CN107195545A - The semiconductor devices formed for the method for thermal annealing and by this method - Google Patents
The semiconductor devices formed for the method for thermal annealing and by this method Download PDFInfo
- Publication number
- CN107195545A CN107195545A CN201710141060.9A CN201710141060A CN107195545A CN 107195545 A CN107195545 A CN 107195545A CN 201710141060 A CN201710141060 A CN 201710141060A CN 107195545 A CN107195545 A CN 107195545A
- Authority
- CN
- China
- Prior art keywords
- semiconductor region
- dopant
- semiconductor
- various embodiments
- radiation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 546
- 238000000034 method Methods 0.000 title claims abstract description 105
- 238000000137 annealing Methods 0.000 title description 5
- 230000005855 radiation Effects 0.000 claims abstract description 273
- 239000002019 doping agent Substances 0.000 claims abstract description 175
- 230000005670 electromagnetic radiation Effects 0.000 claims abstract description 134
- 238000010521 absorption reaction Methods 0.000 claims abstract description 38
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 36
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 21
- 239000003054 catalyst Substances 0.000 claims description 34
- 239000002243 precursor Substances 0.000 claims description 15
- 238000002310 reflectometry Methods 0.000 claims description 14
- 230000015572 biosynthetic process Effects 0.000 claims description 8
- 238000004380 ashing Methods 0.000 claims description 4
- 230000001427 coherent effect Effects 0.000 claims description 4
- 229910002804 graphite Inorganic materials 0.000 claims description 4
- 239000010439 graphite Substances 0.000 claims description 4
- 230000003287 optical effect Effects 0.000 claims description 4
- 238000005336 cracking Methods 0.000 claims description 3
- 230000008020 evaporation Effects 0.000 claims description 2
- 238000001704 evaporation Methods 0.000 claims description 2
- 239000007787 solid Substances 0.000 claims description 2
- 150000001336 alkenes Chemical class 0.000 claims 1
- 238000005530 etching Methods 0.000 claims 1
- 239000004744 fabric Substances 0.000 claims 1
- 239000006260 foam Substances 0.000 claims 1
- 238000013517 stratification Methods 0.000 claims 1
- 238000005286 illumination Methods 0.000 abstract 1
- 239000000463 material Substances 0.000 description 65
- 238000010438 heat treatment Methods 0.000 description 51
- 229910021387 carbon allotrope Inorganic materials 0.000 description 26
- 230000001678 irradiating effect Effects 0.000 description 25
- 239000000758 substrate Substances 0.000 description 24
- 230000003213 activating effect Effects 0.000 description 19
- 230000008018 melting Effects 0.000 description 19
- 238000002844 melting Methods 0.000 description 19
- 238000001994 activation Methods 0.000 description 18
- 230000004913 activation Effects 0.000 description 18
- 238000001465 metallisation Methods 0.000 description 18
- 238000012545 processing Methods 0.000 description 15
- 229910052751 metal Inorganic materials 0.000 description 13
- 239000002184 metal Substances 0.000 description 13
- 239000002041 carbon nanotube Substances 0.000 description 12
- 238000012546 transfer Methods 0.000 description 12
- 229910021393 carbon nanotube Inorganic materials 0.000 description 11
- 239000012071 phase Substances 0.000 description 11
- 239000006117 anti-reflective coating Substances 0.000 description 9
- 150000001875 compounds Chemical class 0.000 description 9
- 230000001965 increasing effect Effects 0.000 description 9
- 230000005684 electric field Effects 0.000 description 8
- 239000010949 copper Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- 238000002513 implantation Methods 0.000 description 7
- 150000002500 ions Chemical class 0.000 description 7
- 239000007769 metal material Substances 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 229910001092 metal group alloy Inorganic materials 0.000 description 6
- 239000007790 solid phase Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 229910052729 chemical element Inorganic materials 0.000 description 5
- 238000010884 ion-beam technique Methods 0.000 description 5
- 230000031700 light absorption Effects 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 239000002105 nanoparticle Substances 0.000 description 4
- 238000005240 physical vapour deposition Methods 0.000 description 4
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical class C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000008209 carbon nanofoam Substances 0.000 description 3
- 229910021400 carbon nanofoam Inorganic materials 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 229910003472 fullerene Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- KXNLCSXBJCPWGL-UHFFFAOYSA-N [Ga].[As].[In] Chemical compound [Ga].[As].[In] KXNLCSXBJCPWGL-UHFFFAOYSA-N 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000001066 destructive effect Effects 0.000 description 2
- -1 for example Inorganic materials 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 150000002736 metal compounds Chemical class 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229910052755 nonmetal Inorganic materials 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000007725 thermal activation Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000003667 anti-reflective effect Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000000541 cathodic arc deposition Methods 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012777 electrically insulating material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- HZXMRANICFIONG-UHFFFAOYSA-N gallium phosphide Chemical compound [Ga]#P HZXMRANICFIONG-UHFFFAOYSA-N 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002048 multi walled nanotube Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002109 single walled nanotube Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004901 spalling Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 238000003631 wet chemical etching Methods 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/22—Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
- H01L21/223—Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a gaseous phase
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/22—Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
- H01L21/225—Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/268—Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/324—Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/025—Manufacture or treatment of FETs having insulated gates [IGFET] of vertical IGFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/63—Vertical IGFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/117—Shapes of semiconductor bodies
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/124—Shapes, relative sizes or dispositions of the regions of semiconductor bodies or of junctions between the regions
- H10D62/126—Top-view geometrical layouts of the regions or the junctions
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2202/00—Structure or properties of carbon nanotubes
- C01B2202/20—Nanotubes characterized by their properties
- C01B2202/22—Electronic properties
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- High Energy & Nuclear Physics (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Optics & Photonics (AREA)
- Electromagnetism (AREA)
- Thin Film Transistor (AREA)
- Recrystallisation Techniques (AREA)
Abstract
Description
技术领域technical field
各种实施方式一般涉及用于热退火的方法以及通过该方法形成的半导体器件。Various embodiments generally relate to methods for thermal annealing and semiconductor devices formed by the methods.
背景技术Background technique
一般而言,可以在衬底(也称为晶片或载体)上或衬底中以半导体技术来处理半导体材料,例如以制造集成电路(也称为芯片)。在处理半导体材料期间,可以应用某些处理步骤,如减薄衬底、掺杂半导体材料、或在衬底之上形成一个或更多个层。In general, semiconductor technology may process semiconductor material on or in a substrate (also called a wafer or carrier), for example to manufacture integrated circuits (also called chips). During processing of semiconductor materials, certain processing steps may be applied, such as thinning the substrate, doping the semiconductor material, or forming one or more layers over the substrate.
为了掺杂半导体材料,可以将掺杂剂注入半导体材料。可以对半导体材料进一步处理以完全激活掺杂剂。掺杂剂激活可以提供从半导体材料中的掺杂剂获得所需的电子作用。为了激活掺杂剂,可以使热能在掺杂剂注入之后传递至半导体材料。通常,使用通过炉或快速热处理实现的热退火,从而以小于一秒的高峰值温度提供热平衡或快速处理,以使掺杂剂的化学扩散最小化。为了使热能传递至半导体材料,可以使用激光,这也被称为激光热退火(LTA)。In order to dope a semiconductor material, dopants may be implanted into the semiconductor material. The semiconductor material can be further processed to fully activate the dopants. Dopant activation may provide the desired electronic interaction from the dopant in the semiconductor material. To activate the dopants, thermal energy may be transferred to the semiconductor material after dopant implantation. Typically, thermal annealing by furnace or rapid thermal processing is used to provide thermal equilibrium or rapid processing with high peak temperatures in less than a second to minimize chemical diffusion of dopants. To transfer thermal energy to the semiconductor material, a laser can be used, which is also known as laser thermal annealing (LTA).
通常,根据半导体材料来调整激光的波长,以给半导体材料提供能量的最大传递。换言之,可以提供高传递效率,这减少了LTA所需的能量。或者,根据期望的吸收长度来调整激光的波长。短波长可能导致能量集中在表面部分。Generally, the wavelength of the laser light is adjusted according to the semiconductor material to provide maximum transfer of energy to the semiconductor material. In other words, high transfer efficiency can be provided, which reduces the energy required for LTA. Alternatively, adjust the wavelength of the laser light according to the desired absorption length. Short wavelengths can lead to energy concentration in surface parts.
另一方面,由于高吸收,根据激光的波长来限制激光的穿透深度。可以根据半导体材料能够承受的热极限来限制激光的总能量。因此,处理本身可能会限制掺杂剂被激活的半导体材料的深度。On the other hand, due to the high absorption, the penetration depth of the laser is limited according to the wavelength of the laser. The total energy of the laser can be limited by the thermal limit that the semiconductor material can withstand. Thus, the processing itself may limit the depth of semiconductor material to which dopants are activated.
另一方面,即使根据最大能量传递来调整激光的波长,仍然有很大一部分激光固有地由半导体材料反射,并且不能再被用于将能量传递至半导体材料。例如,半导体材料通常反射约60%的激光。因此,获得被传递至半导体材料的期望量的热能所需的总能量远高于该热能。换言之,激光源的功率消耗和提供具有所需功率能力的处理设备(例如足够的光学装置、多个脉冲激光器以及多个波长激光器)的相应投资成本通常较高。On the other hand, even if the wavelength of the laser light is tuned for maximum energy transfer, there is still a significant portion of the laser light that is inherently reflected by the semiconductor material and can no longer be used to transfer energy to the semiconductor material. For example, semiconductor materials typically reflect about 60% of laser light. Therefore, the total energy required to obtain the desired amount of thermal energy transferred to the semiconductor material is much higher than this thermal energy. In other words, the power consumption of the laser source and the corresponding capital cost of providing processing equipment with the required power capabilities (eg, adequate optics, multiple pulsed lasers, and multiple wavelength lasers) are generally high.
通常,在半导体材料之上形成抗反射涂层以减少反射光的量。然而,抗反射涂层可能由于在抗反射涂层中引入的机械应力而影响热处理的结果。常规抗反射涂层基于由复合层结构提供的相长干涉和相消干涉的相互作用,因此可能会需要较多工作量来制备。此外,固有应力可能由于制备而被内置到抗反射涂层中,该抗反射涂层可能在半导体材料的底层部分融化时松弛。松弛的抗反射涂层的形貌图可以被并入半导体材料的固化部分中。如果由于熔化而丧失了由机械刚性的底层半导体材料提供的支承,则受到压缩应力的涂层倾向于裂化和剥落。此外,涂层可以与熔化的半导体材料相互混和,并且污染半导体材料。这可能导致处理故障或限制例如热处理这样的处理范围。Typically, anti-reflective coatings are formed over semiconductor materials to reduce the amount of reflected light. However, the anti-reflective coating may affect the result of the heat treatment due to the mechanical stress introduced in the anti-reflective coating. Conventional anti-reflective coatings are based on constructive and destructive interference interactions provided by a composite layer structure and thus may require more effort to prepare. In addition, inherent stresses may be built into the antireflective coating due to fabrication, which may relax as the underlying portion of the semiconductor material melts. A topographical map of the relaxed anti-reflective coating can be incorporated into the cured portion of the semiconductor material. Coatings subjected to compressive stress are prone to cracking and spalling if the support provided by the mechanically rigid underlying semiconducting material is lost due to melting. Furthermore, the coating can intermix with the molten semiconductor material and contaminate the semiconductor material. This can lead to process failures or limit the scope of processes such as heat treatment.
发明内容Contents of the invention
根据本发明的各种实施方式,一种方法可以包括:在半导体区域中布置掺杂剂;在所述半导体区域的至少一部分之上形成辐射吸收层,该辐射吸收层包括碳的至少一个同素异形体或由该同素异形体形成;以及通过利用电磁辐射至少部分地照射辐射吸收层以至少部分地加热半导体区域来至少部分地激活掺杂剂。According to various embodiments of the invention, a method may include: disposing a dopant in a semiconductor region; forming a radiation absorbing layer over at least a portion of the semiconductor region, the radiation absorbing layer comprising at least one isotope of carbon an isotrope or formed from the allotrope; and at least partially activating the dopant by at least partially irradiating the radiation absorbing layer with electromagnetic radiation to at least partially heat the semiconductor region.
附图说明Description of drawings
在附图中,相似的附图标记在所有附图中一般指代相同的部件。附图未必按比例绘制,而通常重点放在对本发明的原理的说明上。在以下描述中,参照附图描述本发明的各种实施方式,在附图中:In the drawings, like reference numerals generally refer to like parts throughout the views. The drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles of the invention. In the following description, various embodiments of the invention are described with reference to the accompanying drawings, in which:
图1A、图1B和图1C分别示出了根据各种实施方式的方法中的根据各种实施方式的半导体器件的示意性截面图或侧视图;1A, 1B and 1C respectively show a schematic cross-sectional view or a side view of a semiconductor device according to various embodiments in a method according to various embodiments;
图2A、图2B和图2C分别示出了根据各种实施方式的方法中的根据各种实施方式的半导体器件的示意性截面图或侧视图;2A, FIG. 2B and FIG. 2C respectively show a schematic cross-sectional view or a side view of a semiconductor device according to various embodiments in a method according to various embodiments;
图3A、图3B和图3C分别示出了根据各种实施方式的方法中的根据各种实施方式的半导体器件的示意性截面图或侧视图;3A, 3B and 3C respectively show a schematic cross-sectional view or a side view of a semiconductor device according to various embodiments in a method according to various embodiments;
图4A和图4B分别示出了根据各种实施方式的方法中的根据各种实施方式的半导体器件的示意性截面图或侧视图;4A and 4B respectively show a schematic cross-sectional view or a side view of a semiconductor device according to various embodiments in a method according to various embodiments;
图5A和图5B分别示出了根据各种实施方式的方法中的根据各种实施方式的半导体器件的反射特性的示意图;5A and FIG. 5B respectively show schematic diagrams of reflection characteristics of semiconductor devices according to various embodiments in methods according to various embodiments;
图6A和图6B分别示出了根据各种实施方式的方法中的根据各种实施方式的辐射吸收层的示意性侧视图或示意性截面图;6A and 6B show a schematic side view or a schematic cross-sectional view, respectively, of a radiation absorbing layer according to various embodiments in a method according to various embodiments;
图7A、图7B和图7C分别示出了根据各种实施方式的方法中的根据各种实施方式的辐射吸收层的示意性侧视图;Figures 7A, 7B and 7C each show a schematic side view of a radiation absorbing layer according to various embodiments in a method according to various embodiments;
图8A和图8B分别示出了根据各种实施方式的方法中的根据各种实施方式的半导体器件的示意性截面图或侧视图;8A and 8B respectively show a schematic cross-sectional view or a side view of a semiconductor device according to various embodiments in a method according to various embodiments;
图9示出了根据各种实施方式的方法中的根据各种实施方式的辐射吸收层的示意性透视图;Figure 9 shows a schematic perspective view of a radiation absorbing layer according to various embodiments in a method according to various embodiments;
图10A、图10B和图10C分别示出了根据各种实施方式的方法中的根据各种实施方式的半导体器件的示意性截面图或侧视图;10A, 10B and 10C respectively show a schematic cross-sectional view or a side view of a semiconductor device according to various embodiments in a method according to various embodiments;
图11A、图11B和图11C分别示出了根据各种实施方式的方法中的根据各种实施方式的半导体器件的示意性截面图或侧视图;11A, 11B and 11C respectively show a schematic cross-sectional view or a side view of a semiconductor device according to various embodiments in a method according to various embodiments;
图12A和图12B分别示出了根据各种实施方式的方法中的根据各种实施方式的半导体器件的示意性截面图或侧视图;12A and 12B respectively show a schematic cross-sectional view or a side view of a semiconductor device according to various embodiments in a method according to various embodiments;
图13示出了根据各种实施方式的方法中的根据各种实施方式的半导体器件的示意性俯视图;Figure 13 shows a schematic top view of a semiconductor device according to various embodiments in a method according to various embodiments;
图14示出了根据各种实施方式的方法中的根据各种实施方式的半导体器件的示意性截面图;14 shows a schematic cross-sectional view of a semiconductor device according to various embodiments in a method according to various embodiments;
图15A和图15B分别示出了根据各种实施方式的方法中的根据各种实施方式的半导体器件的示意性截面图或侧视图;15A and 15B respectively show a schematic cross-sectional view or a side view of a semiconductor device according to various embodiments in a method according to various embodiments;
图16A、图16B和图16C分别示出了根据各种实施方式的方法中的根据各种实施方式的半导体器件的示意性截面图或侧视图;以及16A, 16B and 16C respectively show a schematic cross-sectional view or a side view of a semiconductor device according to various embodiments in a method according to various embodiments; and
图17A和图17B分别示出了根据各种实施方式的方法中的根据各种实施方式的半导体器件。17A and 17B illustrate semiconductor devices according to various embodiments in methods according to various embodiments, respectively.
具体实施方式detailed description
以下详细描述以说明的方式示出可以实践本发明的实施方式和具体细节的附图。The following detailed description shows, by way of illustration, the drawings and specific details of embodiments in which the invention can be practiced.
词语“示例性”在本文用于表示“用作示例、实例或说明”。本文描述为“示例性”的任何实施方式或设计不一定要被解释为比其他实施方式或设计更为优选或有利。The word "exemplary" is used herein to mean "serving as an example, instance, or illustration." Any implementation or design described herein as "exemplary" is not necessarily to be construed as preferred or advantageous over other implementations or designs.
关于形成在侧面或表面“之上”的沉积材料而使用的词语“之上”在本文可以用于表示沉积材料可以“直接”形成在隐含的侧面或表面上,例如以与其直接接触的方式。关于形成在侧面或表面“之上”的沉积材料而使用的词语“之上”在本文可以用于表示沉积材料可以“间接”形成在隐含的侧面或表面上,其中一个或更多个附加层被布置在隐含的侧面或表面与沉积材料之间。The word "over" as used in reference to a deposited material formed "on" a side or surface may be used herein to mean that the deposited material may be formed "directly" on the implied side or surface, for example in direct contact therewith . The term "over" as used in reference to deposited material formed "on" a side or surface may be used herein to mean that the deposited material may be formed "indirectly" on the implied side or surface, where one or more additional A layer is arranged between an implied side or surface and the deposition material.
关于结构的(或衬底、晶片或载体的)“向”延伸或“向地”相邻而使用的术语“向”在本文可以用于表示沿着衬底、晶片或载体的表面的延伸或位置关系。这表示衬底的表面(例如,载体的表面或晶片的表面)可以用作参考,通常称为衬底的主处理表面(或载体或晶片的主处理表面)。此外,关于结构的(或结构元件的)“宽度”而使用的术语“宽度”在本文可以用于表示结构的横向延伸。此外,关于结构的(或结构元件的)的高度而使用的术语“高度”在本文可以用于表示结构沿垂直于衬底表面(例如,垂直于衬底的主处理表面)的方向的延伸。关于层的“厚度”而使用的术语“厚度”在本文可以用于表示该层的、与其上沉积该层的支承件(材料)的表面垂直的空间延伸。如果支承件的表面平行于衬底的表面(例如,平行于主处理表面),则布置在支承件上的层的“厚度”可以与该层的高度相同。此外,“竖直”结构可以被称为在垂直于横向方向(例如,垂直于衬底的主处理表面)的方向上延伸的结构,并且“竖直”延伸可以被称为沿垂直于横向方向的方向的延伸(例如,垂直于衬底的主处理表面的延伸)。The term "towards" as used with respect to extending "towards" or "towards" adjacent a structure (or substrate, wafer, or carrier) may be used herein to mean extending along or along a surface of a substrate, wafer, or carrier. Positional relationship. This means that the surface of the substrate (eg the surface of the carrier or the surface of the wafer) can be used as a reference, often referred to as the main processing surface of the substrate (or the main processing surface of the carrier or wafer). Furthermore, the term "width" used in reference to the "width" of a structure (or of a structural element) may be used herein to refer to the lateral extension of a structure. Furthermore, the term "height" used in relation to the height of a structure (or of a structure element) may be used herein to denote the extension of a structure in a direction perpendicular to the substrate surface (eg, perpendicular to the main processing surface of the substrate). The term "thickness" used in relation to the "thickness" of a layer may be used herein to denote the spatial extension of the layer perpendicular to the surface of the support (material) on which the layer is deposited. If the surface of the support is parallel to the surface of the substrate (eg parallel to the main processing surface), the "thickness" of a layer arranged on the support may be the same as the height of the layer. Furthermore, a "vertical" structure may refer to a structure extending in a direction perpendicular to a lateral direction (eg, perpendicular to the main processing surface of a substrate), and a "vertical" extending may refer to a structure extending in a direction perpendicular to a lateral direction. The extension of the direction (for example, the extension perpendicular to the main processing surface of the substrate).
关于一组元件的短语“……中至少一个”在本文可以用于表示来自由各元件构成的一个组中的至少一个元件。例如,关于一组元件的短语“……中至少一个”在本文可以用于表示对以下项的选择:列出的元件中的一个、列出的元件中的多个、多个单独列出的元件或多个多种列出的元件。The phrase "at least one of" with reference to a group of elements may be used herein to mean at least one element from a group of elements. For example, the phrase "at least one of" with reference to a set of elements may be used herein to refer to a selection of one of the listed elements, a plurality of the listed elements, a plurality of individually listed elements. element or multiples of the listed elements.
根据各种实施方式,金属材料可以包括以下一组化学元素(也称为金属)中的至少一种化学元素或由该至少一种化学元素形成:钨(W)、铝(Al)、铜(Cu)、镍(Ni)、镁(Mg)、铬(Cr)、铁(Fe)、锌(Zn)、锡(Sn)、金(Au)、银(Ag)、铱(Ir)、铂(Pt)、铟(In)、镉(Cd)、铋(Bi)、钒(V)、钛(Ti)、钯(Pd)、锆(Zr),或者可以包括含有该组化学元素中的至少一个化学元素的金属合金或由该金属合金形成。作为示例,金属合金可以包括以下或者由以下形成:至少两种金属(例如在金属间化合物的情况下为例如两种或多于两种金属);或者至少一种金属(例如,一种或多于一种金属)和至少一个其他化学元素(例如,非金属或半金属)。作为示例,金属合金可以包括以下或者由以下形成:至少一种金属和至少一种非金属(例如在钢或氮化物的情况下为例如碳(C)或氮(N))。作为示例,金属合金可以包括以下或者由以下形成:多于一种金属(例如,两种或更多种金属),例如金和铝的各种化合物、铜和铝的各种化合物、铜和锌的各种化合物(例如,“黄铜”)或者铜和锡的各种化合物(例如,“青铜”),这例如包括各种中间金属化合物。根据各种实施方式,金属材料可以是导电的。According to various embodiments, the metallic material may comprise or be formed of at least one chemical element from the following group of chemical elements (also referred to as metals): tungsten (W), aluminum (Al), copper ( Cu), nickel (Ni), magnesium (Mg), chromium (Cr), iron (Fe), zinc (Zn), tin (Sn), gold (Au), silver (Ag), iridium (Ir), platinum ( Pt), indium (In), cadmium (Cd), bismuth (Bi), vanadium (V), titanium (Ti), palladium (Pd), zirconium (Zr), or may include at least one of these chemical elements A metal alloy of a chemical element or formed from the metal alloy. As an example, a metal alloy may comprise or be formed from at least two metals (e.g., two or more metals in the case of an intermetallic compound); or at least one metal (e.g., one or more a metal) and at least one other chemical element (for example, a nonmetal or semimetal). As an example, a metal alloy may comprise or be formed from at least one metal and at least one non-metal such as, for example, carbon (C) or nitrogen (N) in the case of steel or nitrides). As examples, metal alloys may include or be formed from more than one metal (e.g., two or more metals), such as various compounds of gold and aluminum, various compounds of copper and aluminum, copper and zinc Various compounds of copper (for example, "brass") or various compounds of copper and tin (for example, "bronze"), which include, for example, various intermediate metal compounds. According to various embodiments, the metal material may be conductive.
半导体材料、层、区域等可以被理解为具有中等电导率,例如(在室温和恒定电场方向、例如恒定电场处测量的)电导率的范围为约10-6西门子每米(S/m)至约106S/m。导电材料(例如,金属材料)、层、区域等可以被理解为具有高电导率,例如(在室温和恒定电场方向、例如恒定电场处测量的)电导率大于约106S/m,例如大于约107S/m。电绝缘材料、层、区域等可以被理解为具有低电导率,例如(在室温和恒定电场方向、例如恒定电场处测量的)电导率小于约10-6S/m,例如小于约10-10S/m。A semiconducting material, layer, region, etc., is understood to have a moderate electrical conductivity, e.g., a conductivity (measured at room temperature and in the direction of a constant electric field, e.g., at a constant electric field) in the range of about 10-6 Siemens per meter (S/m) to About 10 6 S/m. A conductive material (e.g., metallic material), layer, region, etc. may be understood to have a high electrical conductivity, e.g., a conductivity (measured at room temperature and in a constant electric field direction, e.g., a constant electric field) greater than about 10 6 S/m, e.g., greater than About 10 7 S/m. An electrically insulating material, layer, region, etc. may be understood to have a low electrical conductivity, e.g., an electrical conductivity (measured at room temperature and in the direction of a constant electric field, e.g., at a constant electric field) of less than about 10-6 S/m, such as less than about 10-10 S/m.
根据各种实施方式,半导体区域(例如,包括衬底或由衬底形成)可以包括各种类型的半导体材料或由各种类型的半导体材料形成,这包括:例如,IV族半导体(例如,硅或锗)、化合物半导体(例如,III-V族化合物半导体(例如砷化镓))、或者包括III族半导体、V族半导体或聚合物的其他类型的半导体。在一个实施方式中,半导体区域由(掺杂的或未掺杂的)硅制成,在一个替选实施方式中,半导体区域是绝缘体上硅(SOI)晶片。作为替选方案,任何其他合适的半导体材料可以用于半导体区域,例如,诸如磷化镓(GaP)、磷化铟这样的半导体化合物材料,以及诸如砷化铟镓(InGaAs)这样的任何合适的三元半导体化合物材料或四元半导体化合物材料。According to various embodiments, a semiconductor region (e.g., comprising or formed from a substrate) may include or be formed from various types of semiconductor materials, including, for example, Group IV semiconductors (e.g., silicon or germanium), compound semiconductors such as III-V compound semiconductors such as gallium arsenide, or other types of semiconductors including group III semiconductors, group V semiconductors, or polymers. In one embodiment the semiconductor region is made of silicon (doped or undoped), in an alternative embodiment the semiconductor region is a silicon-on-insulator (SOI) wafer. Alternatively, any other suitable semiconductor material may be used for the semiconductor region, for example, semiconductor compound materials such as gallium phosphide (GaP), indium phosphide, and any suitable semiconductor material such as indium gallium arsenide (InGaAs) Ternary semiconductor compound material or quaternary semiconductor compound material.
根据各种实施方式,半导体区域可以被处理以在半导体区域中和/或在半导体区域之上形成一个或更多个半导体芯片。半导体芯片可以包括有源芯片区。有源芯片区可以被设置在半导体区域的一部分中并且可以包括一个或更多个半导体电路元件如晶体管、电阻器、电容器、二极管等。一个或更多个半导体电路元件可以被配制成执行计算或存储操作。可替选地或另外地,一个或更多个半导体电路元件可以被配置成例如在电力电子装置中执行切换或整流操作。According to various embodiments, the semiconductor region may be processed to form one or more semiconductor chips in and/or over the semiconductor region. A semiconductor chip may include an active chip region. The active chip region may be provided in a portion of the semiconductor region and may include one or more semiconductor circuit elements such as transistors, resistors, capacitors, diodes, and the like. One or more semiconductor circuit elements may be configured to perform computational or memory operations. Alternatively or additionally, one or more semiconductor circuit elements may be configured to perform switching or rectification operations, eg in power electronics.
根据各种实施方式,半导体芯片可以通过从半导体区域的切口区域去除材料(也称为切割或切分半导体区域)而从半导体区域被切割。例如,从半导体区域的切口区域去除材料可以通过划线和断裂、切割、刀片切割或机械锯切(例如使用切割锯)来处理。在切割半导体芯片之后,半导体芯片可以被电接触并且例如通过模具材料被封装到芯片载体(也称为芯片壳体)中,该芯片载体然后可以适用于在电子装置中使用。例如,半导体芯片可以通过导线被接合到芯片载体,并且芯片载体可以被焊接到印刷电路板上。According to various embodiments, the semiconductor chip may be cut from the semiconductor region by removing material from a cutout region of the semiconductor region, also referred to as dicing or singulating the semiconductor region. For example, removal of material from a kerf region of a semiconductor region may be handled by scribing and breaking, dicing, blade dicing, or mechanical sawing (eg, using a dicing saw). After dicing the semiconductor chip, the semiconductor chip can be electrically contacted and encapsulated, for example by means of a mold material, into a chip carrier (also called chip housing), which can then be suitable for use in an electronic device. For example, a semiconductor chip may be wire bonded to a chip carrier, and the chip carrier may be soldered to a printed circuit board.
根据各种实施方式,可以例如通过由于用诸如碳纳米管(CNT)这样的碳同素异形体覆盖衬底材料而增强光吸收,来提供(例如晶体)衬底材料(例如硅)中的掺杂剂激活。CNT可以固有地提供低辐射反射。示例性地,覆盖有碳同素异形体(例如,CNT)的衬底表面可以由于辐射反射最小化而出现光学黑色,从而使得在衬底中的辐射吸收增强。According to various embodiments, doping in (e.g. crystalline) substrate materials (e.g. silicon) may be provided, for example, by enhancing light absorption due to covering the substrate material with carbon allotropes such as carbon nanotubes (CNTs). Agent activation. CNTs can inherently provide low radiation reflection. Illustratively, a substrate surface covered with a carbon allotrope (eg, CNT) may appear optically black due to minimized reflection of radiation, resulting in enhanced absorption of radiation in the substrate.
根据各种实施方式,合适的催化剂(例如,金属、含有材料的金属或金属合金例如金属化合物)可以被提供用于形成碳同素异形体。催化剂(也称为催化剂层)可以(例如,使用PVD处理)被沉积为衬底上的岛状物。岛状物可以具有非常低的横向延伸(例如,小于几纳米,例如小于10nm)。岛状物可以充当针对CNT的碳同素异形体的生长位置。根据处理条件(包括前体),碳同素异形体可以在先前沉积到(例如包括硅的)衬底上的催化剂岛状物的上面或下面生长。According to various embodiments, a suitable catalyst (eg, a metal, a metal containing material, or a metal alloy such as a metal compound) may be provided for the formation of the carbon allotrope. The catalyst (also referred to as a catalyst layer) can be deposited (eg, using PVD processing) as islands on the substrate. The islands may have very low lateral extension (eg less than a few nanometers, eg less than 10 nm). The islands can serve as growth sites for carbon allotropes of CNTs. Depending on the processing conditions (including the precursors), the carbon allotrope can grow on or under the catalyst islands previously deposited onto the substrate (eg, comprising silicon).
根据各种实施方式,可以设置针对半导体区域的辐射吸收层。辐射吸收层可以通过减小光被反射的部分来增大对(例如,以激光或闪光的形式的)光的吸收。用于辐射吸收层的能量(激光的能量)利用(示例性地,能量的传递部分)可以大于用于半导体区域(例如用于半导体区域的平坦表面)的能量利用。传递至半导体区域的能量可以可选地用于融化半导体区域的一部分。According to various embodiments, a radiation absorbing layer for the semiconductor region may be provided. The radiation absorbing layer can increase the absorption of light (eg, in the form of a laser or flash) by reducing the portion of the light that is reflected. The energy (energy of the laser) utilization (eg, the transferred portion of energy) for the radiation absorbing layer may be greater than the energy utilization for the semiconductor region (eg for the planar surface of the semiconductor region). The energy delivered to the semiconductor region may optionally be used to melt a portion of the semiconductor region.
根据各种实施方式,半导体区域的表面可以被辐射吸收层选择性地覆盖以例如增大对激光的吸收。辐射吸收层可以增大(或最大化)对激光的吸收并且热传导至半导体区域。形成辐射吸收层可以通过本文所述的各种处理来提供。According to various embodiments, the surface of the semiconductor region may be selectively covered with a radiation absorbing layer, eg to increase absorption of laser light. The radiation absorbing layer can increase (or maximize) absorption of laser light and conduction of heat to the semiconductor region. Forming the radiation absorbing layer can be provided by various processes described herein.
根据各种实施方式,辐射吸收层(例如,至少一个碳同素异形体)可以具有高电导率(例如,金属性能)或中等电导率(例如,半导电性能)。可选地,辐射吸收层(例如,至少一个碳同素异形体)可以具有如下热导率:多于约500瓦特每米开尔文(W/m·K),例如多于约1000W/m·K,例如多于约2000W/m·K,例如多于约3000W/m·K,例如多于约4000W/m·K,例如多于约5000W/m·K,例如多于约5500W/m·K,例如多于或等于约6000W/m·K。电导率和热导率中至少之一可以被理解为平行于指向半导体区域的方向(例如,平行于半导体区域的宏观表面法线)。根据各种实施方式,辐射吸收层可以包括多个粒子,每个粒子都包括至少一个碳同素异形体或由至少一个碳同素异形体形成。多个粒子可以被彼此分离地设置。According to various embodiments, the radiation absorbing layer (eg, at least one carbon allotrope) may have high electrical conductivity (eg, metallic properties) or moderate electrical conductivity (eg, semiconducting properties). Optionally, the radiation absorbing layer (e.g., at least one carbon allotrope) may have a thermal conductivity of greater than about 500 watts per meter Kelvin (W/m·K), such as greater than about 1000 W/m·K , such as more than about 2000W/m·K, such as more than about 3000W/m·K, such as more than about 4000W/m·K, such as more than about 5000W/m·K, such as more than about 5500W/m·K , for example greater than or equal to about 6000 W/m·K. At least one of electrical conductivity and thermal conductivity may be understood to be parallel to a direction pointing to the semiconductor region (eg, parallel to a macroscopic surface normal of the semiconductor region). According to various embodiments, the radiation absorbing layer may comprise a plurality of particles, each particle comprising or being formed from at least one carbon allotrope. Multiple particles may be set separately from each other.
根据各种实施方式,增大对光(例如激光)的吸收会导致经由辐射吸收层到半导体区域的能量传递增大。增大对光的吸收(或者相应地至半导体区域的能量传递)会导致掺杂剂的热激活。在掺杂剂的热激活期间,半导体区域可以被辐射吸收层部分地遮蔽,这示例性地导致辐射吸收层的鉴别标记(fingerprint)保留在半导体区域中。鉴别标记可以提供对光的吸收(或相应地能量传递)增大的间接证据。例如,如果辐射吸收层包括将热本地传导至半导体区域的多个碳纳米管,则鉴别标记会出现。辐射吸收层的这种空间不均匀性可以改变半导体区域的电子特性。According to various embodiments, increased absorption of light (eg laser light) results in increased energy transfer via the radiation absorbing layer to the semiconductor region. Increased absorption of light (or correspondingly energy transfer to the semiconductor region) leads to thermal activation of the dopant. During thermal activation of the dopant, the semiconductor region may be partially shielded by the radiation absorbing layer, which exemplarily results in an identification fingerprint of the radiation absorbing layer remaining in the semiconductor region. An identifying marker may provide indirect evidence of increased absorption of light (or correspondingly energy transfer). For example, if the radiation absorbing layer includes a plurality of carbon nanotubes that conduct heat locally to the semiconducting region, the identification mark will appear. This spatial inhomogeneity of the radiation absorbing layer can alter the electronic properties of the semiconductor region.
根据各种实施方式的对辐射吸收层的使用可以通过各种类型的结构和/或化学分析来确认,以揭示鉴别标记的存在。鉴别标记可以用半导体区域的、彼此分离地(例如不相交地)嵌入半导体区域的另一部分中且其电子特性与该另一部分不同的多个部分来表征。The use of a radiation absorbing layer according to various embodiments may be confirmed by various types of structural and/or chemical analysis to reveal the presence of identifying markings. The identification mark may be characterized by portions of the semiconductor region that are embedded in another part of the semiconductor region separately from each other (eg, disjointly) and whose electronic properties differ from the other part.
图1A、图1B和图1C示出根据各种实施方式的方法中的根据各种实施方式的半导体器件的示意性截面图或侧视图。1A , 1B and 1C show schematic cross-sectional or side views of a semiconductor device according to various embodiments in a method according to various embodiments.
根据各种实施方式,方法可以包括在100a中例如通过半导体区域102的表面104将掺杂剂108设置在半导体区域102中。半导体区域102可以包括晶片(也称为衬底),例如诸如硅晶片这样的半导体晶片,或者由晶片形成。在一个实施方式中,半导体区域102可以是晶片的一部分。在一个实施方式中,半导体区域102可以是晶片。According to various embodiments, a method may include disposing a dopant 108 in the semiconductor region 102 in 100a, eg, through the surface 104 of the semiconductor region 102 . The semiconductor region 102 may include or be formed from a wafer (also referred to as a substrate), for example a semiconductor wafer such as a silicon wafer. In one embodiment, semiconductor region 102 may be a portion of a wafer. In one embodiment, semiconductor region 102 may be a wafer.
将掺杂剂设置在半导体区域102中可以包括在半导体区域102中形成以下浓度的掺杂剂(换言之,掺杂剂的原子):大于约1015原子每立方厘米(原子/cm3),例如大于约1016原子/cm3,例如大于约1017原子/cm3,例如大于约1018原子/cm3,例如大于约1019原子/cm3,例如大于约1020原子/cm3,例如大于约1021原子/cm3或者甚至更高(例如,基本上等于半导体区域102中的掺杂剂的溶解度),例如在从约1016原子/cm3至约1022原子/cm3的范围内,例如在从约1016原子/cm3至约1018原子/cm3的范围内。Disposing the dopant in the semiconductor region 102 may include forming a concentration of the dopant (in other words, atoms of the dopant) in the semiconductor region 102 greater than about 10 15 atoms per cubic centimeter (atoms/cm 3 ), such as Greater than about 10 16 atoms/cm 3 , such as greater than about 10 17 atoms/cm 3 , such as greater than about 10 18 atoms/cm 3 , such as greater than about 10 19 atoms/cm 3 , such as greater than about 10 20 atoms/cm 3 , such as Greater than about 10 21 atoms/cm 3 or even higher (e.g., substantially equal to the solubility of the dopant in semiconductor region 102), for example in the range from about 10 16 atoms/cm 3 to about 10 22 atoms/cm 3 Within, for example, in the range from about 10 16 atoms/cm 3 to about 10 18 atoms/cm 3 .
将掺杂剂设置在半导体区域102中可以包括在100a中例如通过离子束注入将掺杂剂108传递至半导体区域102中。换言之,可以通过离子束注入将掺杂剂注入半导体区域102中。为了注入掺杂剂108,可以利用包括掺杂剂108的离子的离子束106来照射半导体区域102。可替选地或另外地,可以通过包括掺杂剂108的气体106(也称为掺杂源气体)来提供掺杂剂108,其中掺杂剂108从该气体中释放出来并且扩散到半导体区域102中。可替选地或另外地,可以经由掺杂剂源层来提供掺杂剂(参见图3A)。Disposing dopants in semiconductor region 102 may include delivering dopants 108 into semiconductor region 102 in 100a, eg, by ion beam implantation. In other words, dopants may be implanted into the semiconductor region 102 by ion beam implantation. To implant the dopant 108 , the semiconductor region 102 may be irradiated with an ion beam 106 comprising ions of the dopant 108 . Alternatively or additionally, the dopant 108 may be provided by a gas 106 comprising the dopant 108 (also referred to as a dopant source gas), from which the dopant 108 is released and diffuses into the semiconductor region 102 in. Alternatively or additionally, dopants may be provided via a dopant source layer (see FIG. 3A ).
通过将掺杂剂108设置106在半导体区域102中,可以形成包括掺杂剂和半导体区域102材料的层108l(也称为掺杂层108l)。掺杂层108l可以形成在半导体区域102的表面部分102s中,其中,半导体区域102的表面部分102s邻接半导体区域102的表面104。换言之,掺杂层108l可以形成在半导体区域102的表面104与半导体区域102的基极区112b之间。作为示例,掺杂层108l可以包括背侧集电极层或由背侧集电极层形成。By disposing 106 a dopant 108 in the semiconductor region 102 , a layer 1081 (also referred to as doped layer 1081 ) comprising the dopant and the material of the semiconductor region 102 may be formed. The doped layer 108 l may be formed in the surface portion 102 s of the semiconductor region 102 , wherein the surface portion 102 s of the semiconductor region 102 adjoins the surface 104 of the semiconductor region 102 . In other words, the doped layer 108 l may be formed between the surface 104 of the semiconductor region 102 and the base region 112 b of the semiconductor region 102 . As an example, the doped layer 108l may include or be formed of a backside collector layer.
根据各种实施方式,方法可以包括在100b中将辐射吸收层114形成在半导体区域102之上(例如,在掺杂层108l之上),以例如减小反射。半导体区域102的表面104可以被辐射吸收层114至少部分地覆盖。在一个实施方式中,表面104可以被辐射吸收层114部分地覆盖。在一个实施方式中,表面104可以被辐射吸收层114完全覆盖。According to various embodiments, the method may include forming, in 100b, a radiation absorbing layer 114 over the semiconductor region 102 (eg, over the doped layer 1081 ), eg to reduce reflection. The surface 104 of the semiconductor region 102 may be at least partially covered by the radiation absorbing layer 114 . In one embodiment, surface 104 may be partially covered by radiation absorbing layer 114 . In one embodiment, surface 104 may be completely covered by radiation absorbing layer 114 .
减小反射率可以使得经由辐射吸收层114对电场辐射的吸收增大。换言之,辐射吸收层114的吸收系数可以大于半导体区域102的吸收系数。相应地,辐射吸收层114的反射系数可以小于半导体区域102的反射系数。吸收系数可以描述入射电磁辐射的例如被半导体区域102或辐射吸收层114吸收的一部分。吸收的电磁辐射可以被转换成热能。反射系数可以描述入射电磁辐射的分别被半导体区域102和辐射吸收层114反射(包括再次发射)的一部分。反射系数可以被理解为还涉及例如通过使电磁辐射散射而产生的非均匀反射(再次发射)。Reducing the reflectivity may result in increased absorption of electric field radiation via the radiation absorbing layer 114 . In other words, the absorption coefficient of the radiation absorbing layer 114 may be greater than the absorption coefficient of the semiconductor region 102 . Accordingly, the reflection coefficient of the radiation absorbing layer 114 may be smaller than the reflection coefficient of the semiconductor region 102 . The absorption coefficient may describe the fraction of incident electromagnetic radiation that is absorbed, for example, by the semiconductor region 102 or the radiation absorbing layer 114 . Absorbed electromagnetic radiation can be converted into heat energy. The reflection coefficient may describe the fraction of incident electromagnetic radiation that is reflected (including re-emitted) by the semiconductor region 102 and the radiation absorbing layer 114, respectively. Reflection coefficient may be understood as also relating to inhomogeneous reflection (re-emission), eg by scattering of electromagnetic radiation.
根据各种实施方式,方法可以包括在100c中通过利用电磁辐射110至少部分地照射辐射吸收层114来至少部分地激活掺杂剂108。电磁辐射可以被辐射吸收层114至少部分地吸收(换言之,被转换成热能)。然后,热能可以例如经由热传导而被传递(传导)至半导体区域102。According to various embodiments, the method may include at least partially activating the dopant 108 by at least partially irradiating the radiation absorbing layer 114 with electromagnetic radiation 110 in 100c. Electromagnetic radiation may be at least partially absorbed (in other words, converted into thermal energy) by the radiation absorbing layer 114 . Thermal energy may then be transferred (conducted) to the semiconductor region 102 , for example via thermal conduction.
通过照射辐射吸收层114,半导体区域102可以被至少部分地加热(换言之,半导体区域102的至少一部分可以被加热)。通过激活掺杂剂108,可以设置激活的掺杂剂108a。通过激活掺杂剂108,可以将掺杂剂108并入半导体区域102中,例如在半导体区域102的晶格结构中,以提供激活的掺杂剂108a。可替选地或另外地,通过激活掺杂剂108,掺杂剂108可以与半导体区域102——例如与半导体区域102的材料——发生化学反应,以提供激活的掺杂剂108a。通过激活掺杂剂108,可以改变表面部分102s的(例如掺杂层108l的)至少一个电特性。例如,可以通过激活掺杂剂108来增大表面部分102s的——例如掺杂层108l的——电导率。By irradiating the radiation absorbing layer 114, the semiconductor region 102 may be at least partially heated (in other words, at least a portion of the semiconductor region 102 may be heated). By activating the dopant 108, an activated dopant 108a may be provided. By activating the dopant 108, the dopant 108 may be incorporated into the semiconductor region 102, for example in the lattice structure of the semiconductor region 102, to provide an activated dopant 108a. Alternatively or additionally, the dopant 108 may chemically react with the semiconductor region 102 , eg, with the material of the semiconductor region 102 , by activating the dopant 108 to provide the activated dopant 108 a. By activating the dopant 108, at least one electrical property of the surface portion 102s (eg of the doped layer 108l) may be changed. For example, the electrical conductivity of the surface portion 102s , eg of the doped layer 1081 , may be increased by activating the dopant 108 .
在对半导体区域102进行加热期间,可以例如通过温度差来增大半导体区域102的温度,例如半导体区域102的表面部分102s的温度。温度差可以为至少约200开尔文(K),例如至少约400K,例如至少约600K,例如至少约800K,例如至少约1000K,例如在从约600K至约1500K的范围中。温度差可以在加热时间内提供,以限定温度差与加热时间的比率(也称为加热速率)。加热速率可以大于约100开尔文每秒(K/s),例如大于约200K/s,例如大于约300K/s,例如大于约400K/s,例如大于约1000K/s(对应于103K/s),例如大于约2000K/s,例如大于约5000K/s,例如大于约104K/s,例如大于约105K/s,例如大于约106K/s,例如大于约107K/s,例如大于约108K/s,例如大于约109K/s,例如大于约1010K/s。加热时间可以由照射时间来限定(例如,等于照射时间),换言之,照射时间为辐射吸收层114被电磁辐射110照射的时间(例如,形成指向辐射吸收层114的温度梯度)。(例如,每辐射脉冲的)照射时间可以小于约一微秒(1μs),例如小于约1纳秒(1ns),例如小于约100皮秒(100ps),例如小于约10皮秒(10ps)。During heating of the semiconductor region 102 , the temperature of the semiconductor region 102 , for example the temperature of the surface portion 102 s of the semiconductor region 102 , may be increased, for example by a temperature difference. The temperature difference may be at least about 200 Kelvin (K), such as at least about 400K, such as at least about 600K, such as at least about 800K, such as at least about 1000K, such as in the range from about 600K to about 1500K. The temperature difference may be provided over the heating time to define a ratio of temperature difference to heating time (also referred to as heating rate). The heating rate may be greater than about 100 Kelvin per second (K/s), such as greater than about 200 K/s, such as greater than about 300 K/s, such as greater than about 400 K/s, such as greater than about 1000 K/s (corresponding to 10 K/s ), such as greater than about 2000 K/s, such as greater than about 5000 K/s, such as greater than about 10 4 K/s, such as greater than about 10 5 K/s, such as greater than about 10 6 K/s, such as greater than about 10 7 K/s s, such as greater than about 10 8 K/s, such as greater than about 10 9 K/s, such as greater than about 10 10 K/s. The heating time may be defined by (eg, equal to) the irradiation time, in other words, the irradiation time is the time during which the radiation absorbing layer 114 is irradiated with the electromagnetic radiation 110 (eg, forming a temperature gradient towards the radiation absorbing layer 114). The exposure time (e.g., per radiation pulse) may be less than about one microsecond (1 μs), such as less than about 1 nanosecond (1 ns), such as less than about 100 picoseconds (100 ps), such as less than about 10 picoseconds (10 ps).
温度差和加热深度(换言之,半导体区域的深度,所述深度为半导体区域例如通过至少温度差而被加热到的深度)可以定义通过照射辐射吸收层114而形成的温度梯度。温度梯度可以指向辐射吸收层114。温度梯度可以由温度差和加热深度的比率来定义,例如,至少约200开尔文(K)每加热深度(d),例如至少约400K/d,例如至少约600K/d,例如至少约800K/d,例如至少约1000K/d,例如在从约600K/d至约1500K/d的范围中。例如,温度梯度可以为至少约200开尔文每微米(K/μm),例如至少约400K/μm,例如至少约600K/μm,例如至少约800K/μm,例如至少约1000K/μm,例如在从约600K/μm至约1500K/μm的范围中。The temperature difference and the heating depth (in other words the depth of the semiconductor region to which it is heated eg by at least the temperature difference) may define the temperature gradient formed by irradiating the radiation absorbing layer 114 . A temperature gradient may be directed towards the radiation absorbing layer 114 . The temperature gradient can be defined by the ratio of the temperature difference and the heating depth, for example, at least about 200 Kelvin (K) per heating depth (d), such as at least about 400K/d, such as at least about 600K/d, such as at least about 800K/d , for example at least about 1000K/d, for example in the range from about 600K/d to about 1500K/d. For example, the temperature gradient can be at least about 200 Kelvin per micron (K/μm), such as at least about 400 K/μm, such as at least about 600 K/μm, such as at least about 800 K/μm, such as at least about 1000 K/μm, such as between about In the range of 600K/μm to about 1500K/μm.
为了激活掺杂剂108,半导体区域102可以至少部分地——例如半导体区域102的至少表面部分——被加热到半导体区域的融化温度的至少70%的温度(大于或等于掺杂激活温度),例如大于900℃(例如,以提供混合相或玻璃相)。To activate the dopant 108, the semiconductor region 102 may be at least partially—for example at least a surface portion of the semiconductor region 102—heated to a temperature of at least 70% of the melting temperature of the semiconductor region (greater than or equal to the doping activation temperature), For example greater than 900°C (eg, to provide a mixed or glassy phase).
根据各种实施方式,半导体区域102的以例如至少温度差被加热的那部分(例如,表面部分102s)的厚度112(也称为加热厚度112,例如,如果被融化则为融化深度)可以大于约0.4μm,例如大于约0.5μm,例如大于约0.6μm,例如大于约0.7μm,例如大于约0.8μm,例如大于约0.9μm,例如大于约1μm,例如大于约1.5μm,例如大于约2μm,例如在从约1μm至约100μm的范围中。加热深度112可以是空间平均深度。加热深度112可以大于掺杂层108l的厚度,例如大于注入深度(离子束进入半导体区域102的渗透深度),该注入深度可以由离子束中的离子的能量来限定。加热深度112可以例如通过在加热深度112内的温度差来定义温度梯度(例如沿着深度方向,例如平行于半导体区域102的宏观表面法线)。According to various embodiments, the thickness 112 (also referred to as the heating thickness 112 , eg, the melting depth if melted) of the portion of the semiconductor region 102 that is heated with, for example, at least a temperature difference (eg, the surface portion 102s ) may be greater than about 0.4 μm, such as greater than about 0.5 μm, such as greater than about 0.6 μm, such as greater than about 0.7 μm, such as greater than about 0.8 μm, such as greater than about 0.9 μm, such as greater than about 1 μm, such as greater than about 1.5 μm, such as greater than about 2 μm, For example in the range from about 1 μm to about 100 μm. Heating depth 112 may be a spatially averaged depth. The heating depth 112 may be greater than the thickness of the doped layer 1081, for example greater than the implantation depth (the penetration depth of the ion beam into the semiconductor region 102), which may be defined by the energy of the ions in the ion beam. Heating depth 112 may define a temperature gradient (eg, along a depth direction, eg, parallel to a macroscopic surface normal of semiconductor region 102 ), eg, by a temperature difference within heating depth 112 .
半导体区域102可以至少部分地被加热,这意味着半导体区域102的至少表面部分102s可以被加热。表面部分102s可以可选地是分段的。例如,表面部分102s可以包括多个段,所述多个段被加热至大于段之间的温度的温度。因此,可以使用掩模1802以使表面部分102s的多个段曝露(例如参见图10A)。The semiconductor region 102 may be heated at least partially, which means that at least the surface portion 102s of the semiconductor region 102 may be heated. Surface portion 102s may optionally be segmented. For example, the surface portion 102s may include multiple segments that are heated to a temperature greater than the temperature between the segments. Accordingly, a mask 1802 may be used to expose segments of the surface portion 102s (see, eg, FIG. 10A ).
根据各种实施方式,加热处理可以包括非平衡加热处理和非热加热处理中至少之一或者由非平衡加热处理和非热加热处理中至少之一形成。非热加热处理可以包括由电磁辐射源形成电磁辐射,其中电磁辐射的波长可以与电磁辐射源的温度无关。例如,电磁辐射的波长可以由以下项中至少之一来限定:电磁辐射源的材料(例如,可选地活性材料)、电磁辐射源的光谐振器器以及提供给电磁辐射源的能量。例如,电磁辐射源可以包括非热电磁辐射源或可以由非热电磁辐射源形成。According to various embodiments, the heat treatment may include or be formed by at least one of non-equilibrium heat treatment and athermal heat treatment. The non-thermal heating treatment can include forming electromagnetic radiation from an electromagnetic radiation source, wherein the wavelength of the electromagnetic radiation can be independent of the temperature of the electromagnetic radiation source. For example, the wavelength of the electromagnetic radiation may be defined by at least one of: the material (eg, optionally active material) of the electromagnetic radiation source, the optical resonator of the electromagnetic radiation source, and the energy supplied to the electromagnetic radiation source. For example, the source of electromagnetic radiation may comprise or may be formed by a source of athermal electromagnetic radiation.
根据各种实施方式,例如在激光源的情况下,电磁辐射源可以包括光谐振器或者由光谐振器形成。在这种情况下,电磁辐射可以包括或者可以是激光辐射、偏振辐射、脉冲辐射和/或相干辐射。脉冲辐射可以包括至少一个电磁辐射脉冲(一个或更多个电磁辐射脉冲)。According to various embodiments, the source of electromagnetic radiation may comprise or be formed by an optical resonator, eg in the case of a laser source. In this case, electromagnetic radiation may comprise or may be laser radiation, polarized radiation, pulsed radiation and/or coherent radiation. Pulsed radiation may comprise at least one pulse of electromagnetic radiation (one or more pulses of electromagnetic radiation).
非平衡加热处理可以包括在半导体区域102中形成温度梯度。例如,非平衡加热处理可能需要炉子。说明性地,在非平衡加热处理中,在加热期间基本不会达到热平衡。例如,在非平衡加热处理中,辐射吸收层114可以吸收比其所发射的电磁辐射量更大的电磁辐射量,例如辐射吸收层114可以吸收其所发射的电磁辐射的至少两倍,例如其所发射的电磁辐射的至少五倍,例如其所发射的电磁辐射的至少十倍,例如(例如在照射期间)其所发射的电磁辐射的至少一百倍。可替选地或另外地,在非平衡加热处理中,由电磁辐射引入的热能可以在电磁辐射被关闭或中断之后(例如,在电磁辐射的脉冲之间)进一步传播(例如,传播到半导体区域102,例如传播到半导体区域102的比加热深度更深的部分)。例如,非平衡加热处理可以包括基本上仅经由辐射吸收层114来加热半导体区域102或通过该方式来实现。如本文所使用的,对半导体区域102进行加热可以被理解为将热能(例如,经由电磁辐射)传递至半导体区域102中和/或通过半导体区域102的表面104传递热能(到半导体区域102的与表面104邻近的一部分,也称为表面部分102s中)。例如,加热半导体区域102可以包括通过电磁辐射来照射辐射吸收层114,其中电磁辐射可以至少部分地被辐射吸收层114吸收并且至少部分地被半导体区域102的与辐射吸收层114邻近(例如,邻接)的表面部分102s吸收。关于这一点,“与表面邻近的区域”或“表面部分102s”可以指到达高达以下值的深度112的区域:高达约100μm、高达约50μm、高达约20μm,例如高达约15μm,例如高达约10μm,例如高达约5μm,例如高达约3μm,例如高达约2μm。The non-equilibrium heat treatment may include creating a temperature gradient in the semiconductor region 102 . For example, a non-equilibrium heat treatment may require a furnace. Illustratively, in non-equilibrium heat processing, substantially no thermal equilibrium is reached during heating. For example, in a non-equilibrium heating process, the radiation absorbing layer 114 can absorb a greater amount of electromagnetic radiation than it emits, for example, the radiation absorbing layer 114 can absorb at least twice the amount of electromagnetic radiation it emits, e.g. At least five times the electromagnetic radiation it emits, such as at least ten times the electromagnetic radiation it emits, such as (eg during irradiation) at least one hundred times the electromagnetic radiation it emits. Alternatively or additionally, in a non-equilibrium heating process, the thermal energy introduced by the electromagnetic radiation may propagate further (e.g., to the semiconductor region) after the electromagnetic radiation is turned off or interrupted (e.g., between pulses of the electromagnetic radiation). 102, for example propagated to a part of the semiconductor region 102 deeper than the heating depth). For example, the non-equilibrium heat treatment may include or be accomplished by heating the semiconductor region 102 substantially only through the radiation absorbing layer 114 . As used herein, heating the semiconductor region 102 may be understood as transferring thermal energy (e.g., via electromagnetic radiation) into the semiconductor region 102 and/or through the surface 104 of the semiconductor region 102 (to and from the semiconductor region 102 ). A portion adjacent to surface 104, also referred to as surface portion 102s). For example, heating the semiconductor region 102 can include irradiating the radiation absorbing layer 114 with electromagnetic radiation, wherein the electromagnetic radiation can be at least partially absorbed by the radiation absorbing layer 114 and at least partially absorbed by (e.g., adjacent to) the radiation absorbing layer 114 of the semiconductor region 102. ) of the surface portion 102s absorbs. In this regard, a "region adjacent to the surface" or "surface portion 102s" may refer to a region to a depth 112 of up to about 100 μm, up to about 50 μm, up to about 20 μm, such as up to about 15 μm, such as up to about 10 μm , such as up to about 5 μm, such as up to about 3 μm, such as up to about 2 μm.
根据各种实施方式,电磁辐射可以包括至少一个离散波长(一个或更多个离散波长,例如,两个离散波长、三个离散波长、四个离散波长、五个离散波长、多于五个离散波长、例如十个或多于十个离散波长)。具有离散波长的辐射可以被理解为在离散波长处具有不同的(例如,线形)辐射强度峰值的辐射。辐射强度峰值可以被加宽,从而限定离散波长周围的波长范围(示例性地,宽度)。辐射强度峰值可以具有小于离散波长(的值)的约25%的宽度(例如,全宽半最大值(FWHM)),例如小于离散波长的约10%,例如小于离散波长的约5%,例如小于离散波长的约2.5%,例如小于离散波长的约1%。例如,具有小于峰值位置的约25%(例如,10%、5%或1%)和/或小于约10nm(例如,5nm、1nm、0.5nm或0.1nm)的FWHM的辐射强度峰值可以被看作是离散波长。如果电磁辐射包括不止一个离散波长(例如,不止一个辐射强度峰值),则可选地至少两个邻近的离散波长可以部分地交叠。例如,如果两个辐射强度峰值之间的辐射强度下降至小于两个邻近的辐射强度峰值中具有较低最大辐射强度的那个辐射强度峰值的最大辐射强度的约50%(例如,25%、10%、5%或1%),则电磁辐射的两个邻近的辐射强度峰值可以被看作是离散波长。可替选地或另外地,如果两个邻近的辐射强度峰值之间(例如两个邻近的辐射强度峰值位置之间)的距离大于两个邻近的辐射强度峰值中具有较大宽度的那个辐射强度峰值的宽度(FWHM),例如大于宽度的200%,例如大于宽度的500%,则电磁辐射的两个邻近辐射强度峰值可以被看作是离散波长。According to various embodiments, the electromagnetic radiation may comprise at least one discrete wavelength (one or more discrete wavelengths, e.g., two discrete wavelengths, three discrete wavelengths, four discrete wavelengths, five discrete wavelengths, more than five discrete wavelengths, such as ten or more discrete wavelengths). Radiation having discrete wavelengths may be understood as radiation having distinct (eg linear) radiation intensity peaks at discrete wavelengths. Radiation intensity peaks may be broadened to define a wavelength range (eg, width) around discrete wavelengths. The radiation intensity peak may have a width (e.g., full width at half maximum (FWHM)) of less than about 25% of (the value of) the discrete wavelength, such as less than about 10% of the discrete wavelength, such as less than about 5% of the discrete wavelength, such as Less than about 2.5% of the discrete wavelength, such as less than about 1% of the discrete wavelength. For example, radiation intensity peaks having a FWHM of less than about 25% (e.g., 10%, 5%, or 1%) of the peak position and/or less than about 10 nm (e.g., 5 nm, 1 nm, 0.5 nm, or 0.1 nm) can be viewed as discrete wavelengths. If the electromagnetic radiation includes more than one discrete wavelength (eg, more than one radiation intensity peak), then optionally at least two adjacent discrete wavelengths may partially overlap. For example, if the radiation intensity between two radiation intensity peaks falls to less than about 50% of the maximum radiation intensity of the radiation intensity peak of two adjacent radiation intensity peaks having the lower maximum radiation intensity (e.g., 25%, 10 %, 5% or 1%), then two adjacent radiation intensity peaks of electromagnetic radiation can be regarded as discrete wavelengths. Alternatively or additionally, if the distance between two adjacent radiation intensity peaks (for example, between the positions of two adjacent radiation intensity peaks) is larger than the radiation intensity having the larger width among the two adjacent radiation intensity peaks The width of the peak (FWHM), for example greater than 200% of the width, eg greater than 500% of the width, two adjacent radiation intensity peaks of the electromagnetic radiation can be regarded as discrete wavelengths.
根据各种实施方式,用于照射辐射吸收层114的电磁辐射可以包括或者可以是电磁辐射范围(也称为吸收范围)内的电磁辐射(例如具有至少一个离散波长),对于该电磁辐射范围,半导体区域102的反射率小于辐射吸收层114的反射率,例如比辐射吸收层114的反射率小以下值:至少约0.1、至少约0.2、至少约0.3、至少约0.4、至少约0.5、至少约0.6。换言之,辐射吸收层114可以限定以下吸收范围(例如,限定电磁辐射、波长范围、能量范围和频率范围中的至少一个),对于所述吸收范围,辐射吸收层114具有比半导体区域102的反射率大至少所述值的反射率。According to various embodiments, the electromagnetic radiation used to irradiate the radiation absorbing layer 114 may comprise or may be electromagnetic radiation (e.g., having at least one discrete wavelength) within the electromagnetic radiation range (also referred to as the absorbing range) for which The reflectivity of the semiconductor region 102 is less than the reflectivity of the radiation absorbing layer 114, for example less than the reflectivity of the radiation absorbing layer 114 by at least about 0.1, at least about 0.2, at least about 0.3, at least about 0.4, at least about 0.5, at least about 0.6. In other words, the radiation absorbing layer 114 can define an absorption range (eg, defining at least one of electromagnetic radiation, a wavelength range, an energy range, and a frequency range) for which the radiation absorbing layer 114 has a higher reflectivity than the semiconductor region 102 A reflectivity greater than at least the stated value.
根据各种实施方式,热能可以主要由表面部分102(换言之,在加热深度内)吸收,例如比从电磁辐射转换的热能的大约50%(例如多于约75%,例如多于约80%,例如多于约90%)还多的热能可以由表面部分102s吸收。According to various embodiments, thermal energy may be absorbed primarily by surface portion 102 (in other words, within the heating depth), for example, more than about 50% (e.g., more than about 75%, such as more than about 80%) of the thermal energy converted from electromagnetic radiation. For example, more than about 90%) more thermal energy may be absorbed by surface portion 102s.
根据各种实施方式,半导体区域102可以包括单晶半导体材料(也称为半导体区域102的单晶材料)或者由该单晶半导体材料形成。可替选地或另外地,半导体区域102可以包括多晶半导体材料(也称为半导体区域102的多晶材料)或由该多晶半导体材料形成。According to various embodiments, the semiconductor region 102 may comprise or be formed of a single-crystal semiconductor material (also referred to as the single-crystal material of the semiconductor region 102 ). Alternatively or additionally, the semiconductor region 102 may comprise or be formed of a polycrystalline semiconductor material (also referred to as the polycrystalline material of the semiconductor region 102 ).
图2A、图2B和图2C分别示出了根据各种实施方式的方法中的根据各种实施方式的半导体器件的示意性截面图或侧视图。2A , 2B and 2C respectively show a schematic cross-sectional view or a side view of a semiconductor device according to various embodiments in a method according to various embodiments.
根据各种实施方式,方法可以包括在200a中例如远离半导体区域102的表面104地将掺杂剂108布置106在半导体区域102中。可以与在100a中布置106掺杂剂108类似的方式配置在200a中布置106掺杂剂108。示例性地,可以通过使用大的注入深度来远离半导体区域102的表面104地布置掺杂剂108。可替选地或另外地,在布置106掺杂剂108之后,掺杂层108l可以被半导体区域102的(例如,未掺杂的)材料(例如至少部分地)覆盖。例如,掺杂层108l可以至少部分地埋置于半导体区域102中。According to various embodiments, the method may include arranging 106 a dopant 108 in the semiconductor region 102 in 200a, for example away from the surface 104 of the semiconductor region 102 . The arrangement 106 of the dopant 108 in 200a may be configured in a similar manner to the arrangement 106 of the dopant 108 in 100a. Illustratively, the dopant 108 may be arranged away from the surface 104 of the semiconductor region 102 by using a large implantation depth. Alternatively or additionally, after arranging 106 the dopant 108 , the doped layer 1081 may be covered (eg at least partially) by the (eg undoped) material of the semiconductor region 102 . For example, the doped layer 1081 may be at least partially buried in the semiconductor region 102 .
通过在半导体区域102中布置106掺杂剂108,可以形成包括半导体区域102材料和掺杂剂的掺杂层108l。掺杂层108l可以形成在半导体区域102的表面部分102s中,其中半导体区域102的表面部分102s包括半导体区域102的表面104(例如,平坦表面104)。换言之,掺杂层108l可以例如远离半导体区域102的表面104地形成在半导体区域102的表面104与半导体区域102的基极区域112b之间。By arranging 106 a dopant 108 in the semiconductor region 102 , a doped layer 1081 comprising the material of the semiconductor region 102 and the dopant may be formed. Doped layer 1081 may be formed in surface portion 102s of semiconductor region 102 , wherein surface portion 102s of semiconductor region 102 includes surface 104 (eg, planar surface 104 ) of semiconductor region 102 . In other words, the doped layer 108 l may be formed between the surface 104 of the semiconductor region 102 and the base region 112 b of the semiconductor region 102 , for example away from the surface 104 of the semiconductor region 102 .
根据各种实施方式,方法可以包括在200b中例如远离半导体区域102的基极区域112b地在半导体区域102之上形成辐射吸收层114。可以与在100b中形成辐射吸收层114(见图1B)类似地配置在200b中形成辐射吸收层114。According to various embodiments, the method may include forming a radiation absorbing layer 114 over the semiconductor region 102 in 200b, for example away from the base region 112b of the semiconductor region 102 . Forming radiation absorbing layer 114 in 200b may be configured similarly to forming radiation absorbing layer 114 in 100b (see FIG. 1B ).
根据各种实施方式,方法可以包括在200c中通过利用电磁辐射110至少部分地照射辐射吸收层114以至少部分地加热半导体区域102,来至少部分地激活掺杂剂108。换言之,可以设置激活的掺杂剂108a。可以与在100c中激活掺杂剂108类似地配置在200c中激活掺杂剂108。According to various embodiments, the method may include at least partially activating the dopant 108 by at least partially irradiating the radiation absorbing layer 114 with the electromagnetic radiation 110 to at least partially heat the semiconductor region 102 in 200c. In other words, activated dopants 108a may be provided. Activation of dopant 108 in 200c may be configured similarly to activation of dopant 108 in 100c.
图3A和图3B分别示出了根据各种实施方式的方法中的根据各种实施方式的半导体器件的示意性截面图或侧视图。3A and 3B respectively show a schematic cross-sectional view or a side view of a semiconductor device according to various embodiments in a method according to various embodiments.
根据各种实施方式,在半导体区域102中布置掺杂剂可以包括在300a中在半导体区域102上(例如,在半导体区域102的表面104上)形成掺杂剂源层302。掺杂剂源层302可以利用物理气相沉积、化学气相沉积或流体沉积(例如旋涂)中至少之一来形成。可替选地或另外地,掺杂剂源层302可以包括掺杂氧化层或由掺杂氧化层形成。在至少一个实施方式中,掺杂剂源层302可以由另一晶片(更一般地由另一半导体区域)(例如,作为其一部分)来设置。另一半导体区域可以布置在半导体区域102之上。通过加热另一半导体区域,掺杂剂可以扩散出该另一半导体区域并且进入半导体区域102(其也可以称为面对面传递)。According to various embodiments, arranging dopants in the semiconductor region 102 may include forming a dopant source layer 302 on the semiconductor region 102 (eg, on the surface 104 of the semiconductor region 102 ) in 300 a. The dopant source layer 302 may be formed by at least one of physical vapor deposition, chemical vapor deposition, or fluid deposition (eg, spin coating). Alternatively or additionally, the dopant source layer 302 may include or be formed of a doped oxide layer. In at least one embodiment, the dopant source layer 302 may be provided by (eg, as part of) another wafer (and more generally, another semiconductor region). Another semiconductor region may be arranged over the semiconductor region 102 . By heating the other semiconductor region, dopants may diffuse out of the other semiconductor region and into the semiconductor region 102 (which may also be referred to as face-to-face transfer).
掺杂剂源层302可以包括掺杂剂108,该掺杂剂108例如布置在掺杂剂源层102的寄主(host)材料中或作为该寄主材料的一部分,例如化学地键合在寄主材料中。掺杂剂源层302可以通过在半导体区域102之上(例如,在半导体区域102的表面104之上)沉积寄主材料来形成。The dopant source layer 302 may include a dopant 108, for example disposed in or as part of a host material of the dopant source layer 102, for example chemically bonded to the host material. middle. The dopant source layer 302 may be formed by depositing a host material over the semiconductor region 102 (eg, over the surface 104 of the semiconductor region 102 ).
根据各种实施方式,在半导体区域102中布置掺杂剂可以包括在300b中将掺杂剂108例如从掺杂剂源层302传送至半导体区102中。掺杂剂源层302(例如,寄主材料)可以被配置成例如通过加热掺杂剂源层302来提供掺杂剂108。掺杂剂源层302可以通过用电磁辐射110照射或回火来被加热。由掺杂剂源层302提供的掺杂剂108可以迁移(例如通过化学反应和/或扩散)到半导体区102中,以例如形成掺杂层108l(参见例如图1B和图2B)。According to various embodiments, arranging the dopant in the semiconductor region 102 may include transferring the dopant 108 , for example from the dopant source layer 302 , into the semiconductor region 102 in 300 b. Dopant source layer 302 (eg, a host material) may be configured to provide dopant 108 , for example, by heating dopant source layer 302 . Dopant source layer 302 may be heated by irradiating with electromagnetic radiation 110 or tempering. The dopant 108 provided by the dopant source layer 302 may migrate (eg, by chemical reaction and/or diffusion) into the semiconductor region 102 , eg to form a doped layer 1081 (see eg FIGS. 1B and 2B ).
根据各种实施方式,用电磁辐射110照射掺杂剂源层102可能不足以同时激活掺杂剂108。换言之,如图1C和图2C所示,在将掺杂剂108传送到半导体区域102中之后,可以在半导体区域102之上布置辐射吸收层114以激活掺杂剂108。因此,可以在形成辐射吸收层114之前从半导体区域102去除掺杂剂源层102(以暴露半导体区域102)。According to various embodiments, irradiating the dopant source layer 102 with electromagnetic radiation 110 may not be sufficient to simultaneously activate the dopant 108 . In other words, as shown in FIGS. 1C and 2C , after delivering the dopant 108 into the semiconductor region 102 , a radiation absorbing layer 114 may be disposed over the semiconductor region 102 to activate the dopant 108 . Accordingly, the dopant source layer 102 may be removed from the semiconductor region 102 (to expose the semiconductor region 102 ) prior to forming the radiation absorbing layer 114 .
图3C示出了根据各种实施方式的方法中的根据各种实施方式的半导体器件的示意性截面图或侧视图。FIG. 3C shows a schematic cross-sectional or side view of a semiconductor device according to various embodiments in a method according to various embodiments.
根据各种实施方式,方法可以包括在300c中通过用电磁辐射110照射辐射吸收层114来加热半导体区域102。According to various embodiments, the method may include heating the semiconductor region 102 by irradiating the radiation absorbing layer 114 with the electromagnetic radiation 110 in 300c.
通过加热,半导体区域102(例如,半导体区域102的表面部分102s)可以可选地至少部分地熔化,换言之,部分地(例如,分段地)或完全地熔化。例如,在激活掺杂剂期间,半导体区域102的表面部分102s可以部分地处于熔融相并且部分地处于固相(混合相)。可替选地或另外地,半导体区域102可以至少部分地处于玻璃相(示例性地,在固相和熔融相之间)。玻璃相可以具有大于半导体区域102的熔融相的粘度。By heating, the semiconductor region 102 (eg, the surface portion 102s of the semiconductor region 102 ) may optionally be at least partially melted, in other words partially (eg, segmentally) or completely melted. For example, during activation of the dopant, the surface portion 102s of the semiconductor region 102 may be partly in a molten phase and partly in a solid phase (mixed phase). Alternatively or additionally, the semiconductor region 102 may be at least partially in a glass phase (eg, between a solid phase and a molten phase). The glass phase may have a greater viscosity than the molten phase of the semiconductor region 102 .
或者,半导体区域102可在加热期间保持在固相(换言之,不离开固相)。保持半导体区域102的固相可以促进半导体区域102中的均相激活和/或掺杂剂分布。Alternatively, the semiconductor region 102 may remain in the solid phase (in other words, not leave the solid phase) during heating. Maintaining the solid phase of the semiconductor region 102 may promote homogeneous activation and/or dopant distribution in the semiconductor region 102 .
半导体区域102的熔化温度可以小于辐射吸收层114的熔化温度和升华温度中的至少一个(的例如约75%,例如约50%,例如约25%)。The melting temperature of the semiconductor region 102 may be less than at least one of (eg, about 75%, eg, about 50%, eg, about 25%) of the melting temperature and the sublimation temperature of the radiation absorbing layer 114 .
半导体区域102(例如,其材料)的吸收(吸收系数)在玻璃相或熔融相中可以小于在固相中。换言之,至少部分地熔化半导体区域102可以降低半导体区域102的吸收系数。通过使用辐射吸收层114,可以例如与半导体区域102的状态无关地保持电磁辐射110的吸收。The absorption (absorption coefficient) of the semiconductor region 102 (eg, its material) may be smaller in the glass phase or molten phase than in the solid phase. In other words, at least partially melting the semiconductor region 102 may reduce the absorption coefficient of the semiconductor region 102 . By using the radiation-absorbing layer 114 , the absorption of the electromagnetic radiation 110 can be maintained independently of the state of the semiconductor region 102 , for example.
通过加热,半导体区域102可以至少部分地(例如,至少半导体区域102的表面部分102s)被加热到等于或大于半导体区域102的熔化温度的温度,例如大于1200℃(例如,以提供到玻璃相或熔融相中的至少一个的转变)。可以在大于加热时间的时间内提供温度。By heating, the semiconductor region 102 can be at least partially (e.g., at least the surface portion 102s of the semiconductor region 102) heated to a temperature equal to or greater than the melting temperature of the semiconductor region 102, such as greater than 1200° C. (e.g., to provide a glass phase or transition of at least one of the molten phases). The temperature may be provided for a time greater than the heating time.
根据各种实施方式,加热半导体区域102可以限定大于半导体区域102的熔化温度的70%的温度峰值(例如,在加热时间结束时的最大温度),例如大于900℃,例如大于半导体区域102的熔化温度。According to various embodiments, heating the semiconductor region 102 may define a temperature peak (e.g., a maximum temperature at the end of the heating time) greater than 70% of the melting temperature of the semiconductor region 102, such as greater than 900° C., such as greater than the melting temperature of the semiconductor region 102 temperature.
根据各种实施方式,电磁辐射110(例如,包括激光)经由辐射吸收层114的吸收可以导致到半导体区域102的稳定能量传输(来自电磁辐射)。According to various embodiments, absorption of electromagnetic radiation 110 (eg, including laser light) via the radiation absorbing layer 114 may result in a stable energy transfer (from the electromagnetic radiation) to the semiconductor region 102 .
图4A和图4B分别示出了根据各种实施方式的方法中的根据各种实施方式的半导体器件的示意性截面图或侧视图。4A and 4B respectively show a schematic cross-sectional view or a side view of a semiconductor device according to various embodiments in a method according to various embodiments.
根据各种实施方式,方法可以包括在400a中通过入射在半导体区域102上的电磁辐射110(入射电磁辐射110)来照射辐射吸收层114。According to various embodiments, the method may include irradiating the radiation absorbing layer 114 with electromagnetic radiation 110 incident on the semiconductor region 102 (incident electromagnetic radiation 110 ) in 400 a.
反射系数可以限定反射的电磁辐射410与入射电磁辐射110的分数。电磁辐射110(说明性地,入射电磁辐射110)可以通过照射辐射吸收层114来提供。电磁辐射110可以由电磁辐射源(例如,激光源)提供。Reflection coefficient may define the fraction of reflected electromagnetic radiation 410 to incident electromagnetic radiation 110 . Electromagnetic radiation 110 (illustratively, incident electromagnetic radiation 110 ) may be provided by irradiating radiation absorbing layer 114 . Electromagnetic radiation 110 may be provided by an electromagnetic radiation source (eg, a laser source).
根据各种实施方式,反射系数可以取决于入射电磁辐射110与半导体区域102的宏观表面平面404(说明性地,平均表面平面404)之间的入射角410w(也称为主入射角410w)。宏观表面平面404可以被布置和对准成使得其包括半导体区域102的表面的最大数量的点(或者相应地与半导体区域102的表面的最大交叉)。According to various implementations, the reflectance may depend on the angle of incidence 410w (also referred to as principal angle of incidence 410w) between the incident electromagnetic radiation 110 and the macroscopic surface plane 404 (illustratively, the mean surface plane 404 ) of the semiconductor region 102 . The macroscopic surface plane 404 may be arranged and aligned such that it includes a maximum number of points (or correspondingly a maximum intersection with the surface of the semiconductor region 102 ) of the surface of the semiconductor region 102 .
根据各种实施方式,入射电磁辐射110可以在基本上垂直于宏观表面平面404的方向上。换言之,入射角110w可以在从约80°至约100°的范围内,例如大约90°。换言之,入射电磁辐射110可以基本上平行于半导体区域102的宏观表面法线404n。半导体区域102的宏观表面法线404n可以垂直于辐射吸收层114的宏观表面平面404。According to various implementations, the incident electromagnetic radiation 110 may be in a direction substantially perpendicular to the macroscopic surface plane 404 . In other words, the angle of incidence 110w may range from about 80° to about 100°, for example about 90°. In other words, incident electromagnetic radiation 110 may be substantially parallel to macroscopic surface normal 404n of semiconductor region 102 . The macroscopic surface normal 404 n of the semiconductor region 102 may be perpendicular to the macroscopic surface plane 404 of the radiation absorbing layer 114 .
如果入射电磁辐射110在基本上垂直于宏观表面平面404的方向上,则反射系数可以被最小化。反射系数可以取决于入射角、电磁辐射的波长和半导体区域102的材料。可替选地或另外地,反射系数可以取决于电磁辐射110的偏振。If the incident electromagnetic radiation 110 is in a direction substantially normal to the macroscopic surface plane 404, the reflection coefficient may be minimized. The reflection coefficient may depend on the angle of incidence, the wavelength of the electromagnetic radiation and the material of the semiconductor region 102 . Alternatively or additionally, the reflectance may depend on the polarization of the electromagnetic radiation 110 .
根据各种实施方式的由辐射吸收层114提供的反射系数也可以称为总有效反射系数。由半导体区域102的平坦表面提供的反射系数也可以称为参考反射系数。总有效反射系数可以小于参考反射系数(例如,约为参考反射系数的75%,例如约为参考反射系数的50%,例如约为参考反射系数的25%)。总有效反射系数可以小于约0.59(换言之,小于入射电磁辐射110的59%可以被反射),例如小于约0.5,例如小于约0.4,例如小于约0.3,例如小于约0.2,例如小于约0.1,例如小于约0.05,例如在从约0.01至约0.5的范围内。The reflectance provided by the radiation absorbing layer 114 according to various embodiments may also be referred to as a total effective reflectance. The reflectance provided by the planar surface of the semiconductor region 102 may also be referred to as a reference reflectance. The total effective reflectance may be less than the reference reflectance (eg about 75% of the reference reflectance, eg about 50% of the reference reflectance, eg about 25% of the reference reflectance). The total effective reflectance may be less than about 0.59 (in other words, less than 59% of incident electromagnetic radiation 110 may be reflected), such as less than about 0.5, such as less than about 0.4, such as less than about 0.3, such as less than about 0.2, such as less than about 0.1, such as Less than about 0.05, for example in the range from about 0.01 to about 0.5.
根据各种实施方式,辐射吸收层114可以包括多个突起412或者由多个突起412形成,例如详细视图400b所示的细长突起412(参见图4B))。例如,多个突起412中的每个突起可以是管状的。在多个突起412之间可形成多个凹部412r,所述多个凹部412r根据多个突起412而成形。According to various embodiments, the radiation absorbing layer 114 may include or be formed from a plurality of protrusions 412, such as the elongated protrusions 412 shown in detail view 400b (see FIG. 4B)). For example, each protrusion in plurality of protrusions 412 may be tubular. A plurality of recesses 412 r shaped according to the plurality of protrusions 412 may be formed between the plurality of protrusions 412 .
如详细视图400b所示,辐射吸收层114可以经由多个突起412来提供入射电磁辐射110的散射。如下所述,辐射吸收层114可以被配置成提供入射电磁辐射110的多次散射。多次散射可以包括至少两个散射事件(第一散射和第二散射)。As shown in detailed view 400b , radiation absorbing layer 114 may provide scattering of incident electromagnetic radiation 110 via a plurality of protrusions 412 . As described below, radiation absorbing layer 114 may be configured to provide multiple scattering of incident electromagnetic radiation 110 . Multiple scattering may include at least two scattering events (a first scattering and a second scattering).
入射电磁辐射110的第一部分110a(也称为第一散射电磁辐射110a)可以在辐射吸收层114的第一突起104a(例如,第一CNT)处(在第一散射事件中)朝向辐射吸收层114的第二突起104b(例如,第二CNT)被散射。入射电磁辐射110(例如,剩余的入射电磁辐射110)的第二部分110b可以被引导至辐射吸收层114的第一突起104a中,并且进一步被引导至半导体区域102以被吸收(用于将其能量传递至半导体区域102)。A first portion 110a of incident electromagnetic radiation 110 (also referred to as first scattered electromagnetic radiation 110a) may be directed toward the radiation absorbing layer (in a first scattering event) at a first protrusion 104a (e.g., a first CNT) of the radiation absorbing layer 114. The second protrusions 104b (eg, second CNTs) of 114 are scattered. A second portion 110b of the incident electromagnetic radiation 110 (e.g., the remaining incident electromagnetic radiation 110) may be directed into the first protrusion 104a of the radiation absorbing layer 114 and further directed into the semiconductor region 102 to be absorbed (for absorbing it The energy is transferred to the semiconductor region 102).
第一散射电磁辐射110a的第一部分410(也称为第二散射电磁辐射410)可以在辐射吸收层114的远离辐射吸收层114的第二突起114b处被散射(第二散射)。第一散射电磁辐射110a(例如,剩余的第一散射电磁辐射110a)的第二部分110c可以被引导至辐射吸收层114的第二突起114b中,并且进一步被引导至半导体区域102以被吸收(用于将其能量传递至半导体区102)。A first portion 410 of the first scattered electromagnetic radiation 110a (also referred to as second scattered electromagnetic radiation 410 ) may be scattered at a second protrusion 114b of the radiation absorbing layer 114 remote from the radiation absorbing layer 114 (second scattering). A second portion 110c of the first scattered electromagnetic radiation 110a (e.g., the remaining first scattered electromagnetic radiation 110a) may be directed into the second protrusion 114b of the radiation absorbing layer 114 and further directed into the semiconductor region 102 to be absorbed ( used to transfer its energy to the semiconductor region 102).
如图4B所示,第二散射电磁辐射410可以被引导远离半导体区域102。或者,辐射吸收层114可以被配置成使得第二散射电磁辐射410可以被引导至辐射吸收层114的另一个突起。换言之,多次散射可以包括多于两个散射事件。示例性地,在辐射吸收层114的一部分处被散射的电磁辐射可以被引导至辐射吸收层114的至少一个另外的部分,使得电磁辐射的至少一个另外的部分可以被辐射吸收层114的至少一个另外的部分吸收。例如,电磁辐射可以在辐射吸收层114的内部或外部中的至少一个处被散射。例如,电磁辐射的至少一部分可以被传输至辐射吸收层114的突起中。总有效反射系数可以通过所有多个散射事件的叠加来限定。如图4B所示,如果多次散射包括两个散射事件,则总有效反射系数可以通过第一散射事件和第二散射事件的叠加来限定As shown in FIG. 4B , the second scattered electromagnetic radiation 410 may be directed away from the semiconductor region 102 . Alternatively, the radiation absorbing layer 114 may be configured such that the second scattered electromagnetic radiation 410 may be directed to another protrusion of the radiation absorbing layer 114 . In other words, multiple scattering may include more than two scattering events. Exemplarily, electromagnetic radiation scattered at a portion of the radiation-absorbing layer 114 can be directed to at least one further portion of the radiation-absorbing layer 114 such that at least one further portion of the electromagnetic radiation can be absorbed by at least one of the radiation-absorbing layers 114 Another part absorbs. For example, electromagnetic radiation may be scattered at least one of the interior or exterior of the radiation absorbing layer 114 . For example, at least a portion of the electromagnetic radiation may be transmitted into the protrusions of the radiation absorbing layer 114 . The total effective reflection coefficient can be defined by the superposition of all multiple scattering events. As shown in Figure 4B, if the multiple scattering includes two scattering events, the total effective reflection coefficient can be defined by the superposition of the first scattering event and the second scattering event
根据各种实施方式,反射系数和与其相关的入射角之间的相关性可以取决于辐射吸收层114的形状和材料以及电磁辐射的波长。例如,反射系数可以随着入射角410w的减小而减小。反射系数随辐射吸收层114的入射角410w的变化可以小于(例如,具有平坦的表面104的)半导体区域102的变化。According to various embodiments, the correlation between the reflection coefficient and its associated angle of incidence may depend on the shape and material of the radiation absorbing layer 114 and the wavelength of the electromagnetic radiation. For example, the reflectance may decrease as the angle of incidence 410w decreases. The variation of the reflectance with the angle of incidence 410w of the radiation absorbing layer 114 may be smaller than that of the semiconductor region 102 (eg, having a planar surface 104 ).
与此相反,抗反射涂层基于相长干涉(在朝向半导体区域102的方向上)和相消干涉(在远离半导体区域102的方向上)。可选地,可以在辐射吸收层114和半导体区域102之间形成抗反射涂层(也称为抗反射层)(参见图11B)。In contrast to this, antireflective coatings are based on constructive interference (in a direction towards the semiconductor region 102 ) and destructive interference (in a direction away from the semiconductor region 102 ). Optionally, an antireflection coating (also referred to as an antireflection layer) may be formed between the radiation absorbing layer 114 and the semiconductor region 102 (see FIG. 11B ).
图5A在示意图500a中示出了根据各种实施方式的方法中的根据各种实施方式的半导体器件的反射特性。示意图500a示出了使反射系数501与电磁辐射的能量503(以电子伏特-eV为单位)(例如,对于基本上等于90°的主入射角)相关的反射特性502、504、506。FIG. 5A shows in a schematic diagram 500 a reflection properties of a semiconductor device according to various embodiments in a method according to various embodiments. Schematic 500a shows reflection properties 502, 504, 506 relating reflection coefficient 501 to energy 503 (in electron volts-eV) of electromagnetic radiation (eg, for a principal angle of incidence substantially equal to 90°).
示意图500a示出了参考反射系数的反射特性502和反射特性504,即电磁辐射的参考反射系数与能量503之间的相关性。反射特性502表示根据理论预期的参考反射系数501,而反射特性504表示根据(例如,在半导体区域102的平坦表面处的)测量的参考反射系数501。The schematic diagram 500a shows the reflection characteristic 502 and the reflection characteristic 504 of the reference reflection coefficient, ie the dependence between the reference reflection coefficient of electromagnetic radiation and the energy 503 . The reflection characteristic 502 represents the reference reflection coefficient 501 expected from theory, while the reflection characteristic 504 represents the reference reflection coefficient 501 according to the measurement (for example, at the flat surface of the semiconductor region 102 ).
示意图500a示出了总有效反射系数的反射特性506。反射特性506表示根据各种实施方式的辐射吸收层114的反射系数501,在图500b中提供了详细视图。The schematic diagram 500a shows the reflection characteristic 506 of the total effective reflection coefficient. The reflection characteristic 506 represents the reflection coefficient 501 of the radiation absorbing layer 114 according to various embodiments, a detailed view is provided in diagram 500b.
根据各种实施方式,电磁辐射可以包括从紫外辐射到红外辐射的范围内的辐射或者由从紫外辐射到红外辐射的范围内的辐射形成。例如,电磁辐射可以包括从约0.1eV(对应于约12400nm的波长,例如在中间红外辐射中)到约12.4eV(对应于约100nm的波长,例如在真空紫外辐射中)的范围内的辐射,例如在从约1eV(对应于约1240nm的波长,例如在近红外辐射中)到约7eV(对应于约180nm的波长,例如在真空紫外辐射中)的范围内,例如在从约2eV(对应于约620nm的波长,例如在红色可见光辐射中)到约6eV(对应于约205nm的波长,例如在深紫外辐射中)的范围内,例如在从约3eV(对应于约410nm的波长,例如在紫外可见辐射中)到约5eV(对应于约250nm的波长,例如在深紫外辐射中)的范围内,例如约4eV(对应于约308nm的波长,例如在中间紫外辐射中)。根据各种实施方式,辐射的波长可以在半导体区域102的反射率小于辐射吸收层114的反射率的波长范围内。该波长范围在本文中也可以称为“吸收范围”。According to various embodiments, the electromagnetic radiation may comprise or be formed from radiation ranging from ultraviolet radiation to infrared radiation. For example, electromagnetic radiation may include radiation in the range from about 0.1 eV (corresponding to a wavelength of about 12400 nm, such as in mid-infrared radiation) to about 12.4 eV (corresponding to a wavelength of about 100 nm, such as in vacuum ultraviolet radiation), For example in the range from about 1 eV (corresponding to a wavelength of about 1240 nm, for example in near-infrared radiation) to about 7 eV (corresponding to a wavelength of about 180 nm, for example in vacuum ultraviolet radiation), for example in the range from about 2 eV (corresponding to A wavelength of about 620 nm, for example in red visible radiation) to about 6 eV (corresponding to a wavelength of about 205 nm, for example in deep ultraviolet radiation), for example in the range from about 3 eV (corresponding to a wavelength of about 410 nm, for example in ultraviolet visible radiation) to about 5 eV (corresponding to a wavelength of about 250 nm, eg in deep UV radiation), for example about 4 eV (corresponding to a wavelength of about 308 nm, eg in intermediate UV radiation). According to various embodiments, the wavelength of the radiation may be in a wavelength range where the reflectivity of the semiconductor region 102 is less than the reflectivity of the radiation absorbing layer 114 . This wavelength range may also be referred to herein as the "absorption range".
根据各种实施方式,辐射吸收层114的反射特性506(例如,总反射系数501)可以例如对于在从约3eV(对应于约415nm)到约7eV的范围(例如,吸收范围)内(例如从约3.5eV(对应于约350nm)到约5eV(对应于约250nm)的范围内)的电磁辐射而言小于约0.5,例如小于约0.45,例如小于约0.4,。电磁辐射可以沿着半导体区域102的宏观表面法线的方向入射。半导体区域102的宏观表面法线可以垂直于辐射吸收层114的宏观表面平面404(参见例如图4A和图4B)。According to various embodiments, the reflective properties 506 (e.g., the total reflectance 501) of the radiation absorbing layer 114 may be, for example, in the range (e.g., the absorption range) from about 3 eV (corresponding to about 415 nm) to about 7 eV (e.g., from less than about 0.5, such as less than about 0.45, such as less than about 0.4, for electromagnetic radiation in the range of about 3.5 eV (corresponding to about 350 nm) to about 5 eV (corresponding to about 250 nm). Electromagnetic radiation may be incident along a direction of a macroscopic surface normal of the semiconductor region 102 . The macroscopic surface normal of the semiconductor region 102 may be perpendicular to the macroscopic surface plane 404 of the radiation absorbing layer 114 (see eg FIGS. 4A and 4B ).
图5B在示意图500b中示出了根据各种实施方式的方法中的根据各种实施方式的半导体器件的反射特性。示意图500b示出了在(例如,对于基本上等于90°的主入射角的)电磁辐射的波长505(例如,以纳米(nm)为单位)之上的反射特性512、506。FIG. 5B shows in a schematic diagram 500 b reflection characteristics of a semiconductor device according to various embodiments in a method according to various embodiments. Schematic 500b shows reflection characteristics 512, 506 over a wavelength 505 (eg, in nanometers (nm)) of electromagnetic radiation (eg, for a principal angle of incidence substantially equal to 90°).
示意图500a示出了参考反射系数的反射特性512和总有效反射系数(换言之,针对根据各种实施方式的辐射吸收层114的)的反射特性506。The schematic diagram 500a shows the reflection characteristics 512 for the reference reflection coefficient and the reflection characteristics 506 for the total effective reflection coefficient (in other words, for the radiation absorbing layer 114 according to various embodiments).
根据各种实施方式,电磁辐射可以包括具有在吸收范围的波长的辐射或由该辐射形成,所述吸收范围例如在从约250nm(对应于约5eV)到约350nm(对应于约3.5eV)的范围内,例如在从约300nm(对应于约4.1eV)到约320nm(对应于约3.88eV)的范围内,或者例如在从约500nm(对应于约2.5eV)到约600nm(对应于约2eV)的范围内,例如包括绿光(例如,绿色激光)或者由绿光(例如,绿色激光)形成。According to various embodiments, the electromagnetic radiation may comprise or be formed by radiation having a wavelength in the absorption range, for example, from about 250 nm (corresponding to about 5 eV) to about 350 nm (corresponding to about 3.5 eV). range, such as from about 300nm (corresponding to about 4.1eV) to about 320nm (corresponding to about 3.88eV), or for example from about 500nm (corresponding to about 2.5eV) to about 600nm (corresponding to about 2eV ), for example, includes or is formed by green light (eg, green laser).
较大的波长可以增加电磁辐射的穿透深度,这可以增加加热深度。可替选地或另外地,可以提供较大的波长以增加所传递的能量,原因在于能量被分配到较大的加热深度。Larger wavelengths can increase the penetration depth of electromagnetic radiation, which can increase heating depth. Alternatively or additionally, larger wavelengths may be provided to increase the delivered energy since the energy is distributed over a larger heating depth.
根据各种实施方式,总有效反射系数可以通过增加辐射吸收层114的厚度和辐射吸收层114的碳同素异形体的数目中至少之一而减少522。According to various embodiments, the total effective reflectance may be reduced 522 by increasing at least one of the thickness of the radiation absorbing layer 114 and the number of carbon allotropes of the radiation absorbing layer 114 .
图6A和图6B分别示出了根据各种实施方式的方法中的根据各种实施方式的半导体区域102之上的辐射吸收层114的示意性侧视图600。图6A示出了分段辐射吸收层114,而图6B示出了连续辐射吸收层114。6A and 6B each show a schematic side view 600 of a radiation absorbing layer 114 over a semiconductor region 102 according to various embodiments in a method according to various embodiments. FIG. 6A shows a segmented radiation absorbing layer 114 , while FIG. 6B shows a continuous radiation absorbing layer 114 .
分段辐射吸收层114可以包括多个分离的部分602a、602b或者由多个分离的部分602a、602b形成。多个分离的部分602a、602b中的每个部分可以包括(例如,通过多个碳同素异形体设置的)多个突起114a、114b。在多个分离的部分602a、602b中的相邻部分之间可以形成开口602o。开口602可以部分地暴露半导体区域102。这可以使得能够调整半导体区域102的加热分布(换言之,传递至半导体区域102中的热能的分布)。示例性地,多个分离的部分602a、602b中的每个部分可以布置在半导体区域102的旨在被加热((例如,被加热超过掺杂剂激活温度)的部分之上,该部分例如旨在被激活。The segmented radiation absorbing layer 114 may include or be formed from a plurality of separate portions 602a, 602b. Each of the plurality of discrete portions 602a, 602b may include a plurality of protrusions 114a, 114b (eg, provided by a plurality of carbon allotropes). Openings 602o may be formed between adjacent ones of the plurality of separated portions 602a, 602b. The opening 602 may partially expose the semiconductor region 102 . This may enable adjustment of the heating profile of the semiconductor region 102 (in other words, the distribution of thermal energy transferred into the semiconductor region 102 ). Illustratively, each of the plurality of discrete portions 602a, 602b may be disposed over a portion of the semiconductor region 102 that is intended to be heated (eg, heated beyond a dopant activation temperature), such as to is being activated.
可选地,多个分离的部分602a、602b中的至少两个部分在它们的反射特性方面(例如,在它们针对(例如在吸收范围之外的)预定波长的反射系数方面)是不同的。Optionally, at least two of the plurality of separate portions 602a, 602b are different in their reflective properties, eg in terms of their reflectance coefficients for predetermined wavelengths (eg outside the absorption range).
连续辐射吸收层114可以连续地覆盖半导体区域102。可选地,例如如前所述的配置,连续辐射吸收层114可以包括多个邻接的部分602a、602b或者由多个邻接的部分602a、602b形成。The continuous radiation absorbing layer 114 may continuously cover the semiconductor region 102 . Optionally, the continuous radiation absorbing layer 114 may comprise or be formed from a plurality of contiguous portions 602a, 602b, such as in the previously described configuration.
图7A至图7C分别示出了根据各种实施方式的方法中的根据各种实施方式的形成辐射吸收层114的示意性侧视图。7A to 7C respectively show schematic side views of forming the radiation absorbing layer 114 according to various embodiments in the method according to various embodiments.
方法可以包括在700a中在半导体区域102之上形成催化剂层702(也可以称为种子层702)。催化剂层702可以包括金属材料(也可以称为金属催化剂)或者由该金属材料形成,金属材料例如是镍、钴、钇以及包括钴和铁的合金中的至少一种。催化剂层702可以包括纳米粒子或者由纳米粒子形成,该纳米粒子例如包括金属材料或者由金属材料形成。催化剂层702可以包括多个分离的岛状物702a或者由多个分离的岛状物702a形成。催化剂层702的每个岛状物702a可以包括一个或更多个纳米粒子或者由一个或更多个纳米粒子形成,例如不止一个纳米粒子的积聚。催化剂层702的每个岛状物702a的(垂直于宏观表面法线的)横向延伸701可以小于约50nm,例如小于约10nm,例如小于约5nm,例如小于约1nm。The method may include forming a catalyst layer 702 (also may be referred to as a seed layer 702 ) over the semiconductor region 102 in 700a. The catalyst layer 702 may include or be formed of a metal material (also referred to as a metal catalyst), such as at least one of nickel, cobalt, yttrium, and an alloy including cobalt and iron. The catalyst layer 702 may include or be formed of nanoparticles, for example including or being formed of a metallic material. The catalyst layer 702 may include or be formed from a plurality of separate islands 702a. Each island 702a of catalyst layer 702 may include or be formed from one or more nanoparticles, eg, an accumulation of more than one nanoparticle. The lateral extension 701 (perpendicular to the macroscopic surface normal) of each island 702a of the catalyst layer 702 may be less than about 50 nm, such as less than about 10 nm, such as less than about 5 nm, such as less than about 1 nm.
根据各种实施方式,催化剂层702可以通过物理气相沉积(例如,通过溅射)来形成。According to various embodiments, catalyst layer 702 may be formed by physical vapor deposition (eg, by sputtering).
根据各种实施方式,多个分离的岛状物702a中的每个岛状物的横向延伸(例如直径)可以小于或等于约50nm,例如小于或等于约25nm,小于或等于约10nm,小于或等于约5nm。According to various embodiments, the lateral extension (e.g., diameter) of each island in the plurality of discrete islands 702a may be less than or equal to about 50 nm, such as less than or equal to about 25 nm, less than or equal to about 10 nm, less than or equal to Equal to about 5nm.
方法可以包括在700a中将催化剂层暴露于气态前体704。气态前体704(也称为含碳气体)可以包括含有碳的分子(例如如乙炔、乙烯、乙醇和甲烷中的至少一种)或者由该分子形成。气态前体704可以在具有工艺气体的混合物(例如包括氨、氮和氢中的至少一种或者由氨、氮和氢中的至少一种形成)中提供。半导体区域102的结构化表面104可以在形成辐射吸收层114期间被加热,例如被加热到大于约500℃,例如被加热到约700℃。The method may include exposing the catalyst layer to a gaseous precursor 704 in 700a. The gaseous precursor 704 (also referred to as a carbon-containing gas) may include or be formed from a molecule containing carbon, such as, for example, at least one of acetylene, ethylene, ethanol, and methane. The gaseous precursor 704 may be provided in a mixture with a process gas (eg, including or formed from at least one of ammonia, nitrogen, and hydrogen). The structured surface 104 of the semiconductor region 102 may be heated during formation of the radiation absorbing layer 114 , for example to greater than about 500° C., for example to about 700° C.
根据各种实施方式,形成辐射吸收层114可以包括例如使用气态前体704的化学气相沉积。可选地,可以例如通过等离子体来增强辐射吸收层114的形成。可替选地或另外地,形成辐射吸收层114可以包括物理气相沉积,例如激光沉积或阴极电弧沉积。According to various embodiments, forming the radiation absorbing layer 114 may include, for example, chemical vapor deposition using a gaseous precursor 704 . Optionally, the formation of the radiation absorbing layer 114 may be enhanced, eg, by plasma. Alternatively or additionally, forming the radiation absorbing layer 114 may include physical vapor deposition, such as laser deposition or cathodic arc deposition.
根据各种实施方式,催化剂层702可以被配置成例如通过气态前体704的热解分解(热解诱导分解)来裂化气态前体704。气态前体704的裂化可以从气态前体704中提供碳。碳可以例如通过形成碳的至少一个同素异形体712(也称为至少一个碳同素异形体712)(例如图7B中示意性示出的碳纳米管辐射吸收层114)来积聚到催化剂层702的岛状物702a。可替选地或另外地,可以形成碳的其它类型的同素异形体712,例如石墨、富勒烯和碳纳米泡沫中的至少一种。According to various embodiments, catalyst layer 702 may be configured to crack gaseous precursor 704 , for example, by pyrolytic decomposition of gaseous precursor 704 (pyrolysis-induced decomposition). Cracking of gaseous precursor 704 may provide carbon from gaseous precursor 704 . Carbon may accumulate to the catalyst layer, for example, by forming at least one allotrope of carbon 712 (also referred to as at least one carbon allotrope 712), such as the carbon nanotube radiation absorbing layer 114 shown schematically in FIG. 7B 702 island 702a. Alternatively or additionally, other types of allotropes 712 of carbon may be formed, such as at least one of graphite, fullerenes, and carbon nanofoams.
方法可以包括在700b中以第一形成模式形成辐射吸收层114。辐射吸收层114的至少一个碳同素异形体712可以使用来自气态前体704的碳来形成。至少一个碳同素异形体712可以形成在催化剂层702之上。例如,碳的每个同素异形体712可以形成多个突起114a、114b中的一个突起。示例性地,至少一个同素异形体712中的一个或更多个碳同素异形体可以在催化剂层702的每个岛状物702a的顶部上生长。The method may include forming the radiation absorbing layer 114 in a first formation mode in 700b. At least one carbon allotrope 712 of radiation absorbing layer 114 may be formed using carbon from gaseous precursor 704 . At least one carbon allotrope 712 may be formed over catalyst layer 702 . For example, each allotrope of carbon 712 may form one of the plurality of protrusions 114a, 114b. Illustratively, one or more carbon allotropes in at least one allotrope 712 may grow on top of each island 702a of catalyst layer 702 .
方法可以包括在700b中以第二形成模式形成辐射吸收层114。辐射吸收层114的至少一个碳同素异形体712可以使用来自气态前体704的碳来形成。至少一个同素异形体712可以形成在催化剂层702和半导体区域102之间。示例性地,至少一个碳同素异形体712可以提升催化剂层702的岛状物702a。The method may include forming the radiation absorbing layer 114 in the second formation mode in 700b. At least one carbon allotrope 712 of radiation absorbing layer 114 may be formed using carbon from gaseous precursor 704 . At least one allotrope 712 may be formed between the catalyst layer 702 and the semiconductor region 102 . Illustratively, at least one carbon allotrope 712 may elevate islands 702a of catalyst layer 702 .
图8A示出了根据各种实施方式的方法中的根据各种实施方式的半导体器件800a的示意性截面图或侧视图。FIG. 8A shows a schematic cross-sectional or side view of a semiconductor device 800 a according to various embodiments in a method according to various embodiments.
通过激活掺杂剂,可以在半导体区域102的第一侧102b处的半导体区域102中形成掺杂层108l(参见图1C和图2C)。第一侧102b(也称为底侧102b)可以与半导体区域102的第二侧102t(也称为顶侧102t)相反。激活的掺杂剂108a可以布置在靠近半导体区域102的第一侧102b(例如,表面104)(例如,与半导体区域102的表面104物理接触)的掺杂层108l中。换言之,半导体器件800a可以包括靠近表面104(例如,与半导体区域102的表面104物理接触)布置的激活的掺杂剂108a。By activating the dopant, a doped layer 1081 may be formed in the semiconductor region 102 at the first side 102b of the semiconductor region 102 (see FIGS. 1C and 2C ). The first side 102 b (also referred to as the bottom side 102 b ) may be opposite to the second side 102 t (also referred to as the top side 102 t ) of the semiconductor region 102 . The activated dopant 108a may be disposed in the doped layer 1081 proximate to (eg, in physical contact with) the first side 102b (eg, the surface 104 ) of the semiconductor region 102 . In other words, the semiconductor device 800a may include an activated dopant 108a disposed proximate to the surface 104 (eg, in physical contact with the surface 104 of the semiconductor region 102).
可选地,半导体器件800a可以包括半导体电路元件1702,例如功率半导体电路元件1702,其形成在半导体区域的第二侧102t处的半导体区域之上或/和半导体区域的第二侧102t处的半导体区域中。例如,半导体电路元件1702可以包括与半导体区域102的掺杂层108l电接触1704的至少一个晶体管(换言之,一个或更多个晶体管,例如一个或更多个绝缘栅双极晶体管)或者由该至少一个晶体管形成。Optionally, the semiconductor device 800a may include a semiconductor circuit element 1702, such as a power semiconductor circuit element 1702, formed over the semiconductor region at the second side 102t of the semiconductor region or/and on the semiconductor region at the second side 102t of the semiconductor region. in the area. For example, the semiconductor circuit element 1702 may include at least one transistor (in other words, one or more transistors, such as one or more insulated gate bipolar transistors) in electrical contact 1704 with the doped layer 1081 of the semiconductor region 102 or may be formed by the at least one transistor. A transistor is formed.
可选地,半导体器件800a可以包括与半导体区域102的掺杂层108l电接触而形成的至少一个第一接触垫1706(例如,至少一个集电极接触垫1706)。换言之,至少一个第一接触垫1706可以经由掺杂层108l电连接至半导体电路元件1702。可替选地或另外地,半导体器件800a可以包括至少一个第二接触垫1708(例如,源极/漏极接触垫1708),换言之,半导体器件800a可以包括在与半导体电路元件1702的电接触1710而形成的第二侧102t上的一个或更多个第二接触垫1708。不止一个第二接触垫1708可以可选地包括栅极接触垫,例如,该栅极接触垫可以与半导体区域102电绝缘地形成。Optionally, the semiconductor device 800a may include at least one first contact pad 1706 (eg, at least one collector contact pad 1706 ) formed in electrical contact with the doped layer 1081 of the semiconductor region 102 . In other words, at least one first contact pad 1706 may be electrically connected to the semiconductor circuit element 1702 via the doped layer 1081. Alternatively or additionally, the semiconductor device 800a may include at least one second contact pad 1708 (eg, source/drain contact pad 1708), in other words, the semiconductor device 800a may include an electrical contact 1710 with the semiconductor circuit element 1702. One or more second contact pads 1708 are formed on the second side 102t. The more than one second contact pads 1708 may optionally include gate contact pads, which may be formed electrically insulated from the semiconductor region 102 , for example.
图8B示出了根据各种实施方式的方法中的根据各种实施方式的半导体器件800b的示意性截面图或侧视图。FIG. 8B shows a schematic cross-sectional or side view of a semiconductor device 800 b according to various embodiments in a method according to various embodiments.
根据各种实施方式,方法可以包括去除辐射吸收层114。去除辐射吸收层114可以包括化学处理和热处理中的至少一种或由化学处理和热处理中的至少一种形成。According to various embodiments, methods may include removing the radiation absorbing layer 114 . Removing the radiation absorbing layer 114 may include or be formed by at least one of chemical treatment and heat treatment.
化学处理可以包括湿化学蚀刻和干化学蚀刻(例如等离子蚀刻)中的至少一种或者由湿化学蚀刻和干化学蚀刻(例如等离子蚀刻)中的至少一种形成。The chemical treatment may include or be formed by at least one of wet chemical etching and dry chemical etching (eg, plasma etching).
例如,辐射吸收层114的至少一个碳同素异形体712可以通过等离子体灰化来去除。对于等离子体灰化,等离子体源可以提供辐射吸收层114暴露于其中的等离子体(例如,单原子等离子体)。例如,等离子体可以包括氧和氟中的至少一种或者由氧和氟中的至少一种形成。等离子体(也称为反应性物质)可以与辐射吸收层114的至少一个碳同素异形体712进行化学反应以形成灰,灰可以通过真空泵进一步被去除。在等离子体灰化期间,可选地,可以将热施加至辐射吸收层114。For example, at least one carbon allotrope 712 of radiation absorbing layer 114 may be removed by plasma ashing. For plasma ashing, a plasma source may provide a plasma (eg, monatomic plasma) to which the radiation absorbing layer 114 is exposed. For example, the plasma may include or be formed from at least one of oxygen and fluorine. The plasma (also referred to as reactive species) may chemically react with at least one carbon allotrope 712 of the radiation absorbing layer 114 to form ash, which may be further removed by a vacuum pump. During plasma ashing, heat may optionally be applied to the radiation absorbing layer 114 .
在去除辐射吸收层114期间,半导体器件800b可以被定向为使辐射吸收层114面向重力。这可以使得催化剂层702的岛状物712(参见例如图7C中的第二形成模式)可以在它们与半导体区域102的连接丧失时下降。示例性地,这可以便于清洁半导体区域102。During removal of the radiation absorbing layer 114, the semiconductor device 800b may be oriented such that the radiation absorbing layer 114 faces gravity. This may allow the islands 712 of the catalyst layer 702 (see, eg, the second mode of formation in FIG. 7C ) to descend when their connection to the semiconductor region 102 is lost. As an example, this may facilitate cleaning of the semiconductor region 102 .
可替选地或另外地,去除辐射吸收层114可以包括湿法蚀刻工艺以去除催化剂层702的岛状物712。Alternatively or additionally, removing the radiation absorbing layer 114 may include a wet etching process to remove the islands 712 of the catalyst layer 702 .
图9示出了根据各种实施方式的方法中的根据各种实施方式的辐射吸收层114的示意性透视视图。Fig. 9 shows a schematic perspective view of a radiation absorbing layer 114 according to various embodiments in a method according to various embodiments.
根据各种实施方式,辐射吸收层114可以包括木状结构(例如,CNT的木材)或者由该木状结构形成。木状结构可以包括多个突起114a、114b或者由多个突起114a、114b形成,例如,所述多个突起114a、114b呈管(多个管114a、114b)的形状且彼此远离地布置。木状结构可以包括碳纳米管或者由碳纳米管形成。多个突起114a、114b中的每个突起可以例如沿垂直于半导体区域102的宏观表面法线404n的方向远离半导体区域102地延伸。多个突起114a、114b中的每个突起的延伸可以大于它们之间的距离或它们的平行于半导体区域102的宏观表面法线404n的延伸中的至少一个。换言之,多个突起114a、114b中的每个突起可以是细长的。可选地,多个突起114a、114b中的每个突起可以包括由至少一个壁围绕的空洞。例如,碳纳米管可以是单壁的或多壁的,例如双壁的。According to various embodiments, the radiation absorbing layer 114 may include or be formed of a wood-like structure (eg, wood of CNTs). The wood-like structure may comprise or be formed by a plurality of protrusions 114a, 114b, for example in the shape of a tube (tubes 114a, 114b) and arranged remotely from each other. The wood-like structure may include or be formed from carbon nanotubes. Each protrusion of the plurality of protrusions 114 a , 114 b may extend away from the semiconductor region 102 , eg, in a direction perpendicular to a macroscopic surface normal 404 n of the semiconductor region 102 . The extension of each of the plurality of protrusions 114 a , 114 b may be greater than at least one of the distance between them or their extension parallel to the macroscopic surface normal 404 n of the semiconductor region 102 . In other words, each of the plurality of protrusions 114a, 114b may be elongated. Optionally, each protrusion of the plurality of protrusions 114a, 114b may comprise a hollow surrounded by at least one wall. For example, carbon nanotubes may be single-walled or multi-walled, such as double-walled.
图10A以示意性截面图或侧视图示出了在根据各种实施方式的方法中的根据各种实施方式的半导体器件1000a。FIG. 10A shows a semiconductor device 1000 a according to various embodiments in a schematic cross-sectional view or a side view in a method according to various embodiments.
根据各种实施方式,构造辐射吸收层114可以包括使用掩模1802。因此,掩模1802可以形成在半导体区102之上,例如在半导体区102的表面104之上。可以在形成辐射吸收层114之前形成掩模1802。掩模1802可以包括露出半导体区102的多个开口1804,例如露出半导体区102的表面104。According to various embodiments, constructing the radiation absorbing layer 114 may include using a mask 1802 . Accordingly, a mask 1802 may be formed over the semiconductor region 102 , for example over the surface 104 of the semiconductor region 102 . Mask 1802 may be formed prior to forming radiation absorbing layer 114 . The mask 1802 may include a plurality of openings 1804 exposing the semiconductor region 102 , eg exposing the surface 104 of the semiconductor region 102 .
根据各种实施方式,多个开口1804中的开口可以例如以棋盘结构、例如周期性地(例如以二维)被布置成图案。根据各种实施方式,掩模1802可以包括氧化物或由氧化物形成,例如半导体氧化物、金属氧化物和诸如光致抗蚀剂或其他抗蚀剂这样的聚合物中至少之一。According to various embodiments, the openings of the plurality of openings 1804 may be arranged in a pattern, eg, in a checkerboard structure, eg periodically (eg, in two dimensions). According to various embodiments, the mask 1802 may include or be formed of an oxide, such as at least one of a semiconductor oxide, a metal oxide, and a polymer such as a photoresist or other resist.
根据各种实施方式,可以在掩模1802之上形成辐射吸收层114。在形成辐射吸收层114之后,可以将掩模1802以及辐射吸收层114的设置在掩模1802的材料之上的部分一起去除(也称为剥离工艺)。According to various embodiments, radiation absorbing layer 114 may be formed over mask 1802 . After the radiation absorbing layer 114 is formed, the mask 1802 may be removed together with the portion of the radiation absorbing layer 114 disposed over the material of the mask 1802 (also referred to as a lift-off process).
根据各种实施方式,剥离工艺可包括:在半导体区102之上形成牺牲层(例如,其可包括聚合物或由聚合物形成,例如光致抗蚀剂或其他抗蚀剂);构造牺牲层以提供掩模1802;在掩模1802(和半导体区102)之上形成辐射吸收层114;去除掩模1802,使得辐射吸收层114的至少一部分保留在半导体区102之上。示例性地,当(例如使用掩模去除剂,该掩膜去除剂例如包括溶剂或蚀刻剂中至少之一)去除掩模1802时,辐射吸收层114的通过掩模1802与半导体区102分开的至少一部分被剥离并且与下面的掩模1802一起被去除。在剥离工艺之后,辐射吸收层114的至少一个另外的部分可以保留在半导体区102的通过多个开口1804露出的区域之上,例如在多个开口1804中辐射吸收层114和半导体区102彼此物理接触。示例性地,辐射吸收层114的保留在半导体区102之上的至少一个另外的部分包括掩模1802的倒置结构(inverted structure)。According to various embodiments, the lift-off process may include: forming a sacrificial layer (eg, which may include or be formed of a polymer, such as photoresist or other resist) over the semiconductor region 102; constructing the sacrificial layer to provide mask 1802 ; form radiation absorbing layer 114 over mask 1802 (and semiconductor region 102 ); remove mask 1802 such that at least a portion of radiation absorbing layer 114 remains over semiconductor region 102 . Exemplarily, when the mask 1802 is removed (for example using a mask remover, which for example includes at least one of a solvent or an etchant), the radiation absorbing layer 114 separated from the semiconductor region 102 by the mask 1802 At least a portion is lifted off and removed along with the underlying mask 1802 . After the lift-off process, at least one further portion of the radiation absorbing layer 114 may remain over regions of the semiconductor region 102 exposed by the plurality of openings 1804, for example in the plurality of openings 1804 where the radiation absorbing layer 114 and the semiconductor region 102 are physically connected to each other. touch. Exemplarily, at least one further portion of the radiation absorbing layer 114 remaining above the semiconductor region 102 comprises an inverted structure of the mask 1802 .
例如,掩模1802可以被配置成形成具有不同反射特性的第一区域1904a和第二区域1904b(参见图11C或参见图5A和图5B)。例如,经由第一剥离工艺,可以形成第一催化剂层。此外,经由第二剥离工艺,可以形成第二催化剂层。第一催化剂层和第二催化剂层可以彼此不同,例如,在岛状物密度(每面积数)、金属材料、岛状物的横向延伸和纳米颗粒密度中至少之一是不同的。For example, the mask 1802 may be configured to form a first region 1904a and a second region 1904b having different reflective properties (see FIG. 11C or see FIGS. 5A and 5B ). For example, through a first lift-off process, a first catalyst layer may be formed. In addition, through the second lift-off process, a second catalyst layer may be formed. The first catalyst layer and the second catalyst layer may differ from each other, for example, in at least one of island density (number per area), metallic material, lateral extension of the islands, and nanoparticle density.
图10B以示意性截面图或侧视图示出了根据各种实施方式的方法中的根据各种实施方式的半导体器件1000b。FIG. 10B shows a semiconductor device 1000 b according to various embodiments in a schematic cross-sectional view or a side view in a method according to various embodiments.
根据各种实施方式,激活掺杂剂可包括利用激光源1812(激光光源)照射辐射吸收层114或者可以由利用激光源1812(激光光源)照射辐射吸收层114形成。激光源1812可以被配置成提供包括可选地相干的电磁辐射(例如激光)的激光束1814。According to various embodiments, activating the dopant may include or may be formed by irradiating the radiation absorbing layer 114 with the laser source 1812 (laser light source). Laser source 1812 may be configured to provide a laser beam 1814 comprising optionally coherent electromagnetic radiation (eg, laser light).
根据各种实施方式,激光源1812可以被配置成提供脉冲激光束1814。可替选地或另外地,激光源1812可以被配置成提供连续激光束1814。According to various implementations, the laser source 1812 may be configured to provide a pulsed laser beam 1814 . Alternatively or additionally, laser source 1812 may be configured to provide continuous laser beam 1814 .
根据各种实施方式,照射辐射吸收层114可以包括用电磁辐射扫描辐射吸收层114或由用电磁辐射扫描辐射吸收层114形成,电磁辐射例如是激光束1814。换言之,诸如激光束1814这样的电磁辐射可以例如根据预定的照射图案在辐射吸收层114上移动。According to various embodiments, irradiating the radiation absorbing layer 114 may include or be formed by scanning the radiation absorbing layer 114 with electromagnetic radiation, such as a laser beam 1814 . In other words, electromagnetic radiation, such as laser beam 1814, may be moved over radiation absorbing layer 114, for example, according to a predetermined irradiation pattern.
激光束1814可以包括在约2J/cm2至约10J/cm2的范围内、在约3J/cm2至约5J//cm2的范围内的(例如每脉冲)能量密度,或者由该能量密度形成。Laser beam 1814 may comprise or be formed from an fluence (eg, per pulse) in the range of about 2 J/cm2 to about 10 J/cm2, in the range of about 3 J/cm2 to about 5 J/cm2.
图10C示出了根据各种实施方式的方法中的根据各种实施方式的半导体器件1000c的示意性截面图或侧视图。FIG. 10C shows a schematic cross-sectional or side view of a semiconductor device 1000c according to various embodiments in a method according to various embodiments.
根据各种实施方式,半导体器件1000c可以包括形成在半导体区102之上、例如在激活的掺杂剂108a之上的金属化层1822。金属化层1822可以包括金属材料或由金属材料形成,例如铜。金属化层1822可以包括至少一个接触垫或由至少一个接触垫形成。根据各种实施方式,金属化层1822,例如至少一个接触垫,可以包括不透明材料或由不透明材料形成。换言之,金属化层1822,例如至少一个接触垫,可以是不透明的。According to various embodiments, the semiconductor device 1000c may include a metallization layer 1822 formed over the semiconductor region 102, for example over the activated dopant 108a. Metallization layer 1822 may include or be formed from a metallic material, such as copper. The metallization layer 1822 may include or be formed of at least one contact pad. According to various embodiments, metallization layer 1822 , such as at least one contact pad, may include or be formed from an opaque material. In other words, metallization layer 1822, such as at least one contact pad, may be opaque.
图11A示出了根据各种实施方式的方法中的根据各种实施方式的半导体器件1100a的示意性截面图或侧视图。FIG. 11A shows a schematic cross-sectional or side view of a semiconductor device 1100 a according to various embodiments in a method according to various embodiments.
根据各种实施方式,半导体器件1100a可以包括彼此并联地电连接1904的且与半导体区102的掺杂层108l电接触的多个半导体电路元件1702a、1702b、1702c。通过示例的方式,多个半导体电路元件1702a、1702b、1702c可以是功率半导体电路元件的一部分或形成功率半导体电路元件。According to various embodiments, the semiconductor device 1100a may comprise a plurality of semiconductor circuit elements 1702a , 1702b , 1702c electrically connected 1904 to each other in parallel and in electrical contact with the doped layer 1081 of the semiconductor region 102 . By way of example, the plurality of semiconductor circuit elements 1702a, 1702b, 1702c may be part of or form a power semiconductor circuit element.
可选地,半导体器件1100a可以包括在半导体区102的第二侧102t上的第一金属化层1922。多个半导体电路元件1702a、1702b、1702c中的每个半导体电路元件可以电连接1904至第一金属化层1922。可以由第一金属化层1922形成至少一个第二接触垫1708。Optionally, the semiconductor device 1100 a may include a first metallization layer 1922 on the second side 102 t of the semiconductor region 102 . Each semiconductor circuit element of plurality of semiconductor circuit elements 1702 a , 1702 b , 1702 c may be electrically connected 1904 to first metallization layer 1922 . At least one second contact pad 1708 may be formed from the first metallization layer 1922 .
根据各种实施方式,多个半导体电路元件1702a、1702b、1702c中的每个半导体电路元件可以包括二极管结构或晶体管结构(也称为晶体管单元)或者由其形成。According to various embodiments, each semiconductor circuit element of the plurality of semiconductor circuit elements 1702a, 1702b, 1702c may comprise or be formed of a diode structure or a transistor structure (also referred to as a transistor cell).
可选地,半导体器件1100a可以包括在半导体区102的第一侧102b上的第二金属化层1822。多个半导体电路元件1702a、1702b、1702c中的每个半导体电路元件可以例如经由半导体区102的激活掺杂剂108a(例如,经由掺杂层108l)电连接1904至第二金属化层1822。可由第二金属化层1822形成至少一个第一接触垫1706。Optionally, the semiconductor device 1100 a may include a second metallization layer 1822 on the first side 102 b of the semiconductor region 102 . Each semiconductor circuit element of the plurality of semiconductor circuit elements 1702a, 1702b, 1702c may be electrically connected 1904 to the second metallization layer 1822 eg via the active dopant 108a of the semiconductor region 102 (eg via the doped layer 108l). At least one first contact pad 1706 may be formed from the second metallization layer 1822 .
根据各种实施方式,多个半导体电路元件1702a、1702b、1702c(例如,功率半导体电路元件)中的每个半导体电路元件可以包括垂直结构或由垂直结构形成。垂直结构可以被理解为提供从半导体区102的第二侧102t向半导体区102的第一侧102b流动的电流,反之亦然,例如垂直于半导体区102的宏观表面平面404。According to various embodiments, each semiconductor circuit element of the plurality of semiconductor circuit elements 1702a, 1702b, 1702c (eg, power semiconductor circuit elements) may comprise or be formed of a vertical structure. A vertical structure may be understood as providing current flow from the second side 102 t of the semiconductor region 102 to the first side 102 b of the semiconductor region 102 and vice versa, for example perpendicular to the macroscopic surface plane 404 of the semiconductor region 102 .
根据各种实施方式,多个半导体电路元件1702a、1702b、1702c(例如,功率半导体电路元件)中的每个半导体电路元件可以包括至少一个栅极接触垫。至少一个栅极接触垫可以由第一金属化层1922中的至少一个(如果存在的话)提供(例如由其形成)。According to various embodiments, each semiconductor circuit element of the plurality of semiconductor circuit elements 1702a, 1702b, 1702c (eg, power semiconductor circuit elements) may include at least one gate contact pad. At least one gate contact pad may be provided by (eg formed from) at least one of the first metallization layers 1922 (if present).
根据各种实施方式,多个半导体电路元件1702a、1702b、1702c(例如,功率半导体电路元件)中的每个半导体电路元件可以包括晶体管(例如,功率晶体管)或由其形成。According to various embodiments, each semiconductor circuit element of the plurality of semiconductor circuit elements 1702a, 1702b, 1702c (eg, power semiconductor circuit elements) may include or be formed from a transistor (eg, a power transistor).
图11B示出了根据各种实施方式的方法中的根据各种实施方式的半导体器件1100b的示意性截面图或侧视图。FIG. 11B shows a schematic cross-sectional or side view of a semiconductor device 1100 b according to various embodiments in a method according to various embodiments.
根据各种实施方式,半导体器件1100b可以包括形成在半导体区102之上的牺牲层1912,例如,在形成辐射吸收层114之前和/或在半导体区102中设置掺杂剂之后形成该牺牲层。可以对牺牲层1912进行处理以形成掩模1812。According to various embodiments, the semiconductor device 1100 b may include a sacrificial layer 1912 formed over the semiconductor region 102 , eg, before forming the radiation absorbing layer 114 and/or after disposing dopants in the semiconductor region 102 . Sacrificial layer 1912 may be processed to form mask 1812 .
可替选地或另外地,牺牲层1912可以有助于去除辐射吸收层114。在这种情况下,牺牲层1912的透明度(例如,透明系数)可以大于半导体区102的透明度(例如,透明系数)。可替选地或另外地,牺牲层1912的热导率可以大于半导体区102的热导率。牺牲层1912可以在激活掺杂剂之后与辐射吸收层114一起被去除(类似于剥离过程)。Alternatively or additionally, sacrificial layer 1912 may facilitate removal of radiation absorbing layer 114 . In this case, the transparency (eg, transparency factor) of the sacrificial layer 1912 may be greater than the transparency (eg, transparency factor) of the semiconductor region 102 . Alternatively or additionally, the thermal conductivity of the sacrificial layer 1912 may be greater than the thermal conductivity of the semiconductor region 102 . The sacrificial layer 1912 may be removed along with the radiation absorbing layer 114 after activating the dopants (similar to a lift-off process).
可替选地或另外地,牺牲层1912可包括抗反射涂层(例如,包括至少一个抗反射层)或由其形成。抗反射涂层可以被配置成降低半导体区102、例如半导体区102的表面104的反射率。换言之,抗反射涂层的反射系数可以小于半导体区102的反射系数。Alternatively or additionally, sacrificial layer 1912 may include or be formed from an anti-reflective coating (eg, including at least one anti-reflective layer). The anti-reflective coating may be configured to reduce the reflectivity of the semiconductor region 102 , eg, the surface 104 of the semiconductor region 102 . In other words, the reflection coefficient of the anti-reflection coating may be smaller than the reflection coefficient of the semiconductor region 102 .
图11C示出了根据各种实施方式的方法中的根据各种实施方式的半导体器件1100c的示意性截面图或侧视图。FIG. 11C shows a schematic cross-sectional or side view of a semiconductor device 1100 c according to various embodiments in a method according to various embodiments.
根据各种实施方式,形成辐射吸收层114可以包括形成彼此不同的至少两个区域1904a、1904b(例如,段602a、602b),例如至少在其(例如,对于给定波长或波长范围的)反射特性方面不同,反射特性例如描述了波长相关反射系数(参见图5A和图5B)。通过示例的方式,至少两个区域1904a、1904b可以包括第一区域1904a和第二区域1904b或者由第一区域1904a和第二区域1904b形成。According to various embodiments, forming the radiation absorbing layer 114 may include forming at least two regions 1904a, 1904b (eg, segments 602a, 602b ) that are different from each other, eg, at least in their reflection (eg, for a given wavelength or range of wavelengths) The properties differ, the reflection properties describing for example the wavelength-dependent reflection coefficient (see Figures 5A and 5B). By way of example, the at least two regions 1904a, 1904b may comprise or be formed by the first region 1904a and the second region 1904b.
根据各种实施方式,辐射吸收层114的第一区域1904a和辐射吸收层114的第二区域1904b可以在选自以下的结构特征中的至少一个结构特征方面不同:粗糙度(均方根),(例如,也是单壁或多壁的)一种碳同素异形体712,空间平均结构高度1101(指相应区域1904a、1904b的厚度1101或者碳同素异形体712的平行于宏观表面法线的延伸部)和碳同素异形体712的密度(例如,每面积数目)。According to various embodiments, the first region 1904a of the radiation absorbing layer 114 and the second region 1904b of the radiation absorbing layer 114 may differ in at least one structural characteristic selected from the group consisting of: roughness (root mean square), (e.g., also single-walled or multi-walled) a carbon allotrope 712, the spatially averaged structural height 1101 (referring to the thickness 1101 of the corresponding regions 1904a, 1904b or the carbon allotrope 712 parallel to the macroscopic surface normal extension) and the density (eg, number per area) of carbon allotropes 712 .
根据各种实施方式,至少一个碳同素异形体的高度1101可以在约0.1μm至约10μm的范围内,在约0.1μm至约1μm的范围内,例如约0.5μm。According to various embodiments, the height 1101 of the at least one carbon allotrope may be in the range of about 0.1 μm to about 10 μm, in the range of about 0.1 μm to about 1 μm, for example about 0.5 μm.
可以提供第一区域1904a和第二区域1904b以例如根据预定图案或调整来调整辐射吸收层114的吸收。换言之,构造辐射吸收层114可以包括调整空间分布的反射率。这可以使得能够例如经由辐射吸收层114来调整到半导体区102的空间解析能量传递。The first region 1904a and the second region 1904b may be provided to tune the absorption of the radiation absorbing layer 114, eg, according to a predetermined pattern or adjustment. In other words, configuring the radiation absorbing layer 114 may include adjusting the spatially distributed reflectivity. This may enable adjustment of the spatially resolved energy transfer to the semiconductor region 102 , eg via the radiation absorbing layer 114 .
图12A示出了根据各种实施方式的方法中的根据各种实施方式的半导体器件1200a的示意性截面图(例如参见图13的示意性截面图2106)或侧视图,例如,半导体电路元件1702a、1702b、1702c,例如功率半导体电路元件1702。12A shows a schematic cross-sectional view (eg, see schematic cross-sectional view 2106 of FIG. 13 ) or a side view, eg, semiconductor circuit element 1702a, of a semiconductor device 1200a according to various embodiments in a method according to various embodiments. , 1702b, 1702c, such as a power semiconductor circuit element 1702.
半导体器件1200a可以包括形成在第一侧102b上的掺杂层108l。掺杂层108l(换言之,被激活的掺杂剂)可以包括第一掺杂类型或者由第一掺杂类型形成。掺杂层108l可以包括集电极区(集电极区形式的掺杂区域)或者由其形成。The semiconductor device 1200a may include a doped layer 1081 formed on the first side 102b. The doped layer 1081 (in other words, the activated dopant) may include or be formed of the first doping type. The doped layer 108l may comprise or be formed by a collector region (doped region in the form of a collector region).
半导体器件1200a还可以包括第一接触垫1706,第一接触垫1706为集电极接触垫1706(例如,漏极接触垫)的形式。第一接触垫1706可以电接触掺杂层108l。第一接触垫1706可以包括金属化层或由金属化层形成。第一接触垫1706可以覆盖掺杂层108l的一半以上,基本上覆盖掺杂层108l(例如,大于掺杂层108l的80%)。第一接触垫1706可以包括不透明层或由不透明层形成。The semiconductor device 1200a may also include a first contact pad 1706 in the form of a collector contact pad 1706 (eg, a drain contact pad). The first contact pad 1706 may electrically contact the doped layer 108l. The first contact pad 1706 may include or be formed of a metallization layer. The first contact pad 1706 may cover more than half of the doped layer 1081 , substantially cover the doped layer 1081 (eg, greater than 80% of the doped layer 1081 ). The first contact pad 1706 may include or be formed from an opaque layer.
此外,半导体器件1200a可以包括第一掺杂区域2006。第一掺杂区域2006可以包括基极区或者由基极区形成。第一掺杂区域2006可以包括(例如,掺杂剂具有)与掺杂层108l(换言之,掺杂层108l的掺杂剂)相同的掺杂类型,例如第一掺杂类型。半导体器件1200a还可以包括与第一掺杂区域2006电接触的第二接触垫1708a。第二接触垫1708a可以包括发射极接触垫1708a(例如,源极接触垫1708a)或由其形成。第二接触垫1708a可以包括金属化层或由金属化层形成。Furthermore, the semiconductor device 1200 a may include a first doped region 2006 . The first doped region 2006 may comprise or be formed by a base region. The first doped region 2006 may comprise (eg, have a dopant having) the same doping type as the doped layer 1081 (in other words, the dopant of the doped layer 1081), eg, the first doping type. The semiconductor device 1200a may further include a second contact pad 1708a in electrical contact with the first doped region 2006 . The second contact pad 1708a may include or be formed from an emitter contact pad 1708a (eg, a source contact pad 1708a ). The second contact pad 1708a may include or be formed of a metallization layer.
此外,半导体器件1200a可以包括形成在第一掺杂区域2006与掺杂层108l之间的第二掺杂区域2004。第二掺杂区域2004可以包括漂移区或由漂移区形成。第二掺杂区域2004可以包括与掺杂层108l不同的掺杂类型(第二掺杂类型),例如具有第二掺杂类型的掺杂剂。第二掺杂区域2004可以包括外延形成的层。Furthermore, the semiconductor device 1200a may include a second doped region 2004 formed between the first doped region 2006 and the doped layer 108l. The second doped region 2004 may include or be formed of a drift region. The second doped region 2004 may include a different doping type (second doping type) from the doping layer 1081, for example, a dopant having the second doping type. The second doped region 2004 may include an epitaxially formed layer.
半导体器件1200a还可以包括另外的第二接触垫1708b。另外的第二接触垫1708b可以包括栅极接触垫1708b或者由栅极接触垫1708b形成。另外的第二接触垫1708b可以形成为例如通过形成在另外的第二接触垫1708b与第二掺杂区域2004之间的电绝缘层而与第二掺杂区域2004电绝缘。另外的第二接触垫1708b可以包括金属化层或由金属化层形成。The semiconductor device 1200a may also include an additional second contact pad 1708b. The additional second contact pad 1708b may comprise or be formed by the gate contact pad 1708b. The further second contact pad 1708b may be formed electrically insulated from the second doped region 2004 , for example by an electrically insulating layer formed between the further second contact pad 1708b and the second doped region 2004 . The additional second contact pad 1708b may include or be formed of a metallization layer.
此外,半导体器件1200a可以包括第三掺杂区域2008。第三掺杂区域2008可以包括发射极区或者由发射极区形成。第三掺杂区域2008可以包括(例如,掺杂剂具有)与掺杂层108l不同的掺杂类型,例如第二掺杂类型。第三掺杂区域2008的掺杂剂浓度可以大于第二掺杂区域2004的掺杂剂浓度。Additionally, the semiconductor device 1200 a may include a third doped region 2008 . The third doped region 2008 may include or be formed by an emitter region. The third doped region 2008 may include (eg, have a dopant of) a different doping type than the doped layer 1081, eg, a second doping type. The dopant concentration of the third doped region 2008 may be greater than the dopant concentration of the second doped region 2004 .
可选地,半导体器件1200a可以包括在第二掺杂区域2004与掺杂层108l之间的第四掺杂区域2002。第四掺杂区域2002可以包括场截止区或者由场截止区形成。第四掺杂区域2002可以包括具有与掺杂层108l不同的掺杂类型的掺杂剂。第四掺杂区域2002可以包括比第二掺杂区域2004更高的掺杂剂浓度。Optionally, the semiconductor device 1200a may include a fourth doped region 2002 between the second doped region 2004 and the doped layer 108l. The fourth doped region 2002 may include or be formed of a field stop region. The fourth doped region 2002 may include a dopant having a different doping type than the doped layer 1081. The fourth doped region 2002 may include a higher dopant concentration than the second doped region 2004 .
根据各种实施方式,第一掺杂类型可以是n掺杂类型而第二掺杂类型可以是p掺杂类型。或者,第一掺杂类型可以是p掺杂类型而第二掺杂类型可以是n掺杂类型。According to various embodiments, the first doping type may be an n-doping type and the second doping type may be a p-doping type. Alternatively, the first doping type may be a p-doping type and the second doping type may be an n-doping type.
可选地,掺杂层108l可以包括多个具有第一掺杂类型的第一段和多个具有第二掺杂类型的第二段或者由其形成。换言之,多个第一段可以包括与多个第二段的掺杂类型不同的掺杂类型。多个第一段中的段和多个第二段中的段可以以交替的顺序设置,例如彼此相邻。Optionally, the doped layer 1081 may include or be formed by a plurality of first segments having a first doping type and a plurality of second segments having a second doping type. In other words, the plurality of first segments may comprise a different doping type than the doping type of the plurality of second segments. The segments of the first plurality of segments and the segments of the second plurality of segments may be arranged in an alternating sequence, eg adjacent to each other.
半导体器件1200a,例如半导体电路元件1702可以包括晶体管结构或者由晶体管结构形成,例如平面晶体管结构(提供垂直电流)。晶体管结构可以包括多个p-n结或由多个p-n结形成。p-n结可以由具有不同掺杂类型的两个掺杂区域的界面形成,例如在以下至少之一之间的界面:第一掺杂区域2006与第二掺杂区域2004;第一掺杂区域2006与第三掺杂区域2008;第二掺杂区域2004与掺杂层108l;掺杂层108l与第四掺杂区域2002(如果存在的话,例如在IGBT中)。The semiconductor device 1200a, such as the semiconductor circuit element 1702, may include or be formed of a transistor structure, such as a planar transistor structure (providing vertical current flow). A transistor structure may include or be formed from multiple p-n junctions. A p-n junction may be formed by an interface of two doped regions having different doping types, for example an interface between at least one of: the first doped region 2006 and the second doped region 2004; the first doped region 2006 and the third doped region 2008; the second doped region 2004 and the doped layer 108l; the doped layer 108l and the fourth doped region 2002 (if present, eg in an IGBT).
根据各种实施方式,第二掺杂区域2004和第四掺杂区域2002可以包括相同的掺杂类型。如上所述,掺杂层108l在掺杂类型方面可以与第二掺杂区域2004和第四掺杂区域2002不同。在这种情况下,掺杂层108l可以提供背侧发射极区(例如,用于IGBT)。或者,掺杂层108l可以具有与第二掺杂区域2004和第四掺杂区域2002相同的掺杂类型。在这种情况下,掺杂层108l可以提供接触增强区(例如,用于垂直金属氧化物半导体场效应晶体管)。According to various embodiments, the second doped region 2004 and the fourth doped region 2002 may include the same doping type. As mentioned above, the doped layer 1081 may differ from the second doped region 2004 and the fourth doped region 2002 in terms of doping type. In this case, the doped layer 108l may provide a backside emitter region (eg, for an IGBT). Alternatively, the doped layer 1081 may have the same doping type as the second doped region 2004 and the fourth doped region 2002 . In this case, the doped layer 1081 may provide a contact enhancement region (eg, for a vertical MOSFET).
根据各种实施方式,半导体器件1200a、例如半导体电路元件1702可以包括绝缘栅双极晶体管或由绝缘栅双极晶体管形成。According to various embodiments, the semiconductor device 1200a, eg, the semiconductor circuit element 1702, may include or be formed from an insulated gate bipolar transistor.
图12B示出了根据各种实施方式的方法中的根据各种实施方式的半导体器件1200b的示意性截面图(例如,如图13所示的示意性截面图2106)或侧视图,例如,半导体电路元件1702a、1702b、1702c,例如功率半导体电路元件1702。12B shows a schematic cross-sectional view (eg, schematic cross-sectional view 2106 as shown in FIG. Circuit elements 1702a, 1702b, 1702c, such as power semiconductor circuit elements 1702 .
半导体器件1200b可以包括形成在第一侧102b上的掺杂层1081。掺杂层108l(换言之,被激活的掺杂剂)可以包括第一掺杂类型或者由第一掺杂类型形成。The semiconductor device 1200b may include a doped layer 1081 formed on the first side 102b. The doped layer 1081 (in other words, the activated dopant) may include or be formed of the first doping type.
半导体器件1200b还可以包括电接触掺杂层108l的第一接触垫1706。第一接触垫1706可以包括电极接触垫或由电极接触垫形成。第一接触垫1706可以包括金属化层或由金属化层形成。第一接触垫1706可以基本上覆盖掺杂层1081。第一掺杂区域2006的延伸部(例如,沿着从第二侧102t指向第一侧102b的方向,换言之,垂直方向)可以小于第二掺杂区域2004的延伸部(例如,在从第二侧102t指向第一侧102b的方向)。示例性地,第一掺杂区域2006可以提供薄掺杂区域和/或第二掺杂区域2004可以提供厚漂移区。第一掺杂区域2006可以与第二接触垫1708电连接和/或物理连接。The semiconductor device 1200b may further include a first contact pad 1706 electrically contacting the doped layer 108l. The first contact pad 1706 may include or be formed by an electrode contact pad. The first contact pad 1706 may include or be formed of a metallization layer. The first contact pad 1706 may substantially cover the doped layer 1081 . The extension of the first doped region 2006 (for example, along the direction from the second side 102t to the first side 102b, in other words, the vertical direction) may be smaller than the extension of the second doped region 2004 (for example, in the direction from the second side 102t side 102t pointing in the direction of the first side 102b). Exemplarily, the first doped region 2006 may provide a thin doped region and/or the second doped region 2004 may provide a thick drift region. The first doped region 2006 may be electrically and/or physically connected to the second contact pad 1708 .
此外,半导体器件1200b可以包括第一掺杂区域2006。第一掺杂区域2006可以包括第一结区或者由第一结区形成。第一掺杂区域2006可以包括具有与掺杂层108l(换言之,掺杂层108l的掺杂剂)不同的掺杂类型的掺杂剂,例如第二掺杂类型。半导体器件1200b还可以包括与第一掺杂区域2006电接触的第二接触垫1708。第二接触垫1708可以包括电极接触垫或由电极接触垫形成。第二接触垫1708a可以包括金属化层或由金属化层形成。此外,半导体器件1200b可以包括形成在第一掺杂区域2006与掺杂层108l之间的第二掺杂区域2004。第二掺杂区域2004可以包括第二结区或由第二结区形成。第二掺杂区域2004可以包括与掺杂层108l的掺杂类型相同的掺杂类型,例如具有第一掺杂类型的掺杂剂。Furthermore, the semiconductor device 1200 b may include a first doped region 2006 . The first doped region 2006 may include or be formed by the first junction region. The first doped region 2006 may comprise a dopant having a different doping type than the doping layer 1081 (in other words, the dopant of the doping layer 1081 ), for example a second doping type. The semiconductor device 1200 b may further include a second contact pad 1708 in electrical contact with the first doped region 2006 . The second contact pad 1708 may include or be formed by an electrode contact pad. The second contact pad 1708a may include or be formed of a metallization layer. Furthermore, the semiconductor device 1200b may include a second doped region 2004 formed between the first doped region 2006 and the doped layer 108l. The second doped region 2004 may include or be formed by the second junction region. The second doped region 2004 may include the same doping type as the doping type of the doped layer 1081, for example, a dopant having the first doping type.
可选地,半导体器件1200b可以包括在第二掺杂区域2004与掺杂层108l之间的第三掺杂区域2002。第三掺杂区域2002可以包括场截止区或者由场截止区形成。第三掺杂区域2002可以包括(例如,掺杂剂具有)与掺杂层108l的掺杂类型相同的掺杂类型。第三掺杂区域2002可以包括高于第二掺杂区域2004的掺杂剂浓度。Optionally, the semiconductor device 1200b may include a third doped region 2002 between the second doped region 2004 and the doped layer 108l. The third doped region 2002 may include or be formed of a field stop region. The third doped region 2002 may include (eg, have a dopant having) the same doping type as the doping type of the doped layer 1081. The third doped region 2002 may include a higher dopant concentration than the second doped region 2004 .
半导体器件1200b,例如诸如功率半导体电路元件这样的半导体电路元件1702,可以包括二极管结构或由二极管结构形成,例如平面二极管结构(提供垂直电流)。二极管结构可以包括p-n结或者由p-n结形成,该p-n结例如由具有不同掺杂类型的两个掺杂区域的界面形成,例如第一掺杂区域2006和第二掺杂区域2004之间的界面。The semiconductor device 1200b, for example a semiconductor circuit element 1702 such as a power semiconductor circuit element, may comprise or be formed of a diode structure, eg a planar diode structure (providing vertical current flow). The diode structure may comprise or be formed by a p-n junction, for example formed by the interface of two doped regions having different doping types, such as the interface between the first doped region 2006 and the second doped region 2004 .
可选地,掺杂层108l可以包括多个具有第一掺杂类型的第一段和多个具有第二掺杂类型的第二段或者由其形成。多个第一段中的段和多个第二段中的段可以以交替的顺序设置。在这种情况下,掺杂层108l可以是反向二极管结构的一部分。Optionally, the doped layer 1081 may include or be formed by a plurality of first segments having a first doping type and a plurality of second segments having a second doping type. The segments of the first plurality of segments and the segments of the second plurality of segments may be arranged in an alternating order. In this case, the doped layer 1081 may be part of a reverse diode structure.
图13示出了根据各种实施方式的方法中的根据各种实施方式的半导体器件1300的示意性顶视图(示出了半导体器件1300的顶侧)。FIG. 13 shows a schematic top view (showing the top side of the semiconductor device 1300 ) of a semiconductor device 1300 according to various embodiments in a method according to various embodiments.
该器件可以包括第一接触端子2708a和第二接触端子2708b。第一接触端子2708a可以覆盖半导体器件1300的可以设置多个半导体电路元件2106(例如,晶体管结构或二极管结构)的有源区,如在详细(放大)顶视图2104中可见。The device may include a first contact terminal 2708a and a second contact terminal 2708b. The first contact terminal 2708a may cover an active region of the semiconductor device 1300 where a plurality of semiconductor circuit elements 2106 (eg transistor structures or diode structures) may be disposed, as seen in the detailed (enlarged) top view 2104 .
第一接触端子2708a(例如,源极接触端子2708a)可以电连接至多个半导体电路元件2106中的每个半导体电路元件的第二接触垫1708a(例如,源极接触垫1708a)。第二接触端子2708b(例如,栅极接触端子2708b)可以电连接至多个半导体电路元件2106的每个半导体电路元件的另外的第二接触垫1708b(例如,栅极接触垫1708b)。因此,多个半导体电路元件2106可以并联连接。The first contact terminal 2708a (eg, source contact terminal 2708a ) may be electrically connected to the second contact pad 1708a (eg, source contact pad 1708a ) of each semiconductor circuit element in the plurality of semiconductor circuit elements 2106 . The second contact terminal 2708b (eg, gate contact terminal 2708b ) may be electrically connected to a further second contact pad 1708b (eg, gate contact pad 1708b ) of each semiconductor circuit element of the plurality of semiconductor circuit elements 2106 . Therefore, a plurality of semiconductor circuit elements 2106 can be connected in parallel.
多个半导体电路元件2106中的每个半导体电路元件可以是条形单元或方形单元的形状,可选地包括用于栅极端子的沟槽结构(参见图15B),如下文所述。例如,多个半导体电路元件2106中的每个半导体电路元件可以包括绝缘栅双极晶体管(IGBT)或者由绝缘栅双极晶体管(IGBT)形成,例如场截止IGBT(包括场截止区域)。Each of the plurality of semiconductor circuit elements 2106 may be in the shape of a bar cell or a square cell, optionally including a trench structure for a gate terminal (see FIG. 15B ), as described below. For example, each of the plurality of semiconductor circuit elements 2106 may include or be formed from an insulated gate bipolar transistor (IGBT), such as a field stop IGBT (including a field stop region).
该器件可以包括边缘端接结构2102,其可以与第二接触端子2708b电绝缘。边缘端接结构2102可以从第一接触端子2708a电连接。The device may include an edge termination structure 2102, which may be electrically isolated from the second contact terminal 2708b. The edge termination structure 2102 may be electrically connected from the first contact terminal 2708a.
图14示出了根据各种实施方式的方法中的根据各种实施方式的与半导体器件1200a类似的半导体器件1400的示意性截面图(例如,如图13所示的示意性截面图2106v),其示出了半导体区102之上的电场分布2202。至少一个第一接触垫1706可以电连接至第三接触端子2710(例如,集电极端子2710)。14 shows a schematic cross-sectional view (eg, schematic cross-sectional view 2106v as shown in FIG. 13 ) of a semiconductor device 1400 similar to semiconductor device 1200a according to various embodiments in a method according to various embodiments, It shows the electric field distribution 2202 over the semiconductor region 102 . At least one first contact pad 1706 may be electrically connected to a third contact terminal 2710 (eg, collector terminal 2710 ).
半导体器件1400可以包括冲压槽(punch trough)结构或由冲压槽结构形成。The semiconductor device 1400 may include or be formed of a punch trough structure.
另外的第二接触垫1708b可以形成为例如通过形成在另外的第二接触垫1708b与第二掺杂区域2004之间的电绝缘层2208和形成在另外的第二接触垫1708b与第二接触垫1708a之间的电绝缘层2208而与第二掺杂区域2004电绝缘。The additional second contact pad 1708b may be formed, for example, by an electrically insulating layer 2208 formed between the additional second contact pad 1708b and the second doped region 2004 and formed between the additional second contact pad 1708b and the second contact pad The electrically insulating layer 2208 between 1708a is electrically insulated from the second doped region 2004 .
图15A、图15B分别示出了根据各种实施方式的方法中的根据各种实施方式的半导体器件1500a、1500b的示意性截面图(例如,参见图13的示意性截面图2106v)。15A, 15B show schematic cross-sectional views of semiconductor devices 1500a, 1500b according to various embodiments, respectively, in methods according to various embodiments (see, for example, schematic cross-sectional view 2106v of FIG. 13 ).
半导体器件1500a可以包括非冲压槽结构或由非冲压槽结构形成。半导体器件1500b可以包括沟槽和场截止结构或由沟槽和场截止结构形成。The semiconductor device 1500a may include or be formed from a non-punched trench structure. The semiconductor device 1500b may include or be formed of trenches and field stop structures.
第二掺杂区域2004可以是具有第二掺杂类型(例如,n型掺杂类型)的衬底(例如,半导体衬底)的一部分。掺杂层108l可以例如通过掺杂注入形成在衬底中。掺杂层108l可以提供半导体器件1500a、1500b的更好的可调节性、更低的开关损耗、更高的开关鲁棒性和直流功能中至少之一。例如,掺杂层108l的掺杂浓度可以限定半导体器件1500a、1500b在导电模式下的电压降。掺杂层108l可以提供背侧发射极。The second doped region 2004 may be a portion of a substrate (eg, a semiconductor substrate) having a second doping type (eg, n-type doping type). The doped layer 108l may be formed in the substrate, eg by doping implantation. The doped layer 1081 may provide at least one of better adjustability, lower switching losses, higher switching robustness, and DC functionality of the semiconductor devices 1500a, 1500b. For example, the doping concentration of the doped layer 108l may define the voltage drop of the semiconductor device 1500a, 1500b in the conduction mode. Doped layer 108l may provide a backside emitter.
根据各种实施方式,半导体器件1500b可以包括沟槽结构2308,另外的第二接触垫1708b(例如,栅极接触垫1708b)可以在该沟槽结构中延伸。换言之,另外的第二接触垫1708b可以延伸到第二掺杂区域2004中,例如在第一掺杂区域2006与第二掺杂区域2004之间。According to various embodiments, the semiconductor device 1500b may include a trench structure 2308 in which an additional second contact pad 1708b (eg, gate contact pad 1708b ) may extend. In other words, the further second contact pad 1708 b may extend into the second doped region 2004 , for example between the first doped region 2006 and the second doped region 2004 .
第四掺杂区域2002可以例如通过掺杂注入形成在衬底中。第四掺杂区域2002可以形成在掺杂层108l与第二掺杂区域2004之间。第四掺杂区域2002可以使得能够减小第二掺杂区域2004的厚度(例如,包括基极区或由基极区形成),而不降低半导体器件1500b的鲁棒性。根据各种实施方式,半导体器件1500b的鲁棒性可以与半导体器件1500a相当。此外,第四掺杂区域2002可以减小集电极-发射极饱和电压(VCEsat)。The fourth doped region 2002 may be formed in the substrate, eg by doping implantation. The fourth doped region 2002 may be formed between the doped layer 108 l and the second doped region 2004 . The fourth doped region 2002 may enable the thickness of the second doped region 2004 to be reduced (eg, include or be formed by a base region) without reducing the robustness of the semiconductor device 1500b. According to various embodiments, the robustness of the semiconductor device 1500b may be comparable to that of the semiconductor device 1500a. In addition, the fourth doped region 2002 can reduce the collector-emitter saturation voltage (VCEsat).
第一掺杂区域2006可以包括具有第一掺杂类型(例如,p掺杂类型)的高掺杂的半导体区或由其形成。掺杂层108l可以包括具有第一掺杂类型的高掺杂的半导体区或由其形成。第二掺杂区域2004可以包括具有第二掺杂类型的低掺杂的半导体区或由其形成。第三掺杂区域2008和第四掺杂区域2002可分别包括具有第二掺杂类型的高掺杂的半导体区或由其形成。与高掺杂的区域相比,低掺杂的区域可以包括较低的掺杂浓度。The first doped region 2006 may include or be formed of a highly doped semiconductor region having a first doping type (eg, p-doping type). The doped layer 1081 may comprise or be formed from a highly doped semiconductor region having the first doping type. The second doped region 2004 may comprise or be formed by a lowly doped semiconductor region having the second doping type. The third doped region 2008 and the fourth doped region 2002 may each comprise or be formed by a highly doped semiconductor region having the second doping type. A lowly doped region may include a lower doping concentration than a highly doped region.
图16A、图16B和图16C分别示出了根据各种实施方式的方法中的根据各种实施方式的半导体器件的示意性截面图(例如,图13所示的示意性截面图2106v)。16A , 16B and 16C respectively show schematic cross-sectional views (eg, schematic cross-sectional view 2106v shown in FIG. 13 ) of semiconductor devices according to various embodiments in methods according to various embodiments.
图16A示出了具有二极管结构的半导体器件1600a,例如类似于半导体器件1200b。第二接触垫1708(例如,阳极接触垫1708)可以电连接至第一接触端子2708(例如,阳极接触端子2708)。第一掺杂区域2006可以包括具有第一掺杂类型的高掺杂的半导体区或由其形成。掺杂层108l可以包括具有第二掺杂类型的高掺杂的半导体区或由其形成。第二掺杂区域2004可以包括具有第二掺杂类型的低掺杂的半导体区或由其形成。Figure 16A shows a semiconductor device 1600a having a diode structure, eg similar to semiconductor device 1200b. A second contact pad 1708 (eg, anode contact pad 1708 ) may be electrically connected to a first contact terminal 2708 (eg, anode contact terminal 2708 ). The first doped region 2006 may comprise or be formed by a highly doped semiconductor region having the first doping type. The doped layer 1081 may comprise or be formed from a highly doped semiconductor region having the second doping type. The second doped region 2004 may comprise or be formed by a lowly doped semiconductor region having the second doping type.
图16B示出了具有晶体管结构的半导体器件1600b,例如类似于半导体器件1500b。第一掺杂区域2006可以包括具有第一掺杂类型的第一高掺杂半导体区2006a和具有第一掺杂类型的第二高掺杂半导体区2006b或由其形成,其中第一高掺杂半导体区2006a的掺杂剂浓度可以高于第二高掺杂半导体区2006b的掺杂剂浓度。掺杂层108l可以包括具有第一掺杂类型的高掺杂半导体区或由其形成。第二掺杂区域2004可以包括具有第二掺杂类型的低掺杂半导体区或由其形成。第三掺杂区域2008和第四掺杂区域2002可以分别包括具有第二掺杂类型的高掺杂半导体区或由其形成。Figure 16B shows a semiconductor device 1600b having a transistor structure, eg similar to semiconductor device 1500b. The first doped region 2006 may include or be formed by a first highly doped semiconductor region 2006a having a first doping type and a second highly doped semiconductor region 2006b having a first doping type, wherein the first highly doped The dopant concentration of the semiconductor region 2006a may be higher than the dopant concentration of the second highly doped semiconductor region 2006b. The doped layer 108l may comprise or be formed of a highly doped semiconductor region having the first doping type. The second doped region 2004 may include or be formed of a lowly doped semiconductor region having the second doping type. The third doped region 2008 and the fourth doped region 2002 may each comprise or be formed by a highly doped semiconductor region having the second doping type.
图16C示出了具有晶体管结构(例如,反向晶体管结构)的半导体器件1600c,例如类似于半导体器件1500b,其中掺杂层108l包括设置在两个第二段2404(例如,多个第二段)之间的至少一个第一段2402(例如,多个第一段2402)。第一段2402(例如,多个第一段)可以包括具有第二掺杂类型(例如,不同于第二掺杂区域2004的掺杂类型)的高掺杂的半导体区或由其形成。两个第二段2404(例如,多个第二段)可以包括具有第一掺杂类型(例如,与第二掺杂区域2004的掺杂类型相同)的高掺杂的半导体区或由其形成。多个第一段中的段和多个第二段中的段可以以交替的顺序设置,例如彼此相邻。FIG. 16C shows a semiconductor device 1600c having a transistor structure (eg, an inverted transistor structure), eg, similar to semiconductor device 1500b, in which the doped layer 108l includes layers disposed between two second segments 2404 (eg, a plurality of second segment ) between at least one first segment 2402 (eg, a plurality of first segments 2402). The first segment 2402 (eg, a plurality of first segments) may include or be formed from a highly doped semiconductor region having a second doping type (eg, a different doping type than the second doped region 2004 ). The two second segments 2404 (eg, a plurality of second segments) may include or be formed from a highly doped semiconductor region having a first doping type (eg, the same doping type as the second doped region 2004 ) . The segments of the first plurality of segments and the segments of the second plurality of segments may be arranged in an alternating sequence, eg adjacent to each other.
图17A示出了根据各种实施方式的方法中的根据各种实施方式的半导体器件1700的示意性第一截面图(例如,平行于宏观表面法线,或相应的顶视图),而图17B以垂直于第一截面图的示意性第二截面图1701(或相应的侧视图)示出了半导体器件1700。17A shows a schematic first cross-sectional view (e.g., parallel to the macroscopic surface normal, or a corresponding top view) of a semiconductor device 1700 according to various embodiments in a method according to various embodiments, while FIG. 17B The semiconductor device 1700 is shown in a schematic second cross-sectional view 1701 (or corresponding side view) perpendicular to the first cross-sectional view.
半导体器件可以包括半导体区102或者由半导体区102形成。半导体区102可以包括表面102和与表面104相邻的第一部分102e。第一部分102e可以包括掺杂剂。例如,第一部分102e可以是掺杂层108l的一部分。The semiconductor device may include or be formed from the semiconductor region 102 . The semiconductor region 102 may include a surface 102 and a first portion 102e adjacent to the surface 104 . The first portion 102e may include a dopant. For example, the first portion 102e may be a portion of the doped layer 108l.
此外,半导体区102可以包括与表面相邻的多个第二部分102h。多个第二部分102h中的每个部分可以包括掺杂剂。例如,多个第二部分102h可以是掺杂层108l的一部分。Furthermore, the semiconductor region 102 may include a plurality of second portions 102h adjacent to the surface. Each of the plurality of second portions 102h may include a dopant. For example, the plurality of second portions 102h may be part of the doped layer 108l.
多个第二部分102h中的每个部分可以嵌入第一部分102e中。换言之,多个第二部分102h中的每个部分可以至少部分地被第一部分102e围绕(例如,仅排除表面104)。多个第二部分102h可以彼此隔开(例如,不相交)。换言之,多个第二部分102h的相邻部分可以设置成彼此远离。Each of the plurality of second portions 102h may be embedded within the first portion 102e. In other words, each of the plurality of second portions 102h may be at least partially surrounded by the first portion 102e (eg, excluding only the surface 104). The plurality of second portions 102h may be spaced apart (eg, disjoint) from each other. In other words, adjacent portions of the plurality of second portions 102h may be disposed away from each other.
根据各种实施方式,第一部分102e可以包括与多个第二部分102h中的每个部分相比较少激活的掺杂剂或由其形成。第一部分102h的电导率可以小于多个第二部分102h中的每个部分的电导率(例如约75%,例如约50%,例如约25%)。示例性地,多个第二部分102h可以在照射期间与辐射吸收层的至少一个碳同素异形体712物理接触。因此,热能可以通过多个第二部分102h从辐射吸收层的碳同素异形体712传递至半导体区102中,从而导致在加热半导体区102期间多个第二部分102h与第一部分102e之间的温度差(例如,多个第二部分102h的温度可以大于第一部分102e的温度)。较高的温度可以导致掺杂剂的增强的活性。示例性地,多个第二部分102h的构造(例如,结构、尺寸和布置)可以是辐射吸收层的碳同素异形体712的鉴别标记。According to various embodiments, the first portion 102e may include or be formed of a less activated dopant than each of the plurality of second portions 102h. The electrical conductivity of the first portion 102h may be less than the electrical conductivity of each of the plurality of second portions 102h (eg, about 75%, eg, about 50%, eg, about 25%). Illustratively, the plurality of second portions 102h may be in physical contact with the at least one carbon allotrope 712 of the radiation absorbing layer during irradiation. Accordingly, thermal energy may be transferred from the carbon allotrope 712 of the radiation absorbing layer into the semiconductor region 102 through the plurality of second portions 102h, resulting in a thermal energy between the plurality of second portions 102h and the first portion 102e during heating of the semiconductor region 102. The temperature difference (eg, the temperature of the plurality of second portions 102h may be greater than the temperature of the first portion 102e). Higher temperatures can lead to enhanced activity of dopants. Illustratively, the configuration (eg, structure, size, and arrangement) of the plurality of second portions 102h may be an identifying marker of the carbon allotrope 712 of the radiation absorbing layer.
此外,以下将描述优选实施方式:In addition, preferred embodiments will be described below:
根据各种实施方式,一种方法可以包括:在半导体区域中(例如,通过半导体区域的表面)布置掺杂剂;在半导体区域的至少一部分上(例如,在半导体区域的一个或更多个部分上或在整个半导体区域上)形成包括碳的至少一个同素异形体或由碳的至少一个同素异形体形成的辐射吸收层;以及通过利用电磁辐射至少部分地照射辐射吸收层以至少部分地加热半导体区域,来至少部分地激活掺杂剂。According to various embodiments, a method may include: disposing a dopant in a semiconductor region (e.g., through a surface of the semiconductor region); or over the entire semiconductor region) to form a radiation absorbing layer comprising or formed from at least one allotrope of carbon; and at least partially irradiating the radiation absorbing layer with electromagnetic radiation to at least partially The semiconductor region is heated to at least partially activate the dopant.
根据本发明的各种实施方式,一种方法可以包括:在半导体区域的第一侧将掺杂剂布置在所述半导体区域中;在半导体区域的第一侧、在半导体区域的至少一部分上形成辐射吸收层;通过利用电磁辐射至少部分地照射辐射吸收层以在半导体区域的第一侧加热半导体区域的至少一部分,来至少部分地激活掺杂剂;以及在半导体区域的与第一侧相对的第二侧处、在半导体区域上或/和半导体区域中形成掺杂区域,其中,掺杂区域可以包括与掺杂剂不同的掺杂类型或者由与掺杂剂不同的掺杂类型形成,以形成包括掺杂剂和掺杂区域的功率半导体电路元件。According to various embodiments of the present invention, a method may include: disposing a dopant in a semiconductor region on a first side thereof; forming a dopant on at least a portion of the semiconductor region on the first side of the semiconductor region a radiation absorbing layer; at least partially activating the dopant by at least partially irradiating the radiation absorbing layer with electromagnetic radiation to heat at least a portion of the semiconductor region on a first side of the semiconductor region; and A doped region is formed at the second side, on or/and in the semiconductor region, wherein the doped region may comprise or be formed of a different doping type than the dopant, to A power semiconductor circuit element is formed including dopants and doped regions.
根据各种实施方式,电磁辐射可以包括至少一个离散波长或由至少一个离散波长形成。According to various embodiments, the electromagnetic radiation may comprise or be formed from at least one discrete wavelength.
根据各种实施方式,电磁辐射可以包括激光辐射或由激光辐射形成。According to various embodiments, the electromagnetic radiation may comprise or be formed by laser radiation.
根据各种实施方式,电磁辐射可以包括脉冲电磁辐射或由脉冲电磁辐射形成。According to various embodiments, the electromagnetic radiation may comprise or be formed from pulsed electromagnetic radiation.
根据各种实施方式,对半导体区域加热可以包括非热平衡加热处理或者由非热平衡加热处理而形成。According to various embodiments, heating the semiconductor region may comprise or result from a non-thermal equilibrium heating process.
根据各种实施方式,电磁辐射可以包括非热形成(换言之,非热产生)的电磁辐射或者由其形成。According to various embodiments, the electromagnetic radiation may comprise or be formed by non-thermally formed (in other words, non-thermally generated) electromagnetic radiation.
根据各种实施方式,基本上可以仅将半导体区域的表面或者半导体区域(例如其上布置有辐射吸收层的)的一侧中的至少一个加热至例如掺杂剂激活温度。According to various embodiments, substantially only at least one of the surface of the semiconductor region or the side of the semiconductor region (eg on which the radiation absorbing layer is arranged) may be heated to eg the dopant activation temperature.
根据各种实施方式,可以通过加热半导体区域来形成半导体区域中的温度梯度。According to various embodiments, the temperature gradient in the semiconductor region may be formed by heating the semiconductor region.
根据各种实施方式,温度梯度可以指向辐射吸收层。According to various embodiments, a temperature gradient may be directed towards the radiation absorbing layer.
根据各种实施方式,可以基本上仅通过辐射吸收层将半导体区域加热至例如高于或等于掺杂剂激活温度。According to various embodiments, the semiconductor region may be heated, eg, above or equal to the dopant activation temperature, substantially only through the radiation absorbing layer.
根据各种实施方式,掺杂剂激活温度可以高于约400℃,例如至少约600℃、例如至少约800℃、例如至少约900℃。According to various embodiments, the dopant activation temperature may be greater than about 400°C, such as at least about 600°C, such as at least about 800°C, such as at least about 900°C.
根据各种实施方式,可以通过照射辐射吸收层而在半导体区域中形成至少200K/μm的温度梯度。According to various embodiments, a temperature gradient of at least 200 K/μm may be formed in the semiconductor region by irradiating the radiation absorbing layer.
根据各种实施方式,温度梯度可以指向辐射吸收层。According to various embodiments, a temperature gradient may be directed towards the radiation absorbing layer.
根据各种实施方式,电磁辐射可以包括脉冲辐射、偏振辐射、至少一个离散波长辐射和相干辐射中的至少一个或由其形成。According to various embodiments, the electromagnetic radiation may comprise or be formed by at least one of pulsed radiation, polarized radiation, at least one discrete wavelength radiation, and coherent radiation.
根据各种实施方式,辐射吸收层可以被配置成基本上完全吸收电磁辐射。According to various embodiments, the radiation absorbing layer may be configured to substantially completely absorb electromagnetic radiation.
根据各种实施方式,非热平衡加热处理可以包括在半导体区域中形成温度梯度。According to various embodiments, the non-thermal equilibrium heat treatment may include forming a temperature gradient in the semiconductor region.
根据各种实施方式,半导体区域的基本上仅靠近辐射吸收层的表面可以被加热(例如至少在加热深度内)。According to various embodiments, substantially only the surface of the semiconductor region close to the radiation absorbing layer may be heated (eg at least within the heating depth).
根据各种实施方式,可以仅通过辐射吸收层加热半导体区域。换言之,可以基本上仅通过辐射吸收层对半导体区域进行加热。再换言之,用于加热的能量可以基本上仅通过辐射吸收层进入半导体区域。According to various embodiments, the semiconductor region may be heated only by the radiation absorbing layer. In other words, the semiconductor region can be heated substantially only via the radiation absorbing layer. In other words again, energy for heating can enter the semiconductor region essentially only through the radiation absorbing layer.
根据各种实施方式,方法还可以包括在与半导体区域中的掺杂剂相对的(半导体区域的)的一侧(换言之,在与半导体区域的通过其布置掺杂剂的第一侧或相应表面相对的第二侧,例如在与辐射吸收层相对的一侧或在与半导体区域的从其形成或去除辐射吸收层的第一侧相对的第二侧)在半导体区域之上或/和在半导体区域中形成掺杂区域(例如,掺杂半导体区域),其中掺杂区域包括与掺杂剂不同的掺杂类型以形成包括掺杂剂和掺杂区域的功率半导体电路元件。According to various embodiments, the method may further comprise that on the side (of the semiconductor region) opposite to the dopant in the semiconductor region (in other words, on the first side or the corresponding surface of the semiconductor region through which the dopant is arranged The opposite second side, for example on the side opposite to the radiation absorbing layer or on the second side opposite to the first side of the semiconductor region from which the radiation absorbing layer is formed or removed) is on the semiconductor region or/and on the semiconductor region A doped region (eg, a doped semiconductor region) is formed in the region, wherein the doped region includes a different doping type than the dopant to form a power semiconductor circuit element including the dopant and the doped region.
根据各种实施方式,方法还可以包括:在与半导体区域的通过其在半导体区域中布置掺杂剂的表面相对的半导体区域的一侧,在半导体区域上或/和在半导体区域中中形成掺杂区域,其中掺杂区域包括不同于掺杂剂的掺杂类型以形成包含掺杂剂和掺杂区域的功率半导体电路元件。According to various embodiments, the method may further comprise: forming a dopant on and/or in the semiconductor region on a side of the semiconductor region opposite to a surface of the semiconductor region through which dopants are arranged in the semiconductor region. A doped region, wherein the doped region includes a doping type other than the dopant to form a power semiconductor circuit element comprising the dopant and the doped region.
根据各种实施方式,掺杂区域可以包括漂移区、发射极区、结区中至少之一或由其形成。According to various embodiments, the doped region may include or be formed by at least one of a drift region, an emitter region, a junction region.
根据各种实施方式,掺杂区域可以是诸如垂直二极管结构这样的二极管结构的一部分。According to various embodiments, the doped region may be part of a diode structure, such as a vertical diode structure.
根据各种实施方式,掺杂区域可以是诸如垂直晶体管结构这样的晶体管结构的一部分。According to various embodiments, the doped region may be part of a transistor structure, such as a vertical transistor structure.
根据各种实施方式,方法还可以包括在激活掺杂剂之后、在半导体区域之上形成不透明层。According to various embodiments, the method may further include forming an opaque layer over the semiconductor region after activating the dopant.
根据各种实施方式,不透明层可以导电。According to various embodiments, the opaque layer may be electrically conductive.
根据各种实施方式,不透明层可以包括金属或由金属形成。According to various embodiments, the opaque layer may include or be formed of metal.
根据各种实施方式,辐射吸收层可以被构造成使得辐射吸收层的第一区域的第一反射特性(例如对于某一波长或波长范围而言)与辐射吸收层的第二区域的第二反射特性不同。换言之,辐射吸收层可以包括例如其关于电磁辐射的反射特性彼此不同的两个区域或由其形成。According to various embodiments, the radiation absorbing layer may be configured such that a first reflective characteristic (eg for a certain wavelength or range of wavelengths) of a first region of the radiation absorbing layer is in contrast to a second reflective characteristic of a second region of the radiation absorbing layer. The characteristics are different. In other words, the radiation-absorbing layer can comprise or be formed by, for example, two regions whose reflection properties with respect to electromagnetic radiation differ from one another.
根据各种实施方式,辐射吸收层可以通过以下中至少之一来被构造:剥离处理,化学处理,电化学加工和机械加工。换言之,构造辐射吸收层可以包括以下处理类型中至少之一或由其形成:剥离处理;化学处理;电化学处理或机械处理。According to various embodiments, the radiation absorbing layer may be structured by at least one of: lift-off treatment, chemical treatment, electrochemical machining, and mechanical machining. In other words, constructing the radiation absorbing layer may comprise or be formed by at least one of the following types of treatment: lift-off treatment; chemical treatment; electrochemical treatment or mechanical treatment.
根据各种实施方式,辐射吸收层可以通过利用掩模进行剥离处理来构造。According to various embodiments, the radiation absorbing layer may be constructed by performing a lift-off process using a mask.
根据各种实施方式,辐射吸收层可以包括多个突起或由多个突起形成。According to various embodiments, the radiation absorbing layer may include or be formed of a plurality of protrusions.
根据各种实施方式,辐射吸收层可包括碳的以下类型的同素异形体中至少之一或由其形成:单壁碳纳米管,多壁碳纳米管,石墨,富勒烯和碳纳米泡沫。According to various embodiments, the radiation absorbing layer may comprise or be formed from at least one of the following types of allotropes of carbon: single-walled carbon nanotubes, multi-walled carbon nanotubes, graphite, fullerenes, and carbon nanofoams .
根据各种实施方式,辐射吸收层可以包括多个碳纳米管或由多个碳纳米管形成。According to various embodiments, the radiation absorbing layer may include or be formed of a plurality of carbon nanotubes.
根据各种实施方式,多个碳纳米管可沿远离于半导体区域的方向延伸,例如沿半导体区域的宏观表面法线延伸。According to various embodiments, the plurality of carbon nanotubes may extend in a direction away from the semiconductor region, for example along a macroscopic surface normal of the semiconductor region.
根据各种实施方式,辐射吸收层可以包括部分暴露半导体区域的至少一个开口,例如多个开口。According to various embodiments, the radiation absorbing layer may comprise at least one opening, eg a plurality of openings, partially exposing the semiconductor region.
根据各种实施方式,辐射吸收层可以包括多个分离的部分。According to various embodiments, the radiation absorbing layer may comprise a plurality of separate parts.
根据各种实施方式,可以使用用于调整辐射吸收层的反射率的空间分布的掩模来构造辐射吸收层。According to various embodiments, the radiation absorbing layer may be constructed using a mask for adjusting the spatial distribution of the reflectivity of the radiation absorbing layer.
根据各种实施方式,可以在激活掺杂剂期间将辐射吸收层加热至小于半导体区域的蒸发温度的温度。According to various embodiments, the radiation absorbing layer may be heated to a temperature less than the evaporation temperature of the semiconductor region during activation of the dopant.
根据各种实施方式,形成辐射吸收层可以包括:在半导体区域上形成催化剂层;以及将催化剂层暴露于包括碳的气态前体,其中催化剂层被配置成使气态前体裂化以利用碳形成辐射吸收层。According to various embodiments, forming the radiation absorbing layer may include: forming a catalyst layer on the semiconductor region; and exposing the catalyst layer to a gaseous precursor comprising carbon, wherein the catalyst layer is configured to crack the gaseous precursor to form a radiation absorbent layer.
根据各种实施方式,气体前体可以包括有机分子或由有机分子形成。According to various embodiments, the gas precursor may include or be formed from organic molecules.
根据各种实施方式,催化剂层可以包括催化剂金属或由催化剂金属形成。According to various embodiments, the catalyst layer may include or be formed of a catalyst metal.
根据各种实施方式,催化剂层可以包括彼此分离的多个岛状物或由其形成。According to various embodiments, the catalyst layer may include or be formed of a plurality of islands separated from each other.
根据各种实施方式,电磁辐射可以包括范围从紫外辐射至红外辐射的辐射或由其形成。换言之,电磁辐射还可以包括紫外辐射、可见光辐射或红外辐射中的至少一种。According to various embodiments, the electromagnetic radiation may comprise or be formed by radiation ranging from ultraviolet radiation to infrared radiation. In other words, electromagnetic radiation may also include at least one of ultraviolet radiation, visible light radiation or infrared radiation.
根据各种实施方式,电磁辐射可以包括紫外辐射或由其形成。替选地或另外地,电磁辐射可以包括红外辐射或由其形成。替选地或另外地,电磁辐射可以包括可见光辐射或由其形成。According to various embodiments, the electromagnetic radiation may comprise or be formed by ultraviolet radiation. Alternatively or additionally, electromagnetic radiation may comprise or be formed by infrared radiation. Alternatively or additionally, electromagnetic radiation may comprise or be formed by visible radiation.
根据各种实施方式,电磁辐射可以包括离散光谱(具有一个或更多个离散波长的辐射)或由其形成。According to various embodiments, electromagnetic radiation may comprise or be formed from a discrete spectrum (radiation having one or more discrete wavelengths).
根据各种实施方式,布置掺杂剂可以包括(例如,通过用离子照射半导体区域而)将离子注入半导体区域,其中,离子可以包括掺杂剂(也称为掺杂离子)或由其形成。换言之,布置掺杂剂可以包括将掺杂剂离子注入半导体区域以在半导体区域中形成包括掺杂剂的层。According to various embodiments, arranging the dopant may include implanting ions into the semiconductor region (eg, by irradiating the semiconductor region with ions), wherein the ions may include or be formed from the dopant (also referred to as dopant ions). In other words, arranging the dopant may include implanting dopant ions into the semiconductor region to form a layer including the dopant in the semiconductor region.
根据各种实施方式,布置掺杂剂可以包括在半导体区域上形成包括掺杂剂的层,并且激活掺杂剂从该层至半导体区域中的热致扩散。According to various embodiments, arranging the dopant may include forming a layer comprising the dopant on the semiconductor region, and activating thermally induced diffusion of the dopant from the layer into the semiconductor region.
根据各种实施方式,布置掺杂剂可以包括将半导体区域暴露于包括掺杂剂的气体。According to various embodiments, arranging the dopant may include exposing the semiconductor region to a gas including the dopant.
根据各种实施方式,激活掺杂剂可以包括增大半导体区域的掺杂层的电导率。According to various embodiments, activating the dopant may include increasing the conductivity of the doped layer of the semiconductor region.
根据各种实施方式,激活掺杂剂可以包括将掺杂剂至少部分地并入到半导体区域的晶格结构或由其形成。According to various embodiments, activating the dopant may include at least partially incorporating the dopant into or formed from the lattice structure of the semiconductor region.
根据各种实施方式,激活掺杂剂可以包括使半导体区域至少部分地重结晶(例如,半导体区域的布置有掺杂剂的至少一部分)或由其形成。According to various embodiments, activating the dopant may include at least partially recrystallizing the semiconductor region (eg, at least a portion of the semiconductor region where the dopant is disposed) or formed therefrom.
根据各种实施方式,在激活掺杂剂期间将半导体区域至少部分地(例如,至少表面部分)加热至小于半导体区域的融化温度的温度。According to various embodiments, the semiconductor region is at least partially (eg, at least a surface portion) heated to a temperature less than a melting temperature of the semiconductor region during activation of the dopant.
根据各种实施方式,在激活掺杂剂期间将半导体区域至少部分地(例如,至少表面部分)加热至小于半导体区域的融化温度的温度,例如加热至半导体区域的融化温度的至少约70%的温度、加热至半导体区域的融化温度的至少约80%的温度、加热至半导体区域的融化温度的至少约90%的温度。According to various embodiments, during activation of the dopant, the semiconductor region is at least partially (eg, at least a surface portion) heated to a temperature that is less than the melting temperature of the semiconductor region, such as to at least about 70% of the melting temperature of the semiconductor region. temperature, heated to a temperature of at least about 80% of the melting temperature of the semiconductor region, heated to a temperature of at least about 90% of the melting temperature of the semiconductor region.
根据各种实施方式,在激活掺杂剂期间将半导体区域至少部分地(例如,至少表面部分)加热至至少约900℃(大于约900℃)的温度,例如至少约1000℃的温度、例如至少约1100℃的温度、例如至少约1200℃的温度、例如至少约1500℃的温度、例如至少约2000℃的温度。According to various embodiments, the semiconductor region is at least partially (eg, at least a surface portion) heated to a temperature of at least about 900° C. (greater than about 900° C.), such as a temperature of at least about 1000° C., such as at least A temperature of about 1100°C, such as a temperature of at least about 1200°C, such as a temperature of at least about 1500°C, such as a temperature of at least about 2000°C.
根据各种实施方式,在激活掺杂剂期间将半导体区域至少部分地(例如,至少表面部分)加热至大于半导体区域的融化温度的温度,例如大于半导体区域的融化温度的110%的温度、例如大于半导体区域的融化温度的120%的温度、大于半导体区域的融化温度的140%的温度、大于半导体区域的融化温度的160%的温度。According to various embodiments, during activation of the dopant, the semiconductor region is at least partially (eg, at least a surface portion) heated to a temperature greater than the melting temperature of the semiconductor region, such as a temperature greater than 110% of the melting temperature of the semiconductor region, such as A temperature greater than 120% of the melting temperature of the semiconductor region, a temperature greater than 140% of the melting temperature of the semiconductor region, a temperature greater than 160% of the melting temperature of the semiconductor region.
根据各种实施方式,在激活掺杂剂期间,将具有大于约0.4μm的厚度的半导体区域的表面部分加热至例如该温度。According to various embodiments, during activation of the dopant, a surface portion of the semiconductor region having a thickness greater than about 0.4 μm is heated, for example to this temperature.
根据各种实施方式,照射辐射吸收层可以包括使用光谐振器(用于形成电磁辐射),例如激光源。换言之,电磁辐射可以包括激光或由激光形成。According to various embodiments, irradiating the radiation absorbing layer may comprise using an optical resonator (for forming electromagnetic radiation), such as a laser source. In other words, electromagnetic radiation may comprise or be formed by laser light.
根据各种实施方式,照射辐射吸收层可以包括使用等离子体源(用于形成电磁辐射),例如诸如闪光管这样的气体放电灯。等离子体源可以被配置成发出具有至少一个离散波长或具有连续光谱的电磁辐射。According to various embodiments, irradiating the radiation absorbing layer may comprise using a plasma source (for forming electromagnetic radiation), such as a gas discharge lamp such as a flash tube. The plasma source can be configured to emit electromagnetic radiation having at least one discrete wavelength or having a continuous spectrum.
根据各种实施方式,照射辐射吸收层可以包括使用功率固态光源(用于形成电磁辐射),例如功率发光二极管(功率LED)。According to various embodiments, illuminating the radiation absorbing layer may comprise using a powered solid state light source (for generating electromagnetic radiation), such as a powered light emitting diode (power LED).
根据各种实施方式,可以以脉冲模式驱动等离子体源以形成电磁辐射。According to various embodiments, the plasma source may be driven in a pulsed mode to form electromagnetic radiation.
根据各种实施方式,照射辐射吸收层可以包括利用电磁辐射扫描辐射吸收层。According to various embodiments, irradiating the radiation absorbing layer may include scanning the radiation absorbing layer with electromagnetic radiation.
根据各种实施方式,电磁辐射可以包括范围从约250nm至约600nm的波长或由其形成。According to various embodiments, the electromagnetic radiation may include or be formed by wavelengths ranging from about 250 nm to about 600 nm.
根据各种实施方式,电磁辐射可以包括范围从约500nm至约600nm的波长或由其形成。According to various embodiments, the electromagnetic radiation may include or be formed by wavelengths ranging from about 500 nm to about 600 nm.
根据各种实施方式,电磁辐射可以包括范围从约350nm至约500nm的波长或由其形成。According to various embodiments, the electromagnetic radiation may include or be formed by wavelengths ranging from about 350 nm to about 500 nm.
根据各种实施方式,电磁辐射可以包括范围从约250nm至约350nm的波长或由其形成。According to various embodiments, the electromagnetic radiation may include or be formed by wavelengths ranging from about 250 nm to about 350 nm.
根据各种实施方式,电磁辐射可以包括脉冲电磁辐射或由脉冲电磁辐射形成。According to various embodiments, the electromagnetic radiation may comprise or be formed from pulsed electromagnetic radiation.
根据各种实施方式,照射辐射吸收层可以包括激光热退火或由激光热退火形成。According to various embodiments, irradiating the radiation absorbing layer may include or be formed by laser thermal annealing.
根据各种实施方式,方法还可以包括在激活掺杂剂之后在半导体区域上形成金属化层。According to various embodiments, the method may further include forming a metallization layer on the semiconductor region after activating the dopant.
根据各种实施方式,方法还可以包括形成与掺杂层电接触的至少一个晶体管。晶体管可以形成在半导体区域上或半导体区域中。According to various embodiments, the method may further include forming at least one transistor in electrical contact with the doped layer. Transistors may be formed on or in the semiconductor region.
根据各种实施方式,方法还可以包括例如在半导体区域上形成与掺杂层电接触的至少一个栅极接触垫。According to various embodiments, the method may further comprise forming at least one gate contact pad in electrical contact with the doped layer, eg on the semiconductor region.
根据各种实施方式,方法还可以包括形成彼此并联地电连接并且与掺杂层电接触的多个半导体电路元件。According to various embodiments, the method may further comprise forming a plurality of semiconductor circuit elements electrically connected in parallel with each other and in electrical contact with the doped layer.
根据各种实施方式,半导体区域可以包括单晶半导体材料或由单晶半导体材料形成。According to various embodiments, the semiconductor region may include or be formed from a single crystal semiconductor material.
根据各种实施方式,半导体区域可以包括多晶半导体材料或由多晶半导体材料形成。According to various embodiments, the semiconductor region may include or be formed of a polycrystalline semiconductor material.
根据各种实施方式,激活掺杂剂可以包括在半导体区域内形成掺杂层。换言之,在激活掺杂剂期间,可以在半导体区域内形成掺杂层。According to various embodiments, activating the dopant may include forming a doped layer within the semiconductor region. In other words, during activation of the dopant, a doped layer may be formed within the semiconductor region.
根据各种实施方式,掺杂层可以包括掺杂剂和半导体区域的材料。According to various embodiments, the doped layer may include a dopant and a material of the semiconductor region.
根据各种实施方式,掺杂层可以包括在半导体区域的材料中激活的掺杂剂。According to various embodiments, the doped layer may comprise a dopant activated in the material of the semiconductor region.
根据各种实施方式,掺杂层可以与半导体区域的表面邻近,例如与半导体区域的表面邻接。According to various embodiments, the doped layer may be adjacent to the surface of the semiconductor region, for example adjacent to the surface of the semiconductor region.
根据各种实施方式,辐射吸收层可以被配置成提供电磁辐射在辐射吸收层处或在辐射吸收层中的多次散射。According to various embodiments, the radiation absorbing layer may be configured to provide multiple scattering of electromagnetic radiation at or in the radiation absorbing layer.
根据各种实施方式,辐射吸收层可以被配置成提供入射在辐射吸收层上的电磁辐射的多次散射。According to various embodiments, the radiation absorbing layer may be configured to provide multiple scattering of electromagnetic radiation incident on the radiation absorbing layer.
根据各种实施方式,辐射吸收层的反射率(反射系数)对于范围从约250nm至约600nm(例如范围从约250nm至约350nm、范围从约350nm至500nm和/或范围从约500nm至600nm)和/或沿半导体区域的宏观表面法线的方向入射的电磁辐射而言小于约0.5。According to various embodiments, the radiation absorbing layer has a reflectivity (reflection coefficient) for a range from about 250 nm to about 600 nm (eg, a range from about 250 nm to about 350 nm, a range from about 350 nm to 500 nm, and/or a range from about 500 nm to 600 nm) and/or less than about 0.5 for electromagnetic radiation incident in a direction along the macroscopic surface normal of the semiconductor region.
根据各种实施方式,辐射吸收层的反射率可以小于约0.5、例如小于约0.4、例如小于约0.3、例如小于约0.2、例如小于约0.1、例如小于约0.05。According to various embodiments, the reflectance of the radiation absorbing layer may be less than about 0.5, such as less than about 0.4, such as less than about 0.3, such as less than about 0.2, such as less than about 0.1, such as less than about 0.05.
根据各种实施方式,功率半导体电路元件可以包括至少一个晶体管结构或由其形成。According to various embodiments, a power semiconductor circuit element may comprise or be formed by at least one transistor structure.
根据各种实施方式,功率半导体电路元件可以包括垂直结构或由其形成。According to various embodiments, a power semiconductor circuit element may include or be formed of a vertical structure.
根据各种实施方式,功率半导体电路元件可以包括至少一个栅极端子(换言之,一个栅极端子或更多个端子)。According to various embodiments, the power semiconductor circuit element may comprise at least one gate terminal (in other words, one gate terminal or more terminals).
根据各种实施方式,至少一个栅极端子可以电连接至至少一个栅极接触垫。According to various embodiments, at least one gate terminal may be electrically connected to at least one gate contact pad.
根据各种实施方式,功率半导体电路元件可以包括彼此并联连接的多个半导体电路元件或由其形成。According to various embodiments, the power semiconductor circuit element may comprise or be formed of a plurality of semiconductor circuit elements connected in parallel to each other.
根据各种实施方式,半导体器件的半导体区域可以包括:表面;与表面相邻的第一部分;与表面相邻并且嵌入第一部分中的多个第二部分,其中第二部分彼此分离(例如布置成彼此不相交);其中,与多个第二部分中的每个部分相比,第一部分包括被激活至不同程度(例如更高或更低)的掺杂剂,使得第一部分与多个第二部分中的每个相比至少电导率不同。According to various embodiments, a semiconductor region of a semiconductor device may include: a surface; a first portion adjacent to the surface; a plurality of second portions adjacent to the surface and embedded in the first portion, wherein the second portions are separated from each other (for example, arranged in do not intersect each other); wherein the first portion includes dopants that are activated to a different degree (eg, higher or lower) than each of the plurality of second portions such that the first portion and the plurality of second Each of the sections differs by at least the conductivity.
根据各种实施方式,半导体器件的半导体区域可以包括:表面;与表面相邻的第一部分;与表面相邻并且彼此分离地(例如布置成彼此不相交)嵌入第一部分中的多个第二部分;其中与多个第二部分中的每个部分相比,第一部分包括较少激活的掺杂剂,使得第一部分的电导率小于多个第二部分中的每个的电导率。According to various embodiments, a semiconductor region of a semiconductor device may include: a surface; a first portion adjacent to the surface; a plurality of second portions adjacent to the surface and embedded in the first portion separated from each other (eg, arranged not to intersect each other) ; wherein the first portion includes a less activated dopant than each of the plurality of second portions such that the conductivity of the first portion is less than the conductivity of each of the plurality of second portions.
根据各种实施方式,可以在晶片的前侧或后侧处的一个或更多个区域(更一般地,半导体区域)上形成包括碳的至少一个同素异形体的辐射吸收层(例如,包括碳纳米管、石墨,碳纳米泡沫和/或富勒烯或由其形成的层),随后可以照射晶片从而激活晶片的被辐射吸收层覆盖的一个或多个区域中的掺杂剂材料(也被称为“推进(drive-in)”)。在一种或更多种实施方式中,晶片的一个或更多个区域构成晶片的整个前侧区域或后侧区域的一部分。换言之,在晶片的前侧或后侧的一个或更多个区域仍可能未被辐射吸收层覆盖。在一种或更多种实施方式中,照射晶片可以包括照射晶片的整个前侧或背侧区域(或者例如通过诸如激光扫描这样的扫描顺次地进行,或例如通过曝露同时进行),整个前侧或背侧区域包括晶片的被辐射吸收层覆盖的一个或更多个区域和晶片的未被辐射吸收层覆盖的一个或更多个区域。在一种或更多种实施方式中,通过照射激活掺杂剂材料基本上仅在晶片的被辐射吸收层覆盖的一个或更多个区域中发生。在一种或更多种实施方式中,照射晶片可以包括照射辐射吸收层的一个或更多个区域,以激活晶片的被辐射吸收层的一个或更多个被照射区域覆盖的一个或更多个区域中的掺杂剂材料(也称为“推进”)。在一种或更多种实施方式中,辐射吸收层的一个或更多个区域构成整个辐射吸收层的一部分。换言之,辐射吸收层的(例如,在晶片的前侧或后侧的)一个或更多个区域可能仍未被照射。According to various embodiments, a radiation absorbing layer comprising at least one allotrope of carbon (e.g., comprising carbon nanotubes, graphite, carbon nanofoam and/or fullerenes or layers thereof), the wafer can then be irradiated to activate the dopant material in one or more regions of the wafer covered by the radiation absorbing layer (also known as "drive-in"). In one or more embodiments, one or more regions of the wafer constitute a portion of the entire frontside region or backside region of the wafer. In other words, one or more areas on the front or back side of the wafer may still be uncovered by the radiation absorbing layer. In one or more embodiments, irradiating the wafer may include irradiating the entire frontside or backside region of the wafer (either sequentially, such as by scanning such as laser scanning, or simultaneously, such as by exposing), the entire frontside or backside region of the wafer being illuminated. The side or backside regions include one or more regions of the wafer that are covered by the radiation absorbing layer and one or more regions of the wafer that are not covered by the radiation absorbing layer. In one or more embodiments, activation of the dopant material by irradiation occurs substantially only in one or more regions of the wafer covered by the radiation absorbing layer. In one or more embodiments, irradiating the wafer may include irradiating one or more regions of the radiation absorbing layer to activate one or more regions of the wafer covered by the one or more irradiated regions of the radiation absorbing layer. The dopant material in this area (also known as "propelling"). In one or more embodiments, one or more regions of the radiation absorbing layer form part of the overall radiation absorbing layer. In other words, one or more regions of the radiation absorbing layer (eg, on the front or back side of the wafer) may remain unirradiated.
虽然已经参考特定实施方式特别展示和描述了本发明,但是本领域技术人员将理解,可以在不脱离本发明的如由所附权利要求所限定的精神和范围的情况下,对本发明的形式和细节做出各种改变。因此,本发明的范围由所附的权利要求指示,因此在权利要求的等同物的含义和范围内的所有变化旨在被包括在内。While the invention has been particularly shown and described with reference to particular embodiments, it will be understood by those skilled in the art that the form and scope of the invention may be changed without departing from the spirit and scope of the invention as defined by the appended claims. Various changes were made to the details. The scope of the invention is thus indicated by the appended claims and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.
Claims (22)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/068,762 | 2016-03-14 | ||
| US15/068,762 US9679773B1 (en) | 2016-03-14 | 2016-03-14 | Method for thermal annealing and a semiconductor device formed by the method |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN107195545A true CN107195545A (en) | 2017-09-22 |
Family
ID=59009381
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201710141060.9A Pending CN107195545A (en) | 2016-03-14 | 2017-03-10 | The semiconductor devices formed for the method for thermal annealing and by this method |
Country Status (3)
| Country | Link |
|---|---|
| US (1) | US9679773B1 (en) |
| CN (1) | CN107195545A (en) |
| DE (1) | DE102017105236A1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110228798A (en) * | 2019-06-05 | 2019-09-13 | 南开大学 | A kind of porous carbon membranes and its preparation method and application of the monatomic doping of semimetal |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2018107190A (en) * | 2016-12-22 | 2018-07-05 | トヨタ自動車株式会社 | Semiconductor device manufacturing method |
| JP7294858B2 (en) * | 2019-04-09 | 2023-06-20 | 株式会社Screenホールディングス | Heat treatment method and heat treatment apparatus |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6475888B1 (en) * | 2001-04-30 | 2002-11-05 | Hynix Semiconductor Inc. | Method for forming ultra-shallow junctions using laser annealing |
| CN101205059A (en) * | 2006-12-20 | 2008-06-25 | 清华大学 | Preparation method of carbon nanotube array |
| US20080181839A1 (en) * | 2006-12-15 | 2008-07-31 | Arendt Paul N | Preparation of array of long carbon nanotubes and fibers therefrom |
| US20120126342A1 (en) * | 2010-11-18 | 2012-05-24 | International Business Machines Corporation | Field effect transistors with low k sidewall spacers and methods of fabricating same |
| US20140145272A1 (en) * | 2012-11-27 | 2014-05-29 | Monolithic 3D Inc. | Novel semiconductor device and structure |
| US20150337224A1 (en) * | 2014-05-22 | 2015-11-26 | The Florida State University Research Foundation, Inc. | Microwave acceleration of carbon gasification reactions |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7109087B2 (en) * | 2003-10-03 | 2006-09-19 | Applied Materials, Inc. | Absorber layer for DSA processing |
| DE102006046376B4 (en) * | 2006-09-29 | 2011-03-03 | Advanced Micro Devices, Inc., Sunnyvale | A method of fabricating field effect transistors having a technique for locally adjusting transistor characteristics by using advanced laser / flashlamping techniques suitable also for the fabrication of transistor elements of SRAM cells |
| US20160101433A1 (en) * | 2014-10-14 | 2016-04-14 | Siemens Energy, Inc. | Laser pre-processing to stabilize high-temperature coatings and surfaces |
-
2016
- 2016-03-14 US US15/068,762 patent/US9679773B1/en not_active Expired - Fee Related
-
2017
- 2017-03-10 CN CN201710141060.9A patent/CN107195545A/en active Pending
- 2017-03-13 DE DE102017105236.4A patent/DE102017105236A1/en not_active Withdrawn
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6475888B1 (en) * | 2001-04-30 | 2002-11-05 | Hynix Semiconductor Inc. | Method for forming ultra-shallow junctions using laser annealing |
| US20080181839A1 (en) * | 2006-12-15 | 2008-07-31 | Arendt Paul N | Preparation of array of long carbon nanotubes and fibers therefrom |
| CN101205059A (en) * | 2006-12-20 | 2008-06-25 | 清华大学 | Preparation method of carbon nanotube array |
| US20120126342A1 (en) * | 2010-11-18 | 2012-05-24 | International Business Machines Corporation | Field effect transistors with low k sidewall spacers and methods of fabricating same |
| US20140145272A1 (en) * | 2012-11-27 | 2014-05-29 | Monolithic 3D Inc. | Novel semiconductor device and structure |
| US20150337224A1 (en) * | 2014-05-22 | 2015-11-26 | The Florida State University Research Foundation, Inc. | Microwave acceleration of carbon gasification reactions |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110228798A (en) * | 2019-06-05 | 2019-09-13 | 南开大学 | A kind of porous carbon membranes and its preparation method and application of the monatomic doping of semimetal |
Also Published As
| Publication number | Publication date |
|---|---|
| DE102017105236A1 (en) | 2017-09-14 |
| US9679773B1 (en) | 2017-06-13 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10374109B2 (en) | Silicon-based visible and near-infrared optoelectric devices | |
| EP1794804B1 (en) | Method for manufacturing of silicon-based detectors having laser-microstructured surface layers having electron-donating constituents | |
| Fan et al. | Controllable epitaxial growth of core–shell PbSe@ CsPbBr3 wire heterostructures | |
| JP6353845B2 (en) | Manufacturing method of nanowire LED structure | |
| US20080044943A1 (en) | Manufacture of silicon-based devices having disordered sulfur-doped surface layers | |
| JP5543350B2 (en) | Group IV nanoparticle bonding and device using the same | |
| CN104025303B (en) | Nano silicon particles is used to manufacture laser contact technique, laser system and the solar battery structure of solaode | |
| CN107430981A (en) | The back of the body of Laser Processing touches heterojunction solar battery | |
| TW200535914A (en) | Fabricating a set of semiconducting nanowires, and electric device comprising a set of nanowires | |
| Su et al. | Laser-assisted two dimensional material electronic and optoelectronic devices | |
| Yu et al. | Nanowire quantum dot surface engineering for high temperature single photon emission | |
| CN107195545A (en) | The semiconductor devices formed for the method for thermal annealing and by this method | |
| CN103608934B (en) | Manufacture the method with the photovoltaic cell of selectivity reflector | |
| CN107039256B (en) | Method for thermal annealing and semiconductor device formed by the same | |
| Rajamani et al. | Circularly Polarized Light Detection Through 3D Chiral Metasurface‐Based Phototransistors | |
| RU2667689C2 (en) | Method for producing nanocrystalline silicon/amorphous hydrogenated silicon heterojunction for solar elements and solar element with such heterojunction | |
| US11424135B1 (en) | Photolithography of atomic layer resist | |
| JP2012178546A (en) | Manufacturing method of semiconductor device, semiconductor device and dispersion element | |
| Moshkani | Fabrication of electronic structures on diamond using UV laser etching | |
| US20240405715A1 (en) | Nanogap thermophotovoltaics enabled by controlled deposition and etching | |
| Abubakr et al. | Characterization of phosphorus doped singlecrystalline diamond prepared by Excimer-Laser Irradiations | |
| CN112531072A (en) | Optical switch structure, related manufacturing method and device with optical switch structure and voltage source | |
| HK1142168A (en) | Apparatus and method for fabrication of silicon-based detectors having laser-microstructured sulfur-doped surface layers | |
| HK1108060B (en) | Method for manufacturing of silicon-based detectors having laser-microstructured surface layers having electron-donating constituents | |
| Lu et al. | Effects of rapid thermal annealing on the performance of InGaAs/GaAs quantum dot solar cells |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20170922 |
|
| WD01 | Invention patent application deemed withdrawn after publication |