chamber implantable cardiac pacemaker Such asynchronous ventricular pacing is called VVI programming mode or VVIR programming mode.
可植入式心脏引线以及起搏器被植入的袋可能与并发症有联系。为了避免此类并发症,已经提出了尺寸被设定为可以完全植入到心脏内(例如,在心脏的一个腔室(如右心室)中)的无引线起搏设备。所提出的一些无引线起搏设备包括多个电极,所述电极被附装在相应的无引线起搏设备(“LPD”)的壳体上或是其一部分。Implantable cardiac leads and the bag into which the pacemaker is implanted may be linked to complications. To avoid such complications, leadless pacing devices sized to be implanted fully within the heart (eg, in one chamber of the heart such as the right ventricle) have been proposed. Some proposed leadless pacing devices include a plurality of electrodes attached to or part of the housing of a corresponding leadless pacing device ("LPD").
在一些示例中,本文描述的LPD被配置成用于以心房同步心室模式和异步心室模式进行起搏。如以下所讨论的,所述处理模块可以基于心房感测不足事件的检测来选择所述LPD向患者的心脏递送起搏脉冲的模式。In some examples, the LPDs described herein are configured for pacing in an atrial-synchronous-ventricular mode and an asynchronous-ventricular mode. As discussed below, the processing module may select a mode in which the LPD delivers pacing pulses to the patient's heart based on detection of an atrial undersensing event.
由于将所述LPD放置在心室内,由植入在心室中的LPD的电极感测到的右心房的电活动可能是功率相对较低的(例如,低振幅P波),这样可能导致LPD基于所述电心脏信号没有感测到心房激动事件。这可能导致心房感测不足事件。Due to the placement of the LPD in the ventricle, the electrical activity of the right atrium sensed by the electrodes of the LPD implanted in the ventricle may be of relatively low power (e.g., low-amplitude P waves), which may cause the LPD to be based on the The electrical cardiac signal did not sense atrial activation events. This can lead to atrial undersensing events.
在一些示例中,响应于检测到心房感测不足事件,所述处理模块控制所述LPD从所述心房同步心室起搏模式切换到所述异步心室起搏模式。当从所述房室同步起搏模式切换到所述异步心室起搏模式时,所述LPD根据所述房室同步模式来终止起搏脉冲的递送,并且根据所述异步心室起搏模式来向所述患者递送起搏脉冲。In some examples, the processing module controls the LPD to switch from the atrial synchronous ventricular pacing mode to the asynchronous ventricular pacing mode in response to detecting an atrial undersensing event. When switching from the atrioventricular synchronous pacing mode to the asynchronous ventricular pacing mode, the LPD terminates delivery of pacing pulses in accordance with the atrioventricular synchronous mode and sends a pacing pulse in accordance with the asynchronous ventricular pacing mode to The patient delivers pacing pulses.
所述处理模块可以尝试在心室激动事件(例如,固有心室去极化或向心室递送起搏脉搏)处开始的心房激动事件检测窗口内检测心房激动事件(例如,导致心房收缩的事件)。在一些示例中,心房激动事件是检测到由植入在心室中的LPD感测的电心脏信号中的远场P波、检测到另一个设备(例如,另一个在心房中植入的LPD)递送心房起搏脉冲或检测到心房的机械收缩。The processing module may attempt to detect an atrial activating event (eg, an event resulting in atrial contraction) within an atrial activating event detection window beginning at a ventricular activating event (eg, an intrinsic ventricular depolarization or delivery of a pacing pulse to the ventricle). In some examples, the atrial activation event is detection of a far-field P-wave in the electrical cardiac signal sensed by an LPD implanted in the ventricle, detection of another device (e.g., another LPD implanted in the atrium) Atrial pacing pulses are delivered or mechanical contractions of the atria are detected.
响应于确定在所述心房激动事件检测窗口内检测到心房激动事件,所述处理模块可以根据所述房室同步起搏模式的定时来控制所述LPD递送心室起搏脉冲。例如,响应于进一步确定在检测到的心房激动事件之后(例如,在AV间期内)未检测到心室激动事件,所述处理模块可以控制所述LPD在检测到的心房激动事件之后以预定的时间间隔递送心室起搏脉冲。In response to determining that an atrial activating event is detected within the atrial activating event detection window, the processing module may control the LPD to deliver ventricular pacing pulses based on timing of the atrioventricular synchronized pacing mode. For example, in response to further determining that no ventricular activating event is detected after the detected atrial activating event (e.g., within the AV interval), the processing module may control the LPD to follow the detected atrial activating event at a predetermined Time intervals to deliver ventricular pacing pulses.
然而,响应于确定在所述心房激动事件检测窗口内未检测到心房激动事件,所述处理模块可以使感测不足事件计数器递增或生成感测不足指示,所述感测不足指示可以是由所述LPD或其他设备的存储器所存储的标记、值或其他参数。在一些示例中,所述处理模块可以在先前心室激动事件之后的时间段中递送心室起搏脉冲(例如,VV间期加偏差,其中所述VV间期可以基于历史VV间期数据或预先编程的VV间期)。However, in response to determining that an atrial activating event is not detected within the atrial activating event detection window, the processing module may increment an undersensing event counter or generate an undersensing indication, which may be determined by the Flags, values or other parameters stored in the memory of the LPD or other device. In some examples, the processing module may deliver ventricular pacing pulses (e.g., a VV interval plus a bias) during a time period following a previous ventricular activation event, where the VV interval may be based on historical VV interval data or pre-programmed VV interval).
响应于确定计数器值大于或等于感测不足事件阈值或者在处理模块产生一定数目的感测不足指示之后(例如,在特定时间间期内),所述处理模块可以控制所述LPD从所述房室同步起搏模式切换到异步心室起搏模式。所述处理模块可以响应于确定所述计数器值大于或等于预定的感测不足事件阈值或者响应于确定感测不足指示的数目大于或等于预定的感测不足事件阈值来确定发生了感测不足事件。所述预定的感测不足事件阈值可以是例如一个,而在其他示例中,所述预定的阈值可以是多于一个,如两个、三个或四个以上。In response to determining that the counter value is greater than or equal to an undersensing event threshold or after the processing module generates a certain number of undersensing indications (e.g., within a specified time period), the processing module may control the LPD Switch from synchronous ventricular pacing mode to asynchronous ventricular pacing mode. The processing module may determine that an undersensing event has occurred in response to determining that the counter value is greater than or equal to a predetermined undersensing event threshold or in response to determining that the number of undersensing indications is greater than or equal to a predetermined undersensing event threshold . The predetermined undersensing event threshold may be, for example, one, while in other examples, the predetermined threshold may be more than one, such as two, three or more than four.
在一些示例中,所述计数器可以计数生成感测不足感指示的连续心动周期数。在其他示例中,所述计数器可以计数在生成感测不足指示的预定数目的连续心动周期(“Y”)中的心动周期数(“X”)。这可以称为“X of Y”式计数器。在其他示例中,所述计数器可以计数在生成感测不足指示的预定时间段内的心动周期数。In some examples, the counter may count the number of consecutive cardiac cycles that generate the indication of sensory insufficiency. In other examples, the counter may count the number of cardiac cycles ("X") out of a predetermined number of consecutive cardiac cycles ("Y") that generate the undersensing indication. This may be referred to as an "X of Y" counter. In other examples, the counter may count the number of cardiac cycles within a predetermined time period within which the undersensing indication is generated.
在预定阈值是多于一个的示例中,所述LPD可能不会在检测到心房感测不足一个实例之后立即切换到异步心室起搏模式。这可能允许患者的心脏恢复固有传导。以这种方式,所述LPD可以被配置成用于确定在切换到异步心室起搏模式之前心脏是否恢复了固有传导。在一些情况下,所述房室同步起搏模式可以促进患者心脏的更好的同步。在这些情况中至少一些情况下,所述LPD可以被配置成用于有助于促进心脏的更好的同步。In examples where the predetermined threshold is more than one, the LPD may not switch to the asynchronous ventricular pacing mode immediately after detecting one instance of atrial undersensing. This may allow the patient's heart to restore intrinsic conduction. In this manner, the LPD may be configured to determine whether the heart has restored intrinsic conduction prior to switching to the asynchronous ventricular pacing mode. In some cases, the atrioventricular synchronized pacing mode can promote better synchronization of the patient's heart. In at least some of these cases, the LPD may be configured to help promote better synchronization of the heart.
在一些示例中,LPD被配置成用于在无起搏感测模式下操作(例如,与具有引线的双腔室起搏器的ODO模式对应的模式)。例如,在向患者递送任何起搏治疗之前,所述LPD可以根据在心室中植入LPD而在作为初始模式的无起搏感测模式下进行操作。在所述无起搏感测模式下,所述LPD感应心脏电活动,但不向患者的心脏递送任何起搏治疗。In some examples, the LPD is configured to operate in a no-pace sensing mode (eg, a mode corresponding to the ODO mode of a dual-chamber pacemaker with leads). For example, the LPD may operate in a non-paced sensing mode as an initial mode upon implantation of the LPD in the ventricle prior to delivering any pacing therapy to the patient. In the no-pace sensing mode, the LPD senses electrical activity of the heart, but does not deliver any pacing therapy to the patient's heart.
在本文描述的一些示例中,LPD被配置成用于响应于在所述LPD处于无起搏感测模式下的时候检测到心室感测不足而从无起搏感测模式切换到房室同步起搏模式。当所述LPD切换到房室同步起搏模式时,所述LPD开始向患者递送起搏刺激。In some examples described herein, the LPD is configured to switch from a no-pace sensing mode to atrioventricular synchronization in response to detecting insufficient ventricular sensing while the LPD is in the no-pace sensing mode. beat mode. When the LPD switches to the atrioventricular synchronized pacing mode, the LPD begins delivering pacing stimuli to the patient.
当所述LPD在心房激动事件(可能是固有事件或递送心房起搏脉搏)处开始的心室事件检测窗口VACT内针对预定数目的心动周期未检测(例如,感测)到心脏感测事件时,可能发生了心室感测不足。心室感测事件也可以称为心室去极化事件。心室感测不足事件每一次发生都可能表明在所述心房激动事件后的预期时间内心室不会进行固有传导。例如由于房室(AV)阻滞的原因,心室可能不会进行固有传导。因此,由于AV阻滞的原因可能会发生心室感测不足。When the LPD does not detect (e.g., sense) a cardiac sensing event for a predetermined number of cardiac cycles within a ventricular event detection window V ACT beginning at an atrial activation event (either an intrinsic event or a delivered atrial pacing pulse) , ventricular undersensing may have occurred. A ventricular sensing event may also be referred to as a ventricular depolarization event. Each occurrence of a ventricular undersensing event may indicate that the ventricles will not conduct intrinsically within the expected time after the atrial activation event. Ventricles may not conduct intrinsically, for example due to atrioventricular (AV) block. Thus, ventricular undersensing may occur due to AV block.
在心室事件的预定阈值数目的多于一个的示例中,患者心脏的心室可能不会在发生心室事件的心动周期中适当地去极化或收缩。结果是,患者的心脏可能会漏跳一次。这可能被称为由所述LPD引起的心跳的“漏失”。通过被配置为用于使一次或多次心跳漏失,所述LPD可以被配置成用于通过为心脏恢复固有传导提供时间或为LPD在所述LPD切换到房室同步起搏模式之前感测固有传导提供时间而有利于心脏的固有传导,其中所述LPD递送可能优先于心脏的固有传导的心室起搏脉冲。以这种方式,所述LPD可以在以房室同步起搏模式递送心室起搏脉冲之前感测至少一次完整心跳中的心脏的固有活动。In instances where the predetermined threshold number of ventricular events is more than one, the ventricles of the patient's heart may not depolarize or contract properly during the cardiac cycle in which the ventricular event occurred. As a result, the patient's heart may miss a beat. This may be referred to as a "missing" heartbeat caused by the LPD. By being configured to miss one or more heartbeats, the LPD may be configured to sense intrinsic Conduction provides time to favor the intrinsic conduction of the heart, wherein the LPD delivers a ventricular pacing pulse that may take precedence over the intrinsic conduction of the heart. In this manner, the LPD can sense intrinsic activity of the heart for at least one complete heartbeat prior to delivering ventricular pacing pulses in the atrioventricular synchronized pacing mode.
心室事件的预定阈值数目影响了在所述LPD切换到房室同步起搏模式之前可能漏失的心跳次数。例如,如果心室事件的预定阈值数目为一个,则在所述LPD切换到房室同步起搏模式之前心脏可能会漏失一次心跳。作为另一个示例,如果感测不足阈值为两个,则在切换到房室同步起搏模式之前心脏可能会漏失两次心跳。The predetermined threshold number of ventricular events affects the number of heartbeats that may be missed before the LPD switches to an atrioventricular synchronized pacing mode. For example, if the predetermined threshold number of ventricular events is one, the heart may miss a beat before the LPD switches to an atrioventricular synchronized pacing mode. As another example, if the undersensing threshold is two, the heart may miss two beats before switching to AV synchronized pacing mode.
图1是示出被配置成用于在无起搏感测模式下操作并递送房室同步起搏和异步心室起搏的示例性无引线起搏设备(LPD)10A的概念图。在一些示例中,LPD 10A是在无起搏感测模式下还是在房室同步起搏模式下进行操作是基于心室感测不足的检测来控制的,如以下关于图6A、图6B和图7进一步详细描述的。LPD 10A是在房室同步起搏模式下或是在异步心室起搏模式下向患者递送起搏脉冲是基于心房感测不足事件的检测来控制的,如以下进一步详细描述的。1 is a conceptual diagram illustrating an exemplary leadless pacing device (LPD) 10A configured to operate in a paceless sensing mode and deliver atrioventricular synchronous pacing and asynchronous ventricular pacing. In some examples, whether LPD 10A operates in a no-paced sensing mode or in an atrioventricular-synchronized pacing mode is controlled based on the detection of insufficient ventricular sensing, as described below with respect to FIGS. 6A , 6B, and 7 . described in further detail. Whether LPD 10A delivers pacing pulses to the patient in the AV-synchronous pacing mode or in the asynchronous ventricular pacing mode is controlled based on the detection of an atrial undersensing event, as described in further detail below.
如图1中所展示的,LPD 10A包括外壳12、固定齿14A-14D(统称为“固定齿14”)、以及电极16A和16B。外壳12被配置成用于使得例如具有允许LPD 10A完全植入在心脏的腔室(如右心室)内的尺寸和形状因数。如图1中所展示的,在一些示例中,壳体12可以具有圆柱形(例如,药丸形)形状因数。壳体12可以被气密性密封从而防止液体进入壳体12内部。As shown in FIG. 1 , LPD 10A includes housing 12 , fixed teeth 14A- 14D (collectively "fixed teeth 14 "), and electrodes 16A and 16B. Housing 12 is configured such that, for example, it has a size and form factor that allows LPD 10A to be fully implanted within a chamber of the heart, such as the right ventricle. As illustrated in FIG. 1 , in some examples, housing 12 may have a cylindrical (eg, pill-shaped) form factor. The housing 12 may be hermetically sealed to prevent liquids from entering the interior of the housing 12 .
固定齿14延伸自外壳12,并被配置成与心脏组织啮合从而将壳体12的位置基本上固定在心脏的腔室内,例如在右心室的顶点处或附近。固定齿14被配置成用于将壳体12锚定至心脏组织,从而使得在心脏收缩过程中LPD 10A与心脏组织一起移动。固定齿14可以由任何适当材料制造,比如形状记忆材料(例如,镍钛诺合金)。图1中所展示的固定齿14的数目和配置仅仅是一个示例,并且考虑了用于将LPD壳体锚定至心脏组织的其他固定齿数目和配置。另外,虽然LPD 10A包括被配置成用于将LPD 10A锚定至心脏腔室中的心脏组织的多个固定齿14,在其他示例中,LPD 10A可以使用其他类型的固定机构(比如但不限于倒钩、线圈等)固定至心脏组织。Fixed teeth 14 extend from housing 12 and are configured to engage heart tissue to substantially fix the position of housing 12 within a chamber of the heart, such as at or near the apex of the right ventricle. Fixation teeth 14 are configured to anchor housing 12 to cardiac tissue such that LPD 10A moves with the cardiac tissue during systole. The fixed teeth 14 may be fabricated from any suitable material, such as a shape memory material (eg, Nitinol). The number and configuration of fixation teeth 14 shown in FIG. 1 is only one example, and other numbers and configurations of fixation teeth for anchoring the LPD housing to cardiac tissue are contemplated. Additionally, while LPD 10A includes a plurality of fixation teeth 14 configured to anchor LPD 10A to cardiac tissue in a heart chamber, in other examples, LPD 10A may use other types of fixation mechanisms such as, but not limited to barbs, coils, etc.) to cardiac tissue.
LPD 10A被配置成用于感测心脏的电学活动(即,心脏电描记图(“EGM”))并经由电极16A和16B向右心室递送起搏脉冲。电极16A和16B可以机械的连接至壳体12,或者可以由壳体12的导电部分限定。在任一种情况下,电极16A和16B彼此电学地隔离。电极16A可以被称为尖端电极,并且固定齿14可以被配置成用于将LPD 10A锚定至心脏组织,从而使得电极16A保持与心脏组织接触。电极16B可以由壳体12的导电部分限定,并且在一些示例中可以定义容纳LPD 10A的电源(例如,电池)的电源套的至少一部分。在一些示例中,壳体12的一部分可以被绝缘材料覆盖或由绝缘材料形成,以将电极16A和16B彼此隔离和/或以为电极16A和16B之一或两者提供期望尺寸和形状。LPD 10A is configured to sense the electrical activity of the heart (ie, electrocardiogram (“EGM”)) and deliver pacing pulses to the right ventricle via electrodes 16A and 16B. Electrodes 16A and 16B may be mechanically connected to housing 12 or may be defined by conductive portions of housing 12 . In either case, electrodes 16A and 16B are electrically isolated from each other. Electrode 16A may be referred to as a tip electrode, and fixed teeth 14 may be configured to anchor LPD 10A to cardiac tissue such that electrode 16A remains in contact with the cardiac tissue. Electrode 16B may be defined by a conductive portion of housing 12 and, in some examples, may define at least a portion of a power supply housing that houses a power source (eg, a battery) for LPD 10A. In some examples, a portion of housing 12 may be covered or formed of an insulating material to isolate electrodes 16A and 16B from each other and/or to provide a desired size and shape for one or both electrodes 16A and 16B.
外壳12容纳LPD 10A的电子部件,例如用于经由电极16A和16B感测心脏电活动的电感测模块、传感器、以及用于通过电极16A和16B递送起搏脉冲的电刺激模块。电子部件可以包括任何离散和/或集成电子电路部件,所述部件执行能够产生归属于在此所述的LPD功能的模拟电路和/或数字电路。另外,壳体12可以容纳存储器,所述存储器包括当被容纳在壳体12中的一个或多个处理器执行时使得LPD 10A执行属于在此的LPD 10A的各个功能的指令。在一些示例中,壳体12可以容纳使得LPD 10A能够与其他电子设备(诸如医疗设备编程器)进行通信的通信模块。在一些示例中,壳体12可以容纳用于无线通信的天线。壳体12还可以容纳电源,比如电池。以下将关于图4进一步详细描述LPD 10A的电子部件。Housing 12 houses the electronic components of LPD 10A, such as an electrical sensing module, sensors for sensing electrical activity of the heart via electrodes 16A and 16B, and an electrical stimulation module for delivering pacing pulses through electrodes 16A and 16B. Electronic components may include any discrete and/or integrated electronic circuit components that implement analog and/or digital circuits capable of producing the functions attributed to the LPD described herein. Additionally, housing 12 may house memory that includes instructions that, when executed by one or more processors housed in housing 12 , cause LPD 10A to perform various functions pertaining to LPD 10A herein. In some examples, housing 12 may house a communication module that enables LPD 10A to communicate with other electronic devices, such as a medical device programmer. In some examples, housing 12 may house an antenna for wireless communication. Housing 12 may also house a power source, such as a battery. The electronic components of LPD 10A will be described in further detail below with respect to FIG. 4 .
图2是展示了包括图1的示例性LPD 10A的示例性无引线起搏系统20A的概念图。在图2的示例中,LPD 10A被植入患者26的心脏24的右心室22。更具体地,LPD 10A经由固定齿14被固定或附装至右心室22的内壁,在图2的示例中接近右心室的顶点。在其他示例中,LPD10A可以在另一位置固定至右心室22的内壁,例如右心室22的心室内隔膜或自由壁上,或可以固定至心脏24的外部,例如,心外膜地接近右心室22。在其他示例中,LPD 10A可以固定在心脏24的左心室内、上、或附近。FIG. 2 is a conceptual diagram illustrating an example leadless pacing system 20A including the example LPD 10A of FIG. 1 . In the example of FIG. 2 , LPD 10A is implanted in right ventricle 22 of heart 24 of patient 26 . More specifically, LPD 10A is fixed or attached via fixed teeth 14 to the inner wall of right ventricle 22 , in the example of FIG. 2 near the apex of the right ventricle. In other examples, LPD 10A may be affixed to the inner wall of right ventricle 22 at another location, such as on the intraventricular septum or free wall of right ventricle 22, or may be affixed to the exterior of heart 24, for example, epicardially proximal to the right ventricle. twenty two. In other examples, LPD 10A may be secured within, on, or near the left ventricle of heart 24 .
LPD 10A包括多个电极,所述电极被附装在LPD 10A(即电极16A和16B)的壳体上或是其一部分。LPD 10A可以被配置成用于经由电极16A和16B感测与心脏24的去极化和复极化相关的电心脏信号(例如,EGM)。LPD 10A还被配置成用于经由电极16A和16B向右心室22递送心脏起搏脉冲。在一些示例中,LPD 10A可以根据房室同步起搏模式或异步心室起搏模式来递送心脏起搏脉冲,取决于是否检测到一个或多个感测不足事件。LPD 10A includes a plurality of electrodes attached to or part of the housing of LPD 10A (ie, electrodes 16A and 16B). LPD 10A may be configured for sensing electrical cardiac signals (eg, EGM) associated with depolarization and repolarization of heart 24 via electrodes 16A and 16B. LPD 10A is also configured to deliver cardiac pacing pulses to right ventricle 22 via electrodes 16A and 16B. In some examples, LPD 10A may deliver cardiac pacing pulses according to an atrioventricular synchronous pacing mode or an asynchronous ventricular pacing mode, depending on whether one or more undersensing events are detected.
LPD 10A被配置成用于以任何合适的方式来检测心室激动事件。在一些示例中,LPD 10A的处理模块被配置成用于基于心室电活动(例如,R波)来检测心室激动事件,所述心室电活动可以表明右心室22的固有去极化。除了心室电活动之外或代替心室电活动,所述处理模块被配置成用于基于向右心室22递送起搏脉冲来检测心室激动事件。在又其他示例中,所述处理模块可以被配置成用于基于心室收缩的检测来检测心室激动事件,可以基于由LPD 10A的传感器感测的心音(例如,S1心音)或基于右心室的运动(例如,由LPD 10A或另一个设备的运动传感器感测到的)来检测所述心室收缩。LPD 10A is configured to detect ventricular activation events in any suitable manner. In some examples, the processing module of LPD 10A is configured to detect ventricular activation events based on ventricular electrical activity (eg, R-waves), which may be indicative of intrinsic depolarization of right ventricle 22 . The processing module is configured to detect a ventricular activation event based on the delivery of pacing pulses to the right ventricle 22 in addition to or instead of the ventricular electrical activity. In yet other examples, the processing module may be configured to detect a ventricular activation event based on detection of ventricular contraction, which may be based on a heart sound (e.g., S1 heart sound) sensed by a sensor of the LPD 10A or based on movement of the right ventricle. The ventricular contraction is detected (eg, sensed by a motion sensor of the LPD 10A or another device).
LPD 10A被配置成用于以任何合适的方式来检测心房激动事件。在一些示例中,LPD 10A被配置成用于基于右心房28的机械收缩、基于电心脏信号内的心房去极化的检测或基于机械收缩和心房去极化两者来检测心房激动事件。LPD 10A可以例如至少通过检测代表心电信号内的心房去极化的P波来检测心房去极化。LPD 10A is configured to detect atrial activation events in any suitable manner. In some examples, LPD 10A is configured to detect atrial activation events based on mechanical contraction of right atrium 28, based on detection of atrial depolarization within the electrical cardiac signal, or based on both mechanical contraction and atrial depolarization. LPD 10A may detect atrial depolarization, for example, by detecting at least a P-wave representative of atrial depolarization within an electrocardiographic signal.
在一些示例中,LPD 10A有时可能感测不足心房激动事件。例如,LPD 10A可能无法可靠地检测心房去极化,例如,是由于LPD 10A的电极16A、16B感测到的电信号的质量或者所感测到的电心脏信号内的幅度相对较小的心房去极化(例如,小P波振幅)的原因。如以下面更详细地描述的,在一些示例中,LPD 10A被配置成用于响应于心房感测不足事件的检测而从房室同步起搏模式切换到异步起搏模式。In some examples, LPD 10A may sometimes sense insufficient atrial activation events. For example, LPD 10A may not be able to reliably detect atrial depolarization, for example, due to the quality of the electrical signal sensed by electrodes 16A, 16B of LPD 10A or a relatively small magnitude of atrial depolarization within the sensed electrical cardiac signal. Cause of polarization (eg, small P wave amplitude). As described in more detail below, in some examples, LPD 10A is configured to switch from an atrioventricular synchronous pacing mode to an asynchronous pacing mode in response to detection of an atrial undersensing event.
与LPD 10A(电连接到延伸到心脏24的右心室22和右心房28的引线的双腔室心脏起搏器)相比,LPD 10A(以及其他LPD)可以利用放置在右心房28内的电极来感测心房活动。结果是,由双腔室起搏器(或右心房28中具有引线的其他起搏器)感测的电心脏信号的P波的振幅可能大于由LPD 10A感测到的电心脏信号的P波的振幅。具有较大P波振幅的电心脏信号可能导致更少的心房感测不足事件。因此,如本文关于LPD所述,响应于检测到心房感测不足事件而从房室同步起搏模式到异步起搏模式的切换可能不适用于双腔室起搏器(或右心房28中具有引线的其他起搏器)或提供双腔室起搏器的改进的效用。In contrast to LPD 10A (a dual chamber cardiac pacemaker that is electrically connected to leads extending to the right ventricle 22 and right atrium 28 of the heart 24), the LPD 10A (and other LPDs) can utilize electrodes placed in the right atrium 28 to sense atrial activity. As a result, the P-wave of the electrical cardiac signal sensed by a dual chamber pacemaker (or other pacemaker with a lead in the right atrium 28) may have a greater amplitude than the P-wave of the electrical cardiac signal sensed by the LPD 10A amplitude. Electrical cardiac signals with larger P-wave amplitudes may result in fewer atrial undersensing events. Therefore, switching from an atrioventricular synchronous pacing mode to an asynchronous pacing mode in response to detection of an atrial undersensing event, as described herein with respect to LPD, may not be applicable to dual chamber pacemakers (or those with leads) or provide improved utility for dual-chamber pacemakers.
如图2中所展示的,LPD系统20A还包括医疗设备编程器18,所述医疗设备编程器被配置成用于对LPD 10A进行编程并从LPD 10A检索数据。编程器18可以是手持计算设备、桌面计算设备、联网计算设备等。编程器18可以包括具有使得编程器18的处理模块提供归于本披露中的编程器18的功能的指令的计算机可读存储介质。LPD 10A可以与编程器18无线地通信。例如,LPD 10A可以向编程器18传输数据并从编程器18接收数据。编程器18还可以对LPD 10A无线的编程和/或无线地充电。As shown in FIG. 2 , LPD system 20A also includes a medical device programmer 18 configured to program and retrieve data from LPD 10A. Programmer 18 may be a handheld computing device, desktop computing device, networked computing device, or the like. Programmer 18 may include a computer-readable storage medium having instructions that cause the processing modules of programmer 18 to provide the functionality attributed to programmer 18 in the present disclosure. LPD 10A can communicate with programmer 18 wirelessly. For example, LPD 10A may transmit data to and receive data from programmer 18 . Programmer 18 may also program and/or wirelessly charge LPD 10A wirelessly.
使用编程器18从LPD 10A检索的数据可以包括由LPD 10A存储的指示心脏24的电活动的电心脏信号,生成的感测不足指示,以及指示与LPD 10A相关联的感测、诊断和治疗事件(例如,心房和心室去极化的检测和起搏脉冲的递送)的发生和定时的标记通道数据。使用编程器18传输至LPD 10A的数据可以包括例如使得LPD 10A如在此所述运行的LPD 10A的操作程序。作为示例,使用编程器18传送到LPD 10A的数据可以包括任何AV间期的长度、任何VV间期的长度、心房收缩检测延迟期、心室激动事件检测窗口、心房激动事件检测窗口以及用于确定改进的心房激动事件检测窗口的偏差,这些将在下面进一步详细描述。还可以包括任何阈值,如用于检测心房和/或心室收缩、用于检测感测不足事件(例如,基于一些感测不足指示)或由LPD 10A使用的编程,以基于心脏24、患者26或LPD 10A的参数来确定此类值。Data retrieved from LPD 10A using programmer 18 may include electrical cardiac signals stored by LPD 10A indicative of electrical activity of heart 24, generated sensing deficit indications, and indicative of sensing, diagnostic, and therapeutic events associated with LPD 10A. Marker channel data for the occurrence and timing of (eg, detection of atrial and ventricular depolarization and delivery of pacing pulses). Data transferred to LPD 10A using programmer 18 may include, for example, an operating program for LPD 10A that causes LPD 10A to function as described herein. As an example, data transferred to LPD 10A using programmer 18 may include the length of any AV interval, the length of any VV interval, atrial systole detection delay, ventricular activation event detection window, atrial activation event detection window, and parameters for determining Improved deviation of the atrial activation event detection window, these are described in further detail below. Any thresholds may also be included, such as for detecting atrial and/or ventricular contraction, for detecting an undersensing event (e.g., based on some undersensing indication), or programmed for use by the LPD 10A, based on heart 24, patient 26, or LPD 10A parameters to determine such values.
图3A是展示了另一个示例性无引线起搏系统20B的概念图,所述示例性无引线起搏系统20B包括被配置成用于在一些示例中在无起搏模式下和在心室起搏模式下操作的另一个示例性LPD 10B。另外地或相反地,或者在某些示例中,与LPD 10A一样,LPD 10B被配置成用于基于一个或多个感测不足事件的检测来递送房室同步起搏或异步心室起搏中的任一个。图3B更详细地展示了LPD 10B。无引线起搏系统20B和LPD 10B可以与上文参照图1和图2所描述的无引线起搏系统20A和LPD 10A基本上相同。然而,与LPD 10A不同,LPD 10B耦合至感测延伸部30,所述感测延伸部包括电极32。在一些示例中,感测延伸部30可以包括与电极32具有相同极性的一个或多个附加电极。虽然在图3A和图3B中未加以展示,LPD 10B可以包括电极16A,但可能不包括电极16B,如上文参照LPD 10A和图1所描述的。FIG. 3A is a conceptual diagram illustrating another example leadless pacing system 20B that includes a pacing system configured for pacing in a no-pacing mode and in a ventricle in some examples. Another exemplary LPD 10B operating in mode. Additionally or conversely, or in some examples, like LPD 10A, LPD 10B is configured to deliver atrioventricular synchronous pacing or asynchronous ventricular pacing based on the detection of one or more undersensing events. either one. Figure 3B shows the LPD 10B in more detail. Leadless pacing system 20B and LPD 10B may be substantially the same as leadless pacing system 20A and LPD 10A described above with reference to FIGS. 1 and 2 . However, unlike LPD 10A, LPD 10B is coupled to sensing extension 30 , which includes electrode 32 . In some examples, sensing extension 30 may include one or more additional electrodes having the same polarity as electrode 32 . Although not shown in FIGS. 3A and 3B , LPD 10B may include electrode 16A, but may not include electrode 16B, as described above with reference to LPD 10A and FIG. 1 .
电极32通过感测延伸部30的电导体34与LPD 10B的壳体内的电子器件(例如,电感测模块和刺激模块)连接。在一些示例中,电导体34通过LPD 12B的外壳36的导电部分36A与所述电子器件连接,所述导电部分可以对应于LPD 10A(图1)的电极16B但可能基本上完全地绝缘(例如,完全地绝缘或几乎完全地绝缘)。使壳体36的导电部分36A基本上完全地绝缘可以允许LPD 10B的电感测模块用感测延伸部30的电极32而不是壳体36的导电部分36A感测心脏电活动。这可能有助于改善经由LPD 10B感测到的电心脏信号中存在的心房去极化的幅度,特别是相对于电极16A、16B固定到LPD 10A的壳体或作为LPD 10A的壳体的一部分的示例(图1)。Electrodes 32 are connected through electrical conductors 34 of sensing extension 30 to the electronics (eg, electrical sensing module and stimulation module) within the housing of LPD 10B. In some examples, electrical conductor 34 is connected to the electronics through a conductive portion 36A of housing 36 of LPD 12B, which may correspond to electrode 16B of LPD 10A ( FIG. 1 ) but may be substantially completely insulated (eg, , completely insulated or almost completely insulated). Substantially completely insulating conductive portion 36A of housing 36 may allow electrical sensing module of LPD 10B to sense cardiac electrical activity with electrodes 32 of sensing extension 30 instead of conductive portion 36A of housing 36 . This may help to improve the magnitude of atrial depolarization present in the electrical cardiac signal sensed via the LPD 10B, particularly with respect to electrodes 16A, 16B being fixed to or as part of the housing of the LPD 10A. example (Figure 1).
另外,如图3A和图3B中所示,感测延伸部30延伸离开LPD 10B,这使电极32能够被定位成相对靠近右心房28。结果是,由LPD 10B经由电极16A(图1)和电极32感测到的电心脏信号与由LPD 10A经由电极16A和16B(图1)感测到的电心脏信号相比可以包括更高幅度远场心房去极化信号。以这种方式,当LPD 10B被植入右心室22内时,感测延伸部30可以方便心房去极化的检测。在一些示例中,感测延伸部30的尺寸被确定为完全被植入右心室22内。在其他示例中,感测延伸部30的尺寸被确定为延伸至右心房28内。Additionally, as shown in FIGS. 3A and 3B , sensing extension 30 extends away from LPD 10B, which enables electrode 32 to be positioned relatively close to right atrium 28 . As a result, the electrical cardiac signal sensed by LPD 10B via electrode 16A (FIG. 1) and electrode 32 may comprise a higher amplitude than the electrical cardiac signal sensed by LPD 10A via electrodes 16A and 16B (FIG. Far-field atrial depolarization signal. In this manner, sensing extension 30 may facilitate detection of atrial depolarization when LPD 10B is implanted within right ventricle 22 . In some examples, sensing extension 30 is sized to be fully implanted within right ventricle 22 . In other examples, sensing extension 30 is sized to extend into right atrium 28 .
尽管感测延伸部30,LPD 10B有时可能能够检测右心房28的去极化,例如由于电心脏信号质量降低。降低的电心脏信号质量可能包括电心脏信号的心房分量的振幅减小和/或噪声增加,这样可以导致在LPD10B被植入右心室22时LPD 10B感测不足心房事件。电心脏信号质量降低可能由例如感测延伸部30相对于右心房28的移动造成,所述移动可以由患者26的姿势或活动,或患者26、心脏24、和/或LPD 10B的其他状况引起。为了帮助提供响应性起搏治疗,LPD 10B可以被配置成用于基于心房感测不足事件的检测而根据房室同步起搏模式或异步心室起搏模式来向右心室22递送起搏脉冲。While sensing extension 30 , LPD 10B may occasionally be able to detect depolarization of right atrium 28 , for example, due to reduced electrical cardiac signal quality. Reduced electrical cardiac signal quality may include reduced amplitude and/or increased noise of the atrial component of the electrical cardiac signal, which may result in undersensing of atrial events by LPD 10B when LPD 10B is implanted in right ventricle 22 . Degradation of electrical cardiac signal quality may result, for example, from movement of sensing extension 30 relative to right atrium 28, which may be caused by posture or activity of patient 26, or other conditions of patient 26, heart 24, and/or LPD 10B . To help provide responsive pacing therapy, LPD 10B may be configured to deliver pacing pulses to right ventricle 22 according to either an atrioventricular synchronous pacing mode or an asynchronous ventricular pacing mode upon detection of an atrial undersensing event.
虽然本公开的其余部分主要是指LPD 10A,但LPD 10A的描述也适用于LPD 10B以及被配置成用于提供心房同步心室起搏和异步心室起搏两者的其他LPD。While the remainder of this disclosure refers primarily to LPD 10A, the description of LPD 10A also applies to LPD 10B and other LPDs configured to provide both atrial-synchronous and asynchronous ventricular pacing.
图4是展示了被配置成用于基于心房感测事件的检测来递送房室同步起搏或异步心室起搏的LPD 10A的示例配置的功能框图。图3A和图3B的LPD 10B可以具有与LPD 10A类似的配置。然而,LPD 10A的电极16B可以被LPD 10B的电极32替代,后者可以被定位在离电极16A和LPD 10B更远的距离,如上文参照图3A和图3B所描述的。4 is a functional block diagram illustrating an example configuration of an LPD 10A configured to deliver atrioventricular synchronous pacing or asynchronous ventricular pacing based on the detection of an atrial sensing event. The LPD 10B of FIGS. 3A and 3B may have a configuration similar to that of the LPD 10A. However, electrode 16B of LPD 10A may be replaced by electrode 32 of LPD 10B, which may be positioned at a greater distance from electrode 16A and LPD 10B, as described above with reference to FIGS. 3A and 3B .
LPD 10A包括处理模块40、存储器42、刺激模块44、电感测模块46、传感器48、通信模块50和电源52。电源52可以包括电池,例如可再充电或非可再充电电池。LPD 10A includes a processing module 40 , memory 42 , stimulation module 44 , electrical sensing module 46 , sensors 48 , communication module 50 and power supply 52 . Power source 52 may include batteries, such as rechargeable or non-rechargeable batteries.
LPD 10A中所包括的模块代表本公开的LPD 10A中可以包括的功能。本公开的模块可以包括任何离散和/或集成电子电路部件,所述部件执行能够产生归属于在此的所述模块的功能的模拟电路和/或数字电路。例如,所述模块可以包括模拟电路,例如,放大电路、滤波电路、和/或其他信号调节电路。所述模块还可以包括数字电路,例如,组合逻辑电路或时序逻辑电路、存储器设备等。可以将归属于在本文中的模块的功能具体化为一个或多个处理器、硬件、固件、软件或者其任何组合。将不同特征描绘为模块旨在突显不同的功能方面并且不一定暗示这种模块必须由分开的硬件或软件部件来实现。相反,与一个或多个模块相关联的功能可以通过分开的硬件或软件部件执行、或者集成在共同或分开的硬件或软件部件内。The modules included in the LPD 10A represent functions that may be included in the LPD 10A of the present disclosure. The modules of the present disclosure may comprise any discrete and/or integrated electronic circuit components implementing analog and/or digital circuits capable of producing the functions ascribed to the modules herein. For example, the modules may include analog circuits such as amplification circuits, filter circuits, and/or other signal conditioning circuits. The modules may also include digital circuits, eg, combinational or sequential logic circuits, memory devices, and the like. The functions attributed to the modules herein may be embodied as one or more processors, hardware, firmware, software, or any combination thereof. Depiction of different features as modules is intended to highlight different functional aspects and does not necessarily imply that such modules must be realized by separate hardware or software components. Rather, functions associated with one or more modules may be performed by separate hardware or software components, or integrated within common or separate hardware or software components.
处理模块40可以包括微处理器、控制器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、或等效离散或集成逻辑电路中的任何一者或多者。在一些示例中,处理模块40包括多个部件,比如,一个或多个微处理器、一个或多个控制器、一个或多个DSP、一个或多个ASIC、或一个或多个FPGA、以及其他离散或集成逻辑电路的任何组合。另外,虽然在图4中被展示为独立功能部件,属于刺激模块44、电感测模块46以及通信模块50的一些或全部功能可以通过一个或多个微处理器、一个或多个控制器、一个或多个DSP、一个或多个ASIC、一个或多个FPGA、和/或实现处理模块40的其他分离式或集成的逻辑电路的组合实现。The processing module 40 may comprise any one of a microprocessor, a controller, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or an equivalent discrete or integrated logic circuit or many. In some examples, processing module 40 includes multiple components, such as one or more microprocessors, one or more controllers, one or more DSPs, one or more ASICs, or one or more FPGAs, and Any combination of other discrete or integrated logic circuits. Additionally, although shown as separate functional components in FIG. or a combination of multiple DSPs, one or more ASICs, one or more FPGAs, and/or other discrete or integrated logic circuits implementing the processing module 40 .
处理模块40可以与存储器42通信。存储器42可以包括计算机可读指令,所述计算机可读指令当被处理模块40执行时使得处理模块40和LPD 10A的任何其他模块执行在此属于它们的各种功能。存储器42可以包括任何易失性、非易失性、磁的、或电介质,比如,随机存取存储器(RAM)、只读存储器(ROM)、非易失性RAM(NVRAM)、电可擦除可编程ROM(EEPROM)、闪存、或任何其他存储器设备。Processing module 40 may be in communication with memory 42 . Memory 42 may include computer readable instructions that, when executed by processing module 40 , cause processing module 40 and any other modules of LPD 10A to perform the various functions attributed to them herein. Memory 42 may comprise any volatile, nonvolatile, magnetic, or dielectric medium, such as random access memory (RAM), read only memory (ROM), nonvolatile RAM (NVRAM), electrically erasable Programmable ROM (EEPROM), flash memory, or any other memory device.
刺激模块44和电感测模块46电耦合至电极16A、16B。处理模块40被配置成用于控制刺激模块44通过电极16A、16B生成并向心脏24递送起搏脉冲(例如,在图2中所示的示例中为右心室22)。此外,处理模块40被配置成用于控制电感测模块46监测来自电极16A、16B的电信号,从而监测心脏24的电活动。电感测模块46可以包括从电极16A、16B获取电学信号的电路,以及用于滤波、放大、和另外处理电信号的电路。所述电信号包括固有心脏电活动,比如心室的去极化和复极化以及心房的去极化,并且可以被称为电心脏信号或心脏电描记图信号。电检测模块46检测所述电心脏信号内的心室去极化或心室激动事件,并且检测所述电心脏信号内的心房去极化或心房激动事件。Stimulation module 44 and electrical sensing module 46 are electrically coupled to electrodes 16A, 16B. Processing module 40 is configured to control stimulation module 44 to generate and deliver pacing pulses to heart 24 (eg, right ventricle 22 in the example shown in FIG. 2 ) via electrodes 16A, 16B. Furthermore, the processing module 40 is configured to control the electrical sensing module 46 to monitor electrical signals from the electrodes 16A, 16B, thereby monitoring the electrical activity of the heart 24 . Electrical sensing module 46 may include circuitry to acquire electrical signals from electrodes 16A, 16B, as well as circuitry for filtering, amplifying, and otherwise processing the electrical signals. The electrical signals include intrinsic cardiac electrical activity, such as depolarization and repolarization of the ventricles and depolarization of the atria, and may be referred to as electrical cardiac signals or cardiac electrogram signals. Electrical detection module 46 detects ventricular depolarization or ventricular activation events within the electrical cardiac signal, and detects atrial depolarization or atrial activation events within the electrical cardiac signal.
在一些示例中,LPD 10A还包括传感器48。在一些示例中,传感器48包括一个或多个加速度计。在一些示例中,传感器48包括多个加速度计,例如三个加速度计,其中的每一个加速度计被定向为用于检测对应的轴线或向量方向上的运动。所述轴线或向量可以是正交的。在其他示例中,代替或除了所述一个或多个加速度计(比如陀螺仪、水银开关、或键合式压电晶体)之外,传感器48可以包括根据运动生成信号的一个或多个不同的传感器。在其他示例中,传感器48可以是压力传感器而不是一个或多个加速度计。In some examples, LPD 10A also includes sensor 48 . In some examples, sensors 48 include one or more accelerometers. In some examples, sensor 48 includes a plurality of accelerometers, such as three accelerometers, each of which is oriented to detect motion in a corresponding axis or vector direction. The axes or vectors may be orthogonal. In other examples, instead of or in addition to the one or more accelerometers (such as gyroscopes, mercury switches, or bonded piezoelectric crystals), sensor 48 may include one or more different sensors that generate signals based on motion. . In other examples, sensor 48 may be a pressure sensor instead of one or more accelerometers.
通信模块50可以包括用于与诸如编程器18(图2和图3)或患者监护仪等另一设备进行通信的任何合适的硬件(例如,天线)、固件、软件或其任何组合。在处理模块40的控制下,在通信模块50中所包括的天线的帮助下,通信模块50可以从其他设备(比如编程器18或患者监护仪)接收下行遥测数据或向其发送上行遥测数据。Communications module 50 may include any suitable hardware (eg, antenna), firmware, software, or any combination thereof for communicating with another device, such as programmer 18 (FIGS. 2 and 3) or a patient monitor. Under the control of processing module 40 , with the aid of an antenna included in communication module 50 , communication module 50 may receive downlink telemetry data from or send uplink telemetry data to other devices, such as programmer 18 or a patient monitor.
存储器42可以包括由LPD 10A记录的数据,例如电心脏信号、心率、关于心房感测事件或感测不足事件的检测的信息、感测不足的指示、心室起搏效率等。在处理模块40的引导下,通信模块50可以将LDP 10A所记录的数据传输至另一设备,比如编程器18。存储器42还可以对处理模块40通过通信模块50从另一设备(比如编程器18)接收的编程数据进行存储。存储器42中所存储的编程数据可以包括(作为示例)在此所描述的任何AV间期的长度、任何VV间期的长度、心房收缩检测延迟期以及心房或心室激动事件检测窗口的长度。存储器42中所存储的编程数据可以另外或可替代地包括以下所描述的任何阈值,比如用于检测心房和/或心室收缩,判定起搏是否有效,或判定是否应该支持异步起搏而暂停房室同步起搏。存储器42中所存储的编程数据可以另外或可替代地包括处理模块40用来例如基于心脏24、患者26、或LPD 10A的已确定参数确定在此所描述的任何值的数据。Memory 42 may include data recorded by LPD 10A, such as electrical cardiac signals, heart rate, information regarding detection of atrial sensing events or undersensing events, indications of undersensing, ventricular pacing efficiency, and the like. Under the direction of processing module 40 , communication module 50 may transmit data recorded by LDP 10A to another device, such as programmer 18 . Memory 42 may also store programming data that processing module 40 receives from another device, such as programmer 18 , via communication module 50 . The programming data stored in memory 42 may include, as examples, any AV interval length, any VV interval length, atrial systole detection delay period, and atrial or ventricular activation event detection window lengths described herein. The programmed data stored in memory 42 may additionally or alternatively include any of the thresholds described below, such as for detecting atrial and/or ventricular contraction, determining whether pacing is effective, or determining whether asynchronous pacing should be supported while pausing atrial Ventricular Synchronized Pacing. The programming data stored in memory 42 may additionally or alternatively include data used by processing module 40 to determine any of the values described herein, eg, based on determined parameters of heart 24, patient 26, or LPD 10A.
图5是展示了患者中的正常传导定时的时序图。(起搏的或感测的)心房激动事件与随后的心室激动事件之间的时间量在本文中通常可以称为“AACT-VACT间期”。在图5中,AACT-VACT间期具有T1的一致值,而连续心房事件之间的间期(即,A-A间期)一致地具有T3的值。心室激动事件VACT和随后的心房激动事件AACT之间的间期具有T2的一致值,并且连续心室激动事件之间的间期(即,VV间期)可以始终具有T4的值。Figure 5 is a timing diagram illustrating normal conduction timing in a patient. The amount of time between an atrial activation event (paced or sensed) and a subsequent ventricular activation event may generally be referred to herein as the "A ACT -V ACT interval." In FIG. 5, the A ACT -V ACT interval has a consistent value of T1, while the interval between consecutive atrial events (ie, the AA interval) has a consistent value of T3. The interval between a ventricular activating event V ACT and a subsequent atrial activating event A ACT has a consistent value of T2, and the interval between successive ventricular activating events (ie, the VV interval) may always have a value of T4.
图6A是展示了用于控制在右心室22中植入的LPD 10A(或另一个LPD)响应于检测到心室感测不足而从无起搏感测模式切换到房室同步起搏模式的示例性技术的时序图。所述时序图还展示了基于心房激动事件的检测来递送房室同步起搏的示例性技术。心房的激动可以是心房的固有的或起搏的去极化、或心房的机械收缩。因此,处理模块40可以通过确定电感测模块46检测到心房的固有去极化(例如,远场P波)、通过确定另一个设备(例如,在心房中植入的另一个LPD)向心房递送起搏脉搏或者通过检测到心房的机械收缩来识别心房的激动。6A is an example illustrating a switch from a no-pacing sensing mode to an atrioventricular-synchronized pacing mode for controlling an LPD 10A (or another LPD) implanted in the right ventricle 22 in response to detection of ventricular insufficiency. Timing diagram of sexual technology. The timing diagram also demonstrates an exemplary technique for delivering atrioventricular synchronized pacing based on the detection of an atrial activation event. Activation of the atria can be intrinsic or paced depolarization of the atria, or mechanical contraction of the atria. Accordingly, processing module 40 may detect intrinsic depolarization of the atrium (e.g., far-field P-waves) by determining electrical sensing module 46, by determining that another device (e.g., another LPD implanted in the atrium) delivered Pacing pulses or atrial activation is identified by detecting mechanical contraction of the atria.
在一些示例中,在无起搏感测模式下,处理模块40可以检测例如在由电感测模块46感测到的电心脏信号中的心房激动事件AACT(图4)以及例如在感测到的电心脏信号中的心室感测事件VS(例如,R波)。心室感测事件VS可以指示植入LPD 10A的心室(例如,右心室22)的固有去极化。处理模块40可以判定在心房激动事件AS处开始的心室事件检测窗口WVACT中是否检测到心室感测事件VS。这可能表明心脏24表现出正常的固有传导。In some examples, in the no-pace sensing mode, processing module 40 may detect atrial activation event A ACT ( FIG. 4 ), for example, in the electrical cardiac signal sensed by electrical sensing module 46 and, for example, upon sensing Ventricular sensing event V S (eg, R wave) in the electrical cardiac signal of . Ventricular sensing event VS may be indicative of an intrinsic depolarization of the ventricle (eg, right ventricle 22) in which LPD 10A is implanted. The processing module 40 may determine whether a ventricular sensed event V S is detected within a ventricular event detection window W VACT beginning at the atrial activation event AS . This may indicate that the heart 24 exhibits normal intrinsic conduction.
在一些示例中,处理模块40基于存储的数据来确定心室事件检测窗口WVACT的持续时间,所述存储的数据指示在预定数目的最近心动周期(例如,一次到十二次心跳)的连续心房激动事件之间的间期(即,A-A间期)。这个历史A-A间期数据可以由存储器42或另一个设备的存储器来存储。在一些示例中,心室事件检测窗口WVACT的持续时间可以是以下之一:所存储的A-A间期的平均A-A间期,所存储的A-A间期的中值A-A间期,所存储的A-A间期的最大A-A间期,所存储的A-A间期的最短的A-A间期,或所存储的A-A间期的最近的A-A间期。作为另一个示例,心室事件检测窗口WVACT的持续时间可以是所存储的A-A间期的预定百分比,如最后一个12次心跳的间期的平均A-A间期或中值A-A间期的30%至约75%(例如,约50%)。In some examples, processing module 40 determines the duration of ventricular event detection window W VACT based on stored data indicating consecutive atrial events over a predetermined number of most recent cardiac cycles (e.g., one to twelve heartbeats). The interval between activating events (ie, the AA interval). This historical AA interval data may be stored by memory 42 or the memory of another device. In some examples, the duration of the ventricular event detection window W VACT may be one of: the average AA interval of the stored AA intervals, the median AA interval of the stored AA intervals, the stored AA interval The largest AA interval of the period, the shortest AA interval of the stored AA intervals, or the closest AA interval of the stored AA intervals. As another example, the duration of the ventricular event detection window WVACT may be a predetermined percentage of the stored AA interval, such as 30% to 30% of the average or median AA interval of the last 12 heartbeat intervals. About 75% (eg, about 50%).
另外地或相反地,心室事件检测窗口WVACT的持续时间可以由临床医生选择,并且可以与患者的历史A-A间期数据无关。例如,在一些示例中,心室事件检测窗口WVACT的持续时间被预编程为约300毫秒(ms)至约700ms(如约500ms)的固定持续时间。处理模块40可以经由例如被配置成用于与LPD 10A通信的医疗设备编程器而从临床医生接收心室事件检测窗口WVACT。Additionally or conversely, the duration of the ventricular event detection window WVACT may be selected by the clinician and may be independent of the patient's historical AA interval data. For example, in some examples, the duration of the ventricular event detection window W VACT is preprogrammed as a fixed duration of about 300 milliseconds (ms) to about 700 ms (eg, about 500 ms). Processing module 40 may receive ventricular event detection window W VACT from a clinician via, for example, a medical device programmer configured for communication with LPD 10A.
在又其他示例中,处理模块40基于存储的数据来确定心室事件检测窗口WVACT的持续时间,所述存储的数据指示在特定数目的最近心动周期的连续心房事件之间的间期(即,A-A间期)以及预编程的持续时间。例如,处理模块40可以例如使用上述技术而基于存储的A-A间期数据来确定第一心室事件检测窗口WVACT,并且可以将心室事件检测窗口WVACT的持续时间选择为第一心室事件检测窗口WVACT和固定的编程的持续时间中的较小者。以这种方式,在相对较慢的心率下,处理模块40使用固定的、编程的持续时间作为心室事件检测窗口WVACT,并且在较高的心率下可以使用基于患者12的实际心脏活动的持续时间。In yet other examples, processing module 40 determines the duration of the ventricular event detection window W VACT based on stored data indicating the interval between consecutive atrial events for a particular number of most recent cardiac cycles (i.e., AA interval) and preprogrammed durations. For example, the processing module 40 may determine a first ventricular event detection window W VACT based on stored AA interval data, eg, using the techniques described above, and may select the duration of the ventricular event detection window W VACT as the first ventricular event detection window W The lesser of VACT and the fixed programmed duration. In this way, at relatively slow heart rates, the processing module 40 uses a fixed, programmed duration as the ventricular event detection window WVACT , and at higher heart rates may use a duration based on the actual heart activity of the patient 12. time.
响应于针对特定的心动周期确定在心室事件检测窗口WVACT内检测到心室感测事件VS,处理模块40可以在无起搏感测模式下使LPD 10A继续操作至少下一个心动周期。例如,如图6A所示,处理模块40检测到在心房激动事件60A以及在心房激动事件60A的时间段T5内检测到的心室感测事件62A,时间段T5的持续时间小于心室事件检测窗口WVACT的持续时间。心房激动事件60A和心室感测事件62A是同一心动周期的一部分。因此,处理模块40使无起搏感测模式维持下一个心动周期。处理模块40检测到随后的正常心动周期,在所述正常心动周期中由处理模块40在心房激动事件60B的心室事件检测窗口WVACT内检测到心室感测事件62B。In response to determining for a particular cardiac cycle that a ventricular sense event V S is detected within a ventricular event detection window W VACT , processing module 40 may cause LPD 10A to continue operating in the no-pace sensing mode for at least the next cardiac cycle. For example, as shown in FIG. 6A , processing module 40 detects atrial activating event 60A and ventricular sense event 62A detected within time period T5 of atrial activating event 60A, the duration of time period T5 being less than the duration of the ventricular event detection The duration of the window W VACT . Atrial activation event 60A and ventricular sensing event 62A are part of the same cardiac cycle. Accordingly, processing module 40 maintains the no-pace sensing mode for the next cardiac cycle. Processing module 40 detects a subsequent normal cardiac cycle in which ventricular sensing event 62B is detected by processing module 40 within ventricular event detection window W VACT of atrial activation event 60B.
然而,在图6A所示的示例中的下一个心动周期期间,处理模块40在心房激动事件60C的心室事件检测窗口WVACT内未检测到心室感应事件。不是控制刺激模块44(图4)在与心房激动事件60C相同的心动周期内向患者12的心脏24的右心室22递送起搏脉冲,然而,处理模块40可以使心室起搏的递送拖延至少一个心动周期。这样可以允许处理模块40例如感测心脏24的固有传导并判定心脏24是否在没有起搏治疗的帮助下返回到正常心律。以这种方式,处理模块40可以被配置成用于控制起搏治疗以有利于固有传导。However, during the next cardiac cycle in the example shown in FIG. 6A , processing module 40 detects no ventricular induction event within ventricular event detection window W VACT of atrial activation event 60C. Instead of controlling stimulation module 44 ( FIG. 4 ) to deliver pacing pulses to right ventricle 22 of heart 24 of patient 12 within the same cardiac cycle as atrial activation event 60C, processing module 40 may, however, delay delivery of ventricular pacing by at least one heartbeat. cycle. This may allow processing module 40 to, for example, sense the intrinsic conduction of heart 24 and determine whether heart 24 has returned to a normal heart rhythm without the aid of pacing therapy. In this manner, processing module 40 may be configured to control pacing therapy to favor intrinsic conduction.
在图6A所示的示例中,为了判定心脏24是否在没有起搏治疗的帮助下返回到正常的心律,处理模块40判定在随后的心动周期的心房激动事件60D的心室事件检测窗口WVACT中(紧接着在心室事件检测窗口WVACT内未检测到心室感测事件的心动周期之后)是否检测到心室感测事件VS。响应于在随后的心动周期的心房激动事件60D的心室事件检测窗口WVACT中检测到心室感测事件VS,处理模块40可以在无起搏感测模式下继续操作LPD 10A。In the example shown in FIG. 6A , to determine whether heart 24 has returned to a normal rhythm without the aid of pacing therapy, processing module 40 determines that within ventricular event detection window W VACT of atrial activation event 60D of a subsequent cardiac cycle Whether a ventricular sense event V S is detected (immediately following a cardiac cycle in which no ventricular sense event is detected within the ventricular event detection window W VACT ). In response to detecting a ventricular sense event V S within a ventricular event detection window W VACT of an atrial activation event 60D of a subsequent cardiac cycle, processing module 40 may continue to operate LPD 10A in a no-paced sensing mode.
在一些示例中,处理模块40可以在下一个心动周期中维持心室事件检测窗口WVACT。然而,在其他示例中,如图6A所示,处理模块40可以在未检测到心室感测事件的周期(例如,其中漏失了心跳)之后缩短心动周期中的心室事件检测窗口WVACT。在图6A所示的示例中,未检测到心室感测事件的周期是包括心房激动事件60C的心动周期。在未检测到心室感测事件的周期之后的心动周期中将心室事件检测窗口WVACT缩短为较小持续时间的心室事件检测窗口WVACT短可能有助于提供更多的响应性心脏起搏治疗,因为缩短心室事件检测窗口T可能在随后的心动周期中导致更及时的心室起搏脉冲VP。在一些示例中,心室事件检测窗口WVACT短为约70ms至约110ms,如在包括心房激动事件60D在内的心动周期中和/或在包括心房激动事件60E在内的心动周期中为约80ms。In some examples, processing module 40 may maintain the ventricular event detection window W VACT in the next cardiac cycle. However, in other examples, as shown in FIG. 6A , processing module 40 may shorten the ventricular event detection window W VACT in a cardiac cycle after a period in which no ventricular sensed event is detected (eg, in which a heartbeat is missed). In the example shown in FIG. 6A , the period in which no ventricular sensed events are detected is a cardiac cycle that includes an atrial activation event 60C. Shortening the ventricular event detection window WVACT to a shorter duration in cardiac cycles following periods in which no ventricular sensing events are detected may help provide more responsive cardiac pacing therapy , because shortening the ventricular event detection window T may lead to a more timely ventricular pacing pulse V P in subsequent cardiac cycles. In some examples, the ventricular event detection window WVACT is about 70 ms to about 110 ms short, such as about 80 ms during a cardiac cycle including atrial activation event 60D and/or about 80 ms during a cardiac cycle including atrial activation event 60E .
然而,在图6A所示的示例中,处理模块40在心房激动事件60D处开始的缩短的心室事件检测窗口WVACT短内没有检测到心室感测事件VS。作为响应,处理模块40将LPD 10A从无起搏感测模式切换到房室同步起搏模式。根据图6A所示的用于递送房室同步起搏的示例性技术,在处理模块40确定在心房激动事件60D处开始的缩短的心室事件检测窗口WVACT短内未检测到固有心室感测事件VS之后,处理模块40可以控制刺激模块44在检测到的心房激动事件AACT之后的时间段T6向心脏24的心室(例如,右心室22)递送心室起搏脉冲VP 64A。在图6A所示的示例中,时间段T6具有大于或等于缩短的心室事件检测窗口WVACT短的持续时间,并且可以小于或等于心室事件检测窗口WVACT。此外,在图6A所示的示例中,处理模块40控制刺激模块44在心房激动事件60D之后约80毫秒递送心室起搏脉冲VP 64A。在其他实施例中也可以使用其他时间间期。However, in the example shown in FIG. 6A , processing module 40 does not detect ventricular sensing event V S for a short period of the shortened ventricular event detection window W VACT beginning at atrial activation event 60D. In response, processing module 40 switches LPD 10A from the non-paced sensing mode to the atrioventricular synchronized pacing mode. According to the exemplary technique for delivering atrioventricular synchronized pacing shown in FIG. 6A , no intrinsic ventricular sensing event is detected shortly after processing module 40 determines that the shortened ventricular event detection window WVACT beginning at atrial activation event 60D After VS, processing module 40 may control stimulation module 44 to deliver a ventricular pacing pulse V P 64A to a ventricle of heart 24 (eg, right ventricle 22 ) for a time period T6 after the detected atrial activating event A ACT . In the example shown in FIG. 6A , time period T 6 has a duration that is shorter than or equal to shortened ventricular event detection window W VACT , and may be less than or equal to ventricular event detection window W VACT . Additionally, in the example shown in FIG. 6A , processing module 40 controls stimulation module 44 to deliver ventricular pacing pulse V P 64A approximately 80 milliseconds after atrial activation event 60D. Other time intervals may also be used in other embodiments.
处理模块40可以控制心房激动AS的检测和下一个心室起搏脉冲VP的递送之间的持续时间T6。在一些示例中,处理模块40基于两个或更多个先前心动周期(例如,两个心动周期、三个心动周期或更多)的AACT-VS间期来选择时间段T6的持续时间,所述心动周期可以是紧接在没有感测到心室感测事件的第一心动周期前的心动周期。例如,时间段T6的持续时间可以等于两个或更多个先前心动周期的平均AACT-VS间期。平均AACT-VS间期可以比影响起搏间期的预编程的房室同步起搏间期(AACT-VP)更好地代表患者26的当前心率。以这种方式,基于两个或更多个先前的心动周期的平均AACT-VS间期来控制心室起搏脉冲VP相对于心房激动事件AACT的递送可以有助于平缓患者26的心率,特别是当与使用预编程的房室同步起搏间期(AACT-VP)递送房室同步起搏相比较。The processing module 40 may control the duration T6 between the detection of the atrial activation AS and the delivery of the next ventricular pacing pulse VP. In some examples, processing module 40 selects the duration of time period T6 based on the AACT - VS interval of two or more previous cardiac cycles (e.g., two cardiac cycles, three cardiac cycles, or more). time, the cardiac cycle may be the cardiac cycle immediately preceding the first cardiac cycle in which no ventricular sensing event is sensed. For example, the duration of time period T6 may be equal to the average AACT - VS interval of two or more previous cardiac cycles. The average A ACT -V S interval may be a better representative of the current heart rate of the patient 26 than the preprogrammed atrioventricular synchronized pacing interval (A ACT -V P ) affecting the pacing interval. In this way, controlling the delivery of the ventricular pacing pulse VP relative to the atrial activating event A ACT based on the average A ACT -V S interval of two or more previous cardiac cycles may help to calm the patient's Heart rate, especially when compared to delivery of atrioventricular synchronized pacing using a preprogrammed atrioventricular synchronized pacing interval (A ACT -VP ).
在下一个心动周期中,处理模块40检测心房激动事件60E,判定在心房激动事件60E处开始的缩短的心室事件检测窗口WVACT短内是否检测到心室感测事件,以及响应于确定在缩短的心室事件检测窗口WVACT短内或在预定的AV间期内未检测到心室感测事件,处理模块40控制刺激模块44在检测到的心房激动事件AACT 60E之后的时间段T6中向心脏24的心室(例如,右心室22)递送心室起搏脉冲VP 64A。然而,如果处理模块40在缩短的心室事件检测窗口WVACT短或AV间期内检测到心室感测事件,则处理模块40可以不控制刺激模块44在此特定心动周期中递送心室起搏。During the next cardiac cycle, processing module 40 detects atrial activation event 60E, determines whether a ventricular sense event is detected within a shortened ventricular event detection window WVACT shortly beginning at atrial activation event 60E, and responds to a determination that If no ventricular sensing event is detected within the event detection window W VACT within a short period of time or within a predetermined AV interval, the processing module 40 controls the stimulation module 44 to inject The ventricle (eg, the right ventricle 22) of the V P delivers a ventricular pacing pulse V P 64A. However, if processing module 40 detects a ventricular sensed event within the shortened ventricular event detection window WVACTshort or AV interval, processing module 40 may not control stimulation module 44 to deliver ventricular pacing during this particular cardiac cycle.
在一些示例中,一旦处理模块40切换到房室同步起搏模式,处理模块40可以应用不同的可以被预编程并与房室同步起搏模式相关联的心室事件检测窗口WVACT短。例如,在房室同步起搏模式期间应用的心室事件检测窗口WVACT可以是约80ms至约300ms,如约130ms,尽管也可以使用其他窗口。因此,在图6A所示的技术的一些示例中,在包括心房激动事件60D的心动周期中由处理模块40使用的心室事件检测窗口WVACT短可以与在包括心房激动事件60E的心动周期期间使用的心室事件检测窗口不同。结果是,在一些示例中,时间段T6在包括事件60D、60E的心动周期中可以不同。In some examples, once processing module 40 switches to the atrioventricular synchronized pacing mode, processing module 40 may apply a different ventricular event detection window WVACTShort , which may be preprogrammed and associated with the atrioventricular synchronized pacing mode. For example, the ventricular event detection window W VACT applied during the atrioventricular synchronized pacing mode may be about 80 ms to about 300 ms, such as about 130 ms, although other windows may also be used. Thus, in some examples of the technique shown in FIG. 6A , the ventricular event detection window W VACT used by processing module 40 during a cardiac cycle including atrial activating event 60D may be different from that used during a cardiac cycle including atrial activating event 60E. The detection windows of ventricular events are different. As a result, in some examples, time period T6 may differ in the cardiac cycle including events 60D, 60E.
在一些示例中,AV间期可以等于参考图6A、图6B和图7讨论的心室事件检测窗口WVACT。在其他示例中,AV间期可以小于心室事件检测窗口WVACT。在其他示例中,AV间期可以大于心室事件检测窗口WVACT。在一些示例中,AV间期被预编程,例如由临床医生选择。例如,示例性AV间期包括例如约80ms至约300ms的范围,如约130ms,尽管在其他示例中可以使用其他AV间期。In some examples, the AV interval may be equal to the ventricular event detection window W VACT discussed with reference to FIGS. 6A , 6B, and 7 . In other examples, the AV interval may be smaller than the ventricular event detection window W VACT . In other examples, the AV interval may be greater than the ventricular event detection window W VACT . In some examples, the AV interval is preprogrammed, eg, selected by a clinician. For example, exemplary AV intervals include, for example, a range of about 80 ms to about 300 ms, such as about 130 ms, although other AV intervals may be used in other examples.
在房室同步起搏模式下操作期间,处理模块40可以周期性地执行固有传导检查,以判定心脏24是否已经恢复正常的固有传导。例如,处理模块40可以控制刺激模块44将心室起搏(VP)停止至少一个心动周期(例如,一个心动周期、两个心动周期或三个以上心动周期),以便判定是否在心房激动事件AACT的心室事件检测窗口WVACT内检测到固有心室感测事件VS。During operation in the atrioventricular synchronized pacing mode, processing module 40 may periodically perform intrinsic conduction checks to determine whether heart 24 has returned to normal intrinsic conduction. For example, the processing module 40 can control the stimulation module 44 to stop the ventricular pacing (V P ) for at least one cardiac cycle (for example, one cardiac cycle, two cardiac cycles or more than three cardiac cycles), so as to determine whether the atrial activation event A An intrinsic ventricular sensing event V S is detected within the ventricular event detection window W VACT of ACT .
在图6A所示的示例中,处理模块40在心房激动事件AACT 60F的心室事件检测窗口WVACT短内或在心房激动事件AACT 60G的心室事件检测窗口WVACT短内未检测到心室激动事件VS。响应于进行此判定,处理模块40可以继续控制刺激模块44在房室同步起搏模式下向右心室22递送心室起搏脉冲。如图6A所示,在此模式下,处理模块40可以控制刺激模块44在随后的心动周期的心房激动事件AACT 60G之后向患者26递送心室起搏脉冲VP 64C。In the example shown in FIG. 6A , processing module 40 does not detect ventricular activation within a short period of ventricular event detection window W VACT of atrial activating event A ACT 60F or within a short period of ventricular event detection window W VACT of atrial activating event A ACT 60G Event VS. In response to making this determination, processing module 40 may continue to control stimulation module 44 to deliver ventricular pacing pulses to right ventricle 22 in the atrioventricular synchronized pacing mode. As shown in FIG. 6A , in this mode, processing module 40 may control stimulation module 44 to deliver ventricular pacing pulse V P 64C to patient 26 following an atrial activation event A ACT 60G of a subsequent cardiac cycle.
在处理模块40在相应的心房激动事件AACT 60E处开始的心室事件检测窗口WVACT短内检测到固有心室感测事件VS的示例中,处理模块40可以将LPD 10A切换到回无起搏感测模式。在其他示例中,响应于针对预定阈值数目(例如,由存储器42存储)的连续心动周期确定在相应的心房激动事件AACT的心室事件检测窗口AACT内检测到固有心室感测事件VS,处理模块40可以将LPD 10A切换到无起搏感测模式。所述心动周期的阈值数目可以是例如二个、三个、四个或更多。In instances where processing module 40 detects intrinsic ventricular sensed event VS shortly within ventricular event detection window WVACT beginning at corresponding atrial activation event AACT 60E, processing module 40 may switch LPD 10A back to no pacing sensing mode. In other examples, in response to determining for a predetermined threshold number (e.g., stored by memory 42) of consecutive cardiac cycles that an intrinsic ventricular sensing event VS is detected within a ventricular event detection window AACT of a corresponding atrial activation event AACT , Processing module 40 may switch LPD 10A to a no-pace sensing mode. The threshold number of cardiac cycles may be, for example, two, three, four or more.
此外,在一些示例中,处理模块40可以响应于确定在固有传导检查期间观察到固有传导而将LPD 10A切换到无起搏感测模式。在一些示例中,为了执行固有传导检查,处理模块40临时将LPD 10A置于无起搏感测模式至少一个心动周期(例如,一个心动周期或两个心动周期)。响应于确定在至少一个心动周期期间观察到固有传导,处理模块40可以控制LPD 10A停留在无起搏感测模式。Additionally, in some examples, processing module 40 may switch LPD 10A to a non-paced sensing mode in response to determining that intrinsic conduction was observed during the intrinsic conduction check. In some examples, processing module 40 temporarily places LPD 10A in no-paced sensing mode for at least one cardiac cycle (eg, one cardiac cycle or two cardiac cycles) in order to perform an intrinsic conduction check. In response to determining that intrinsic conduction was observed during at least one cardiac cycle, processing module 40 may control LPD 10A to remain in the no-pace sensing mode.
处理模块40可以以可能保持相同或随时间增加的任何适当间期来执行固有传导检查。例如,在切换到房室同步起搏模式之后,处理模块40可以以随时间增加的渐进的时间间期来执行传导检查。作为一个示例,在将LPD 10A切换到房室同步起搏模式一分钟之后,处理模块40可以执行固有传导测试。如果没有测试固有传导,则处理模块40可以继续在房室同步起搏模式下操作LPD 10A,并且在第一次检查之后两分钟执行固有传导检查。如果在那个点上未检测到固有传导,则处理模块40可以继续在房室同步起搏模式下操作LPD 10A,并且在第二次检查之后四分钟执行另一次固有传导检查。这样可以以任何适当的渐进的时间间期来继续进行。Processing module 40 may perform intrinsic conduction checks at any suitable interval that may remain the same or increase over time. For example, after switching to the atrioventricular synchronized pacing mode, processing module 40 may perform conduction checks at progressive time intervals that increase over time. As one example, processing module 40 may perform an intrinsic conduction test one minute after switching LPD 10A to the atrioventricular synchronized pacing mode. If intrinsic conduction is not tested, processing module 40 may continue to operate LPD 10A in AV synchronized pacing mode and perform an intrinsic conduction check two minutes after the first check. If no intrinsic conduction is detected at that point, processing module 40 may continue to operate LPD 10A in the atrioventricular synchronized pacing mode and perform another intrinsic conduction check four minutes after the second check. This can be continued for any suitable progressive time interval.
图6B是展示了用于控制在右心室22中植入的LPD 10A(或另一个LPD)响应于检测到心室感测不足而从无起搏感测模式切换到房室同步起搏模式的另一个示例性技术的时序图。与关于图6A描述的技术一样,处理模块40控制LPD 10A响应于针对一个或多个心动周期确定在心房激动事件的心室事件检测窗口WVACT内未检测到心室感测事件而从不向患者26的心脏24递送起搏治疗的无起搏感测模式切换到房室同步起搏模式。例如,在图6B中,处理模块40在心房激动事件60C的心室事件检测窗口WVACT内未检测到心室感应事件。在那个包括心房激动事件60C的心动周期中,处理模块40可以使心室起搏的递送拖延至少一个心动周期。因此,如图6B所示,在心房激动事件60C之后没有心室起搏脉冲。FIG. 6B is a diagram illustrating another example for controlling the switching of an LPD 10A (or another LPD) implanted in the right ventricle 22 from a no-pacing sensing mode to an atrioventricular-synchronized pacing mode in response to detection of ventricular insufficiency. Timing diagram of an exemplary technique. As with the technique described with respect to FIG. 6A , processing module 40 controls LPD 10A to never report a ventricular sense event to patient 26 in response to determining for one or more cardiac cycles that a ventricular sense event was not detected within the ventricular event detection window W VACT of an atrial activation event. The no-pace sensing mode of heart 24 delivering pacing therapy is switched to the atrioventricular synchronized pacing mode. For example, in FIG. 6B, processing module 40 detects no ventricular sensing event within ventricular event detection window W VACT of atrial activation event 60C. Processing module 40 may delay delivery of the ventricular pace by at least one cardiac cycle during that cardiac cycle that includes atrial activation event 60C. Thus, as shown in Figure 6B, there is no ventricular pacing pulse following the atrial activating event 60C.
与关于图6A描述的技术一样,处理模块40在心房激动事件60D处开始的缩短的心室事件检测窗口WVACT短内未检测到心室感测事件VS,并且作为响应,控制LPD 10A根据房室同步起搏模式递送起搏脉搏VP 64A。然而,与关于图6A所描述的技术相比,在图6B所示的示例中,处理模块40没有控制LPD 10A在递送起搏脉冲VP 64A之后保持在房室同步起搏模式。相反,处理模块40控制LPD 10A恢复(例如,切换)回到LPD 10A不向患者26递送任何起搏治疗的无起搏感测模式。As with the technique described with respect to FIG. 6A , processing module 40 detects no ventricular sensed event V S for a short period of the shortened ventricular event detection window W VACT beginning at atrial activation event 60D and, in response, controls LPD 10A according to the atrioventricular Synchronous pacing mode delivers pacing pulse V P 64A. However, in contrast to the techniques described with respect to FIG. 6A , in the example shown in FIG. 6B , processing module 40 does not control LPD 10A to remain in AV synchronized pacing mode after delivery of pacing pulse V P 64A. Instead, processing module 40 controls LPD 10A to revert (eg, switch) back to a no-pace sensing mode in which LPD 10A does not deliver any pacing therapy to patient 26 .
如图6B所示,在LPD 10A递送起搏脉冲VP 64A之后,处理模块40在LPD 10A处于无起搏感测模式的时候检测心房激动事件60H并判定是否在心房激动事件60H处开始的缩短的心室事件检测窗口WVACT短内发生心房感测时间Vs。然而,在图6B所示的示例中,处理模块40在缩短的心室事件检测窗口WVACT短内没有检测到心室感测事件VS。然而,因为处理模块40根据无起搏感测模式来控制LPD 10A,所以处理模块40没有响应于确定在心房激动事件60H处开始的缩短的心室事件检测窗口WVACT短内没有感测到心室感测事件VS而控制刺激模块44递送心室起搏脉冲。以这种方式,LPD 10A可以漏失一次心跳。相反,处理模块40可以响应于确定在心房激动事件60H处开始的缩短的心室事件检测窗口WVACT短内未检测到心室感测事件VS而例如通过使感测不足计数器递增来生成感测不足指示。处理模块40然后可以根据无起搏感测模式来检测随后的心房激动事件60I并判定在心房激动事件60I处开始的缩短的心室事件检测窗口WVACT短中是否检测到心室感测事件VS。As shown in FIG. 6B , after LPD 10A delivers pacing pulse VP 64A , processing module 40 detects atrial activation event 60H while LPD 10A is in the no-pace sensing mode and determines whether shortening begins at atrial activation event 60H. The ventricular event detection window W VACT occurs within a short period of the atrial sensing time Vs. However, in the example shown in FIG. 6B , the processing module 40 does not detect a ventricular sense event V S within the shortened ventricular event detection window W VACTShort . However, because processing module 40 controls LPD 10A according to the no-pace sensing mode, processing module 40 does not sense ventricular sense for a short period of time in response to the shortened ventricular event detection window WVACT beginning at atrial activation event 60H. Stimulation module 44 is controlled to deliver ventricular pacing pulses in response to event VS. In this way, LPD 10A can miss a heartbeat. Conversely, processing module 40 may generate a sense undersense , for example, by incrementing a sense undersense counter, in response to determining that a ventricular sense event VS has not been detected within the shortened ventricular event detection window WVACT beginning at atrial activation event 60H. instruct. Processing module 40 may then detect a subsequent atrial activation event 60I according to the no-pace sensing mode and determine whether a ventricular sensed event V S is detected within the shortened ventricular event detection window W VACT short beginning at atrial activation event 60I .
根据图6B所示的示例性技术,在处理模块40确定在心房激动事件60I处开始的缩短的心室事件检测窗口WVACT短内未检测到固有心室感测事件VS之后,处理模块40可以控制刺激模块44在心房激动事件60I之后的时间段T6向心脏24的心室(例如,右心室22)递送心室起搏脉冲VP 64D。处理模块40还可以例如通过使感测不足计数器递增来生成感测不足指示。According to the exemplary technique shown in FIG. 6B, after processing module 40 determines that a shortened ventricular event detection window WVACT beginning at atrial activation event 60I has not detected an intrinsic ventricular sensing event VS for a short period of time, processing module 40 may control Stimulation module 44 delivers ventricular pacing pulse V P 64D to a ventricle of heart 24 (eg, right ventricle 22 ) for time period T 6 after atrial activating event 60I. The processing module 40 may also generate an undersensing indication, eg, by incrementing an undersensing counter.
在图6B所示的示例中,处理模块40实施“Y的X”式的计数器,其中在一些示例中,“X”可以是四个感测不足指示,并且“Y”可以是四个、五个、六个或更多个。在其他示例中,“X”可以指示“漏失的心跳”的数目,例如,未检测到心室事件(无论是感测到的或是起搏的)的心动周期数。因此,在一些示例中,“X”可以是两个感测不足指示,并且“Y”可以是三个、四个、五个、六个或更多个,在一些示例中例如是四个。In the example shown in FIG. 6B , processing module 40 implements an "X of Y" counter, where in some examples "X" may be four undersensed indications and "Y" may be four, five, or four. one, six or more. In other examples, the "X" may indicate the number of "missed beats," eg, the number of cardiac cycles in which no ventricular event (whether sensed or paced) was detected. Thus, in some examples, "X" may be two undersensing indications, and "Y" may be three, four, five, six or more, such as four in some examples.
在处理模块40响应于确定在心房激动事件60I处开始的缩短的心室事件检测窗口WVACT短内未检测到心室感测事件VS而使所述计数器递增之后,处理模块40可以确定计数器指示从“Y”个心动周期中检测出“X”个感测不足指示。因此,作为响应,处理模块40可以不定地将LPD 10A切换到房室同步起搏模式,例如直到传导检查指示检测到固有传导或直到进行另一次模式改变为止(例如,直到处理模块40确定LPD 10A切换到异步起搏模式将是所期望的)。与包括心房激动事件60D在内的心动周期不同,在LPD 10A传送心室起搏脉冲64D之后,处理模块40可能不会将LPD 10A恢复回到无起搏感测模式。相反,处理模块40可以控制刺激模块44根据房室同步起搏模式继续递送心室起搏脉冲。After processing module 40 increments the counter in response to determining that a ventricular sense event VS has not been detected for a short time within the shortened ventricular event detection window WVACT beginning at atrial activation event 60I, processing module 40 may determine that the counter indicates a change from "X" undersensing indications are detected in "Y" cardiac cycles. Thus, in response, processing module 40 may switch LPD 10A to the AV-synchronized pacing mode indefinitely, e.g., until a conduction check indicates detection of intrinsic conduction or until another mode change is made (e.g., until processing module 40 determines that LPD 10A Switching to asynchronous pacing mode would be desired). Unlike a cardiac cycle that includes an atrial activation event 60D, processing module 40 may not revert LPD 10A back to the no-pace sensing mode after LPD 10A delivers a ventricular pacing pulse 64D. Instead, processing module 40 may control stimulation module 44 to continue delivering ventricular pacing pulses according to the atrioventricular synchronized pacing mode.
例如,在将LPD 10A切换到房室同步起搏模式之后,处理模块40可以检测心房激动事件60J,并且判定在心房激动事件60J处开始的缩短的心室事件检测窗口WVACT短内是否检测到心室感测事件。响应于确定在缩短的心室事件检测窗口WVACT短内或在预定AV间期内未检测到心室感测事件,处理模块40控制刺激模块44在检测到的心房激动事件AACT 60J之后的时间段T6中向心脏24的心室(例如,右心室22)递送心室起搏脉冲VP 64E。相比之下,在处理模块40将LPD 10A恢复回到无起搏感测模式的某些情况下,刺激模块44不递送心室起搏脉冲VP 64E,并且心脏24可能漏失一次心跳。For example, after switching LPD 10A to an atrioventricular synchronized pacing mode, processing module 40 may detect atrial activation event 60J and determine whether a ventricular activation event was detected within the shortened ventricular event detection window WVACT that began at atrial activation event 60J Sensing events. In response to determining that a ventricular sensed event is not detected within the shortened ventricular event detection window W V ACT or within a predetermined AV interval, the processing module 40 controls the period of time after the detected atrial activation event A ACT 60J by the stimulation module 44 Ventricular pacing pulse V P 64E is delivered to a ventricle of heart 24 (eg, right ventricle 22 ) in T 6 . In contrast, in certain instances where processing module 40 reverts LPD 10A back to the no-pace sensing mode, stimulation module 44 does not deliver ventricular pacing pulse VP 64E , and heart 24 may miss a beat.
图7是用于操作LPD 10A的示例性技术的流程图。在图7所示的技术中,处理模块40使LPD 10A在无起搏感测模式和房室同步起搏模式之间切换。虽然图7所示的技术以及本文描述的其他技术主要被描述为由处理模块40执行,但在其他示例中,本文描述的技术可以由另一个处理模块(例如,另一个植入设备或外部设备的处理模块,如医疗设备编程器)单独地或与处理模块40组合地执行。此外,在本文主要涉及右心房28和右心室22的情况下,在其他示例中,本文所述的设备,系统和技术也可以用于控制递送至左心室的起搏治疗、感测左心房的活动或两者。FIG. 7 is a flowchart of an exemplary technique for operating LPD 10A. In the technique shown in FIG. 7, processing module 40 switches LPD 10A between a no-pace sensing mode and an atrioventricular-synchronized pacing mode. Although the techniques shown in FIG. 7, as well as other techniques described herein, are primarily described as being performed by processing module 40, in other examples, the techniques described herein may be performed by another processing module (e.g., another implanted device or an external device). A processing module such as a medical device programmer) is executed alone or in combination with the processing module 40. Furthermore, while the right atrium 28 and right ventricle 22 are primarily referred to herein, in other examples, the devices, systems and techniques described herein may also be used to control pacing therapy delivered to the left ventricle, sense left atrium activity or both.
根据图7所示的技术,处理模块40在以无起搏感测模式(70)操作LPD 10A的同时识别心房激动事件AACT。所述心房激动事件可以例如是右心房28的固有去极化或起搏去极化或右心房28的机械收缩。处理模块40可以基于由电感测模块46感测到的电心脏信号来确定在心房激动事件AACT(72)处开始的心室事件检测窗口WVACT内是否检测到心室感测事件VS(例如,固有心室去极化)。响应于确定在心室事件检测窗口WVACT内检测到心室感测事件VS(框72的分支“是”),处理模块40可以重置心室事件计数器,并且在无起搏感测模式(70,72)下继续感测心脏活动。According to the technique shown in FIG. 7 , processing module 40 identifies atrial activation event A ACT while operating LPD 10A in an unpaced sensing mode ( 70 ). The atrial activation event may be, for example, an intrinsic or paced depolarization of the right atrium 28 or a mechanical contraction of the right atrium 28 . Processing module 40 may determine whether a ventricular sensed event VS is detected within a ventricular event detection window WVACT beginning at an atrial activation event AACT (72) based on the electrical cardiac signal sensed by electrical sensing module 46 ( e.g., intrinsic ventricular depolarization). In response to determining that a ventricular sense event VS was detected within the ventricular event detection window WVACT ( "YES" branch of block 72), processing module 40 may reset the ventricular event counter and, in the no-paced sense mode (70, 72) Next, continue to sense the heart activity.
所述心室事件计数器可以用于对在相应的心房激动事件AACT处开始的心室事件检测窗口WVACT内未检测到心室去极化VACT的心动周期进行计数。在图7所示的示例中,所述心室事件计数器可以用于对在心室事件检测窗口WVACT内未检测到心室去极化VACT的心动周期进行计数。心动周期数可以是预定数目的心动周期(“Y”)内的心动周期数(“X”)。在后一个示例中,所述计数器可以被称为“X of Y”型计数器,其中“X”指示未检测到心室去极化VACT的心动周期的数目,并且“Y”指示预定数目的连续心动周期。The ventricular event counter may be used to count cardiac cycles in which no ventricular depolarization V ACT is detected within a ventricular event detection window W V ACT beginning at a corresponding atrial activation event A ACT . In the example shown in FIG. 7, the ventricular event counter may be used to count cardiac cycles in which no ventricular depolarization V ACT is detected within the ventricular event detection window W V ACT . The number of cardiac cycles may be the number of cardiac cycles ("X") within a predetermined number of cardiac cycles ("Y"). In the latter example, the counter may be referred to as an "X of Y" type counter, where "X" indicates the number of cardiac cycles in which no ventricular depolarization V ACT was detected, and "Y" indicates a predetermined number of consecutive Cardiac cycle.
在其他示例中,所述心室事件计数器可以用于对在心室事件检测窗口WVACT内未检测到心室去极化VACT的预定时间段内的心动周期数进行计数。因此,在图7所示的技术的其他示例中,处理模块40可能不会响应于在一个心动周期中检测到在心室事件检测窗口WVACT内检测到心室感测事件VS而重置心室事件计数器(74),但是,处理模块40可以在预定时间段结束时重置所述心室事件计数器。In other examples, the ventricular event counter may be used to count the number of cardiac cycles during a predetermined time period during which no ventricular depolarization V ACT is detected within a ventricular event detection window W V ACT . Thus, in other examples of the technique shown in FIG. 7, processing module 40 may not reset a ventricular event in response to detecting a ventricular sense event VS within a ventricular event detection window WVACT during one cardiac cycle. counter (74), however, processing module 40 may reset the ventricular event counter at the end of a predetermined period of time.
响应于确定在心室事件检测窗口WVACT(框72的分支“否”)内未检测到心室感测事件VS,处理模块40使心室事件计数器(76)递增。所述计数器可以被实现为软件、硬件、固件、或其任何组合。例如,当处理模块40使所述计数器递增时,处理模块40可以生成由处理模块40生成并由LPD 10A的存储器42或另一个设备的存储器(例如,另一植入设备或外部医疗设备编程器)存储的标记、值或其他参数或指示。作为另一个示例,所述计数器可以由寄存器型电路实现,并且处理模块40可以引起寄存器型电路的状态改变以便使所述计数器递增或以其他方式管理所述计数器。也可以使用具有其他配置的计数器。In response to determining that a ventricular sense event V S was not detected within the ventricular event detection window W VACT (branch "NO" of block 72 ), processing module 40 increments a ventricular event counter ( 76 ). The counters may be implemented as software, hardware, firmware, or any combination thereof. For example, when the processing module 40 increments the counter, the processing module 40 may generate an error generated by the processing module 40 and generated by the memory 42 of the LPD 10A or the memory of another device (e.g., another implanted device or an external medical device programmer). ) Stored flags, values or other parameters or indications. As another example, the counter may be implemented by register-type circuitry, and processing module 40 may cause a state change of the register-type circuitry in order to increment or otherwise manage the counter. Counters with other configurations can also be used.
在使心室事件计数器(76)递增之后,处理模块40可以判定所述计数器值是否大于或等于心室事件阈值(78)。所述心室事件阈值可以指示在心室事件检测窗口WVACT内或在LPD 10A在房室同步起搏模式下递送心室起搏治疗之前的心房激动事件之后的缩短的心室事件检测窗口WVACT内未感测到心室事件的心动周期的数目。在一些示例中,如图6A所示的一个示例,所述心室事件阈值为一个。在其他示例中,所述心室事件阈值可以大于一个,如两个、三个或四个或更多个。After incrementing the ventricular event counter (76), processing module 40 may determine whether the counter value is greater than or equal to the ventricular event threshold (78). The ventricular event threshold may indicate no detection within the ventricular event detection window W VACT or within the shortened ventricular event detection window W VACT following an atrial activation event before the LPD 10A delivers ventricular pacing therapy in the atrioventricular synchronized pacing mode. The number of cardiac cycles in which a ventricular event was detected. In some examples, as shown in FIG. 6A , the ventricular event threshold is one. In other examples, the ventricular event threshold may be greater than one, such as two, three or four or more.
所述心室事件阈值可以是由临床医生确定为指示固有AV传导缺失的值,并且可以被选择为是足够低的而配置LPD 10A以提供操作模式下的响应性切换并提供响应性心律管理治疗。所述心室事件阈值可以由LPD 10A的存储器42或可以经由通信模块50与处理模块40通信的另一个设备(例如,医疗设备编程器))的存储器存储(图4)。The ventricular event threshold may be determined by a clinician as a value indicative of intrinsic AV conduction loss, and may be selected to be low enough to configure LPD 10A to provide responsive switching between modes of operation and provide responsive rhythm management therapy. The ventricular event threshold may be stored by memory 42 of LPD 10A or a memory of another device (eg, a medical device programmer) that may communicate with processing module 40 via communication module 50 ( FIG. 4 ).
响应于确定所述计数器值小于所述心室事件阈值(框78的分支“否”),处理模块40可以在无起搏感测模式(70,72)下继续感测心脏活动。另一方面,响应于确定所述计数器值大于或等于所述心室事件阈值(框78的分支“是”),处理模块40可以使LPD 10A从无起搏感测模式切换到房室同步起搏模式(80)。参照图8描述所述房室同步起搏模式的示例。大于或等于所述心室事件阈值的计数器值可以指示存在AV阻滞。In response to determining that the counter value is less than the ventricular event threshold ("No" branch of block 78), processing module 40 may continue to sense cardiac activity in a no-pace sensing mode (70, 72). On the other hand, in response to determining that the counter value is greater than or equal to the ventricular event threshold ("YES" branch of block 78), processing module 40 may cause LPD 10A to switch from the no-pacing sensing mode to atrioventricular-synchronized pacing mode(80). An example of the atrioventricular synchronized pacing mode is described with reference to FIG. 8 . A counter value greater than or equal to the ventricular event threshold may indicate the presence of AV block.
在一些示例中,每当在心室事件检测窗口WVACT内检测到心室感测事件VS时,处理模块40可以将所述计数器复位为零。在其他示例中,处理模块40针对在心室事件检测窗口WVACT内未检测到心室去极化的非连续心动周期而使所述心室事件计数器递增,并且在其他时间(例如,如果在两个或更多个连续心动周期中在心室事件检测窗口WVACT内检测到心室去极化)复位所述计数器。作为另一个示例,处理模块40可以管理所述心室事件计数器以在预定的时间范围内(例如,在30秒、1分钟或更长时间内)跟踪在心室事件检测窗口WVACT内未能检测到心室感测事件VS的次数,或作为“X of Y”式计数器。例如,处理模块40可以针对每种情况在心室事件检测窗口WVACT内未检测到心室去极化的预定时间段内使所述心室事件计数器递增,并且在所述时间范围结束时重置所述计数器。作为另一个示例,处理模块40可以针对在心室事件检测窗口WVACT内未检测到心室去极化的预定数目的紧接先前的心动周期的每种情况使所述心室事件计数器递增。In some examples, processing module 40 may reset the counter to zero whenever a ventricular sense event V S is detected within ventricular event detection window W VACT . In other examples, processing module 40 increments the ventricular event counter for non-consecutive cardiac cycles in which no ventricular depolarization is detected within the ventricular event detection window WVACT , and at other times (e.g., if between two or Detection of ventricular depolarization within the ventricular event detection window W VACT for more consecutive cardiac cycles resets the counter. As another example, processing module 40 may manage the ventricular event counter to track failures to detect within a ventricular event detection window W VACT within a predetermined time frame (eg, within 30 seconds, 1 minute, or more). The number of ventricular sensing events VS , or as an "X of Y" counter. For example, processing module 40 may increment, for each case, the ventricular event counter for a predetermined period of time during which no ventricular depolarization is detected within the ventricular event detection window WVACT , and reset the ventricular event counter at the end of the time period. counter. As another example, the processing module 40 may increment the ventricular event counter for each instance of a predetermined number of immediately preceding cardiac cycles in which no ventricular depolarization was detected within the ventricular event detection window W VACT .
在图7所示的技术的一些示例中,处理模块40可以响应于确定在检测窗口WVACT内未检测到心室感测事件而生成心室事件指示,并且可以通过将所述心室事件指示存储在LPD 10A的存储器42中或另一个设备的存储器中来使所述心室事件计数器递增。处理模块40可以通过删除所存储的心室事件指示来重置所述心室事件计数器。处理模块40还可以至少通过判定所存储的心室事件指示的数目是否大于或等于所述心室事件阈值来判定所述心室事件计数器值是否大于或等于阈值(116)。In some examples of the techniques shown in FIG. 7 , processing module 40 may generate a ventricular event indication in response to determining that a ventricular sensed event is not detected within detection window W VACT and may generate a ventricular event indication by storing the ventricular event indication in the LPD The ventricular event counter is incremented in the memory 42 of the 10A or in the memory of another device. Processing module 40 may reset the ventricular event counter by deleting the stored ventricular event indication. Processing module 40 may also determine whether the ventricular event counter value is greater than or equal to a threshold by at least determining whether the number of stored ventricular event indications is greater than or equal to the ventricular event threshold (116).
关于图6A、图6B和图7描述的LPD 10A的配置,其中LPD 10A没有在处理模块40未检测到心室事件的心动周期中递送心室起搏,可以允许电感测模块46在房室同步起搏模式下递送心室起搏脉冲之前至少一次完整心跳中感测心脏24的固有活动。以这种方式,处理模块40可以花时间感测心室激动事件,例如允许心脏24在LPD 10A递送心室起搏脉冲之前恢复固有传导,所述心室起搏脉冲可以对应于或不对应于患者26的当前心律。通过被配置成用于漏失一次或多次心跳,LPD 10A可以被配置成用于通过在刺激模块44递送心室起搏之前给予LPD 10A感测心脏24的固有传导的机会来促进心脏24的固有传导。这样可能有助于心脏24保持同步。The configuration of LPD 10A described with respect to FIGS. 6A, 6B, and 7, wherein LPD 10A does not deliver ventricular pacing during a cardiac cycle in which processing module 40 does not detect a ventricular event, may allow electrical sensing module 46 to synchronize pacing atrioventricularly. Intrinsic activity of the heart 24 is sensed for at least one complete heartbeat prior to delivery of a ventricular pacing pulse in the mode. In this manner, processing module 40 may take time to sense a ventricular activation event, for example allowing heart 24 to restore intrinsic conduction before LPD 10A delivers a ventricular pacing pulse, which may or may not correspond to patient 26's pacing pulse. current heart rate. By being configured for missing one or more heartbeats, LPD 10A may be configured to facilitate intrinsic conduction of heart 24 by giving LPD 10A an opportunity to sense intrinsic conduction of heart 24 before stimulation module 44 delivers ventricular pacing. . This may help the heart 24 stay in sync.
图8是根据房室同步起搏模式向心脏24的心室递送起搏脉冲的示例性技术的流程图。处理模块40识别心房激动事件(70),判定在心房激动事件之后例如在从检测到心房激动事件开始的AV间期内或在心室事件检测窗口WVACT内是否检测到固有心室感测事件VS(例如,R波)。8 is a flowchart of an exemplary technique for delivering pacing pulses to the ventricles of heart 24 according to the atrioventricular synchronized pacing mode. The processing module 40 identifies an atrial activation event (70) and determines whether an intrinsic ventricular sensing event VS is detected after the atrial activation event, e.g., within the AV interval from the detection of the atrial activation event or within the ventricular event detection window WVACT (eg, R waves).
响应于确定在心房激动事件之后未检测到心室感测事件(框84的分支“否”),处理模块40可以控制刺激模块44生成起搏脉冲并向心脏24的右心室22递送起搏脉冲(88)。响应于确定在心房激动事件之后检测到心室感测事件(框84的分支“是”),LPD 10A可以不递送心室起搏脉冲,而是处理模块40可以继续监测患者26的心脏活动(70,84)。对于伴随间歇性AV节传导的患者,可能更优选的是由LPD 10A根据图8所示的技术禁止心室起搏并允许在固有心房去极化或心房起搏之后的时间(例如,AV间期)发生固有心室去极化。In response to determining that a ventricular sense event was not detected after the atrial activation event (branch "NO" of block 84), processing module 40 may control stimulation module 44 to generate and deliver a pacing pulse to right ventricle 22 of heart 24 ( 88). In response to determining that a ventricular sensing event was detected after the atrial activation event ("YES" branch of block 84), LPD 10A may not deliver ventricular pacing pulses, and instead processing module 40 may continue to monitor cardiac activity of patient 26 (70, 84). For patients with intermittent AV nodal conduction, it may be more preferable for LPD 10A to inhibit ventricular pacing according to the technique shown in FIG. ) with intrinsic ventricular depolarization.
在一些示例中,LPD 10A可能感测不足到心脏24的心房活动(例如,固有去极化或心房起搏活动),这样在LPD 10A在房室同步起搏模式下操作时可能影响心室起搏脉冲的递送(例如,如图8所示)。根据本文所述的一些示例,LPD 10A被配置成用于响应于检测到心房感测不足事件而从房室同步起搏模式自动切换到异步心室起搏模式(在一些情况下无需用户干预)。In some examples, LPD 10A may sense insufficient atrial activity (e.g., intrinsic depolarization or atrial pacing activity) of heart 24, which may affect ventricular pacing when LPD 10A is operating in an atrioventricular synchronized pacing mode. Delivery of pulses (eg, as shown in Figure 8). According to some examples described herein, LPD 10A is configured to automatically switch from an atrioventricular synchronous pacing mode to an asynchronous ventricular pacing mode (in some cases without user intervention) in response to detection of an atrial undersensing event.
图9是展示了异步心室起搏的示例的时序图并且参考图10进行描述,图10是用于递送异步心室起搏的示例性技术的流程图。在图10所示的技术中,处理模块40识别心室激动事件VACT(90),所述心室激动事件可以是心室起搏脉冲的递送或右心室22的固有去极化(例如,由感测模块46感测到的电心脏信号中的R波)。处理模块40判定在从检测到心室激动时(例如,当检测到先前的固有心室去极化或递送先前的心室起搏脉冲时)开始的VV间期内是否检测到对右心室22的固有去极化(92)。FIG. 9 is a timing diagram illustrating an example of asynchronous ventricular pacing and is described with reference to FIG. 10 , which is a flowchart of an exemplary technique for delivering asynchronous ventricular pacing. In the technique shown in FIG. 10, processing module 40 identifies a ventricular activation event V ACT (90), which may be the delivery of a ventricular pacing pulse or an intrinsic depolarization of the right ventricle 22 (e.g., by sensing R wave in the electrical cardiac signal sensed by module 46). The processing module 40 determines whether intrinsic depolarization of the right ventricle 22 has been detected during the VV interval from when ventricular activation was detected (e.g., when a previous intrinsic ventricular depolarization was detected or a previous ventricular pacing pulse was delivered). Polarization (92).
VV间期可以具有任何合适的长度。在一些示例中,处理模块40基于感测到的患者26的心脏活动来确定VV间期并存储在存储器42中的间期中。例如,处理模块40可以在紧接在现在的心动周期以前的一定数目的心动周期中将VV间期确定为连续心室激动事件(例如,由电感测模块44检测到的连续固有心室去极化)之间的平均时间或中值时间。所述一定数目可以例如是两个或更多个,如六个、十个、十二个、二十个或三十个。在一些示例中,处理模块使用VV间期对在异步心室起搏模式下递送的心室起搏脉冲的递送进行定时。在这种情况下,VV间期可以略长于可以从传感器的数据来确定的患者26的心率。The VV interval can be of any suitable length. In some examples, processing module 40 determines the VV interval based on the sensed cardiac activity of patient 26 and stores the interval in memory 42 . For example, processing module 40 may determine the VV interval as a sequence of ventricular activation events (e.g., a sequence of intrinsic ventricular depolarizations detected by electrical sensing module 44) a certain number of cardiac cycles immediately preceding the present cardiac cycle The average or median time between. The certain number may for example be two or more, such as six, ten, twelve, twenty or thirty. In some examples, the processing module uses the VV interval to time delivery of the ventricular pacing pulses delivered in the asynchronous ventricular pacing mode. In this case, the VV interval may be slightly longer than the patient's 26 heart rate, which may be determined from the sensor data.
在其他示例中,处理模块40可以使用预编程的VV间期。然而,这可能低于患者的当前心率,这样可能导致患者26的心率的相对突然的变化,这可能是不期望的。基于VV间期(所述VV间期是基于患者26的感测到的心脏活动进行确定的)来控制根据异步心室起搏模式递送的心室起搏脉冲VP的定时可能有助于平缓患者26的心率,特别是当对基于预编程速率而控制起搏脉冲的定时进行比较时。In other examples, processing module 40 may use a pre-programmed VV interval. However, this may be lower than the patient's current heart rate, which may result in a relatively sudden change in the patient's 26 heart rate, which may be undesirable. Controlling the timing of ventricular pacing pulses VP delivered according to the asynchronous ventricular pacing mode based on the VV interval, which is determined based on the sensed cardiac activity of the patient 26, may help calm the patient 26. heart rate, especially when compared to controlling the timing of pacing pulses based on a preprogrammed rate.
在一些示例中,处理模块40将VV间期确定为基于感测到的患者26的心脏活动确定的VV间期或预编程速率中的较大者。这样可以使得处理模块40能够提供一些最小起搏速率,这样可进一步有助于平稳患者26的心率。In some examples, processing module 40 determines the VV interval to be the greater of a VV interval determined based on sensed cardiac activity of patient 26 or a preprogrammed rate. This may enable processing module 40 to provide some minimum pacing rate, which may further assist in stabilizing patient 26's heart rate.
在上述任何示例中,处理模块40还可以基于检测到的患者26的心率的变化来修改VV间期。例如,处理模块40可以随心率降低而增加VV间期,并且随心率增加而减小VV间期。以这种方式,处理模块40可以提供速率自适应异步心室起搏。In any of the above examples, processing module 40 may also modify the VV interval based on detected changes in heart rate of patient 26 . For example, processing module 40 may increase the VV interval as the heart rate decreases and decrease the VV interval as the heart rate increases. In this manner, processing module 40 may provide rate adaptive asynchronous ventricular pacing.
响应于确定在VV间期内检测到右心室22的固有去极化(框92的分支“是”),处理模块40可以确定感测到的右心室22的固有去极化是心室激动(90)并且判定在VV间期内是否检测到右心室22的随后的固有去极化(92)。例如,在图9所示的时序图中,在处理模块40识别心室激动事件VACT 98之后,处理模块40可以基于感测到的电心脏信号来确定在心室激动事件VACT 98处开始的VV间期内检测到右心室的固有去极化22VS 100。处理模块40然后可以判定在右心室的固有去极化22VS 100处开始的VV间期内是否检测到右心室22的固有去极化(92)。In response to determining that an intrinsic depolarization of the right ventricle 22 was detected during the VV interval ("Yes" branch of block 92), processing module 40 may determine that the sensed intrinsic depolarization of the right ventricle 22 is a ventricular activation (90 ) and determine whether a subsequent intrinsic depolarization of the right ventricle 22 is detected during the VV interval (92). For example, in the timing diagram shown in FIG. 9, after processing module 40 identifies ventricular activating event V ACT 98, processing module 40 may determine the VV beginning at ventricular activating event V ACT 98 based on the sensed electrical cardiac signal. Intrinsic depolarization of the right ventricle 22V S 100 was detected during the interval. The processing module 40 may then determine whether an intrinsic depolarization of the right ventricle 22 is detected during the VV interval beginning at the intrinsic depolarization of the right ventricle 22V S 100 ( 92 ).
响应于确定在VV间期内未检测到右心室22的固有去极化(框92的分支“否”),处理模块40可以控制刺激模块44向右心室22递送心室起搏脉冲(94)。例如,在图9所示的时序图中,在处理模块40基于感测到的电心脏信号确定在心室感测事件VS 100处开始的VV间期内未检测到右心室的固有去极化22Vs,处理模块40可以控制刺激模块44向右心室22递送心室起搏脉冲VP 102。可以在先前检测到的心室激动事件VS 100处开始的VV间期结束时递送心室起搏脉冲。In response to determining that no intrinsic depolarization of the right ventricle 22 is detected during the VV interval ("no" branch of block 92), processing module 40 may control stimulation module 44 to deliver a ventricular pacing pulse to right ventricle 22 (94). For example, in the timing diagram shown in FIG. 9 , no intrinsic depolarization of the right ventricle is detected during the VV interval beginning at ventricular sense event VS 100 as determined by processing module 40 based on the sensed electrical cardiac signal. 22Vs, the processing module 40 may control the stimulation module 44 to deliver the ventricular pacing pulse V P 102 to the right ventricle 22 . The ventricular pacing pulse may be delivered at the end of the VV interval beginning at the previously detected ventricular activation event VS 100 .
处理模块40然后可以将心室起搏脉冲VP 102识别为心室激动事件(90),并且判定在心室起搏脉冲VP 102处开始的VV间期内是否检测到右心室22的固有去极化(92)。在图9所示的示例时序图中,处理模块40基于感测到的电心脏信号来判定在心室起搏脉冲VP 102处开始的VV间期内未检测到右心室的固有去极化22VS。因此,处理模块40可以控制刺激模块44向右心室22递送心室起搏脉冲VP 104。Processing module 40 may then identify ventricular pacing pulse VP 102 as a ventricular activation event (90), and determine whether intrinsic depolarization of right ventricle 22 is detected during the VV interval beginning at ventricular pacing pulse VP 102 (92). In the example timing diagram shown in FIG. 9 , the processing module 40 determines based on the sensed electrical cardiac signal that no intrinsic depolarization of the right ventricle 22V was detected during the VV interval beginning at the ventricular pacing pulse VP 102. S. Accordingly, processing module 40 may control stimulation module 44 to deliver ventricular pacing pulse V P 104 to right ventricle 22 .
图11是用于响应于检测到心房感测不足事件而使LPD 10A(或另一个LPD)从房室同步起搏模式切换到异步心室起搏模式的示例性技术的流程图。当执行所述切换时,处理模块40控制刺激模块44在房室同步起搏模式中停止向右心室22递送起搏脉冲,其中心室起搏脉冲被定时成心房激动事件,并且控制刺激模块44在异步心室起搏模式下向右心室22递送起搏脉冲,其中相对于心室激动事件对心室起搏脉冲进行定时。11 is a flowchart of an example technique for switching LPD 10A (or another LPD) from an atrioventricular synchronous pacing mode to an asynchronous ventricular pacing mode in response to detection of an atrial undersensing event. When the switching is performed, processing module 40 controls stimulation module 44 to cease delivery of pacing pulses to right ventricle 22 in an atrioventricular synchronized pacing mode with ventricular pacing pulses timed as atrial activation events, and controls stimulation module 44 to Pacing pulses are delivered to right ventricle 22 in an asynchronous ventricular pacing mode, where the ventricular pacing pulses are timed relative to ventricular activation events.
根据图11所示的技术,在处理模块40控制刺激模块44根据房室同步起搏模式向患者26的心脏24的右心室22递送心室起搏脉冲的时候,处理模块40可以检测心室激动事件VACT(91),并且判定在先前心房激动事件AACT处开始的心房事件检测窗口WAACT内是否检测到心房激动事件AACT(110)。在其他示例中,心房事件检测窗口WAACT可以在先前心室激动事件处开始,所述先前心室激动事件可以例如是心室起搏脉冲(VP)或固有心室去极化(VS)(例如,在感测到的电心脏信号内检测到的R波)的递送。在一些示例中,LPD 10A可以被配置成用于基于所述运动信号检测右心室22的收缩,并基于所检测到的心室收缩识别心室的激动。类似地,所述心房激动事件可以例如是由LPD 10A感测到的固有心房去极化、心房起搏事件或心房的机械收缩。According to the technique shown in FIG. 11 , when processing module 40 controls stimulation module 44 to deliver ventricular pacing pulses to right ventricle 22 of heart 24 of patient 26 according to an atrioventricular synchronized pacing pattern, processing module 40 may detect a ventricular activation event V ACT (91), and determining whether an atrial activating event AACT is detected within an atrial event detection window WAACT starting at a previous atrial activating event AACT (110). In other examples, the atrial event detection window W AACT may begin at a previous ventricular activation event, which may be, for example, a ventricular pacing pulse (V P ) or an intrinsic ventricular depolarization (V S ) (e.g., delivery of R-waves detected within the sensed electrical cardiac signal). In some examples, LPD 10A may be configured to detect contraction of right ventricle 22 based on the motion signal, and to identify activation of the ventricle based on the detected contraction of the ventricle. Similarly, the atrial activating event may be, for example, an intrinsic atrial depolarization sensed by the LPD 10A, an atrial pacing event, or a mechanical contraction of the atrium.
所述心房事件检测窗口WAACT可以限定收听期,在此期间,处理模块40对感测到的电心脏信号(或另一个生理信号)进行分析以检测心房激动事件。在一些示例中,心房事件检测窗口WAACT的持续时间基于预定数目的过去的心动周期的平均或中值A-A间期,如过去的6至12个心动周期。在一些示例中,心房事件检测窗口WAACT在约350ms至约1200ms之间。在又其他示例中,心房事件检测窗口WAACT的持续时间基于预定数目的过去的心动周期的平均或中值VV间期,如过去的6至12个心动周期。The atrial event detection window WAACT may define a listening period during which processing module 40 analyzes sensed electrical cardiac signals (or another physiological signal) to detect atrial activation events. In some examples, the duration of the atrial event detection window WAACT is based on the average or median AA interval of a predetermined number of past cardiac cycles, such as the past 6 to 12 cardiac cycles. In some examples, the atrial event detection window W AACT is between about 350 ms and about 1200 ms. In yet other examples, the duration of the atrial event detection window W AACT is based on the average or median VV interval of a predetermined number of past cardiac cycles, such as the past 6 to 12 cardiac cycles.
响应于在心房事件检测窗口WAACT内检测到心房激动事件AACT(框110的分支“是”),处理模块40可以复位用于跟踪在相应的心房事件检测窗口WAACT内未检测到心房激动事件AACT的心动周期的数目的计数器(112),所述计数器在这里被称为感测不足计数器。在一些示例中,所述感测不足计数器可以计数多个感测不足指示,并且可以以与所述心室事件计数器(关于图7所述的)相同的方式来配置。在一些示例中,所述感测不足计数器可以用于对在相应的心房事件检测窗口WAACT内未检测到心房激动事件AACT的连续心动周期的数目进行计数,并且在一些示例中处理模块40可以通过将所述计数器返回到零来重置所述计数器。在其他示例中,所述感测不足计数器可以用于对在预定时间段内或在相应的心房事件检测窗口WAACT内未检测到心房激动事件AACT的预定数目的心动周期内的心动周期数进行计数。在使用“X of Y”型计数器的一些示例中,处理模块40可以通过移除包括在与在“Y”个先前心动周期之前发生的感测不足指示相对应的“X”值内的任何计数来重置所述计数器。在图11所示的技术的其他示例中,处理模块40可能不会响应于检测到在一个心动周期中在心房事件检测窗口内检测到心房激动事件AACT而复位所述感测不足计数器(112),但是,处理模块40可以在预定时间段结束时重置所述感测不足计数器。In response to detecting an atrial activation event A ACT within the atrial event detection window W AACT (branch "YES" of block 110 ), the processing module 40 may reset the tracking function for the absence of atrial activation within the corresponding atrial event detection window W AACT A counter (112) of the number of cardiac cycles for event A ACT , referred to herein as an undersensing counter. In some examples, the undersensing counter may count a plurality of undersensing indications and may be configured in the same manner as the ventricular event counter (described with respect to FIG. 7 ). In some examples, the undersensing counter may be used to count the number of consecutive cardiac cycles in which an atrial activation event AACT is not detected within a corresponding atrial event detection window WAACT, and in some examples processing module 40 The counter can be reset by returning the counter to zero. In other examples, the undersensing counter may be used to count the number of cardiac cycles for which the atrial activation event AACT was not detected within a predetermined period of time or within a corresponding atrial event detection window WAACT to count. In some examples where an "X of Y" type counter is used, processing module 40 may remove any counts included within the "X" value corresponding to an indication of undersensing that occurred "Y" previous cardiac cycles before. to reset the counter. In other examples of the technique shown in FIG. 11 , processing module 40 may not reset the undersensing counter (112) in response to detecting an atrial activation event A ACT within the atrial event detection window in one cardiac cycle. ), however, the processing module 40 may reset the undersensing counter at the end of the predetermined time period.
处理模块40可以识别下一个心室激动事件或下一个心房激动事件检测窗口结束(91),并且重复图11所示的技术。响应于确定在下一个心房事件检测窗口WAACT内未检测到心房激动事件AACT(框110的分支“否”),处理模块40生成感测不足感指示并使感测不足计数器递增(114)。在一些情况下,可能发生心房激动事件,但是可以在心房事件检测窗口WAACT结束之后在所述心房事件检测窗口之外由处理模块40检测心房激动事件。在其他情况下,在检测到下一个心室激动事件之前,可能不会发生心房激动事件或可能不会由处理模块检测到。在任一种情况下,可能确定缺乏心房激动事件的检测不在心房事件检测窗口WAACT内,并且是LPD 10A的心房感测不足的结果。Processing module 40 may identify the next ventricular activation event or the end of the next atrial activation event detection window ( 91 ) and repeat the technique shown in FIG. 11 . In response to determining that an atrial activation event A ACT is not detected within the next atrial event detection window WA ACT ("No" branch of block 110), processing module 40 generates an undersensing indication and increments an undersensing counter (114). In some cases, an atrial activation event may occur, but may be detected by the processing module 40 outside of the atrial event detection window after the end of the atrial event detection window WAACT . In other cases, an atrial activation event may not occur or may not be detected by the processing module until the next ventricular activation event is detected. In either case, it may be determined that the lack of detection of an atrial activation event is not within the atrial event detection window WAACT and is the result of insufficient atrial sensing by the LPD 10A.
处理模块40判定所述感测不足计数器值是否大于或等于感测不足阈值(116)。所述感测不足阈值可以指示在处理模块40检测到心房感测不足感事件并控制LPD 10A切换到异步心室起搏模式之前在紧接在检测到的心房激动事件AACT之前处开始的心房激动事件检测窗口WAACT内未检测到心房激动事件的心动周期的数目。所述感测不足阈值可以由LPD10A的存储器42或可以与处理模块40通信的另一个设备的存储器(例如,医疗设备编程器)存储。Processing module 40 determines whether the undersensing counter value is greater than or equal to an undersensing threshold (116). The undersensing threshold may be indicative of atrial activation beginning immediately before a detected atrial activation event A ACT before processing module 40 detects an atrial undersensing event and controls LPD 10A to switch to an asynchronous ventricular pacing mode. Event Detection Window W AACT The number of cardiac cycles in which no atrial activation event was detected. The undersensing threshold may be stored by the memory 42 of the LPD 10A or the memory of another device that may be in communication with the processing module 40 (eg, a medical device programmer).
在一些示例中,所述感测不足阈值是1。在其他示例中,所述感测不足阈值可以大于一个,如两个、三个或四个或更多个。所述感测不足阈值可以被选择为是足够低的而能将LPD 10A配置为响应地切换操作模式以提供响应性心律管理治疗,但还是足够高而能为LPD10A提供时间来判定是否最终将由LPD 10A在LPD 10A仍然可以传递有效的房室同步起搏的时间段内感测到心房激动事件。这样可能允许心脏24维持固有传导,因为如果LPD 10A的感测模块40感测到心房激动事件,则LPD 10A可以继续递送房室同步起搏,这样有利于右心室22与右心房28的同步。In some examples, the undersensing threshold is one. In other examples, the undersensing threshold may be greater than one, such as two, three or four or more. The undersensing threshold may be selected to be low enough to configure LPD 10A to switch modes of operation responsively to provide responsive cardiac rhythm management therapy, but high enough to provide time for LPD 10A to determine whether the LPD 10A will ultimately be controlled by the LPD. 10A senses an atrial activation event during a time period during which LPD 10A can still deliver effective atrioventricular synchronized pacing. This may allow heart 24 to maintain intrinsic conduction because if sensing module 40 of LPD 10A senses an atrial activation event, LPD 10A may continue to deliver atrioventricular synchronized pacing, which facilitates synchronization of right ventricle 22 with right atrium 28 .
在房室同步起搏模式中,处理模块40控制刺激模块44在检测到的心房激动事件AACT之后的预定的时间段T6中生成心室起搏脉冲并将其递送到右心室22(或在其他示例中为左心室)。以这种方式,心房激动事件AACT可以用于在所述房室同步起搏模式中对递送心室起搏脉冲进行定时。在一些示例中,时间段T6是基于所存储的VV间期数据的。例如,可以选择时间段T6,使得此心动周期的VV间期与一定数目的紧接在前的心动周期的平均或中值VV间期基本上相等(例如,等于或近似等于)。In atrioventricular synchronized pacing mode, processing module 40 controls stimulation module 44 to generate and deliver ventricular pacing pulses to right ventricle 22 (or at Left ventricle in other examples). In this manner, the atrial activation event A ACT can be used to time the delivery of ventricular pacing pulses in the atrioventricular synchronized pacing mode. In some examples, time period T6 is based on stored VV interval data. For example, time period T6 may be selected such that the VV interval of this cardiac cycle is substantially equal (eg, equal or approximately equal) to the average or median VV interval of a number of immediately preceding cardiac cycles.
在处理模块40在心房事件检测窗口WAACT内未检测到心房激动事件AACT(框110的分支“否”)的心动周期中,处理模块40可以基于先前的心室起搏脉搏通过刺激模块44来控制心室起搏脉冲的定时。如图12所示,例如,处理模块40可以控制刺激模块44在先前的心室起搏脉冲(或其他心室激动事件)之后的时间段中递送心室起搏脉冲,所述时间段基本上等于“VV间期+偏差”。“VV间期+偏差”可以基本上等于一定数目的紧接在前的心动周期的平均或中值VV间期加上偏差,所述偏差在VV间期上添加时间。结果是,起搏脉冲可以在时间段T6之后但仍然是以及时的方式递送。在一些情况下,附加的时间量是约50毫秒到约250毫秒,如约100毫秒,或VV间期的百分比。During a cardiac cycle in which processing module 40 does not detect atrial activation event AACT within atrial event detection window WAACT (branch "No" of block 110), processing module 40 may, via stimulation module 44, based on previous ventricular pacing pulses Controls the timing of ventricular pacing pulses. As shown in FIG. 12, for example, processing module 40 may control stimulation module 44 to deliver a ventricular pacing pulse for a period of time following a previous ventricular pacing pulse (or other ventricular activation event) that is substantially equal to "VV Interval + Deviation". "VV interval + deviation" may be substantially equal to the mean or median VV interval of the number of immediately preceding cardiac cycles plus a deviation that adds time to the VV interval. As a result, pacing pulses may be delivered after time period T6 and still be delivered in a timely manner. In some cases, the additional amount of time is about 50 milliseconds to about 250 milliseconds, such as about 100 milliseconds, or a percentage of the VV interval.
通过基于在房室同步模式下检测到的心房激动事件对心室起搏脉冲的递送进行定时,处理模块40可以基于患者26的当前心率来对心室起搏脉冲进行定时。By timing the delivery of ventricular pacing pulses based on detected atrial activation events in the atrioventricular synchronous mode, processing module 40 may time the ventricular pacing pulses based on the current heart rate of patient 26 .
如果所述感测不足计数器值不大于或等于感测不足阈值,则处理模块40可以确定没有检测到心房感测不足事件。因此,响应于确定所述感测不足计数器值小于感测不足阈值(框116的分支“否”),处理模块40可以使用图11所示的技术继续监测患者26的心脏活动,直到检测到心房感测不足事件。然而,在一些示例中,如果例如刺激模块44在未检测到心房激动事件的心动周期中没有递送心室起搏脉冲,则处理模块40可能不会检测心室激动事件(91)。因此,处理模块40不是检测心室激动事件,而是可以识别先前心房事件检测窗口WAACT的结束(91),并且判定在心房事件检测窗口WAACT结束处开始的修改的心房事件检测窗口WAACT修改中是否检测到心房激动事件。在一些示例中,修改的心房事件检测窗口WAACT修改可以具有比心房事件检测窗口WAACT更长的持续时间。If the undersensing counter value is not greater than or equal to the undersensing threshold, processing module 40 may determine that no atrial undersensing event has been detected. Accordingly, in response to determining that the undersensing counter value is less than the undersensing threshold ("No" branch of block 116), processing module 40 may continue to monitor cardiac activity of patient 26 using the technique shown in FIG. Undersensing event. However, in some examples, processing module 40 may not detect a ventricular activating event if, for example, stimulation module 44 does not deliver a ventricular pacing pulse during a cardiac cycle in which no atrial activating event is detected ( 91 ). Therefore, instead of detecting a ventricular activation event, processing module 40 may identify the end of the previous atrial event detection window W AACT (91) and determine that the modified atrial event detection window W AACT beginning at the end of the atrial event detection window W AACT modifies Whether an atrial activation event was detected in the In some examples, the modified atrial event detection window W AACT modified may have a longer duration than the atrial event detection window W AACT .
在一些示例中,心房事件检测窗口WAACT具有基于先前检测到的心室激动事件的VV间期的持续时间。例如,心房事件检测窗口可以是处理模块40检测到心房激动事件的那些心动周期的最后两个、三个、四个或更多个(例如,十个或更多个)VV间期的最长的、最短的或平均持续时间加上附加时间量。In some examples, the atrial event detection window WAACT has a duration based on the VV interval of previously detected ventricular activation events. For example, the atrial event detection window may be the longest of the last two, three, four, or more (e.g., ten or more) VV intervals of those cardiac cycles in which the processing module 40 detected an atrial activation event. , minimum or average duration plus an additional amount of time.
修改的心房事件检测窗口WAACT修改可以是心房事件检测窗口WAACT加上引起患者26的心率变化的附加时间量。所述偏差可以为约30ms至约100ms,如约50ms或约100ms,或者可以在约50ms至约150ms的范围内。在其他示例中,所述偏差可以为约50ms至约150ms,其可以在每分钟心率10至20次的范围内。Modified Atrial Event Detection Window WAACT The modification may be the atrial event detection window WAACT plus an additional amount of time that causes the heart rate of patient 26 to vary. The deviation may be about 30 ms to about 100 ms, such as about 50 ms or about 100 ms, or may be in the range of about 50 ms to about 150 ms. In other examples, the deviation may be about 50 ms to about 150 ms, which may be in the range of 10 to 20 beats per minute.
处理模块40可以在LPD 10A的存储器42或另一个设备的存储器中存储心房事件检测窗口WAACT、修改的心房事件检测窗口WAACT修改、用于最新检测到的心房激动事件的A-A间期、所述偏差或其任何组合。The processing module 40 may store the atrial event detection window WAACT , the modified atrial event detection window WAACTmodified , the AA interval for the most recently detected atrial activation event, the deviations mentioned above or any combination thereof.
处理模块40可以响应于确定所述感测不足计数器值大于或等于感测不足阈值(框116的分支“是”)而检测心房感测不足事件。如图11所示,响应于确定所述感测不足计数器值大于或等于感测不足阈值(框116的分支“是”),处理模块40可以使LPD 10A从房室同步起搏模式切换到异步心室起搏模式(118)。因此,处理模块40可以使用异步心室起搏模式(例如,如关于图9和图10示出和描述的那样)来控制向患者26的心脏24的右心室22递送心室起搏脉冲。Processing module 40 may detect an atrial undersensing event in response to determining that the undersensing counter value is greater than or equal to the undersensing threshold ("YES" branch of block 116). As shown in FIG. 11 , in response to determining that the undersensing counter value is greater than or equal to the undersensing threshold ("YES" branch of block 116), processing module 40 may cause LPD 10A to switch from the atrioventricular synchronous pacing mode to the asynchronous pacing mode. Ventricular pacing modes (118). Accordingly, processing module 40 may control delivery of ventricular pacing pulses to right ventricle 22 of heart 24 of patient 26 using an asynchronous ventricular pacing mode (eg, as shown and described with respect to FIGS. 9 and 10 ).
在一些示例中,处理模块40生成所述感测不足事件的指示,并将所述指示存储在存储器42或另一个设备的存储器中。所述指示可以是例如标记、值或其他参数。可以由临床医生在稍后的时间使用所述感测不足事件的数目和定时来用于评估患者状况或治疗。In some examples, processing module 40 generates an indication of the undersensing event and stores the indication in memory 42 or a memory of another device. The indication may be, for example, a flag, value or other parameter. The number and timing of undersensing events can be used by a clinician at a later time for assessing patient condition or treatment.
在图11所示的技术的一些示例中,处理模块40可以响应于确定在相应的心房事件检测窗口WAACT中未检测到心房激动事件AACT而生成感测不足感指示,并且可以通过将所述感测不足指示存储在LPD 10A的存储器42中或另一个设备的存储器中来使所述感测不足计数器递增。例如通过删除所存储的感测不足感指示或者通过删除当使用“X of Y”型计数器时所存储的在“Y”个先前心动周期之前发生的感测不足指示,处理模块40可以重置所述感测不足计数器。处理模块40还可以至少通过判定所存储的感测不足指示的数目是否大于或等于所述感测不足阈值来判定所述感测不足计数器值是否大于或等于阈值(116)。In some examples of the techniques shown in FIG. 11 , processing module 40 may generate the sense undersensing indication in response to determining that atrial activation event A ACT is not detected within a corresponding atrial event detection window W The undersensing counter is incremented by storing the undersensing indication in the memory 42 of the LPD 10A or in another device's memory. The processing module 40 may reset the stored sensory undersensing indications, for example, by deleting the stored sensory undersensing indications or by deleting the stored sensory undersensing indications that occurred before "Y" previous cardiac cycles when an "X of Y" type counter is used. The undersensing counter described above. Processing module 40 may also determine whether the undersensing counter value is greater than or equal to a threshold by at least determining whether the number of stored undersensing indications is greater than or equal to the undersensing threshold (116).
图12是展示了用于响应于检测到感测不足事件而从房室同步起搏模式切换到异步心室起搏模式的图11的技术的示例应用的时序图。在图12所示的示例中,所述心室激动事件被显示为心室起搏脉冲VP,但是在其他示例中至少一些所述心室激动事件可能是固有心室去极化。12 is a timing diagram illustrating an example application of the technique of FIG. 11 for switching from an atrioventricular synchronous pacing mode to an asynchronous ventricular pacing mode in response to detection of an undersensing event. In the example shown in Figure 12, the ventricular activating events are shown as ventricular pacing pulses VP , but in other examples at least some of the ventricular activating events may be intrinsic ventricular depolarizations.
如图12所示,处理模块40可以在房室同步起搏模式下控制将心室起搏脉冲递送到右心室22。例如,如关于图7所述,处理模块40可以基于由电感测模块46感测到的电心脏信号、基于对递送心房起搏脉搏的检测或使用另一种技术来检测心房激动事件AACT 120。处理模块40可以例如使用图8所示的技术来判定在心室感测事件检测窗口WVACT或WACT短(在图12中未标记)内是否检测到固有心室去极化。在图12所示的示例中,在心动周期121A中,处理模块40确定在所述心室感测事件检测窗口内未检测到固有心室去极化,并且控制刺激模块44在检测到的心房激动事件AACT 120之后的时间段T6中向右心室22递送心室起搏脉冲VP122。As shown in FIG. 12, the processing module 40 may control the delivery of ventricular pacing pulses to the right ventricle 22 in the atrioventricular synchronized pacing mode. For example, as described with respect to FIG. 7, processing module 40 may detect atrial activation event A ACT 120 based on electrical cardiac signals sensed by electrical sensing module 46, based on detection of delivered atrial pacing pulses, or using another technique. . Processing module 40 may determine whether intrinsic ventricular depolarization is detected within a ventricular sensing event detection window W VACT or W ACT short (not labeled in FIG. 12 ), for example using the technique shown in FIG. 8 . In the example shown in FIG. 12 , during cardiac cycle 121A, processing module 40 determines that no intrinsic ventricular depolarization has been detected within the ventricular sensed event detection window, and controls stimulation module 44 to respond to a detected atrial activation event. A ventricular pacing pulse V P 122 is delivered to the right ventricle 22 during time period T 6 following A ACT 120 .
在下一心动周期121B中(紧接在心动周期121A之后),处理模块40确定在心房激动事件120处开始的心房事件检测窗口WAACT内检测到心房激动事件AACT 124(110)。根据图11所示的技术,处理模块40然后可以复位所述感测不足计数器(112)并在检测到的心房激动事件AACT 124之后的时间段T6中控制刺激模块44向右心室22递送心室起搏脉冲VP 126。类似地,在随后的心动周期121C中,处理模块40确定在先前心动周期121B的心房事件检测窗口WAACT内检测到心房激动事件AACT 128(110)。处理模块40然后可以复位所述感测不足计数器(112)并在检测到的心房激动事件AACT 128之后的时间段T6中控制刺激模块44向右心室22递送心室起搏脉冲VP 130。In the next cardiac cycle 121B (immediately following cardiac cycle 121A), processing module 40 determines that atrial activation event A ACT 124 is detected within atrial event detection window W AACT beginning at atrial activation event 120 ( 110 ). According to the technique shown in FIG. 11 , processing module 40 may then reset the undersensing counter ( 112 ) and control stimulation module 44 to deliver Ventricular Pacing Pulse V P 126. Similarly, in subsequent cardiac cycle 121C, processing module 40 determines that atrial activation event A ACT 128 was detected within atrial event detection window W AACT of previous cardiac cycle 121B ( 110 ). Processing module 40 may then reset the undersensing counter ( 112 ) and control stimulation module 44 to deliver ventricular pacing pulse V P 130 to right ventricle 22 during time period T 6 after detected atrial activation event A ACT 128 .
在随后的心动周期121D中,处理模块40确定在心房激动事件AACT 128处开始的修改的心房事件检测窗口WAACT修改内未检测到心房激动事件AACT(图11中的框110的分支“否”)。在这种情况下可以使用较长的心房事件检测窗口,以便为处理模块40提供足够长的心房激动事件接听期。例如,在一些示例中,所述较长的心房事件检测窗口可以大于预定数目的(例如,5个、10个或更多个)紧接在前的心动周期的平均A-A间期。作为另一个示例,较长的心房事件检测窗口可以具有预定的预编程的持续时间。In subsequent cardiac cycle 121D, processing module 40 determines that atrial activating event A ACT was not detected within modified atrial event detection window W AACT beginning at atrial activating event A ACT 128 (branch "no"). A longer atrial event detection window may be used in this case to provide processing module 40 with a sufficiently long listening period for atrial activation events. For example, in some examples, the longer atrial event detection window may be greater than the average AA interval of a predetermined number (eg, 5, 10, or more) of immediately preceding cardiac cycles. As another example, a longer atrial event detection window may have a predetermined preprogrammed duration.
响应于确定在修改的心房事件检测窗口WAACT修改内未检测到心房激动事件AACT,处理模块40可以使所述感测不足计数器递增(114)并且判定所述感测不足计数器值是否大于或等于所述感测不足阈值(116)。在图12所示的示例中,处理模块40确定在心动周期121D中所述感测不足计数器值不大于或等于所述感测不足阈值(框116的分支“否”)。因此,处理模块40可以控制刺激模块44向右心室22递送心室起搏脉冲VP 132,所述心室起搏脉冲被定时成紧接在心动周期121C前的心室起搏脉冲130。在图12所示的示例中,刺激模块44在心室起搏脉冲130之后的时间段中递送心室起搏脉冲VP 132,其中所述时间段基本上等于(例如,等于或近似等于)VV间期加上偏差(VV间期+偏差)。所述偏差可以是30ms至约100ms,如约50ms或约100ms。这样,由于心房感测不足,VV间期只是略微延长。In response to determining that an atrial activation event AACT is not detected within the modified atrial event detection window WAACT , processing module 40 may increment (114) the undersensing counter and determine whether the undersensing counter value is greater than or Equal to the undersensing threshold (116). In the example shown in FIG. 12 , processing module 40 determines that the undersensing counter value is not greater than or equal to the undersensing threshold in cardiac cycle 121D (branch "NO" from block 116 ). Accordingly, processing module 40 may control stimulation module 44 to deliver ventricular pacing pulse V P 132 to right ventricle 22 , which is timed as ventricular pacing pulse 130 immediately preceding cardiac cycle 121C. In the example shown in FIG. 12 , stimulation module 44 delivers ventricular pacing pulse V P 132 for a period of time following ventricular pacing pulse 130 , wherein the period of time is substantially equal to (eg, equal to or approximately equal to) between VV period plus bias (VV interval + bias). The deviation may be 30ms to about 100ms, such as about 50ms or about 100ms. Thus, the VV interval is only slightly prolonged due to undersensing of the atria.
然而,在随后的心动周期121E中,处理模块40确定在先前心动周期121D的心房激动事件窗口结束处开始的修改的心房事件检测窗口WAACT修改内未检测到心房激动事件AACT(图11中的框110的分支“否”)。处理模块40可以控制刺激模块44向右心室22递送心室起搏脉冲VP 134,所述心室起搏脉冲被定时成紧接在心动周期121D前的心室起搏脉冲130。However, in subsequent cardiac cycle 121E, processing module 40 determines that no atrial activation event A ACT was detected within the modified atrial event detection window W AACT that began at the end of the atrial activation event window of the previous cardiac cycle 121D ( FIG. 11 Branch "NO" of block 110). Processing module 40 may control stimulation module 44 to deliver ventricular pacing pulse V P 134 to right ventricle 22 , the ventricular pacing pulse timed as ventricular pacing pulse 130 immediately preceding cardiac cycle 121D.
此外,响应于确定在先前心动周期121D的心房激动事件窗口结束处开始的修改的心房事件检测窗口WAACT修改内未检测到心房激动事件AACT,处理模块40可以使所述感测不足计数器递增(114)并且判定所述感测不足计数器值是否大于或等于所述感测不足阈值(116)。在图12所示的示例中,处理模块40确定在心动周期121E中所述感测不足计数器值大于或等于所述感测不足阈值(框116的分支“是”)。因此,处理模块40确定检测到感测不足事件,并将LPD 10A切换到异步心室起搏模式。在图12所示的示例中,在第一心动周期121F中,LPD 10A处于异步起搏模式,刺激模块44在先前心动周期121E的起搏脉冲134之后的VV间期中向心脏24递送心室起搏脉冲VP 135。Furthermore, in response to determining that an atrial activation event A ACT was not detected within a modified atrial event detection window W AACT beginning at the end of the atrial activation event window of the previous cardiac cycle 121D, the processing module 40 may increment the undersensing counter (114) and determining whether the undersensing counter value is greater than or equal to the undersensing threshold (116). In the example shown in FIG. 12 , processing module 40 determines that the undersensing counter value is greater than or equal to the undersensing threshold in cardiac cycle 121E ("YES" branch from block 116). Accordingly, processing module 40 determines that an undersensing event is detected and switches LPD 10A to the asynchronous ventricular pacing mode. In the example shown in FIG. 12 , in a first cardiac cycle 121F, the LPD 10A is in an asynchronous pacing mode, and the stimulation module 44 delivers ventricular pacing to the heart 24 in the VV interval following the pacing pulse 134 of the previous cardiac cycle 121E. Pulse V P 135.
如关于图9和图10所述,在异步心室起搏模式中,处理模块40可以判定在检测到心室激动时开始的VV间期内是否检测到右心室22的固有去极化(例如,VP 132),并且响应于确定在VV间期内未检测到右心室22的固有去极化,处理模块40可以控制刺激模块44向右心室22递送心室起搏脉冲VP 134。在图12所示的示例中,随后的起搏脉冲132、134之间的时间段被显示为一个或多个先前心动周期的VV间期加上偏差(例如,约30ms至约150ms,如约50ms或约100ms,尽管可能会基于心率而有所不同)。在一些示例中,处理模块40基于一个或多个先前心动周期(如心动周期121A、121B)来确定VV间期。例如,VV间期可以是一个或多个先前心动周期的心室激动事件之间的平均间期。VV间期可以指示平均心率或中值心率,使得所述偏差导致起搏率可能低于患者26的先前检测到的心率。As described with respect to FIGS. 9 and 10, in the asynchronous ventricular pacing mode, processing module 40 may determine whether intrinsic depolarization of right ventricle 22 (e.g., V P 132 ), and in response to determining that no intrinsic depolarization of the right ventricle 22 is detected during the VV interval, the processing module 40 may control the stimulation module 44 to deliver a ventricular pacing pulse V P 134 to the right ventricle 22 . In the example shown in FIG. 12, the time period between subsequent pacing pulses 132, 134 is shown as the VV interval of one or more previous cardiac cycles plus an offset (e.g., about 30 ms to about 150 ms, such as about 50 ms or about 100ms, although it may vary based on heart rate). In some examples, processing module 40 determines the VV interval based on one or more previous cardiac cycles (eg, cardiac cycles 121A, 121B). For example, the VV interval may be the average interval between ventricular activation events of one or more previous cardiac cycles. The VV interval may be indicative of an average or median heart rate such that the deviation results in a pacing rate that may be lower than the patient's 26 previously detected heart rate.
另一方面,如果处理模块40确定在VV间期内检测到右心室22的固有去极化,则处理模块40可以不控制刺激模块44向右心室22递送心室起搏脉冲VP 134。On the other hand, if processing module 40 determines that intrinsic depolarization of right ventricle 22 is detected during the VV interval, processing module 40 may not control stimulation module 44 to deliver ventricular pacing pulse V P 134 to right ventricle 22 .
即使在异步起搏模式下,LPD 10A也可以间歇地感测心房激动事件。在一些情况下,可能需要的是,LPD 10A在可能的情况下递送房室同步起搏,以便帮助心脏26保持同步。因此,在本文所述的一些示例中,在处理模块40控制LPD 10A从房室同步起搏模式切换到异步心室起搏模式之后,处理模块40可以周期性地判定是否检测到心房激动事件。响应于确定检测到心房激动,处理模块40可以控制LPD 10A恢复到房室同步起搏模式。以这种方式配置的LPD 10A可以在心房率太慢或发生一致的心房感测不足时递送心率响应性起搏,同时有利于在异步起搏上进行AV同步起搏。Even in asynchronous pacing mode, LPD 10A can sense atrial activation events intermittently. In some instances, it may be desirable for the LPD 10A to deliver atrioventricular synchronized pacing, where possible, in order to help the heart 26 stay in sync. Accordingly, in some examples described herein, after processing module 40 controls LPD 10A to switch from an atrioventricular synchronous pacing mode to an asynchronous ventricular pacing mode, processing module 40 may periodically determine whether an atrial activation event is detected. In response to determining that atrial activation is detected, processing module 40 may control LPD 10A to revert to the AV synchronized pacing mode. LPD 10A configured in this manner can deliver heart rate responsive pacing when the atrial rate is too slow or consistent atrial undersensing occurs while facilitating AV synchronous pacing over asynchronous pacing.
本公开中描述的技术(包括附属于图像IMD 16、编程器24或各种组成部件的那些技术)可以至少部分地在硬件、软件、固件或其任何组合中实现。例如,所述技术的各个方面可以在一个或多个处理器中实现,包括一个或多个微处理器、DSP、ASIC、FPGA或者任何其他等效集成的或离散的逻辑电路,以及此类部件的任何组合,所述部件在编程器(诸如内科医师或患者编程器、刺激器、图像处理设备或其他设备)中被具体化。术语“处理器”或“处理电路”通常可以指前述逻辑电路中的任何电路(单独地或与其他逻辑电路组合),或者任何其他等效电路。The techniques described in this disclosure, including those ancillary to graphics IMD 16, programmer 24, or various constituent components, may be implemented at least in part in hardware, software, firmware, or any combination thereof. For example, various aspects of the technology may be implemented in one or more processors, including one or more microprocessors, DSPs, ASICs, FPGAs, or any other equivalent integrated or discrete logic circuits, and such components The components are embodied in a programmer, such as a physician or patient programmer, stimulator, image processing device, or other device. The term "processor" or "processing circuit" may generally refer to any of the foregoing logic circuits, alone or in combination with other logic circuits, or any other equivalent circuit.
此类硬件、软件、固件可以在同一设备或单独设备内实现以便支持本公开中描述的各种操作和功能。此外,所描述的单元、模块或部件中的任一项可以被实现为在一起或单独地作为分立但彼此协作的逻辑设备。作为模块或单元的不同特征的描绘旨在强调不同的功能方面,并且并不一定暗示此类模块或单元必须通过单独的硬件或软件部件来实现。相反,与一个或多个模块或单元相关联的功能可以通过单独的硬件或软件部件来执行、或集成在共同的或单独的硬件或软件部件内。Such hardware, software, firmware may be implemented within the same device or in separate devices to support the various operations and functions described in this disclosure. Furthermore, any of the described units, modules or components may be implemented together or separately as discrete but co-operating logic devices. Depiction of different features as modules or units is intended to emphasize different functional aspects and does not necessarily imply that such modules or units must be realized by separate hardware or software components. Rather, functions associated with one or more modules or units may be performed by separate hardware or software components, or integrated within common or separate hardware or software components.
当在软件中实施时,归于本公开中所描述的系统、设备和技术的功能可以被具体化为计算机可读介质(比如,RAM、ROM、NVRAM、EEPROM、闪存、磁性数据存储介质、光学数据存储介质等)上的指令。所述指令可以执行来支持在本公开中描述的功能的一个或多个方面。When implemented in software, the functionality attributed to the systems, devices, and techniques described in this disclosure can be embodied as computer-readable media (e.g., RAM, ROM, NVRAM, EEPROM, flash memory, magnetic data storage media, optical data instructions on storage media, etc.). The instructions are executable to support one or more aspects of the functionality described in this disclosure.
已经对各种不同的示例进行了描述。这些示例和其他示例在以下权利要求书的范围内。Various examples have been described. These and other examples are within the scope of the following claims.
Claims (10)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/538,518 US9492668B2 (en) | 2014-11-11 | 2014-11-11 | Mode switching by a ventricular leadless pacing device |
| US14/538,518 | 2014-11-11 | ||
| PCT/US2015/058743 WO2016077097A1 (en) | 2014-11-11 | 2015-11-03 | Mode switching by a ventricular leadless pacing device |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN107106848A true CN107106848A (en) | 2017-08-29 |
| CN107106848B CN107106848B (en) | 2020-11-27 |
Family
ID=54705798
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201580061066.4A Active CN107106848B (en) | 2014-11-11 | 2015-11-03 | Leadless pacing system with mode switching capability via ventricular leadless pacing device |
Country Status (4)
| Country | Link |
|---|---|
| US (2) | US9492668B2 (en) |
| EP (1) | EP3218051B1 (en) |
| CN (1) | CN107106848B (en) |
| WO (1) | WO2016077097A1 (en) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108310652A (en) * | 2018-04-10 | 2018-07-24 | 创领心律管理医疗器械(上海)有限公司 | Heart implanted device and pacing system |
| CN111432875A (en) * | 2017-12-01 | 2020-07-17 | 心脏起搏器股份公司 | Method and system for detecting atrial contraction timing references and determining cardiac intervals from a ventricular-implantable leadless cardiac pacemaker |
| CN111432874A (en) * | 2017-12-01 | 2020-07-17 | 心脏起搏器股份公司 | Method and system for detecting atrial systolic timing fiducials within a search window from a ventricular implanted leadless pacemaker |
| CN111556773A (en) * | 2018-01-04 | 2020-08-18 | 心脏起搏器股份公司 | Dual chamber pacing without beat-to-beat communication |
| CN114858494A (en) * | 2022-04-08 | 2022-08-05 | 中国食品药品检定研究院 | Ventricular assist device testing method and ventricular assist device testing system |
| CN115887923A (en) * | 2021-08-16 | 2023-04-04 | 丹源医学科技(杭州)有限公司 | An implantable medical device and system capable of effectively avoiding pacing in the vulnerable period of the ventricle |
Families Citing this family (79)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107206242B (en) | 2015-02-06 | 2020-10-30 | 心脏起搏器股份公司 | Systems and methods for safe delivery of electrical stimulation therapy |
| WO2016130477A2 (en) | 2015-02-09 | 2016-08-18 | Cardiac Pacemakers, Inc. | Implantable medical device with radiopaque id tag |
| WO2016141046A1 (en) | 2015-03-04 | 2016-09-09 | Cardiac Pacemakers, Inc. | Systems and methods for treating cardiac arrhythmias |
| CN108136187B (en) | 2015-08-20 | 2021-06-29 | 心脏起搏器股份公司 | System and method for communication between medical devices |
| CN108136186B (en) | 2015-08-20 | 2021-09-17 | 心脏起搏器股份公司 | System and method for communication between medical devices |
| US10226631B2 (en) | 2015-08-28 | 2019-03-12 | Cardiac Pacemakers, Inc. | Systems and methods for infarct detection |
| WO2017040115A1 (en) | 2015-08-28 | 2017-03-09 | Cardiac Pacemakers, Inc. | System for detecting tamponade |
| WO2017040153A1 (en) | 2015-08-28 | 2017-03-09 | Cardiac Pacemakers, Inc. | Systems and methods for behaviorally responsive signal detection and therapy delivery |
| WO2017044389A1 (en) | 2015-09-11 | 2017-03-16 | Cardiac Pacemakers, Inc. | Arrhythmia detection and confirmation |
| EP3359251B1 (en) | 2015-10-08 | 2019-08-07 | Cardiac Pacemakers, Inc. | Adjusting pacing rates in an implantable medical device |
| US10183170B2 (en) | 2015-12-17 | 2019-01-22 | Cardiac Pacemakers, Inc. | Conducted communication in a medical device system |
| US10905886B2 (en) | 2015-12-28 | 2021-02-02 | Cardiac Pacemakers, Inc. | Implantable medical device for deployment across the atrioventricular septum |
| US10583303B2 (en) | 2016-01-19 | 2020-03-10 | Cardiac Pacemakers, Inc. | Devices and methods for wirelessly recharging a rechargeable battery of an implantable medical device |
| CN109069840B (en) | 2016-02-04 | 2022-03-15 | 心脏起搏器股份公司 | Delivery system with force sensor for leadless cardiac devices |
| EP3436142B1 (en) | 2016-03-31 | 2025-04-30 | Cardiac Pacemakers, Inc. | Implantable medical device with rechargeable battery |
| US10668294B2 (en) | 2016-05-10 | 2020-06-02 | Cardiac Pacemakers, Inc. | Leadless cardiac pacemaker configured for over the wire delivery |
| US10328272B2 (en) | 2016-05-10 | 2019-06-25 | Cardiac Pacemakers, Inc. | Retrievability for implantable medical devices |
| EP3474945B1 (en) | 2016-06-27 | 2022-12-28 | Cardiac Pacemakers, Inc. | Cardiac therapy system using subcutaneously sensed p-waves for resynchronization pacing management |
| US11207527B2 (en) | 2016-07-06 | 2021-12-28 | Cardiac Pacemakers, Inc. | Method and system for determining an atrial contraction timing fiducial in a leadless cardiac pacemaker system |
| US10426962B2 (en) | 2016-07-07 | 2019-10-01 | Cardiac Pacemakers, Inc. | Leadless pacemaker using pressure measurements for pacing capture verification |
| EP3487579B1 (en) | 2016-07-20 | 2020-11-25 | Cardiac Pacemakers, Inc. | System for utilizing an atrial contraction timing fiducial in a leadless cardiac pacemaker system |
| US10391319B2 (en) | 2016-08-19 | 2019-08-27 | Cardiac Pacemakers, Inc. | Trans septal implantable medical device |
| WO2018039335A1 (en) | 2016-08-24 | 2018-03-01 | Cardiac Pacemakers, Inc. | Integrated multi-device cardiac resynchronization therapy using p-wave to pace timing |
| EP3503970B1 (en) | 2016-08-24 | 2023-01-04 | Cardiac Pacemakers, Inc. | Cardiac resynchronization using fusion promotion for timing management |
| US20180078773A1 (en) * | 2016-09-21 | 2018-03-22 | Cardiac Pacemakers, Inc. | Multi-device cardiac resynchronization therapy with mode switching timing reference |
| US10758737B2 (en) | 2016-09-21 | 2020-09-01 | Cardiac Pacemakers, Inc. | Using sensor data from an intracardially implanted medical device to influence operation of an extracardially implantable cardioverter |
| WO2018057626A1 (en) | 2016-09-21 | 2018-03-29 | Cardiac Pacemakers, Inc. | Implantable cardiac monitor |
| WO2018057318A1 (en) | 2016-09-21 | 2018-03-29 | Cardiac Pacemakers, Inc. | Leadless stimulation device with a housing that houses internal components of the leadless stimulation device and functions as the battery case and a terminal of an internal battery |
| WO2018081237A1 (en) | 2016-10-27 | 2018-05-03 | Cardiac Pacemakers, Inc. | Use of a separate device in managing the pace pulse energy of a cardiac pacemaker |
| US10561330B2 (en) | 2016-10-27 | 2020-02-18 | Cardiac Pacemakers, Inc. | Implantable medical device having a sense channel with performance adjustment |
| US10765871B2 (en) | 2016-10-27 | 2020-09-08 | Cardiac Pacemakers, Inc. | Implantable medical device with pressure sensor |
| US10463305B2 (en) | 2016-10-27 | 2019-11-05 | Cardiac Pacemakers, Inc. | Multi-device cardiac resynchronization therapy with timing enhancements |
| US10413733B2 (en) | 2016-10-27 | 2019-09-17 | Cardiac Pacemakers, Inc. | Implantable medical device with gyroscope |
| CN109922860B (en) | 2016-10-27 | 2023-07-04 | 心脏起搏器股份公司 | Implantable medical device delivery system with integrated sensor |
| CN109890456B (en) | 2016-10-31 | 2023-06-13 | 心脏起搏器股份公司 | System for activity level pacing |
| JP6843235B2 (en) | 2016-10-31 | 2021-03-17 | カーディアック ペースメイカーズ, インコーポレイテッド | Systems and methods for activity level pacing |
| WO2018089311A1 (en) | 2016-11-08 | 2018-05-17 | Cardiac Pacemakers, Inc | Implantable medical device for atrial deployment |
| US10632313B2 (en) | 2016-11-09 | 2020-04-28 | Cardiac Pacemakers, Inc. | Systems, devices, and methods for setting cardiac pacing pulse parameters for a cardiac pacing device |
| JP6781346B2 (en) | 2016-11-21 | 2020-11-04 | カーディアック ペースメイカーズ, インコーポレイテッド | Leadless cardiac pacemaker with multi-mode communication |
| US10881869B2 (en) | 2016-11-21 | 2021-01-05 | Cardiac Pacemakers, Inc. | Wireless re-charge of an implantable medical device |
| US10639486B2 (en) | 2016-11-21 | 2020-05-05 | Cardiac Pacemakers, Inc. | Implantable medical device with recharge coil |
| EP3541472B1 (en) | 2016-11-21 | 2023-06-07 | Cardiac Pacemakers, Inc. | Implantable medical device with a magnetically permeable housing and an inductive coil disposed about the housing |
| US10894163B2 (en) | 2016-11-21 | 2021-01-19 | Cardiac Pacemakers, Inc. | LCP based predictive timing for cardiac resynchronization |
| US10864377B2 (en) | 2016-12-01 | 2020-12-15 | Medtronic, Inc. | Pacing mode switching in a ventricular pacemaker |
| US11207532B2 (en) | 2017-01-04 | 2021-12-28 | Cardiac Pacemakers, Inc. | Dynamic sensing updates using postural input in a multiple device cardiac rhythm management system |
| CN110234392B (en) | 2017-01-26 | 2023-08-11 | 心脏起搏器股份公司 | Leadless device with overmolded component |
| CN110198759B (en) | 2017-01-26 | 2023-08-11 | 心脏起搏器股份公司 | Leadless implantable device with removable fasteners |
| JP7000438B2 (en) | 2017-01-26 | 2022-01-19 | カーディアック ペースメイカーズ, インコーポレイテッド | Human device communication with redundant message transmission |
| US10905872B2 (en) | 2017-04-03 | 2021-02-02 | Cardiac Pacemakers, Inc. | Implantable medical device with a movable electrode biased toward an extended position |
| EP3606605B1 (en) | 2017-04-03 | 2023-12-20 | Cardiac Pacemakers, Inc. | Cardiac pacemaker with pacing pulse energy adjustment based on sensed heart rate |
| US10918875B2 (en) | 2017-08-18 | 2021-02-16 | Cardiac Pacemakers, Inc. | Implantable medical device with a flux concentrator and a receiving coil disposed about the flux concentrator |
| US11065459B2 (en) | 2017-08-18 | 2021-07-20 | Cardiac Pacemakers, Inc. | Implantable medical device with pressure sensor |
| US10758733B2 (en) | 2017-09-15 | 2020-09-01 | Medtronic, Inc. | Implantable medical device with retractable fixation sheath |
| US11426578B2 (en) | 2017-09-15 | 2022-08-30 | Medtronic, Inc. | Electrodes for intra-cardiac pacemaker |
| JP6938778B2 (en) | 2017-09-20 | 2021-09-22 | カーディアック ペースメイカーズ, インコーポレイテッド | Implantable medical device with multiple modes of operation |
| US11185703B2 (en) | 2017-11-07 | 2021-11-30 | Cardiac Pacemakers, Inc. | Leadless cardiac pacemaker for bundle of his pacing |
| CN111417433B (en) | 2017-12-01 | 2024-04-30 | 心脏起搏器股份公司 | Method and system for detecting atrial contraction timing reference during ventricular filling from a ventricularly implanted leadless cardiac pacemaker |
| EP3717060B1 (en) * | 2017-12-01 | 2022-10-05 | Cardiac Pacemakers, Inc. | Leadless cardiac pacemaker with reversionary behavior |
| US11529523B2 (en) | 2018-01-04 | 2022-12-20 | Cardiac Pacemakers, Inc. | Handheld bridge device for providing a communication bridge between an implanted medical device and a smartphone |
| CN120267967A (en) | 2018-03-23 | 2025-07-08 | 美敦力公司 | AV synchronous VFA heart treatment |
| EP3768160B1 (en) | 2018-03-23 | 2023-06-07 | Medtronic, Inc. | Vfa cardiac therapy for tachycardia |
| CN111902187B (en) | 2018-03-23 | 2025-05-16 | 美敦力公司 | Cardiac resynchronization therapy with VFA |
| US11617889B2 (en) | 2018-04-20 | 2023-04-04 | Medtronic, Inc. | Rate smoothing to enhance atrial synchronous pacing in a ventricular pacemaker |
| CN112312959B (en) * | 2018-06-28 | 2024-10-15 | 美敦力公司 | Pacing mode switching in a ventricular pacemaker |
| JP2022501085A (en) | 2018-09-26 | 2022-01-06 | メドトロニック,インコーポレイテッド | Capturing in ventricular cardiac therapy from the atria |
| US11951313B2 (en) | 2018-11-17 | 2024-04-09 | Medtronic, Inc. | VFA delivery systems and methods |
| JP2022513779A (en) | 2018-12-21 | 2022-02-09 | メドトロニック,インコーポレイテッド | Delivery system and method for left ventricular pacing |
| US11679265B2 (en) | 2019-02-14 | 2023-06-20 | Medtronic, Inc. | Lead-in-lead systems and methods for cardiac therapy |
| US11701517B2 (en) * | 2019-03-11 | 2023-07-18 | Medtronic, Inc. | Cardiac resynchronization therapy using accelerometer |
| US11697025B2 (en) | 2019-03-29 | 2023-07-11 | Medtronic, Inc. | Cardiac conduction system capture |
| US11213676B2 (en) | 2019-04-01 | 2022-01-04 | Medtronic, Inc. | Delivery systems for VfA cardiac therapy |
| US11712188B2 (en) | 2019-05-07 | 2023-08-01 | Medtronic, Inc. | Posterior left bundle branch engagement |
| US11305127B2 (en) | 2019-08-26 | 2022-04-19 | Medtronic Inc. | VfA delivery and implant region detection |
| EP3789081B1 (en) * | 2019-09-04 | 2023-08-23 | BIOTRONIK SE & Co. KG | Leadless cardiac pacemaker device configured to provide intra-cardiac pacing |
| US11813466B2 (en) | 2020-01-27 | 2023-11-14 | Medtronic, Inc. | Atrioventricular nodal stimulation |
| US11911168B2 (en) | 2020-04-03 | 2024-02-27 | Medtronic, Inc. | Cardiac conduction system therapy benefit determination |
| US11813464B2 (en) | 2020-07-31 | 2023-11-14 | Medtronic, Inc. | Cardiac conduction system evaluation |
| EP4279121B1 (en) | 2022-05-20 | 2024-07-24 | BIOTRONIK SE & Co. KG | An implantable medical device configured to provide an intra-cardiac pacing |
| US20250269187A1 (en) | 2022-04-27 | 2025-08-28 | BIO TRONIK SE & Co. KG | An implantable medical device configured to provide an intra-cardiac pacing |
Citations (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5247930A (en) * | 1992-02-04 | 1993-09-28 | Vitatron Medical, B.V. | Dual chamber pacing system with dynamic physiological tracking and method of timing delivered stimulus for optimized synchronous pacing |
| EP0709114A2 (en) * | 1994-10-26 | 1996-05-01 | Vitatron Medical B.V. | Dual chamber pacemaker system and method with improved switching between synchronous and asynchronous behavior |
| EP0734741A3 (en) * | 1995-03-29 | 1998-03-11 | Vitatron Medical B.V. | Pacemaker system and method with improved detection of end of retrograde conduction |
| US6498949B2 (en) * | 2001-02-27 | 2002-12-24 | Pacesetter, Inc. | Implantable cardiac device providing repetitive non-reentrant ventriculo-atrial synchronous (RNRVAS) rhythm therapy using VA interval extension and method |
| US20070135850A1 (en) * | 2005-06-09 | 2007-06-14 | Ela Medical S.A. | Improved management of mode switching for an aai/ddd type implantable device in the presence of ventricular events of uncertain nature |
| US20080255628A1 (en) * | 2007-04-11 | 2008-10-16 | Cardiac Pacemakers, Inc. | Reverse pacing-mode switch |
| US20090281587A1 (en) * | 2008-05-07 | 2009-11-12 | Pacesetter, Inc. | System and method for detecting hidden atrial events for use with automatic mode switching within an implantable medical device |
| US20130079861A1 (en) * | 2011-09-27 | 2013-03-28 | Medtronic, Inc. | Imd stability monitor |
| US20130138006A1 (en) * | 2011-11-04 | 2013-05-30 | Pacesetter, Inc. | Single chamber leadless intra-cardiac medical device having dual chamber sensing with signal discrimination |
| CN103381284A (en) * | 2005-10-14 | 2013-11-06 | 内诺斯蒂姆股份有限公司 | Leadless cardiac pacemaker and system |
| CN103517733A (en) * | 2011-04-27 | 2014-01-15 | 美敦力公司 | Pacing in the presence of electromagnetic interference |
| US20140121720A1 (en) * | 2012-10-31 | 2014-05-01 | Medtronic, Inc. | Leadless pacemaker system |
Family Cites Families (305)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR1460772A (en) | 1965-10-13 | 1966-01-07 | Philips Massiot Mat Medic | Pacemaker |
| FR2044246A5 (en) | 1969-05-13 | 1971-02-19 | Philips Massiot Mat Medic | |
| US3659615A (en) | 1970-06-08 | 1972-05-02 | Carl C Enger | Encapsulated non-permeable piezoelectric powered pacesetter |
| US3943936A (en) | 1970-09-21 | 1976-03-16 | Rasor Associates, Inc. | Self powered pacers and stimulators |
| USRE30366E (en) | 1970-09-21 | 1980-08-12 | Rasor Associates, Inc. | Organ stimulator |
| US3835864A (en) | 1970-09-21 | 1974-09-17 | Rasor Ass Inc | Intra-cardiac stimulator |
| US4256115A (en) | 1976-12-20 | 1981-03-17 | American Technology, Inc. | Leadless cardiac pacer |
| US4157720A (en) | 1977-09-16 | 1979-06-12 | Greatbatch W | Cardiac pacemaker |
| US4333469A (en) | 1979-07-20 | 1982-06-08 | Telectronics Pty. Ltd. | Bone growth stimulator |
| US5170784A (en) | 1990-11-27 | 1992-12-15 | Ceon Ramon | Leadless magnetic cardiac pacemaker |
| US5144949A (en) | 1991-03-15 | 1992-09-08 | Medtronic, Inc. | Dual chamber rate responsive pacemaker with automatic mode switching |
| US5954757A (en) | 1991-05-17 | 1999-09-21 | Gray; Noel Desmond | Heart pacemaker |
| US6144879A (en) | 1991-05-17 | 2000-11-07 | Gray; Noel Desmond | Heart pacemaker |
| US6044300A (en) | 1991-05-17 | 2000-03-28 | Gray; Noel Desmond | Heart pacemaker |
| US5674259A (en) | 1992-10-20 | 1997-10-07 | Gray; Noel Desmond | Multi-focal leadless apical cardiac pacemaker |
| US5243977A (en) | 1991-06-26 | 1993-09-14 | Trabucco Hector O | Pacemaker |
| US5312439A (en) | 1991-12-12 | 1994-05-17 | Loeb Gerald E | Implantable device having an electrolytic storage electrode |
| US5193540A (en) | 1991-12-18 | 1993-03-16 | Alfred E. Mann Foundation For Scientific Research | Structure and method of manufacture of an implantable microstimulator |
| US5193539A (en) | 1991-12-18 | 1993-03-16 | Alfred E. Mann Foundation For Scientific Research | Implantable microstimulator |
| DE69228531T2 (en) | 1992-02-20 | 1999-07-29 | Neomedics, Inc., Budd Lake, N.J. | Implantable bone growth stimulator |
| JPH05245215A (en) | 1992-03-03 | 1993-09-24 | Terumo Corp | Heart pace maker |
| US5237992A (en) | 1992-03-05 | 1993-08-24 | Siemens Pacesetter, Inc. | Implantable pacemaker providing hysteresis in dual-chamber modes |
| US5404877A (en) | 1993-06-04 | 1995-04-11 | Telectronics Pacing Systems, Inc. | Leadless implantable sensor assembly and a cardiac emergency warning alarm |
| US5391189A (en) | 1993-11-04 | 1995-02-21 | Vitatron Medical, B.V. | Rate adaptive dual chamber pacing system and method with automatic adjustment of operating parameters for minimizing sensor-sinus competition |
| US5454836A (en) | 1994-01-18 | 1995-10-03 | Vitatron Medical, B.V. | VDD (R) pacing system |
| US5540728A (en) | 1994-05-20 | 1996-07-30 | Medtronic, Inc. | Pacemaker with vasovagal snycope detection |
| WO1997029802A2 (en) | 1996-02-20 | 1997-08-21 | Advanced Bionics Corporation | Improved implantable microstimulator and systems employing the same |
| US5895414A (en) | 1996-04-19 | 1999-04-20 | Sanchez-Zambrano; Sergio | Pacemaker housing |
| CA2260209C (en) | 1996-07-11 | 2005-08-30 | Medtronic, Inc. | Minimally invasive implantable device for monitoring physiologic events |
| DE19638585A1 (en) | 1996-09-20 | 1998-03-26 | Biotronik Mess & Therapieg | Device for rejection diagnosis after organ transplantation |
| US5843132A (en) | 1996-10-07 | 1998-12-01 | Ilvento; Joseph P. | Self-contained, self-powered temporary intravenous pacing catheter assembly |
| US5893882A (en) | 1996-12-17 | 1999-04-13 | Medtronic, Inc. | Method and apparatus for diagnosis and treatment of arrhythmias |
| US5814089A (en) | 1996-12-18 | 1998-09-29 | Medtronic, Inc. | Leadless multisite implantable stimulus and diagnostic system |
| US6208894B1 (en) | 1997-02-26 | 2001-03-27 | Alfred E. Mann Foundation For Scientific Research And Advanced Bionics | System of implantable devices for monitoring and/or affecting body parameters |
| CA2281880C (en) | 1997-02-26 | 2007-03-06 | Alfred E. Mann Foundation For Scientific Research | Battery-powered patient implantable device |
| US6164284A (en) | 1997-02-26 | 2000-12-26 | Schulman; Joseph H. | System of implantable devices for monitoring and/or affecting body parameters |
| US7114502B2 (en) | 1997-02-26 | 2006-10-03 | Alfred E. Mann Foundation For Scientific Research | Battery-powered patient implantable device |
| US6941171B2 (en) | 1998-07-06 | 2005-09-06 | Advanced Bionics Corporation | Implantable stimulator methods for treatment of incontinence and pain |
| US6735474B1 (en) | 1998-07-06 | 2004-05-11 | Advanced Bionics Corporation | Implantable stimulator system and method for treatment of incontinence and pain |
| US6141588A (en) | 1998-07-24 | 2000-10-31 | Intermedics Inc. | Cardiac simulation system having multiple stimulators for anti-arrhythmia therapy |
| US6240316B1 (en) | 1998-08-14 | 2001-05-29 | Advanced Bionics Corporation | Implantable microstimulation system for treatment of sleep apnea |
| US6129745A (en) | 1998-10-23 | 2000-10-10 | Medtronic, Inc. | Medical device for automatic diagnosis of undersensing by timing |
| US6434424B1 (en) | 1998-12-28 | 2002-08-13 | Medtronic, Inc. | Regularization of ventricular rate during atrial tachyarrhythmia |
| WO2000040295A1 (en) | 1999-01-06 | 2000-07-13 | Ball Semiconductor, Inc. | Implantable neuro-stimulator |
| US7949395B2 (en) | 1999-10-01 | 2011-05-24 | Boston Scientific Neuromodulation Corporation | Implantable microdevice with extended lead and remote electrode |
| US6321115B1 (en) | 1999-12-03 | 2001-11-20 | Pacesetter, Inc. | Noise detection system and method for use in an implantable medical device |
| US6654638B1 (en) | 2000-04-06 | 2003-11-25 | Cardiac Pacemakers, Inc. | Ultrasonically activated electrodes |
| US6871099B1 (en) | 2000-08-18 | 2005-03-22 | Advanced Bionics Corporation | Fully implantable microstimulator for spinal cord stimulation as a therapy for chronic pain |
| AU2001296403A1 (en) | 2000-10-11 | 2002-04-22 | Alfred E. Mann Foundation For Scientific Research | Improved antenna for miniature implanted medical device |
| US7198603B2 (en) | 2003-04-14 | 2007-04-03 | Remon Medical Technologies, Inc. | Apparatus and methods using acoustic telemetry for intrabody communications |
| US7024248B2 (en) | 2000-10-16 | 2006-04-04 | Remon Medical Technologies Ltd | Systems and methods for communicating with implantable devices |
| US6628989B1 (en) | 2000-10-16 | 2003-09-30 | Remon Medical Technologies, Ltd. | Acoustic switch and apparatus and methods for using acoustic switches within a body |
| US7283874B2 (en) | 2000-10-16 | 2007-10-16 | Remon Medical Technologies Ltd. | Acoustically powered implantable stimulating device |
| US6764446B2 (en) | 2000-10-16 | 2004-07-20 | Remon Medical Technologies Ltd | Implantable pressure sensors and methods for making and using them |
| US6904315B2 (en) | 2000-12-14 | 2005-06-07 | Medtronic, Inc. | Atrial aware VVI: a method for atrial synchronous ventricular (VDD/R) pacing using the subcutaneous electrode array and a standard pacing lead |
| US7130683B2 (en) | 2000-12-21 | 2006-10-31 | Medtronic, Inc. | Preferred ADI/R: a permanent pacing mode to eliminate ventricular pacing while maintaining back support |
| US6445953B1 (en) | 2001-01-16 | 2002-09-03 | Kenergy, Inc. | Wireless cardiac pacing system with vascular electrode-stents |
| US7519421B2 (en) | 2001-01-16 | 2009-04-14 | Kenergy, Inc. | Vagal nerve stimulation using vascular implanted devices for treatment of atrial fibrillation |
| US6735475B1 (en) | 2001-01-30 | 2004-05-11 | Advanced Bionics Corporation | Fully implantable miniature neurostimulator for stimulation as a therapy for headache and/or facial pain |
| US6788975B1 (en) | 2001-01-30 | 2004-09-07 | Advanced Bionics Corporation | Fully implantable miniature neurostimulator for stimulation as a therapy for epilepsy |
| US7493172B2 (en) | 2001-01-30 | 2009-02-17 | Boston Scientific Neuromodulation Corp. | Methods and systems for stimulating a nerve originating in an upper cervical spine area to treat a medical condition |
| US7127286B2 (en) | 2001-02-28 | 2006-10-24 | Second Sight Medical Products, Inc. | Implantable device using ultra-nanocrystalline diamond |
| US7167751B1 (en) | 2001-03-01 | 2007-01-23 | Advanced Bionics Corporation | Method of using a fully implantable miniature neurostimulator for vagus nerve stimulation |
| US6592518B2 (en) | 2001-04-05 | 2003-07-15 | Kenergy, Inc. | Cardiac monitoring system and method with multiple implanted transponders |
| US6477420B1 (en) | 2001-04-27 | 2002-11-05 | Medtronic, Inc | Control of pacing rate in mode switching implantable medical devices |
| US6754529B2 (en) | 2001-04-27 | 2004-06-22 | Medtronic, Inc. | Committed ventricular safety pacing |
| US6733485B1 (en) | 2001-05-25 | 2004-05-11 | Advanced Bionics Corporation | Microstimulator-based electrochemotherapy methods and systems |
| US6738672B2 (en) | 2001-06-18 | 2004-05-18 | The Alfred E. Mann Foundation For Scientific Research | Miniature implantable connectors |
| US6947782B2 (en) | 2001-06-18 | 2005-09-20 | Alfred E. Mann Foundation For Scientific Research | Miniature implantable connectors |
| US7054692B1 (en) | 2001-06-22 | 2006-05-30 | Advanced Bionics Corporation | Fixation device for implantable microdevices |
| US6819955B2 (en) | 2001-10-09 | 2004-11-16 | Pacesetter, Inc. | Multi-chamber ventricular automatic capture method and apparatus for minimizing true and blanking period induced ventricular undersensing |
| WO2003033070A1 (en) | 2001-10-16 | 2003-04-24 | Case Western Reserve University | Neural prosthesis |
| US6768924B2 (en) | 2002-01-03 | 2004-07-27 | Cardiac Pacemakers, Inc. | Method and apparatus for capture verification based on propagated electrical activity |
| WO2003063951A1 (en) | 2002-01-29 | 2003-08-07 | Advanced Bionics Corporation | Lead assembly for implantable microstimulator |
| US8321036B2 (en) | 2002-02-15 | 2012-11-27 | Data Sciences International, Inc. | Cardiac rhythm management device |
| US7236821B2 (en) | 2002-02-19 | 2007-06-26 | Cardiac Pacemakers, Inc. | Chronically-implanted device for sensing and therapy |
| US6996437B2 (en) | 2002-04-25 | 2006-02-07 | Medtronic, Inc. | Ventricular safety pacing in biventricular pacing |
| US20040015205A1 (en) | 2002-06-20 | 2004-01-22 | Whitehurst Todd K. | Implantable microstimulators with programmable multielectrode configuration and uses thereof |
| US7860570B2 (en) | 2002-06-20 | 2010-12-28 | Boston Scientific Neuromodulation Corporation | Implantable microstimulators and methods for unidirectional propagation of action potentials |
| US7292890B2 (en) | 2002-06-20 | 2007-11-06 | Advanced Bionics Corporation | Vagus nerve stimulation via unidirectional propagation of action potentials |
| US7203548B2 (en) | 2002-06-20 | 2007-04-10 | Advanced Bionics Corporation | Cavernous nerve stimulation via unidirectional propagation of action potentials |
| US20040147973A1 (en) | 2002-06-27 | 2004-07-29 | Hauser Robert G. | Intra cardiac pacer and method |
| EP1517725B1 (en) | 2002-06-28 | 2015-09-09 | Boston Scientific Neuromodulation Corporation | Microstimulator having self-contained power source and bi-directional telemetry system |
| US7822480B2 (en) | 2002-06-28 | 2010-10-26 | Boston Scientific Neuromodulation Corporation | Systems and methods for communicating with an implantable stimulator |
| US7428438B2 (en) | 2002-06-28 | 2008-09-23 | Boston Scientific Neuromodulation Corporation | Systems and methods for providing power to a battery in an implantable stimulator |
| AU2002323811A1 (en) | 2002-08-05 | 2004-02-23 | Japan As Represented By President Of National Cardiovascular Center | Subminiature integrated heart pace maker and dispersed heart pacing system |
| US7702395B2 (en) | 2002-08-19 | 2010-04-20 | Arizona Board Of Regents, A Body Corporate, Acting For And On Behalf Of Arizona State University | Neurostimulator |
| US20050256549A1 (en) | 2002-10-09 | 2005-11-17 | Sirius Implantable Systems Ltd. | Micro-generator implant |
| US20040073267A1 (en) | 2002-10-09 | 2004-04-15 | Asher Holzer | Micro-generator implant |
| US20050055061A1 (en) | 2003-09-08 | 2005-03-10 | Asher Holzer | Cardiac implant device |
| US7376461B2 (en) | 2002-10-18 | 2008-05-20 | Cardiac Pacemakers, Inc. | Dynamic mode switch for early detection of tachyarrhythmia |
| WO2004037071A2 (en) | 2002-10-25 | 2004-05-06 | Raphael Schumert | Gastrointestinal pacemaker |
| US20040162590A1 (en) | 2002-12-19 | 2004-08-19 | Whitehurst Todd K. | Fully implantable miniature neurostimulator for intercostal nerve stimulation as a therapy for angina pectoris |
| US20040122477A1 (en) | 2002-12-19 | 2004-06-24 | Whitehurst Todd K. | Fully implantable miniature neurostimulator for spinal nerve root stimulation as a therapy for angina and peripheral vascular disease |
| US20040133242A1 (en) | 2003-01-02 | 2004-07-08 | Chapman Fred W. | Medical device communication |
| US7617007B2 (en) | 2003-06-04 | 2009-11-10 | Synecor Llc | Method and apparatus for retaining medical implants within body vessels |
| US7082336B2 (en) | 2003-06-04 | 2006-07-25 | Synecor, Llc | Implantable intravascular device for defibrillation and/or pacing |
| US8116883B2 (en) | 2003-06-04 | 2012-02-14 | Synecor Llc | Intravascular device for neuromodulation |
| AU2004251673B2 (en) | 2003-06-04 | 2010-01-28 | Synecor Llc | Intravascular electrophysiological system and methods |
| US8239045B2 (en) | 2003-06-04 | 2012-08-07 | Synecor Llc | Device and method for retaining a medical device within a vessel |
| US7006864B2 (en) | 2003-06-17 | 2006-02-28 | Ebr Systems, Inc. | Methods and systems for vibrational treatment of cardiac arrhythmias |
| US7184830B2 (en) | 2003-08-18 | 2007-02-27 | Ebr Systems, Inc. | Methods and systems for treating arrhythmias using a combination of vibrational and electrical energy |
| US6917833B2 (en) | 2003-09-16 | 2005-07-12 | Kenergy, Inc. | Omnidirectional antenna for wireless communication with implanted medical devices |
| US20050070962A1 (en) | 2003-09-30 | 2005-03-31 | Ebr Systems, Inc. | Methods and systems for treating heart failure with vibrational energy |
| US20060074449A1 (en) | 2003-11-03 | 2006-04-06 | Stephen Denker | Intravascular stimulation system with wireless power supply |
| US7003350B2 (en) | 2003-11-03 | 2006-02-21 | Kenergy, Inc. | Intravenous cardiac pacing system with wireless power supply |
| US7050849B2 (en) | 2003-11-06 | 2006-05-23 | Ebr Systems, Inc. | Vibrational therapy device used for resynchronization pacing in a treatment for heart failure |
| US7450998B2 (en) | 2003-11-21 | 2008-11-11 | Alfred E. Mann Foundation For Scientific Research | Method of placing an implantable device proximate to neural/muscular tissue |
| AU2004298995A1 (en) | 2003-12-12 | 2005-06-30 | Synecor, Llc. | Implantable medical device having pre-implant exoskeleton |
| US20090198293A1 (en) | 2003-12-19 | 2009-08-06 | Lawrence Cauller | Microtransponder Array for Implant |
| WO2005077450A2 (en) | 2004-02-10 | 2005-08-25 | Synecor, Llc | Intravascular delivery system for therapeutic agents |
| JP2007530978A (en) | 2004-03-29 | 2007-11-01 | エヴォリューション ロボティクス インコーポレイテッド | Position estimation method and apparatus using reflected light source |
| EP1744809A4 (en) | 2004-05-04 | 2008-05-07 | Univ Rochester | WIRELESS IMPLANTABLE INTRAVASCULAR ELECTROPHYSIOLOGICAL DEVICE FOR DETECTION AND NEUROLOGIC / CARDIOVASCULAR STIMULATION |
| US20080294210A1 (en) | 2004-05-04 | 2008-11-27 | Spencer Rosero | Leadless Implantable Cardioverter Defibrillator |
| US20050267555A1 (en) | 2004-05-28 | 2005-12-01 | Marnfeldt Goran N | Engagement tool for implantable medical devices |
| US20070106357A1 (en) | 2005-11-04 | 2007-05-10 | Stephen Denker | Intravascular Electronics Carrier Electrode for a Transvascular Tissue Stimulation System |
| US7765001B2 (en) | 2005-08-31 | 2010-07-27 | Ebr Systems, Inc. | Methods and systems for heart failure prevention and treatments using ultrasound and leadless implantable devices |
| US7630767B1 (en) | 2004-07-14 | 2009-12-08 | Pacesetter, Inc. | System and method for communicating information using encoded pacing pulses within an implantable medical system |
| US7236829B1 (en) | 2004-08-30 | 2007-06-26 | Pacesetter, Inc. | Implantable leadless cardiac device with flexible flaps for sensing |
| EP1799101A4 (en) | 2004-09-02 | 2008-11-19 | Proteus Biomedical Inc | Methods and apparatus for tissue activation and monitoring |
| US7771838B1 (en) | 2004-10-12 | 2010-08-10 | Boston Scientific Neuromodulation Corporation | Hermetically bonding ceramic and titanium with a Ti-Pd braze interface |
| US7200437B1 (en) | 2004-10-13 | 2007-04-03 | Pacesetter, Inc. | Tissue contact for satellite cardiac pacemaker |
| US7647109B2 (en) | 2004-10-20 | 2010-01-12 | Boston Scientific Scimed, Inc. | Leadless cardiac stimulation systems |
| EP1812104B1 (en) | 2004-10-20 | 2012-11-21 | Boston Scientific Limited | Leadless cardiac stimulation systems |
| US7532933B2 (en) | 2004-10-20 | 2009-05-12 | Boston Scientific Scimed, Inc. | Leadless cardiac stimulation systems |
| TWI252007B (en) | 2004-10-21 | 2006-03-21 | Univ Nat Sun Yat Sen | Communication protocol for implantable micro-electrical stimulations system |
| TWI251986B (en) | 2004-10-21 | 2006-03-21 | Univ Nat Sun Yat Sen | A wireless transmission system for implantable micro-electrical stimulations system |
| US8818504B2 (en) | 2004-12-16 | 2014-08-26 | Cardiac Pacemakers Inc | Leadless cardiac stimulation device employing distributed logic |
| JP5153343B2 (en) | 2004-12-21 | 2013-02-27 | イービーアール システムズ, インコーポレイテッド | Implantable transducer device |
| US7558631B2 (en) | 2004-12-21 | 2009-07-07 | Ebr Systems, Inc. | Leadless tissue stimulation systems and methods |
| EP1835964B1 (en) | 2004-12-21 | 2016-03-09 | EBR Systems, Inc. | Leadless cardiac system for pacing and arrhythmia treatment |
| US7706892B2 (en) | 2005-01-20 | 2010-04-27 | Boston Scientific Neuromodulation Corporation | Implantable microstimulator with plastic housing and methods of manufacture and use |
| US7294108B1 (en) | 2005-01-27 | 2007-11-13 | Pacesetter, Inc. | Cardiac event microrecorder and method for implanting same |
| EP1843816B1 (en) | 2005-02-01 | 2017-07-12 | Second Sight Medical Products, Inc. | Micro-miniature implantable coated device |
| US8165696B2 (en) | 2005-02-25 | 2012-04-24 | Boston Scientific Neuromodulation Corporation | Multiple-pronged implantable stimulator and methods of making and using such a stimulator |
| US7532932B2 (en) | 2005-03-08 | 2009-05-12 | Kenergy, Inc. | Implantable medical apparatus having an omnidirectional antenna for receiving radio frequency signals |
| WO2006099425A1 (en) | 2005-03-11 | 2006-09-21 | The Johns Hopkins University | Devices and methods for treatment of gastrointestinal disorders |
| US7555345B2 (en) | 2005-03-11 | 2009-06-30 | Medtronic, Inc. | Implantable neurostimulator device |
| US7627383B2 (en) | 2005-03-15 | 2009-12-01 | Boston Scientific Neuromodulation Corporation | Implantable stimulator |
| US7330756B2 (en) | 2005-03-18 | 2008-02-12 | Advanced Bionics Corporation | Implantable microstimulator with conductive plastic electrode and methods of manufacture and use |
| US7363082B2 (en) | 2005-03-24 | 2008-04-22 | Synecor Llc | Flexible hermetic enclosure for implantable medical devices |
| US7310556B2 (en) | 2005-03-24 | 2007-12-18 | Kenergy, Inc. | Implantable medical stimulation apparatus with intra-conductor capacitive energy storage |
| US7634313B1 (en) | 2005-04-11 | 2009-12-15 | Pacesetter, Inc. | Failsafe satellite pacemaker system |
| US7565195B1 (en) | 2005-04-11 | 2009-07-21 | Pacesetter, Inc. | Failsafe satellite pacemaker system |
| DE102005020071A1 (en) | 2005-04-22 | 2006-10-26 | Biotronik Crm Patent Ag | Pacemaker |
| US7991467B2 (en) | 2005-04-26 | 2011-08-02 | Medtronic, Inc. | Remotely enabled pacemaker and implantable subcutaneous cardioverter/defibrillator system |
| US7599738B2 (en) | 2005-05-17 | 2009-10-06 | Cardiac Pacemakers, Inc. | Synchronized ventricular pacing to promote atrial sensing |
| US7444180B2 (en) | 2005-05-25 | 2008-10-28 | Boston Scientific Neuromodulation Corporation | Implantable microstimulator with dissecting tip and/or retrieving anchor and methods of manufacture and use |
| US7957805B2 (en) | 2005-06-01 | 2011-06-07 | Boston Scientific Neuromodulation Corporation | Implantable microstimulator with external electrodes disposed on a film substrate and methods of manufacture and use |
| WO2006133444A2 (en) | 2005-06-09 | 2006-12-14 | Medtronic, Inc. | Implantable medical device with electrodes on multiple housing surfaces |
| US7295879B2 (en) | 2005-06-24 | 2007-11-13 | Kenergy, Inc. | Double helical antenna assembly for a wireless intravascular medical device |
| US8634908B2 (en) | 2005-08-01 | 2014-01-21 | Ebr Systems, Inc. | Efficiently delivering acoustic stimulation energy to tissue |
| US7702392B2 (en) | 2005-09-12 | 2010-04-20 | Ebr Systems, Inc. | Methods and apparatus for determining cardiac stimulation sites using hemodynamic data |
| US8374696B2 (en) | 2005-09-14 | 2013-02-12 | University Of Florida Research Foundation, Inc. | Closed-loop micro-control system for predicting and preventing epileptic seizures |
| US7749265B2 (en) | 2005-10-05 | 2010-07-06 | Kenergy, Inc. | Radio frequency antenna for a wireless intravascular medical device |
| US9168383B2 (en) | 2005-10-14 | 2015-10-27 | Pacesetter, Inc. | Leadless cardiac pacemaker with conducted communication |
| US7616990B2 (en) | 2005-10-24 | 2009-11-10 | Cardiac Pacemakers, Inc. | Implantable and rechargeable neural stimulator |
| US8255054B2 (en) | 2005-11-04 | 2012-08-28 | Kenergy, Inc. | MRI compatible implanted electronic medical device |
| US7917213B2 (en) | 2005-11-04 | 2011-03-29 | Kenergy, Inc. | MRI compatible implanted electronic medical lead |
| US8233985B2 (en) | 2005-11-04 | 2012-07-31 | Kenergy, Inc. | MRI compatible implanted electronic medical device with power and data communication capability |
| US20070118187A1 (en) | 2005-11-21 | 2007-05-24 | Stephen Denker | Alerting method for a transvascular tissue stimulation system |
| DE602006019309D1 (en) | 2005-12-09 | 2011-02-10 | Boston Scient Scimed Inc | HEART PACING SYSTEM |
| WO2007068284A1 (en) | 2005-12-12 | 2007-06-21 | Synergio Ag | Intra cardiac device, system and methods |
| ATE468884T1 (en) | 2005-12-15 | 2010-06-15 | Cardiac Pacemakers Inc | METHOD AND APPARATUS FOR A SMALL POWER SOURCE FOR AN IMPLANTABLE DEVICE |
| US7720547B2 (en) | 2006-01-04 | 2010-05-18 | Kenergy, Inc. | Extracorporeal power supply with a wireless feedback system for an implanted medical device |
| EP1971399A1 (en) | 2006-01-13 | 2008-09-24 | Universität Duisburg-Essen | Stimulation system, in particular a cardiac pacemaker |
| US7519424B2 (en) | 2006-01-30 | 2009-04-14 | Medtronic, Inc. | Intravascular medical device |
| US7616992B2 (en) | 2006-01-30 | 2009-11-10 | Medtronic, Inc. | Intravascular medical device |
| US7627376B2 (en) | 2006-01-30 | 2009-12-01 | Medtronic, Inc. | Intravascular medical device |
| US7627371B2 (en) | 2006-02-13 | 2009-12-01 | National Sun Yat-Sen University | Implantable biomedical chip with modulator for a wireless neural stimulation system |
| EP1986738B1 (en) | 2006-02-24 | 2010-02-10 | Kenergy, Inc. | Class-e radio frequency power amplifier with feedback control |
| US20070276444A1 (en) | 2006-05-24 | 2007-11-29 | Daniel Gelbart | Self-powered leadless pacemaker |
| US20070288077A1 (en) | 2006-06-07 | 2007-12-13 | Cherik Bulkes | Self-anchoring electrical lead with multiple electrodes |
| US20070288076A1 (en) | 2006-06-07 | 2007-12-13 | Cherik Bulkes | Biological tissue stimulator with flexible electrode carrier |
| US20070293904A1 (en) | 2006-06-20 | 2007-12-20 | Daniel Gelbart | Self-powered resonant leadless pacemaker |
| US7899542B2 (en) | 2006-06-20 | 2011-03-01 | Ebr Systems, Inc. | Systems and methods for implantable leadless spine stimulation |
| US7894904B2 (en) | 2006-06-20 | 2011-02-22 | Ebr Systems, Inc. | Systems and methods for implantable leadless brain stimulation |
| US7899541B2 (en) | 2006-06-20 | 2011-03-01 | Ebr Systems, Inc. | Systems and methods for implantable leadless gastrointestinal tissue stimulation |
| US7894907B2 (en) | 2006-06-20 | 2011-02-22 | Ebr Systems, Inc. | Systems and methods for implantable leadless nerve stimulation |
| US8078283B2 (en) | 2006-06-20 | 2011-12-13 | Ebr Systems, Inc. | Systems and methods for implantable leadless bone stimulation |
| US7894910B2 (en) | 2006-06-20 | 2011-02-22 | Ebr Systems, Inc. | Systems and methods for implantable leadless cochlear stimulation |
| US7751881B2 (en) | 2006-06-20 | 2010-07-06 | Ebr Systems, Inc. | Acoustically-powered wireless defibrillator |
| US7593776B2 (en) | 2006-07-05 | 2009-09-22 | University Of Southern California | Flexible communication and control protocol for a wireless sensor and microstimulator network |
| US20080039904A1 (en) | 2006-08-08 | 2008-02-14 | Cherik Bulkes | Intravascular implant system |
| US8374698B2 (en) | 2006-08-18 | 2013-02-12 | Second Sight Medical Products, Inc. | Package for an implantable neural stimulation device |
| US20080077184A1 (en) | 2006-09-27 | 2008-03-27 | Stephen Denker | Intravascular Stimulation System With Wireless Power Supply |
| US8321020B1 (en) | 2006-10-13 | 2012-11-27 | Pacesetter, Inc. | System and method for detecting and correcting atrial undersensing |
| US7881803B2 (en) | 2006-10-18 | 2011-02-01 | Boston Scientific Neuromodulation Corporation | Multi-electrode implantable stimulator device with a single current path decoupling capacitor |
| US7979126B2 (en) | 2006-10-18 | 2011-07-12 | Boston Scientific Neuromodulation Corporation | Orientation-independent implantable pulse generator |
| US8660660B2 (en) | 2006-11-14 | 2014-02-25 | Second Sight Medical Products, Inc. | Power scheme for implant stimulators on the human or animal body |
| US7857819B2 (en) | 2006-11-30 | 2010-12-28 | Boston Scientific Neuromodulation Corporation | Implant tool for use with a microstimulator |
| US8311633B2 (en) | 2006-12-04 | 2012-11-13 | Synecor Llc | Intravascular implantable device having superior anchoring arrangement |
| AU2008217463B2 (en) | 2007-02-16 | 2013-01-17 | Sun Medical-Scientific (Shanghai) Co., Ltd. | Non-electrode-lead ultra-thin micro multifunctional heart rate adjusting device |
| US8103359B2 (en) | 2007-05-17 | 2012-01-24 | Cardiac Pacemakers, Inc. | Systems and methods for fixating transvenously implanted medical devices |
| US8718773B2 (en) | 2007-05-23 | 2014-05-06 | Ebr Systems, Inc. | Optimizing energy transmission in a leadless tissue stimulation system |
| WO2009006531A1 (en) | 2007-07-03 | 2009-01-08 | Ebr Systems, Inc. | Minimization of tissue stimulation energy using a microstimulator |
| JP2010540037A (en) | 2007-09-20 | 2010-12-24 | ナノスティム インコーポレイテッド | Leadless cardiac pacemaker with secondary fixation capability |
| US8019419B1 (en) | 2007-09-25 | 2011-09-13 | Dorin Panescu | Methods and apparatus for leadless, battery-less, wireless stimulation of tissue |
| US20090082827A1 (en) | 2007-09-26 | 2009-03-26 | Cardiac Pacemakers, Inc. | Hinged anchors for wireless pacing electrodes |
| US8412332B2 (en) | 2007-10-18 | 2013-04-02 | Integrated Sensing Systems, Inc. | Miniature wireless system for deep brain stimulation |
| CN101185789B (en) | 2007-11-06 | 2010-06-09 | 浙江大学 | Implantable neural microstimulation and acquisition remote control chip |
| US8060209B2 (en) | 2008-01-25 | 2011-11-15 | Boston Scientific Neuromodulation Corporation | Methods and systems of treating ischemia pain in visceral organs |
| WO2009097328A2 (en) | 2008-01-28 | 2009-08-06 | Boston Scientific Neuromodulation Corporation | Fixation of implantable pulse generators |
| US9005106B2 (en) | 2008-01-31 | 2015-04-14 | Enopace Biomedical Ltd | Intra-aortic electrical counterpulsation |
| US8301262B2 (en) | 2008-02-06 | 2012-10-30 | Cardiac Pacemakers, Inc. | Direct inductive/acoustic converter for implantable medical device |
| US8588926B2 (en) | 2008-03-25 | 2013-11-19 | Ebr Systems, Inc. | Implantable wireless accoustic stimulators with high energy conversion efficiencies |
| US8364276B2 (en) | 2008-03-25 | 2013-01-29 | Ebr Systems, Inc. | Operation and estimation of output voltage of wireless stimulators |
| CN101284160A (en) | 2008-05-22 | 2008-10-15 | 重庆大学 | An implantable device and method for magnetically stimulating nerve tissue using a microcoil |
| US8368051B2 (en) | 2008-07-11 | 2013-02-05 | California Institute Of Technology | Complementary barrier infrared detector (CBIRD) |
| US20110060392A1 (en) | 2008-11-13 | 2011-03-10 | Mark Zdeblick | Implantable Microstimulators |
| US8240780B1 (en) | 2008-11-26 | 2012-08-14 | Robert Bosch Gmbh | Hydraulic brake booster |
| US20100161002A1 (en) | 2008-12-22 | 2010-06-24 | Boston Scientific Neuromodulation Corporation | Implantable Medical Device Having A Slot Antenna In Its Case |
| WO2010088687A1 (en) | 2009-02-02 | 2010-08-05 | Nanostim, Inc. | Leadless cardiac pacemaker with secondary fixation capability |
| US20100305627A1 (en) | 2009-05-29 | 2010-12-02 | Medtronic, Inc. | Battery with suture hole |
| US20100304209A1 (en) | 2009-05-29 | 2010-12-02 | Medtronic, Inc. | Elongate battery for implantable medical device |
| US8359098B2 (en) | 2009-05-29 | 2013-01-22 | Medtronic, Inc. | Implantable medical device with exposed generator |
| US9099720B2 (en) | 2009-05-29 | 2015-08-04 | Medtronic, Inc. | Elongate battery for implantable medical device |
| US8541131B2 (en) | 2009-05-29 | 2013-09-24 | Medtronic, Inc. | Elongate battery for implantable medical device |
| US20100305628A1 (en) | 2009-05-29 | 2010-12-02 | Medtronic, Inc. | Elongate battery for implantable medical device |
| AU2010258792B2 (en) | 2009-06-09 | 2015-07-02 | Setpoint Medical Corporation | Nerve cuff with pocket for leadless stimulator |
| US8224449B2 (en) | 2009-06-29 | 2012-07-17 | Boston Scientific Neuromodulation Corporation | Microstimulator with flap electrodes |
| US20110077708A1 (en) | 2009-09-28 | 2011-03-31 | Alan Ostroff | MRI Compatible Leadless Cardiac Pacemaker |
| US8942818B2 (en) | 2009-12-30 | 2015-01-27 | Medtronic, Inc. | Communication with an implantable medical device during implantation |
| US8352028B2 (en) | 2010-03-26 | 2013-01-08 | Medtronic, Inc. | Intravascular medical device |
| US9421343B2 (en) | 2010-04-06 | 2016-08-23 | Medtronic Vascular, Inc. | Method of using catheter with rotating portion |
| US8532790B2 (en) | 2010-04-13 | 2013-09-10 | Medtronic, Inc. | Slidable fixation device for securing a medical implant |
| US8478431B2 (en) | 2010-04-13 | 2013-07-02 | Medtronic, Inc. | Slidable fixation device for securing a medical implant |
| US20110270339A1 (en) | 2010-04-30 | 2011-11-03 | Medtronic Vascular, Inc. | Two-Stage Delivery Systems and Methods for Fixing a Leadless Implant to Tissue |
| US20110270340A1 (en) | 2010-04-30 | 2011-11-03 | Medtronic Vascular,Inc. | Two-Stage Delivery Systems and Methods for Fixing a Leadless Implant to Tissue |
| EP2394695B1 (en) | 2010-06-14 | 2012-09-26 | Sorin CRM SAS | Standalone intracardiac capsule and implantation accessory |
| US8543190B2 (en) | 2010-07-30 | 2013-09-24 | Medtronic, Inc. | Inductive coil device on flexible substrate |
| US8903497B2 (en) | 2010-09-30 | 2014-12-02 | Medtronic, Inc. | Conformal antenna for implantable medical device and implantable medical device with such antenna |
| EP2627403A4 (en) | 2010-10-12 | 2014-03-26 | Nanostim Inc | TEMPERATURE SENSOR FOR WIRELESS CARDIAC STIMULATOR |
| US9060692B2 (en) | 2010-10-12 | 2015-06-23 | Pacesetter, Inc. | Temperature sensor for a leadless cardiac pacemaker |
| JP2013540022A (en) | 2010-10-13 | 2013-10-31 | ナノスティム・インコーポレイテッド | Leadless cardiac pacemaker with screw anti-rotation element |
| US20120095539A1 (en) | 2010-10-13 | 2012-04-19 | Alexander Khairkhahan | Delivery Catheter Systems and Methods |
| US20120095521A1 (en) | 2010-10-19 | 2012-04-19 | Medtronic, Inc. | Detection of heart rhythm using an accelerometer |
| US9504820B2 (en) | 2010-10-29 | 2016-11-29 | Medtronic, Inc. | System and method for implantation of an implantable medical device |
| JP6023720B2 (en) | 2010-12-13 | 2016-11-09 | ナノスティム・インコーポレイテッドNanostim, Inc. | Pacemaker takeout system and takeout method |
| JP2014501136A (en) | 2010-12-13 | 2014-01-20 | ナノスティム・インコーポレイテッド | Delivery catheter system and method |
| US8560892B2 (en) | 2010-12-14 | 2013-10-15 | Medtronic, Inc. | Memory with selectively writable error correction codes and validity bits |
| JP2014501584A (en) | 2010-12-20 | 2014-01-23 | ナノスティム・インコーポレイテッド | Leadless space maker with radial fixing mechanism |
| US20120172891A1 (en) | 2010-12-29 | 2012-07-05 | Medtronic, Inc. | Implantable medical device fixation testing |
| US10112045B2 (en) | 2010-12-29 | 2018-10-30 | Medtronic, Inc. | Implantable medical device fixation |
| US9775982B2 (en) | 2010-12-29 | 2017-10-03 | Medtronic, Inc. | Implantable medical device fixation |
| US8386051B2 (en) | 2010-12-30 | 2013-02-26 | Medtronic, Inc. | Disabling an implantable medical device |
| US8639335B2 (en) | 2011-01-28 | 2014-01-28 | Medtronic, Inc. | Disabling an implanted medical device with another medical device |
| US8750976B2 (en) | 2011-03-02 | 2014-06-10 | Medtronic, Inc. | Implanted multichamber cardiac device with selective use of reliable atrial information |
| US20130238056A1 (en) | 2012-03-06 | 2013-09-12 | Pacesetter, Inc. | Rf-powered communication for implantable device |
| US9220897B2 (en) | 2011-04-04 | 2015-12-29 | Micron Devices Llc | Implantable lead |
| US20120323099A1 (en) | 2011-04-20 | 2012-12-20 | Medtronic, Inc. | Implantable medical device electrode assembly |
| US8489205B2 (en) | 2011-05-03 | 2013-07-16 | Biotronik Se & Co. Kg | System for temporary fixation of an implantable medical device |
| EP2520332A1 (en) | 2011-05-05 | 2012-11-07 | Magnetic Pacing Technologies GmbH | Implantable stimulation device for defribillation and pacing |
| WO2012154599A2 (en) | 2011-05-06 | 2012-11-15 | Ndsu Research Foundation | Intelligent self-organizing electrode stimulation delivery system |
| US20120290021A1 (en) | 2011-05-10 | 2012-11-15 | Medtronic, Inc. | Battery feedthrough for an implantable medical device |
| US9592398B2 (en) | 2011-05-12 | 2017-03-14 | Medtronic, Inc. | Leadless implantable medical device with osmotic pump |
| US8942791B2 (en) | 2011-05-31 | 2015-01-27 | Cardiac Pacemakers, Inc. | Off-line sensing method and its applications in detecting undersensing, oversensing, and noise |
| EP2537555B1 (en) | 2011-06-24 | 2013-05-01 | Sorin CRM SAS | Leadless autonomous intracardiac implant with disengageable attachment element |
| US8968927B2 (en) | 2011-07-15 | 2015-03-03 | Covidien Lp | Degradable implantable battery |
| US8989873B2 (en) | 2011-07-20 | 2015-03-24 | Medtronic, Inc. | Intravascular medical device with advancable electrode |
| US8478407B2 (en) | 2011-07-28 | 2013-07-02 | Medtronic, Inc. | Methods for promoting intrinsic activation in single chamber implantable cardiac pacing systems |
| US8626294B2 (en) | 2011-07-29 | 2014-01-07 | Medtronic, Inc. | Methods for setting cardiac pacing parameters in relatively high efficiency pacing systems |
| US8758365B2 (en) | 2011-08-03 | 2014-06-24 | Medtronic, Inc. | Implant system including guiding accessory and methods of use |
| US8504156B2 (en) | 2011-08-26 | 2013-08-06 | Medtronic, Inc. | Holding members for implantable cardiac stimulation devices |
| US9248300B2 (en) | 2011-09-09 | 2016-02-02 | Medtronic, Inc. | Controlling wireless communication in an implanted cardiac device |
| US8945145B2 (en) | 2011-09-22 | 2015-02-03 | Medtronic, Inc. | Delivery system assemblies for implantable medical devices |
| US8945146B2 (en) | 2011-10-24 | 2015-02-03 | Medtronic, Inc. | Delivery system assemblies and associated methods for implantable medical devices |
| US9017341B2 (en) | 2011-10-31 | 2015-04-28 | Pacesetter, Inc. | Multi-piece dual-chamber leadless intra-cardiac medical device and method of implanting same |
| US8634912B2 (en) | 2011-11-04 | 2014-01-21 | Pacesetter, Inc. | Dual-chamber leadless intra-cardiac medical device with intra-cardiac extension |
| US8781605B2 (en) | 2011-10-31 | 2014-07-15 | Pacesetter, Inc. | Unitary dual-chamber leadless intra-cardiac medical device and method of implanting same |
| US20130123872A1 (en) | 2011-11-03 | 2013-05-16 | Pacesetter, Inc. | Leadless implantable medical device with dual chamber sensing functionality |
| US8700181B2 (en) | 2011-11-03 | 2014-04-15 | Pacesetter, Inc. | Single-chamber leadless intra-cardiac medical device with dual-chamber functionality and shaped stabilization intra-cardiac extension |
| US8798740B2 (en) | 2011-11-03 | 2014-08-05 | Pacesetter, Inc. | Single chamber leadless intra-cardiac medical device with dual-chamber functionality |
| US9265436B2 (en) | 2011-11-04 | 2016-02-23 | Pacesetter, Inc. | Leadless intra-cardiac medical device with built-in telemetry system |
| WO2013067496A2 (en) | 2011-11-04 | 2013-05-10 | Nanostim, Inc. | Leadless cardiac pacemaker with integral battery and redundant welds |
| US8996109B2 (en) | 2012-01-17 | 2015-03-31 | Pacesetter, Inc. | Leadless intra-cardiac medical device with dual chamber sensing through electrical and/or mechanical sensing |
| US9216293B2 (en) | 2011-11-17 | 2015-12-22 | Medtronic, Inc. | Delivery system assemblies for implantable medical devices |
| TWI501772B (en) | 2011-11-22 | 2015-10-01 | Oneness Biotech Co | Anti-arthritic activity |
| WO2013080038A2 (en) | 2011-11-28 | 2013-06-06 | Sirius Implantable Systems Ltd. | Implantable medical device communications |
| EP2602001A1 (en) | 2011-12-08 | 2013-06-12 | BIOTRONIK SE & Co. KG | Medical implant and medical arrangement |
| US8543204B2 (en) | 2011-12-22 | 2013-09-24 | Medtronic, Inc. | Timing pacing pulses in single chamber implantable cardiac pacemaker systems |
| US20130234692A1 (en) | 2012-03-07 | 2013-09-12 | Medtronic, Inc. | Voltage supply and method with two references having differing accuracy and power consumption |
| US10096350B2 (en) | 2012-03-07 | 2018-10-09 | Medtronic, Inc. | Memory array with flash and random access memory and method therefor, reading data from the flash memory without storing the data in the random access memory |
| US9607708B2 (en) | 2012-03-07 | 2017-03-28 | Medtronic, Inc. | Voltage mode sensing for low power flash memory |
| US9053791B2 (en) | 2012-03-07 | 2015-06-09 | Medtronic, Inc. | Flash memory with integrated ROM memory cells |
| FR2987747A1 (en) | 2012-03-12 | 2013-09-13 | Sorin Crm Sas | INTRACORPORAL INDEPENDENT CAPSULE WITH DOUBLE RECOVERY OF ENERGY |
| EP2639845B1 (en) | 2012-03-12 | 2014-11-19 | Sorin CRM SAS | Autonomous intracorporeal capsule with piezoelectric energy recovery |
| US10485435B2 (en) | 2012-03-26 | 2019-11-26 | Medtronic, Inc. | Pass-through implantable medical device delivery catheter with removeable distal tip |
| US9854982B2 (en) | 2012-03-26 | 2018-01-02 | Medtronic, Inc. | Implantable medical device deployment within a vessel |
| US9220906B2 (en) | 2012-03-26 | 2015-12-29 | Medtronic, Inc. | Tethered implantable medical device deployment |
| US9717421B2 (en) | 2012-03-26 | 2017-08-01 | Medtronic, Inc. | Implantable medical device delivery catheter with tether |
| US9339197B2 (en) | 2012-03-26 | 2016-05-17 | Medtronic, Inc. | Intravascular implantable medical device introduction |
| US8583221B1 (en) | 2012-04-26 | 2013-11-12 | Medtronic, Inc. | Method and apparatus for display of cardiac signal episodes with over- or under-sensing |
| EP2662113B1 (en) | 2012-05-08 | 2016-08-31 | BIOTRONIK SE & Co. KG | Leadless heart stimulation and/or monitoring device |
| US9299962B2 (en) | 2012-05-11 | 2016-03-29 | Medtronic, Inc. | Battery encasement |
| WO2013184787A1 (en) | 2012-06-05 | 2013-12-12 | Nanostim, Inc. | Leadless pacemaker with multiple electrodes |
| US9008777B2 (en) | 2012-06-21 | 2015-04-14 | Pacesetter, Inc. | Leadless intra-cardiac medical device with reduced number of feed-thrus |
| EP2879758B1 (en) | 2012-08-01 | 2018-04-18 | Pacesetter, Inc. | Biostimulator circuit with flying cell |
| US9351648B2 (en) | 2012-08-24 | 2016-05-31 | Medtronic, Inc. | Implantable medical device electrode assembly |
| US9421387B2 (en) | 2012-09-20 | 2016-08-23 | Advanced Bionics Ag | Implantable body with a lead and with an engagement wing |
| US20140100627A1 (en) | 2012-10-08 | 2014-04-10 | Pacesetter, Inc. | Leadless intra-cardiac medical device with integrated l-c resonant circuit pressure sensor |
| US8670842B1 (en) | 2012-12-14 | 2014-03-11 | Pacesetter, Inc. | Intra-cardiac implantable medical device |
| US8634919B1 (en) | 2012-12-20 | 2014-01-21 | Pacesetter, Inc. | Intracardiac implantable medical device for biatrial and/or left heart pacing and method of implanting same |
| WO2014178035A1 (en) | 2013-05-02 | 2014-11-06 | Sorin Crm Sas | Leadless pacemaker capsule cardiac resynchronization therapy system optimization |
| US10004907B2 (en) | 2014-02-21 | 2018-06-26 | Pacesetter, Inc. | Automatic capture verification within leadless implantable medical devices |
-
2014
- 2014-11-11 US US14/538,518 patent/US9492668B2/en active Active
-
2015
- 2015-11-03 EP EP15801533.9A patent/EP3218051B1/en active Active
- 2015-11-03 CN CN201580061066.4A patent/CN107106848B/en active Active
- 2015-11-03 WO PCT/US2015/058743 patent/WO2016077097A1/en active Application Filing
-
2016
- 2016-11-14 US US15/350,708 patent/US9808628B2/en active Active
Patent Citations (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5247930A (en) * | 1992-02-04 | 1993-09-28 | Vitatron Medical, B.V. | Dual chamber pacing system with dynamic physiological tracking and method of timing delivered stimulus for optimized synchronous pacing |
| EP0709114A2 (en) * | 1994-10-26 | 1996-05-01 | Vitatron Medical B.V. | Dual chamber pacemaker system and method with improved switching between synchronous and asynchronous behavior |
| EP0734741A3 (en) * | 1995-03-29 | 1998-03-11 | Vitatron Medical B.V. | Pacemaker system and method with improved detection of end of retrograde conduction |
| US6498949B2 (en) * | 2001-02-27 | 2002-12-24 | Pacesetter, Inc. | Implantable cardiac device providing repetitive non-reentrant ventriculo-atrial synchronous (RNRVAS) rhythm therapy using VA interval extension and method |
| US20070135850A1 (en) * | 2005-06-09 | 2007-06-14 | Ela Medical S.A. | Improved management of mode switching for an aai/ddd type implantable device in the presence of ventricular events of uncertain nature |
| CN103381284A (en) * | 2005-10-14 | 2013-11-06 | 内诺斯蒂姆股份有限公司 | Leadless cardiac pacemaker and system |
| US20080255628A1 (en) * | 2007-04-11 | 2008-10-16 | Cardiac Pacemakers, Inc. | Reverse pacing-mode switch |
| US20090281587A1 (en) * | 2008-05-07 | 2009-11-12 | Pacesetter, Inc. | System and method for detecting hidden atrial events for use with automatic mode switching within an implantable medical device |
| CN103517733A (en) * | 2011-04-27 | 2014-01-15 | 美敦力公司 | Pacing in the presence of electromagnetic interference |
| US20130079861A1 (en) * | 2011-09-27 | 2013-03-28 | Medtronic, Inc. | Imd stability monitor |
| US20130138006A1 (en) * | 2011-11-04 | 2013-05-30 | Pacesetter, Inc. | Single chamber leadless intra-cardiac medical device having dual chamber sensing with signal discrimination |
| US20140121720A1 (en) * | 2012-10-31 | 2014-05-01 | Medtronic, Inc. | Leadless pacemaker system |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111432875A (en) * | 2017-12-01 | 2020-07-17 | 心脏起搏器股份公司 | Method and system for detecting atrial contraction timing references and determining cardiac intervals from a ventricular-implantable leadless cardiac pacemaker |
| CN111432874A (en) * | 2017-12-01 | 2020-07-17 | 心脏起搏器股份公司 | Method and system for detecting atrial systolic timing fiducials within a search window from a ventricular implanted leadless pacemaker |
| CN111432875B (en) * | 2017-12-01 | 2024-04-30 | 心脏起搏器股份公司 | Method and system for detecting atrial contraction timing reference and determining cardiac interval from ventricular implanted leadless cardiac pacemaker |
| CN111556773A (en) * | 2018-01-04 | 2020-08-18 | 心脏起搏器股份公司 | Dual chamber pacing without beat-to-beat communication |
| CN108310652A (en) * | 2018-04-10 | 2018-07-24 | 创领心律管理医疗器械(上海)有限公司 | Heart implanted device and pacing system |
| US11833358B2 (en) | 2018-04-10 | 2023-12-05 | Microport Soaring Crm (Shanghai) Co., Ltd. | Cardiac implantation device and pacing system |
| CN115887923A (en) * | 2021-08-16 | 2023-04-04 | 丹源医学科技(杭州)有限公司 | An implantable medical device and system capable of effectively avoiding pacing in the vulnerable period of the ventricle |
| CN115887923B (en) * | 2021-08-16 | 2025-09-12 | 丹源医学科技(杭州)有限公司 | An implantable medical device and system capable of effectively avoiding ventricular vulnerable period pacing |
| CN114858494A (en) * | 2022-04-08 | 2022-08-05 | 中国食品药品检定研究院 | Ventricular assist device testing method and ventricular assist device testing system |
Also Published As
| Publication number | Publication date |
|---|---|
| EP3218051B1 (en) | 2023-01-25 |
| US20160129262A1 (en) | 2016-05-12 |
| US20170056670A1 (en) | 2017-03-02 |
| WO2016077097A1 (en) | 2016-05-19 |
| EP3218051A1 (en) | 2017-09-20 |
| US9492668B2 (en) | 2016-11-15 |
| CN107106848B (en) | 2020-11-27 |
| US9808628B2 (en) | 2017-11-07 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN107106847B (en) | Method and system for mode switching by a ventricular leadless pacing device | |
| CN107106848B (en) | Leadless pacing system with mode switching capability via ventricular leadless pacing device | |
| USRE48197E1 (en) | Atrial contraction detection by a ventricular leadless pacing device for atrio-synchronous ventricular pacing | |
| CN107148295B (en) | Method and system for mode switching of ventricular leadless pacing devices | |
| EP3191179B1 (en) | Dual chamber timing for leadless pacemakers using infrequent atrial signals and ventricular contractions | |
| CN104684615B (en) | Without lead pacemaker system | |
| CN104768609B (en) | Without lead pacemaker system | |
| US10226631B2 (en) | Systems and methods for infarct detection | |
| EP3758599B1 (en) | Capture management in leadless cardiac pacing device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |