[go: up one dir, main page]

CN107219613B - Optical imaging lens - Google Patents

Optical imaging lens Download PDF

Info

Publication number
CN107219613B
CN107219613B CN201710640672.2A CN201710640672A CN107219613B CN 107219613 B CN107219613 B CN 107219613B CN 201710640672 A CN201710640672 A CN 201710640672A CN 107219613 B CN107219613 B CN 107219613B
Authority
CN
China
Prior art keywords
lens
optical imaging
imaging lens
object side
image side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710640672.2A
Other languages
Chinese (zh)
Other versions
CN107219613A (en
Inventor
李明
杨健
贺凌波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Sunny Optics Co Ltd
Original Assignee
Zhejiang Sunny Optics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Sunny Optics Co Ltd filed Critical Zhejiang Sunny Optics Co Ltd
Priority to CN201710640672.2A priority Critical patent/CN107219613B/en
Priority to CN202111511773.2A priority patent/CN114114656B/en
Publication of CN107219613A publication Critical patent/CN107219613A/en
Priority to PCT/CN2018/077203 priority patent/WO2019024490A1/en
Priority to US16/226,181 priority patent/US10859796B2/en
Application granted granted Critical
Publication of CN107219613B publication Critical patent/CN107219613B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

本申请公开了一种光学成像镜头,该光学成像镜头沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。第一透镜具有正光焦度;第二透镜、第三透镜和第六透镜均具有负光焦度;第四透镜和第五透镜中的至少一个具有正光焦度;第一透镜的物侧面和第四透镜的像侧面均为凸面;第二透镜的像侧面和第六透镜的像侧面均为凹面;以及光学成像镜头的总有效焦距f与第五透镜物侧面的曲率半径R9满足f/|R9|≤0.35。

Figure 201710640672

The present application discloses an optical imaging lens. The optical imaging lens includes a first lens, a second lens, a third lens, a fourth lens, a fifth lens and a sixth lens in sequence from the object side to the image side along an optical axis. lens. The first lens has positive refractive power; the second lens, the third lens and the sixth lens all have negative refractive power; at least one of the fourth lens and the fifth lens has positive refractive power; The image sides of the four lenses are convex; the image sides of the second lens and the sixth lens are concave; and the total effective focal length f of the optical imaging lens and the curvature radius R9 of the object side of the fifth lens satisfy f/|R9 |≤0.35.

Figure 201710640672

Description

光学成像镜头Optical Imaging Lens

技术领域technical field

本申请涉及一种光学成像镜头,更具体地,本申请涉及一种包括六片透镜的光学成像镜头。The present application relates to an optical imaging lens, and more specifically, the present application relates to an optical imaging lens including six lenses.

背景技术Background technique

近年来,随着科学技术的发展,便携式电子产品逐步兴起,具有摄像功能的便携式电子产品得到人们更多的青睐,因此市场对适用于便携式电子产品的摄像镜头的需求逐渐增大。由于便携式电子产品趋于小型化,限制了镜头的总长,从而增加了镜头的设计难度。In recent years, with the development of science and technology, portable electronic products have gradually emerged, and portable electronic products with camera functions have been more favored by people. Therefore, the market demand for camera lenses suitable for portable electronic products has gradually increased. As portable electronic products tend to be miniaturized, the total length of the lens is limited, which increases the difficulty of lens design.

同时,随着例如感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)等常用感光元件性能的提高及尺寸的减小,使得感光元件的像元数增加及像元尺寸减小,从而对于相配套的光学成像镜头的高成像品质及小型化提出了更高的要求。At the same time, with the improvement of the performance and the reduction of the size of common photosensitive elements such as photosensitive coupling device (CCD) or complementary metal oxide semiconductor element (CMOS), the number of pixels of the photosensitive element increases and the size of the pixel decreases, thereby Higher requirements are put forward for the high imaging quality and miniaturization of the matching optical imaging lens.

现有镜头通常配置的光圈数Fno(镜头的总有效焦距/镜头的入瞳直径)均在2.0或2.0以上,此类镜头虽然能够满足小型化的要求,却无法在光线不足(如阴雨天、黄昏等)、手抖等情况下保证镜头的成像品质,故光圈数Fno为2.0或2.0以上镜头已经无法满足更高阶的成像要求。The aperture number Fno (the total effective focal length of the lens/the entrance pupil diameter of the lens) of the existing lens is usually configured at 2.0 or above. Although this type of lens can meet the requirements of miniaturization, it cannot be used in insufficient light (such as rainy days, Dusk, etc.), hand shake and other conditions to ensure the imaging quality of the lens, so the lens with an aperture number Fno of 2.0 or above can no longer meet the higher-level imaging requirements.

发明内容SUMMARY OF THE INVENTION

本申请提供了可适用于便携式电子产品的、可至少解决或部分解决现有技术中的上述至少一个缺点的光学成像镜头。The present application provides an optical imaging lens that is applicable to portable electronic products and can at least solve or partially solve at least one of the above-mentioned shortcomings in the prior art.

本申请的一个方面提供了这样一种光学成像镜头,该镜头沿光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。第一透镜可具有正光焦度;第二透镜、第三透镜和第六透镜均可具有负光焦度;第四透镜和第五透镜中的至少一个可具有正光焦度;第一透镜的物侧面和第四透镜的像侧面均可为凸面;第二透镜的像侧面和第六透镜的像侧面均可为凹面;以及光学成像镜头的总有效焦距f与第五透镜物侧面的曲率半径R9可满足f/|R9|≤0.35。One aspect of the present application provides such an optical imaging lens, the lens includes in sequence from the object side to the image side along the optical axis: a first lens, a second lens, a third lens, a fourth lens, a fifth lens and a first lens Six lenses. The first lens can have a positive refractive power; the second lens, the third lens, and the sixth lens can all have a negative refractive power; at least one of the fourth lens and the fifth lens can have a positive refractive power; the object of the first lens The image side of the side and the fourth lens can be convex; the image of the second lens and the sixth lens can be concave; and the total effective focal length f of the optical imaging lens and the radius of curvature R9 of the fifth lens object side It can satisfy f/|R9|≤0.35.

在一个实施方式中,光学成像镜头的总有效焦距f与光学成像镜头的入瞳直径EPD可满足f/EPD≤1.8。In one embodiment, the total effective focal length f of the optical imaging lens and the entrance pupil diameter EPD of the optical imaging lens may satisfy f/EPD≤1.8.

在一个实施方式中,第一透镜的有效焦距f1和第二透镜的有效焦距f2可满足-1<f1/f2<0。In one embodiment, the effective focal length f1 of the first lens and the effective focal length f2 of the second lens may satisfy -1<f1/f2<0.

在一个实施方式中,光学成像镜头的总有效焦距f与第一透镜的有效焦距f1可满足1<f/f1<1.5。In one embodiment, the total effective focal length f of the optical imaging lens and the effective focal length f1 of the first lens may satisfy 1<f/f1<1.5.

在一个实施方式中,第一透镜于光轴上的中心厚度CT1与第二透镜于光轴上的中心厚度CT2可满足2.0<CT1/CT2<3.5。In one embodiment, the central thickness CT1 of the first lens on the optical axis and the central thickness CT2 of the second lens on the optical axis may satisfy 2.0<CT1/CT2<3.5.

在一个实施方式中,光学成像镜头的总有效焦距f与第六透镜像侧面的曲率半径R12可满足2.5<f/R12<4.0。In one embodiment, the total effective focal length f of the optical imaging lens and the curvature radius R12 of the image side of the sixth lens may satisfy 2.5<f/R12<4.0.

在一个实施方式中,光学成像镜头的总有效焦距f与第一透镜物侧面的曲率半径R1可满足2≤f/R1<2.5。In one embodiment, the total effective focal length f of the optical imaging lens and the radius of curvature R1 of the object side surface of the first lens may satisfy 2≦f/R1<2.5.

在一个实施方式中,第四透镜可具有正光焦度,其有效焦距f4与光学成像镜头的总有效焦距f可满足0.7<f4/f<1.2。In one embodiment, the fourth lens may have positive refractive power, and its effective focal length f4 and the total effective focal length f of the optical imaging lens may satisfy 0.7<f4/f<1.2.

在一个实施方式中,第一透镜的色散系数V1与第二透镜的色散系数V2可满足2.0<V1/V2<4.0。In one embodiment, the dispersion coefficient V1 of the first lens and the dispersion coefficient V2 of the second lens may satisfy 2.0<V1/V2<4.0.

在一个实施方式中,最大视场的上光线在第六透镜像侧面上的入射角β62可满足7°<β62<12°。In one embodiment, the angle of incidence β62 of the upper ray with the largest field of view on the image side of the sixth lens may satisfy 7°<β62<12°.

在一个实施方式中,第一透镜的物侧面的中心至光学成像镜头成像面在光轴上的距离TTL与光学成像镜头成像面上有效像素区域对角线长的一半ImgH可满足TTL/ImgH≤1.7。In one embodiment, the distance TTL from the center of the object side of the first lens to the imaging surface of the optical imaging lens on the optical axis and the half ImgH of the diagonal length of the effective pixel area on the imaging surface of the optical imaging lens can satisfy TTL/ImgH≤ 1.7.

本申请另一个方面提供了这样一种光学成像镜头。该光学成像镜头沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。第一透镜可具有正光焦度,其物侧面可为凸面;第二透镜可具有负光焦度,其像侧面可为凹面;第三透镜具有正光焦度或负光焦度;第四透镜可具有正光焦度,其像侧面可为凸面;第五透镜具有正光焦度或负光焦度,其物侧面可为凹面,像侧面可为凸面;第六透镜可具有负光焦度,其像侧面可为凹面;以及光学成像镜头的总有效焦距f与第五透镜像侧面的曲率半径R10可满足f/|R10|≤0.5。Another aspect of the present application provides such an optical imaging lens. The optical imaging lens includes sequentially from the object side to the image side along the optical axis: a first lens, a second lens, a third lens, a fourth lens, a fifth lens and a sixth lens. The first lens can have positive power, and its object side can be convex; the second lens can have negative power, and its image side can be concave; the third lens has positive or negative power; the fourth lens can With positive power, its image side can be convex; the fifth lens has positive or negative power, its object side can be concave, and its image side can be convex; the sixth lens can have negative power, its image The side surface can be concave; and the total effective focal length f of the optical imaging lens and the curvature radius R10 of the image side surface of the fifth lens can satisfy f/|R10|≤0.5.

在一个实施方式中,光学成像镜头的总有效焦距f与第一透镜的有效焦距f1可满足1<f/f1<1.5。In one embodiment, the total effective focal length f of the optical imaging lens and the effective focal length f1 of the first lens may satisfy 1<f/f1<1.5.

在一个实施方式中,第四透镜的有效焦距f4与光学成像镜头的总有效焦距f可满足0.7<f4/f<1.2。In one embodiment, the effective focal length f4 of the fourth lens and the total effective focal length f of the optical imaging lens may satisfy 0.7<f4/f<1.2.

在一个实施方式中,第一透镜的有效焦距f1和第二透镜的有效焦距f2可满足-1<f1/f2<0。In one embodiment, the effective focal length f1 of the first lens and the effective focal length f2 of the second lens may satisfy -1<f1/f2<0.

在一个实施方式中,第一透镜的色散系数V1与第二透镜的色散系数V2可满足2.0<V1/V2<4.0。In one embodiment, the dispersion coefficient V1 of the first lens and the dispersion coefficient V2 of the second lens may satisfy 2.0<V1/V2<4.0.

在一个实施方式中,第一透镜于光轴上的中心厚度CT1与第二透镜于光轴上的中心厚度CT2可满足2.0<CT1/CT2<3.5。In one embodiment, the central thickness CT1 of the first lens on the optical axis and the central thickness CT2 of the second lens on the optical axis may satisfy 2.0<CT1/CT2<3.5.

在一个实施方式中,光学成像镜头的总有效焦距f与第一透镜物侧面的曲率半径R1可满足2≤f/R1<2.5。In one embodiment, the total effective focal length f of the optical imaging lens and the radius of curvature R1 of the object side surface of the first lens may satisfy 2≦f/R1<2.5.

在一个实施方式中,光学成像镜头的总有效焦距f与第六透镜像侧面的曲率半径R12可满足2.5<f/R12<4.0。In one embodiment, the total effective focal length f of the optical imaging lens and the curvature radius R12 of the image side of the sixth lens may satisfy 2.5<f/R12<4.0.

在一个实施方式中,最大视场的上光线在第六透镜像侧面上的入射角β62可满足7°<β62<12°。In one embodiment, the angle of incidence β62 of the upper ray with the largest field of view on the image side of the sixth lens may satisfy 7°<β62<12°.

在一个实施方式中,第一透镜的物侧面的中心至光学成像镜头成像面在光轴上的距离TTL与光学成像镜头成像面上有效像素区域对角线长的一半ImgH可满足TTL/ImgH≤1.7。In one embodiment, the distance TTL from the center of the object side of the first lens to the imaging surface of the optical imaging lens on the optical axis and the half ImgH of the diagonal length of the effective pixel area on the imaging surface of the optical imaging lens can satisfy TTL/ImgH≤ 1.7.

在一个实施方式中,光学成像镜头的总有效焦距f与光学成像镜头的入瞳直径EPD可满足f/EPD≤1.8。In one embodiment, the total effective focal length f of the optical imaging lens and the entrance pupil diameter EPD of the optical imaging lens may satisfy f/EPD≤1.8.

本申请另一个方面还提供了这样一种光学成像镜头。该光学成像镜头沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。第一透镜可具有正光焦度,其物侧面可为凸面;第二透镜可具有负光焦度,其像侧面可为凹面;第三透镜具有正光焦度或负光焦度;第四透镜具有正光焦度或负光焦度,其像侧面可为凸面;第五透镜具有正光焦度或负光焦度;第六透镜可具有负光焦度,其像侧面可为凹面;以及最大视场的上光线在第六透镜像侧面上的入射角β62可满足7°<β62<12°。Another aspect of the present application also provides such an optical imaging lens. The optical imaging lens includes sequentially from the object side to the image side along the optical axis: a first lens, a second lens, a third lens, a fourth lens, a fifth lens and a sixth lens. The first lens can have positive power, and its object side can be convex; the second lens can have negative power, and its image side can be concave; the third lens has positive or negative power; the fourth lens has Positive or negative power, the image side can be convex; fifth lens can be positive or negative; sixth lens can be negative power, the image side can be concave; and the largest field of view The incident angle β62 of the upper ray on the image side of the sixth lens can satisfy 7°<β62<12°.

本申请采用了例如六片透镜,通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,在加大通光量的过程中,使系统具有大光圈优势,从而在改善边缘光线像差的同时增强暗环境下的成像效果。同时,通过上述配置的光学成像镜头可具有小型化、大孔径、高成像品质、低敏感度等至少一个有益效果。This application uses, for example, six lenses. By rationally allocating the focal power, surface shape, center thickness of each lens, and the axial distance between each lens, etc., the system has a large Aperture advantage, thereby enhancing the imaging effect in dark environments while improving peripheral light aberrations. At the same time, the optical imaging lens with the above configuration can have at least one beneficial effect such as miniaturization, large aperture, high imaging quality, and low sensitivity.

附图说明Description of drawings

结合附图,通过以下非限制性实施方式的详细描述,本申请的其他特征、目的和优点将变得更加明显。在附图中:Other features, objects and advantages of the present application will become more apparent through the following detailed description of non-limiting embodiments in conjunction with the accompanying drawings. In the attached image:

图1示出了根据本申请实施例1的光学成像镜头的结构示意图;FIG. 1 shows a schematic structural view of an optical imaging lens according to Embodiment 1 of the present application;

图2A至图2D分别示出了实施例1的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;2A to 2D respectively show the axial chromatic aberration curve, astigmatism curve, distortion curve and magnification chromatic aberration curve of the optical imaging lens of embodiment 1;

图3示出了根据本申请实施例2的光学成像镜头的结构示意图;FIG. 3 shows a schematic structural diagram of an optical imaging lens according to Embodiment 2 of the present application;

图4A至图4D分别示出了实施例2的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;4A to 4D respectively show the axial chromatic aberration curve, astigmatism curve, distortion curve and magnification chromatic aberration curve of the optical imaging lens of embodiment 2;

图5示出了根据本申请实施例3的光学成像镜头的结构示意图;FIG. 5 shows a schematic structural diagram of an optical imaging lens according to Embodiment 3 of the present application;

图6A至图6D分别示出了实施例3的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;6A to 6D respectively show the axial chromatic aberration curve, astigmatism curve, distortion curve and magnification chromatic aberration curve of the optical imaging lens of embodiment 3;

图7示出了根据本申请实施例4的光学成像镜头的结构示意图;FIG. 7 shows a schematic structural view of an optical imaging lens according to Embodiment 4 of the present application;

图8A至图8D分别示出了实施例4的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;8A to 8D respectively show the axial chromatic aberration curve, astigmatism curve, distortion curve and magnification chromatic aberration curve of the optical imaging lens of embodiment 4;

图9示出了根据本申请实施例5的光学成像镜头的结构示意图;FIG. 9 shows a schematic structural view of an optical imaging lens according to Embodiment 5 of the present application;

图10A至图10D分别示出了实施例5的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;10A to 10D respectively show the axial chromatic aberration curve, astigmatism curve, distortion curve and magnification chromatic aberration curve of the optical imaging lens of embodiment 5;

图11示出了根据本申请实施例6的光学成像镜头的结构示意图;FIG. 11 shows a schematic structural view of an optical imaging lens according to Embodiment 6 of the present application;

图12A至图12D分别示出了实施例6的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;12A to 12D respectively show the axial chromatic aberration curve, astigmatism curve, distortion curve and magnification chromatic aberration curve of the optical imaging lens of embodiment 6;

图13示出了根据本申请实施例7的光学成像镜头的结构示意图;FIG. 13 shows a schematic structural view of an optical imaging lens according to Embodiment 7 of the present application;

图14A至图14D分别示出了实施例7的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;14A to 14D respectively show the axial chromatic aberration curve, astigmatism curve, distortion curve and magnification chromatic aberration curve of the optical imaging lens of embodiment 7;

图15示出了根据本申请实施例8的光学成像镜头的结构示意图;FIG. 15 shows a schematic structural view of an optical imaging lens according to Embodiment 8 of the present application;

图16A至图16D分别示出了实施例8的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;16A to 16D respectively show the axial chromatic aberration curve, astigmatism curve, distortion curve and magnification chromatic aberration curve of the optical imaging lens of embodiment 8;

图17示出了根据本申请实施例9的光学成像镜头的结构示意图;FIG. 17 shows a schematic structural view of an optical imaging lens according to Embodiment 9 of the present application;

图18A至图18D分别示出了实施例9的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;18A to 18D respectively show the axial chromatic aberration curve, astigmatism curve, distortion curve and magnification chromatic aberration curve of the optical imaging lens of embodiment 9;

图19示意性示出了最大视场的上光线在第六透镜像侧面上的入射角β62。FIG. 19 schematically shows the incident angle β62 of the top ray with the largest field of view on the image side of the sixth lens.

具体实施方式Detailed ways

为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。For a better understanding of the application, various aspects of the application will be described in more detail with reference to the accompanying drawings. It should be understood that these detailed descriptions are descriptions of exemplary embodiments of the application only, and are not intended to limit the scope of the application in any way. Throughout the specification, the same reference numerals refer to the same elements. The expression "and/or" includes any and all combinations of one or more of the associated listed items.

应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。It should be noted that in this specification, expressions of first, second, third, etc. are only used to distinguish one feature from another, and do not represent any limitation on the features. Accordingly, a first lens discussed below may also be referred to as a second lens or a third lens without departing from the teachings of the present application.

在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。In the drawings, the thickness, size and shape of lenses have been slightly exaggerated for convenience of illustration. In particular, the shapes of spherical or aspheric surfaces shown in the drawings are shown by way of example. That is, the shape of the spherical surface or the aspheric surface is not limited to the shape of the spherical surface or the aspherical surface shown in the drawings. The drawings are examples only and are not strictly drawn to scale.

在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜中最靠近物体的表面称为物侧面,每个透镜中最靠近成像面的表面称为像侧面。Herein, the paraxial region refers to a region near the optical axis. If the lens surface is convex and the convex position is not defined, it means that the lens surface is convex at least in the paraxial region; if the lens surface is concave and the concave position is not defined, it means that the lens surface is at least in the paraxial region concave. The surface of each lens closest to the object is called the object side, and the surface of each lens closest to the imaging plane is called the image side.

还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。It should also be understood that the terms "comprising", "comprising", "having", "comprising" and/or "comprising", when used in this specification, mean that the stated features, elements and/or components are present. , but does not exclude the existence or addition of one or more other features, elements, components and/or combinations thereof. Furthermore, expressions such as "at least one of," when preceding a list of listed features, modify the entire listed feature and do not modify the individual elements of the list. In addition, when describing the embodiments of the present application, the use of "may" means "one or more embodiments of the present application". Also, the word "exemplary" is intended to mean an example or illustration.

除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。Unless otherwise defined, all terms (including technical terms and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this application belongs. It should also be understood that terms (such as those defined in commonly used dictionaries) should be interpreted to have a meaning consistent with their meaning in the context of the relevant art, and will not be interpreted in an idealized or overly formal sense unless It is expressly so defined herein.

需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。It should be noted that, in the case of no conflict, the embodiments in the present application and the features in the embodiments can be combined with each other. The present application will be described in detail below with reference to the accompanying drawings and embodiments.

以下对本申请的特征、原理和其他方面进行详细描述。The features, principles and other aspects of the present application are described in detail below.

根据本申请示例性实施方式的光学成像镜头包括例如六片具有光焦度的透镜,即,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。该光学成像镜头还可进一步包括设置于成像面的感光元件。The optical imaging lens according to the exemplary embodiment of the present application includes, for example, six lenses having powers, namely, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and a sixth lens. The optical imaging lens may further include a photosensitive element disposed on the imaging surface.

第一透镜可具有正光焦度,其物侧面可为凸面;第二透镜可具有负光焦度,其像侧面可为凹面;第三透镜具有正光焦度或负光焦度;第四透镜具有正光焦度或负光焦度,其像侧面为凸面;第五透镜具有正光焦度或负光焦度;以及第六透镜具有负光焦度,其像侧面为凹面。The first lens can have positive power, and its object side can be convex; the second lens can have negative power, and its image side can be concave; the third lens has positive or negative power; the fourth lens has positive or negative power, the image side is convex; the fifth lens has positive or negative power; and the sixth lens has negative power, the image side is concave.

在一个实施方式中,第三透镜可具有负光焦度。第三透镜具有负光焦度,有利于降低系统敏感性。In one embodiment, the third lens may have negative optical power. The third lens has negative optical power to help reduce system sensitivity.

在一个实施方式中,第五透镜的物侧面可为凹面,像侧面可为凸面。将第五透镜布置为凸向像侧的弯月形状,有助于降低系统的象散量,并匹配芯片主光线角度CRA。In one embodiment, the object side of the fifth lens may be concave, and the image side may be convex. The fifth lens is arranged in a meniscus shape convex to the image side, which helps to reduce the astigmatism of the system and matches the chief ray angle CRA of the chip.

光学成像镜头的总有效焦距f与第一透镜的有效焦距f1之间可满足1<f/f1<1.5,更具体地,f和f1进一步可满足1.05≤f/f1≤1.34。合理分配第一透镜的光焦度,可使得成像镜头具有较好的平衡场曲的能力。The total effective focal length f of the optical imaging lens and the effective focal length f1 of the first lens may satisfy 1<f/f1<1.5, more specifically, f and f1 may further satisfy 1.05≤f/f1≤1.34. Reasonably allocating the focal power of the first lens can make the imaging lens have a better ability to balance field curvature.

第四透镜的有效焦距f4与光学成像镜头的总有效焦距f之间可满足0.7<f4/f<1.2,更具体地,f4和f进一步可满足0.84≤f4/f≤1.04。合理分配第四透镜的光焦度,可使得成像镜头具有较好的平衡象散的能力。The effective focal length f4 of the fourth lens and the total effective focal length f of the optical imaging lens may satisfy 0.7<f4/f<1.2, more specifically, f4 and f may further satisfy 0.84≤f4/f≤1.04. Reasonably allocating the focal power of the fourth lens can make the imaging lens have a better ability to balance astigmatism.

第一透镜的有效焦距f1与第二透镜的有效焦距f2之间可满足-1<f1/f2<0,更具体地,f1和f2进一步可满足-0.57≤f1/f2≤-0.32。通过对第一透镜和第二透镜的光焦度的合理分配,可减小光线偏转角,降低系统的敏感度。The effective focal length f1 of the first lens and the effective focal length f2 of the second lens may satisfy -1<f1/f2<0, more specifically, f1 and f2 may further satisfy -0.57≤f1/f2≤-0.32. By rationally distributing the focal powers of the first lens and the second lens, the light deflection angle can be reduced and the sensitivity of the system can be reduced.

第一透镜于光轴上的中心厚度CT1与第二透镜于光轴上的中心厚度CT2之间可满足2.0<CT1/CT2<3.5,更具体地,CT1和CT2进一步可满足2.27≤CT1/CT2≤3.41。通过合理布置第一透镜和第二透镜的中心厚度,可使得镜头具有较好的平衡像差的能力。Between the central thickness CT1 of the first lens on the optical axis and the central thickness CT2 of the second lens on the optical axis can satisfy 2.0<CT1/CT2<3.5, more specifically, CT1 and CT2 can further satisfy 2.27≤CT1/CT2 ≤3.41. By rationally arranging the central thicknesses of the first lens and the second lens, the lens can have a better ability to balance aberrations.

光学成像镜头的总有效焦距f与第一透镜物侧面的曲率半径R1之间可满足2≤f/R1<2.5,更具体地,f与R1进一步可满足2.03≤f/R1≤2.34。合理布置第一透镜物侧面的曲率半径,可有效地平衡系统像差,提升镜头的成像品质。The total effective focal length f of the optical imaging lens and the curvature radius R1 of the object side of the first lens can satisfy 2≤f/R1<2.5, more specifically, f and R1 can further satisfy 2.03≤f/R1≤2.34. Reasonably arranging the curvature radius of the object side of the first lens can effectively balance the system aberration and improve the imaging quality of the lens.

光学成像镜头的总有效焦距f与第五透镜物侧面的曲率半径R9之间可满足f/|R9|≤0.35,更具体地,f与R9进一步可满足0≤f/|R9|≤0.27。光学成像镜头的总有效焦距f与第五透镜像侧面的曲率半径R10之间可满足f/|R10|≤0.5,更具体地,f与R10进一步可满足0.08≤f/|R10|≤0.42。The total effective focal length f of the optical imaging lens and the curvature radius R9 of the fifth lens object side can satisfy f/|R9|≤0.35, more specifically, f and R9 can further satisfy 0≤f/|R9|≤0.27. The total effective focal length f of the optical imaging lens and the curvature radius R10 of the image side of the fifth lens can satisfy f/|R10|≤0.5, more specifically, f and R10 can further satisfy 0.08≤f/|R10|≤0.42.

光学成像镜头的总有效焦距f与第六透镜像侧面的曲率半径R12之间可满足2.5<f/R12<4.0,更具体地,f与R12进一步可满足2.93≤f/R12≤3.79。合理布置第六透镜的曲率半径,使镜头能够与常用芯片较好地匹配。The total effective focal length f of the optical imaging lens and the curvature radius R12 of the sixth lens image side can satisfy 2.5<f/R12<4.0, more specifically, f and R12 can further satisfy 2.93≤f/R12≤3.79. Reasonably arrange the radius of curvature of the sixth lens so that the lens can better match with commonly used chips.

最大视场的上光线在第六透镜像侧面上的入射角β62(参见图19所示)可满足7°<β62<12°,更具体地,β62进一步可满足8.3°≤β62≤11°。通过将β62控制在合理范围内,可有效地将系统的鬼像状态减弱到可接受的范围。The incident angle β62 (shown in FIG. 19 ) of the top ray of the maximum field of view on the image side of the sixth lens can satisfy 7°<β62<12°. More specifically, β62 can further satisfy 8.3°≤β62≤11°. By controlling β62 within a reasonable range, the ghost state of the system can be effectively weakened to an acceptable range.

第一透镜的色散系数V1与第二透镜的色散系数V2之间可满足2.0<V1/V2<4.0,更具体地,V1和V2进一步可满足2.23≤V1/V2≤3.14。合理选用第一透镜和第二透镜的材料,可以使得成像镜头具有较好的平衡色差的能力。The dispersion coefficient V1 of the first lens and the dispersion coefficient V2 of the second lens may satisfy 2.0<V1/V2<4.0, more specifically, V1 and V2 may further satisfy 2.23≦V1/V2≦3.14. Reasonable selection of materials for the first lens and the second lens can make the imaging lens have a better ability to balance chromatic aberration.

光学成像镜头的总有效焦距f与光学成像镜头的入瞳直径EPD之间可满足f/EPD≤1.8,更具体地,f和EPD进一步可满足1.68≤f/EPD≤1.78。光学成像镜头的光圈数Fno(即,镜头的总有效焦距f/镜头的入瞳直径EPD)越小,镜头的通光孔径越大,在同一单位时间内的进光量便越多。光圈数Fno的缩小,可有效地提升像面亮度,从而使镜头能够更好地满足光线不足时的拍摄需求。将镜头配置成满足条件式f/EPD≤1.8,可在加大通光量的过程中,使镜头具有大光圈优势,从而在改善边缘光线像差的同时增强暗环境下的成像效果。The total effective focal length f of the optical imaging lens and the entrance pupil diameter EPD of the optical imaging lens can satisfy f/EPD≤1.8, more specifically, f and EPD can further satisfy 1.68≤f/EPD≤1.78. The smaller the aperture number Fno of the optical imaging lens (that is, the total effective focal length f of the lens/the entrance pupil diameter EPD of the lens), the smaller the clear aperture of the lens is, and the more light can enter in the same unit time. The reduction of the aperture number Fno can effectively increase the brightness of the image surface, so that the lens can better meet the shooting needs when the light is insufficient. Configuring the lens to meet the conditional f/EPD≤1.8 can give the lens a large aperture advantage in the process of increasing the light flux, thereby improving the imaging effect in dark environments while improving peripheral light aberrations.

光学成像镜头的光学总长度TTL(即,从第一透镜物侧面的中心至光学成像镜头成像面的轴上距离)与光学成像镜头成像面上有效像素区域对角线长的一半ImgH之间可满足TTL/ImgH≤1.7,更具体地,TTL和ImgH进一步可满足1.56≤TTL/ImgH≤1.64。通过对镜头的光学总长度和像高比例的控制,可有效地压缩成像镜头的总尺寸,以实现成像镜头的超薄特性与小型化,从而使得该成像镜头能够较好地适用于例如便携式电子产品等尺寸受限的系统。The total optical length TTL of the optical imaging lens (that is, the axial distance from the center of the object side of the first lens to the imaging surface of the optical imaging lens) and the half ImgH of the diagonal length of the effective pixel area on the imaging surface of the optical imaging lens can be TTL/ImgH≦1.7 is satisfied, more specifically, TTL and ImgH may further satisfy 1.56≦TTL/ImgH≦1.64. By controlling the total optical length of the lens and the ratio of the image height, the total size of the imaging lens can be effectively compressed to achieve the ultra-thin characteristics and miniaturization of the imaging lens, so that the imaging lens can be better used in portable electronic devices such as Systems with limited size such as products.

在示例性实施方式中,光学成像镜头还可设置有至少一光阑,以提升镜头的成像质量。本领域技术人员应当理解的是,光阑可根据需要设置于物侧与像侧之间的任意位置处,即,光阑设置不应局限于下文实施例中所述的位置。In an exemplary embodiment, the optical imaging lens may further be provided with at least one aperture to improve the imaging quality of the lens. It should be understood by those skilled in the art that the diaphragm can be arranged at any position between the object side and the image side as required, that is, the diaphragm setting should not be limited to the positions described in the following embodiments.

可选地,上述光学成像镜头还可包括用于校正色彩偏差的滤光片和/或用于保护位于成像面上的感光元件的保护玻璃。Optionally, the above-mentioned optical imaging lens may further include a filter for correcting color deviation and/or a protective glass for protecting the photosensitive element on the imaging surface.

根据本申请的上述实施方式的光学成像镜头可采用多片镜片,例如上文所述的六片。通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,可有效地降低镜头的敏感度并提高镜头的加工性,使得光学成像镜头更有利于生产加工并且可适用于便携式电子产品。同时,通过上述配置的光学成像镜头,还具有例如超薄大孔径、高成像质量等有益效果。The optical imaging lens according to the above-mentioned embodiments of the present application may use multiple lenses, such as the six lenses mentioned above. By rationally allocating the focal power, surface shape, center thickness of each lens, and the axial distance between each lens, etc., the sensitivity of the lens can be effectively reduced and the processability of the lens can be improved, making the optical imaging lens more efficient. It is beneficial to production and processing and can be applied to portable electronic products. At the same time, the optical imaging lens with the above configuration also has beneficial effects such as ultra-thin and large aperture, high imaging quality and the like.

在本申请的实施方式中,各透镜的镜面中的至少一个为非球面镜面。非球面透镜的特点是:从透镜中心到透镜周边,曲率是连续变化的。与从透镜中心到透镜周边具有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。另外,非球面透镜的使用还可有效地减少光学系统中的透镜个数。In the embodiment of the present application, at least one of the mirror surfaces of each lens is an aspheric mirror surface. The characteristic of the aspheric lens is that the curvature changes continuously from the center of the lens to the periphery of the lens. Unlike spherical lenses, which have a constant curvature from the center of the lens to the periphery of the lens, aspherical lenses have better curvature radius characteristics, which have the advantages of improving distortion and astigmatism. After adopting the aspherical lens, the aberration that occurs during imaging can be eliminated as much as possible, thereby improving the imaging quality. In addition, the use of aspherical lenses can effectively reduce the number of lenses in the optical system.

然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成光学成像镜头的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以六个透镜为例进行了描述,但是该光学成像镜头不限于包括六个透镜。如果需要,该光学成像镜头还可包括其它数量的透镜。However, those skilled in the art should understand that without departing from the technical solutions claimed in the present application, the number of lenses constituting the optical imaging lens can be changed to obtain various results and advantages described in this specification. For example, although six lenses have been described as an example in the embodiments, the optical imaging lens is not limited to include six lenses. If necessary, the optical imaging lens may also include other numbers of lenses.

下面参照附图进一步描述可适用于上述实施方式的光学成像镜头的具体实施例。Specific examples of the optical imaging lens applicable to the above embodiments will be further described below with reference to the accompanying drawings.

实施例1Example 1

以下参照图1至图2D描述根据本申请实施例1的光学成像镜头。图1示出了根据本申请实施例1的光学成像镜头的结构示意图。The optical imaging lens according to Embodiment 1 of the present application will be described below with reference to FIGS. 1 to 2D . FIG. 1 shows a schematic structural diagram of an optical imaging lens according to Embodiment 1 of the present application.

如图1所示,光学成像镜头沿着光轴从物侧至成像侧依序包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6和成像面S15。光学成像镜头还可包括设置于成像面S15的感光元件。As shown in Figure 1, the optical imaging lens includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens along the optical axis from the object side to the imaging side. E6 and imaging surface S15. The optical imaging lens may further include a photosensitive element disposed on the imaging surface S15.

第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面,并且第一透镜E1的物侧面S1和像侧面S2均为非球面。The first lens E1 has positive refractive power, its object side S1 is convex, and its image side S2 is concave, and both the object side S1 and the image side S2 of the first lens E1 are aspherical.

第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面,并且第二透镜E2的物侧面S3和像侧面S4均为非球面。The second lens E2 has negative refractive power, its object side S3 is convex, and its image side S4 is concave, and both the object side S3 and the image side S4 of the second lens E2 are aspherical.

第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凸面,并且第三透镜E3的物侧面S5和像侧面S6均为非球面。The third lens E3 has negative refractive power, its object side S5 is concave, and its image side S6 is convex, and both the object side S5 and the image side S6 of the third lens E3 are aspherical.

第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面,并且第四透镜E4的物侧面S7和像侧面S8均为非球面。The fourth lens E4 has positive refractive power, its object side S7 is concave, and its image side S8 is convex, and both the object side S7 and the image side S8 of the fourth lens E4 are aspherical.

第五透镜E5具有正光焦度,其物侧面S9为凹面,像侧面S10为凸面,并且第五透镜E5的物侧面S9和像侧面S10均为非球面。The fifth lens E5 has positive refractive power, its object side S9 is concave, and its image side S10 is convex, and both the object side S9 and the image side S10 of the fifth lens E5 are aspherical.

第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面,并且第六透镜E6的物侧面S11和像侧面S12均为非球面。The sixth lens E6 has a negative refractive power, its object side S11 is convex, and its image side S12 is concave, and both the object side S11 and the image side S12 of the sixth lens E6 are aspherical.

可选地,光学成像镜头还可包括具有物侧面S13和像侧面S14的滤光片E7。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。Optionally, the optical imaging lens may further include a filter E7 having an object side S13 and an image side S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging plane S15.

可选地,可在物侧与第一透镜E1之间设置用于限制光束的光阑STO,以提升光学成像镜头的成像质量。Optionally, a diaphragm STO for limiting light beams may be provided between the object side and the first lens E1 to improve the imaging quality of the optical imaging lens.

表1示出了实施例1的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。Table 1 shows the surface type, radius of curvature, thickness, material and conic coefficient of each lens of the optical imaging lens of Example 1, wherein the units of radius of curvature and thickness are millimeters (mm).

Figure BDA0001365831590000101
Figure BDA0001365831590000101

Figure BDA0001365831590000111
Figure BDA0001365831590000111

表1Table 1

由表1可得,第一透镜E1于光轴上的中心厚度CT1与第二透镜E2于光轴上的中心厚度CT2之间满足CT1/CT2=3.09;第一透镜E1的色散系数V1与第二透镜E2的色散系数V2之间满足V1/V2=3.14。It can be obtained from Table 1 that the center thickness CT1 of the first lens E1 on the optical axis and the center thickness CT2 of the second lens E2 on the optical axis satisfy CT1/CT2=3.09; The dispersion coefficient V2 of the two lenses E2 satisfies V1/V2=3.14.

本实施例采用了五片透镜作为示例,通过合理分配各透镜的焦距、各透镜的面型、各透镜的中心厚度以及各透镜之间的间隔距离,在实现镜头小型化的同时,增大镜头通光量并提升镜头的成像品质。各透镜均可采用非球面透镜,各非球面面型x由以下公式限定:This embodiment adopts five lenses as an example, by rationally distributing the focal length of each lens, the surface shape of each lens, the center thickness of each lens, and the distance between each lens, while realizing the miniaturization of the lens, the size of the lens can be increased. Increase the amount of light and improve the imaging quality of the lens. Each lens can be an aspheric lens, and the surface type x of each aspheric surface is limited by the following formula:

Figure BDA0001365831590000112
Figure BDA0001365831590000112

其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数(在表1中已给出);Ai是非球面第i-th阶的修正系数。下表2给出了可用于实施例1中各非球面镜面S1-S8的高次项系数A4、A6、A8、A10、A12、A14和A16Among them, x is the distance vector height of the aspheric surface from the apex of the aspheric surface at the position of height h along the optical axis; c is the paraxial curvature of the aspheric surface, c=1/R (that is, the paraxial curvature c is the above table The reciprocal of the radius of curvature R in 1); k is the cone coefficient (given in Table 1); Ai is the correction coefficient of the i-th order of the aspheric surface. Table 2 below shows the higher-order coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 and A 16 that can be used for each aspheric mirror surface S1-S8 in Example 1.

面号face number A4A4 A6A6 A8A8 A10A10 A12A12 A14A14 A16A16 S1S1 6.1503E-026.1503E-02 9.8254E-039.8254E-03 -4.8419E-02-4.8419E-02 7.5778E-027.5778E-02 -7.0247E-02-7.0247E-02 3.2873E-023.2873E-02 -7.0505E-03-7.0505E-03 S2S2 -1.0788E-01-1.0788E-01 1.0714E-011.0714E-01 8.5427E-028.5427E-02 -3.8756E-01-3.8756E-01 4.6600E-014.6600E-01 -2.6404E-01-2.6404E-01 5.8382E-025.8382E-02 S3S3 -1.6197E-01-1.6197E-01 2.6212E-012.6212E-01 7.1959E-027.1959E-02 -5.6650E-01-5.6650E-01 7.3097E-017.3097E-01 -4.1333E-01-4.1333E-01 8.8677E-028.8677E-02 S4S4 3.6309E-023.6309E-02 3.0429E-023.0429E-02 4.5209E-014.5209E-01 -1.2915E+00-1.2915E+00 1.9176E+001.9176E+00 -1.4841E+00-1.4841E+00 5.2145E-015.2145E-01 S5S5 -1.0598E-01-1.0598E-01 -1.3125E-01-1.3125E-01 6.0651E-016.0651E-01 -1.7206E+00-1.7206E+00 2.7621E+002.7621E+00 -2.3642E+00-2.3642E+00 8.6203E-018.6203E-01 S6S6 -7.7441E-02-7.7441E-02 -6.4387E-02-6.4387E-02 8.2649E-028.2649E-02 -1.3492E-01-1.3492E-01 1.5097E-011.5097E-01 -8.6394E-02-8.6394E-02 2.1849E-022.1849E-02 S7S7 4.5638E-024.5638E-02 -1.2372E-02-1.2372E-02 -2.2848E-02-2.2848E-02 -2.8653E-02-2.8653E-02 4.3012E-024.3012E-02 -2.1252E-02-2.1252E-02 3.8546E-033.8546E-03 S8S8 -7.0280E-02-7.0280E-02 1.6027E-011.6027E-01 -2.0263E-01-2.0263E-01 1.4419E-011.4419E-01 -5.6981E-02-5.6981E-02 1.1302E-021.1302E-02 -8.6592E-04-8.6592E-04 S9S9 1.2026E-011.2026E-01 -2.4979E-01-2.4979E-01 1.0022E-011.0022E-01 1.1263E-021.1263E-02 -1.8397E-02-1.8397E-02 4.9245E-034.9245E-03 -4.4309E-04-4.4309E-04 S10S10 2.2513E-012.2513E-01 -4.1935E-01-4.1935E-01 2.8406E-012.8406E-01 -1.0671E-01-1.0671E-01 2.3803E-022.3803E-02 -2.9260E-03-2.9260E-03 1.5148E-041.5148E-04 S11S11 -2.0941E-01-2.0941E-01 1.7045E-021.7045E-02 6.1951E-026.1951E-02 -3.3171E-02-3.3171E-02 7.6601E-037.6601E-03 -8.6246E-04-8.6246E-04 3.8700E-053.8700E-05 S12S12 -1.9957E-01-1.9957E-01 1.3111E-011.3111E-01 -5.1840E-02-5.1840E-02 1.2403E-021.2403E-02 -1.7954E-03-1.7954E-03 1.4443E-041.4443E-04 -4.9116E-06-4.9116E-06

表2Table 2

下表3给出实施例1中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、光学成像镜头的光学总长度TTL(即,从第一透镜E1的物侧面S1的中心至成像面S15在光轴上的距离)以及光学成像镜头成像面S15上有效像素区域对角线长的一半ImgH。The following table 3 provides the effective focal length f1 to f6 of each lens in embodiment 1, the total effective focal length f of the optical imaging lens, the total optical length TTL of the optical imaging lens (that is, from the center of the object side S1 of the first lens E1 to The distance of the imaging plane S15 on the optical axis) and the half ImgH of the diagonal length of the effective pixel area on the imaging plane S15 of the optical imaging lens.

Figure BDA0001365831590000121
Figure BDA0001365831590000121

表3table 3

由表3可得,第一透镜E1的有效焦距f1与第二透镜E2的有效焦距f2之间满足f1/f2=-0.32;第一透镜E1的有效焦距f1与光学成像镜头的总有效焦距f之间满足f/f1=1.07;第四透镜E4的有效焦距f4与光学成像镜头的总有效焦距f之间满足f4/f=0.91;光学成像镜头的光学总长度TTL与光学成像镜头成像面S15上有效像素区域对角线长的一半ImgH之间满足TTL/ImgH=1.56。结合表1和表3可得,光学成像镜头的总有效焦距f与第一透镜E1物侧面S1的曲率半径R1之间满足f/R1=2.30;光学成像镜头的总有效焦距f与第五透镜E5物侧面S9的曲率半径R9之间满足f/|R9|=0.11;光学成像镜头的总有效焦距f与第五透镜E5像侧面S10的曲率半径R10之间满足f/|R10|=0.24;光学成像镜头的总有效焦距f与第六透镜E6像侧面S12的曲率半径R12之间满足f/R12=3.21。It can be obtained from Table 3 that f1/f2=-0.32 is satisfied between the effective focal length f1 of the first lens E1 and the effective focal length f2 of the second lens E2; the effective focal length f1 of the first lens E1 and the total effective focal length f of the optical imaging lens Satisfy f/f1=1.07 between; Satisfy f4/f=0.91 between the effective focal length f4 of the fourth lens E4 and the total effective focal length f of the optical imaging lens; The total optical length TTL of the optical imaging lens and the imaging surface S15 of the optical imaging lens TTL/ImgH=1.56 is satisfied between half ImgH of the diagonal length of the upper effective pixel area. Combining Table 1 and Table 3, it can be obtained that the total effective focal length f of the optical imaging lens and the radius of curvature R1 of the object side S1 of the first lens E1 satisfy f/R1=2.30; the total effective focal length f of the optical imaging lens and the fifth lens The radius of curvature R9 on the object side S9 of E5 satisfies f/|R9|=0.11; the total effective focal length f of the optical imaging lens and the radius of curvature R10 on the image side S10 of the fifth lens E5 satisfy f/|R10|=0.24; The total effective focal length f of the optical imaging lens and the curvature radius R12 of the image side S12 of the sixth lens E6 satisfy f/R12=3.21.

在实施例1中,光学成像镜头的总有效焦距f与光学成像镜头的入瞳直径EPD之间满足f/EPD=1.68;最大视场的上光线在第六透镜像侧面上的入射角β62=10.7°。In Embodiment 1, f/EPD=1.68 is satisfied between the total effective focal length f of the optical imaging lens and the entrance pupil diameter EPD of the optical imaging lens; 10.7°.

图2A示出了实施例1的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图2B示出了实施例1的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2C示出了实施例1的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图2D示出了实施例1的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图2A至图2D可知,实施例1所给出的光学成像镜头能够实现良好的成像品质。FIG. 2A shows the axial chromatic aberration curve of the optical imaging lens of the embodiment 1, which indicates that the focal point of light of different wavelengths after passing through the lens deviates. FIG. 2B shows the astigmatism curve of the optical imaging lens of Embodiment 1, which represents meridional image plane curvature and sagittal image plane curvature. FIG. 2C shows the distortion curve of the optical imaging lens of Embodiment 1, which represents the magnitude of distortion under different viewing angles. FIG. 2D shows the magnification chromatic aberration curve of the optical imaging lens of Embodiment 1, which represents the deviation of different image heights on the imaging plane after light passes through the lens. According to FIG. 2A to FIG. 2D , it can be seen that the optical imaging lens provided in Embodiment 1 can achieve good imaging quality.

实施例2Example 2

以下参照图3至图4D描述根据本申请实施例2的光学成像镜头。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了根据本申请实施例2的光学成像镜头的结构示意图。The optical imaging lens according to Embodiment 2 of the present application will be described below with reference to FIGS. 3 to 4D . In this embodiment and the following embodiments, for the sake of brevity, descriptions similar to those in Embodiment 1 will be omitted. FIG. 3 shows a schematic structural diagram of an optical imaging lens according to Embodiment 2 of the present application.

如图3所示,光学成像镜头沿着光轴从物侧至成像侧依序包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6和成像面S15。光学成像镜头还可包括设置于成像面S15的感光元件。As shown in Figure 3, the optical imaging lens includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens along the optical axis from the object side to the imaging side. E6 and imaging surface S15. The optical imaging lens may further include a photosensitive element disposed on the imaging surface S15.

第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面,并且第一透镜E1的物侧面S1和像侧面S2均为非球面。The first lens E1 has positive refractive power, its object side S1 is convex, and its image side S2 is concave, and both the object side S1 and the image side S2 of the first lens E1 are aspherical.

第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面,并且第二透镜E2的物侧面S3和像侧面S4均为非球面。The second lens E2 has negative refractive power, its object side S3 is convex, and its image side S4 is concave, and both the object side S3 and the image side S4 of the second lens E2 are aspherical.

第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凹面,并且第三透镜E3的物侧面S5和像侧面S6均为非球面。The third lens E3 has a negative refractive power, its object side S5 is concave, and its image side S6 is concave, and both the object side S5 and the image side S6 of the third lens E3 are aspherical.

第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面,并且第四透镜E4的物侧面S7和像侧面S8均为非球面。The fourth lens E4 has positive refractive power, its object side S7 is concave, and its image side S8 is convex, and both the object side S7 and the image side S8 of the fourth lens E4 are aspherical.

第五透镜E5具有正光焦度,其物侧面S9为凹面,像侧面S10为凸面,并且第五透镜E5的物侧面S9和像侧面S10均为非球面。The fifth lens E5 has positive refractive power, its object side S9 is concave, and its image side S10 is convex, and both the object side S9 and the image side S10 of the fifth lens E5 are aspherical.

第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面,并且第六透镜E6的物侧面S11和像侧面S12均为非球面。The sixth lens E6 has a negative refractive power, its object side S11 is convex, and its image side S12 is concave, and both the object side S11 and the image side S12 of the sixth lens E6 are aspherical.

可选地,光学成像镜头还可包括具有物侧面S13和像侧面S14的滤光片E7。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。Optionally, the optical imaging lens may further include a filter E7 having an object side S13 and an image side S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging plane S15.

可选地,可在物侧与第一透镜E1之间设置用于限制光束的光阑STO,以提升光学成像镜头的成像质量。Optionally, a diaphragm STO for limiting light beams may be provided between the object side and the first lens E1 to improve the imaging quality of the optical imaging lens.

表4示出了实施例2的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表5示出了可用于实施例2中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表6示出了实施例2中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、光学成像镜头的光学总长度TTL以及光学成像镜头成像面S15上有效像素区域对角线长的一半ImgH。Table 4 shows the surface type, radius of curvature, thickness, material and conic coefficient of each lens of the optical imaging lens of Example 2, wherein the units of radius of curvature and thickness are millimeters (mm). Table 5 shows the high-order term coefficients that can be used for each aspheric mirror surface in Embodiment 2, wherein each aspheric surface type can be defined by the formula (1) given in Embodiment 1 above. Table 6 shows the effective focal length f1 to f6 of each lens in embodiment 2, the total effective focal length f of the optical imaging lens, the optical total length TTL of the optical imaging lens, and the diagonal length of the effective pixel area on the imaging surface S15 of the optical imaging lens half of ImgH.

Figure BDA0001365831590000141
Figure BDA0001365831590000141

表4Table 4

面号face number A4A4 A6A6 A8A8 A10A10 A12A12 A14A14 A16A16 S1S1 6.2687E-026.2687E-02 8.6605E-038.6605E-03 -4.5636E-02-4.5636E-02 7.4360E-027.4360E-02 -7.1432E-02-7.1432E-02 3.4569E-023.4569E-02 -7.7543E-03-7.7543E-03 S2S2 -9.3123E-02-9.3123E-02 7.8171E-027.8171E-02 8.3047E-028.3047E-02 -3.0703E-01-3.0703E-01 3.4659E-013.4659E-01 -1.8953E-01-1.8953E-01 4.0751E-024.0751E-02 S3S3 -1.5378E-01-1.5378E-01 2.3354E-012.3354E-01 7.0522E-027.0522E-02 -4.4852E-01-4.4852E-01 5.2903E-015.2903E-01 -2.7278E-01-2.7278E-01 5.2708E-025.2708E-02 S4S4 3.3410E-023.3410E-02 2.6340E-022.6340E-02 4.4699E-014.4699E-01 -1.1914E+00-1.1914E+00 1.7019E+001.7019E+00 -1.2890E+00-1.2890E+00 4.5150E-014.5150E-01 S5S5 -1.1041E-01-1.1041E-01 -1.2281E-01-1.2281E-01 5.8468E-015.8468E-01 -1.6380E+00-1.6380E+00 2.5744E+002.5744E+00 -2.1534E+00-2.1534E+00 7.6605E-017.6605E-01 S6S6 -8.2993E-02-8.2993E-02 -6.2310E-02-6.2310E-02 9.2223E-029.2223E-02 -1.6090E-01-1.6090E-01 1.7545E-011.7545E-01 -9.5870E-02-9.5870E-02 2.2427E-022.2427E-02 S7S7 4.2345E-024.2345E-02 4.0006E-034.0006E-03 -4.0589E-02-4.0589E-02 -8.9978E-03-8.9978E-03 2.8162E-022.8162E-02 -1.5030E-02-1.5030E-02 2.7516E-032.7516E-03 S8S8 -6.5886E-02-6.5886E-02 1.5441E-011.5441E-01 -1.8932E-01-1.8932E-01 1.3690E-011.3690E-01 -5.6653E-02-5.6653E-02 1.2038E-021.2038E-02 -1.0182E-03-1.0182E-03 S9S9 1.3203E-011.3203E-01 -2.7606E-01-2.7606E-01 1.2589E-011.2589E-01 -3.5591E-03-3.5591E-03 -1.3014E-02-1.3014E-02 3.8295E-033.8295E-03 -3.5125E-04-3.5125E-04 S10S10 2.3162E-012.3162E-01 -4.3738E-01-4.3738E-01 3.0172E-013.0172E-01 -1.1504E-01-1.1504E-01 2.5883E-022.5883E-02 -3.1933E-03-3.1933E-03 1.6550E-041.6550E-04 S11S11 -2.1677E-01-2.1677E-01 1.7989E-021.7989E-02 6.6332E-026.6332E-02 -3.6138E-02-3.6138E-02 8.4840E-038.4840E-03 -9.7009E-04-9.7009E-04 4.4156E-054.4156E-05 S12S12 -2.1120E-01-2.1120E-01 1.4160E-011.4160E-01 -5.7738E-02-5.7738E-02 1.4432E-021.4432E-02 -2.2087E-03-2.2087E-03 1.8958E-041.8958E-04 -6.9285E-06-6.9285E-06

表5table 5

Figure BDA0001365831590000142
Figure BDA0001365831590000142

表6Table 6

图4A示出了实施例2的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图4B示出了实施例2的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4C示出了实施例2的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图4D示出了实施例2的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图4A至图4D可知,实施例2所给出的光学成像镜头能够实现良好的成像品质。FIG. 4A shows the axial chromatic aberration curve of the optical imaging lens of Embodiment 2, which indicates that the focal points of light rays of different wavelengths passing through the lens deviate. FIG. 4B shows the astigmatism curve of the optical imaging lens of Embodiment 2, which represents meridional image plane curvature and sagittal image plane curvature. FIG. 4C shows the distortion curve of the optical imaging lens of Embodiment 2, which represents the magnitude of distortion under different viewing angles. FIG. 4D shows the magnification chromatic aberration curve of the optical imaging lens of Embodiment 2, which represents the deviation of different image heights on the imaging plane after the light passes through the lens. According to FIG. 4A to FIG. 4D , it can be seen that the optical imaging lens provided in Embodiment 2 can achieve good imaging quality.

实施例3Example 3

以下参照图5至图6D描述了根据本申请实施例3的光学成像镜头。图5示出了根据本申请实施例3的光学成像镜头的结构示意图。The optical imaging lens according to Embodiment 3 of the present application is described below with reference to FIGS. 5 to 6D . FIG. 5 shows a schematic structural diagram of an optical imaging lens according to Embodiment 3 of the present application.

如图5所示,光学成像镜头沿着光轴从物侧至成像侧依序包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6和成像面S15。光学成像镜头还可包括设置于成像面S15的感光元件。As shown in Figure 5, the optical imaging lens includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens in sequence from the object side to the imaging side along the optical axis. E6 and imaging surface S15. The optical imaging lens may further include a photosensitive element disposed on the imaging surface S15.

第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凸面,并且第一透镜E1的物侧面S1和像侧面S2均为非球面。The first lens E1 has positive refractive power, its object side S1 is convex, and its image side S2 is convex, and both the object side S1 and the image side S2 of the first lens E1 are aspherical.

第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面,并且第二透镜E2的物侧面S3和像侧面S4均为非球面。The second lens E2 has negative refractive power, its object side S3 is convex, and its image side S4 is concave, and both the object side S3 and the image side S4 of the second lens E2 are aspherical.

第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凸面,并且第三透镜E3的物侧面S5和像侧面S6均为非球面。The third lens E3 has negative refractive power, its object side S5 is concave, and its image side S6 is convex, and both the object side S5 and the image side S6 of the third lens E3 are aspherical.

第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面,并且第四透镜E4的物侧面S7和像侧面S8均为非球面。The fourth lens E4 has positive refractive power, its object side S7 is concave, and its image side S8 is convex, and both the object side S7 and the image side S8 of the fourth lens E4 are aspherical.

第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面,并且第五透镜E5的物侧面S9和像侧面S10均为非球面。The fifth lens E5 has positive refractive power, the object side S9 is convex, the image side S10 is convex, and both the object side S9 and the image side S10 of the fifth lens E5 are aspherical.

第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面,并且第六透镜E6的物侧面S11和像侧面S12均为非球面。The sixth lens E6 has a negative refractive power, its object side S11 is convex, and its image side S12 is concave, and both the object side S11 and the image side S12 of the sixth lens E6 are aspherical.

可选地,光学成像镜头还可包括具有物侧面S13和像侧面S14的滤光片E7。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。Optionally, the optical imaging lens may further include a filter E7 having an object side S13 and an image side S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging plane S15.

可选地,可在物侧与第一透镜E1之间设置用于限制光束的光阑STO,以提升光学成像镜头的成像质量。Optionally, a diaphragm STO for limiting light beams may be provided between the object side and the first lens E1 to improve the imaging quality of the optical imaging lens.

表7示出了实施例3的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表8示出了可用于实施例3中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表9示出了实施例3中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、光学成像镜头的光学总长度TTL以及光学成像镜头成像面S15上有效像素区域对角线长的一半ImgH。Table 7 shows the surface type, radius of curvature, thickness, material and conic coefficient of each lens of the optical imaging lens of Example 3, wherein the units of radius of curvature and thickness are millimeters (mm). Table 8 shows the high-order term coefficients that can be used for each aspheric mirror surface in Embodiment 3, wherein each aspheric surface type can be defined by the formula (1) given in Embodiment 1 above. Table 9 shows the effective focal lengths f1 to f6 of each lens in embodiment 3, the total effective focal length f of the optical imaging lens, the total optical length TTL of the optical imaging lens, and the diagonal length of the effective pixel area on the imaging surface S15 of the optical imaging lens half of ImgH.

Figure BDA0001365831590000161
Figure BDA0001365831590000161

表7Table 7

Figure BDA0001365831590000162
Figure BDA0001365831590000162

Figure BDA0001365831590000171
Figure BDA0001365831590000171

表8Table 8

Figure BDA0001365831590000172
Figure BDA0001365831590000172

表9Table 9

图6A示出了实施例3的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图6B示出了实施例3的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6C示出了实施例3的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图6D示出了实施例3的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图6A至图6D可知,实施例3所给出的光学成像镜头能够实现良好的成像品质。FIG. 6A shows the axial chromatic aberration curve of the optical imaging lens of Embodiment 3, which indicates that the focal points of light rays of different wavelengths passing through the lens deviate. FIG. 6B shows the astigmatism curve of the optical imaging lens of Embodiment 3, which shows meridional image plane curvature and sagittal image plane curvature. FIG. 6C shows the distortion curves of the optical imaging lens of Embodiment 3, which represent the distortion values under different viewing angles. FIG. 6D shows the magnification chromatic aberration curve of the optical imaging lens of Embodiment 3, which represents the deviation of different image heights on the imaging plane after the light passes through the lens. According to FIG. 6A to FIG. 6D , it can be seen that the optical imaging lens provided in Embodiment 3 can achieve good imaging quality.

实施例4Example 4

以下参照图7至图8D描述了根据本申请实施例4的光学成像镜头。图7示出了根据本申请实施例4的光学成像镜头的结构示意图。The optical imaging lens according to Embodiment 4 of the present application is described below with reference to FIGS. 7 to 8D . FIG. 7 shows a schematic structural diagram of an optical imaging lens according to Embodiment 4 of the present application.

如图7所示,光学成像镜头沿着光轴从物侧至成像侧依序包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6和成像面S15。光学成像镜头还可包括设置于成像面S15的感光元件。As shown in Figure 7, the optical imaging lens includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens along the optical axis from the object side to the imaging side. E6 and imaging surface S15. The optical imaging lens may further include a photosensitive element disposed on the imaging surface S15.

第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面,并且第一透镜E1的物侧面S1和像侧面S2均为非球面。The first lens E1 has positive refractive power, its object side S1 is convex, and its image side S2 is concave, and both the object side S1 and the image side S2 of the first lens E1 are aspherical.

第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面,并且第二透镜E2的物侧面S3和像侧面S4均为非球面。The second lens E2 has negative refractive power, its object side S3 is convex, and its image side S4 is concave, and both the object side S3 and the image side S4 of the second lens E2 are aspherical.

第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面,并且第三透镜E3的物侧面S5和像侧面S6均为非球面。The third lens E3 has a negative refractive power, its object side S5 is convex, and its image side S6 is concave, and both the object side S5 and the image side S6 of the third lens E3 are aspherical.

第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面,并且第四透镜E4的物侧面S7和像侧面S8均为非球面。The fourth lens E4 has positive refractive power, its object side S7 is concave, and its image side S8 is convex, and both the object side S7 and the image side S8 of the fourth lens E4 are aspherical.

第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面,并且第五透镜E5的物侧面S9和像侧面S10均为非球面。The fifth lens E5 has negative refractive power, its object side S9 is concave, and its image side S10 is concave, and both the object side S9 and the image side S10 of the fifth lens E5 are aspherical.

第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面,并且第六透镜E6的物侧面S11和像侧面S12均为非球面。The sixth lens E6 has negative refractive power, its object side S11 is convex, and its image side S12 is concave, and both the object side S11 and the image side S12 of the sixth lens E6 are aspherical.

可选地,光学成像镜头还可包括具有物侧面S13和像侧面S14的滤光片E7。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。Optionally, the optical imaging lens may further include a filter E7 having an object side S13 and an image side S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging plane S15.

可选地,可在物侧与第一透镜E1之间设置用于限制光束的光阑STO,以提升光学成像镜头的成像质量。Optionally, a diaphragm STO for limiting light beams may be provided between the object side and the first lens E1 to improve the imaging quality of the optical imaging lens.

表10示出了实施例4的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表11示出了可用于实施例4中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表12示出了实施例4中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、光学成像镜头的光学总长度TTL以及光学成像镜头成像面S15上有效像素区域对角线长的一半ImgH。Table 10 shows the surface type, radius of curvature, thickness, material and conic coefficient of each lens of the optical imaging lens of Example 4, wherein the units of radius of curvature and thickness are millimeters (mm). Table 11 shows the high-order term coefficients that can be used for each aspheric mirror surface in Embodiment 4, wherein each aspheric surface type can be defined by the formula (1) given in Embodiment 1 above. Table 12 shows the effective focal lengths f1 to f6 of each lens in embodiment 4, the total effective focal length f of the optical imaging lens, the total optical length TTL of the optical imaging lens, and the diagonal length of the effective pixel area on the imaging surface S15 of the optical imaging lens half of ImgH.

Figure BDA0001365831590000181
Figure BDA0001365831590000181

Figure BDA0001365831590000191
Figure BDA0001365831590000191

表10Table 10

面号face number A4A4 A6A6 A8A8 A10A10 A12A12 A14A14 A16A16 S1S1 6.1230E-026.1230E-02 9.6914E-039.6914E-03 -5.1005E-02-5.1005E-02 7.8296E-027.8296E-02 -7.1415E-02-7.1415E-02 3.3084E-023.3084E-02 -6.9589E-03-6.9589E-03 S2S2 -1.2414E-01-1.2414E-01 1.6440E-011.6440E-01 -3.9313E-02-3.9313E-02 -1.9603E-01-1.9603E-01 2.7475E-012.7475E-01 -1.5843E-01-1.5843E-01 3.4275E-023.4275E-02 S3S3 -1.8033E-01-1.8033E-01 3.5444E-013.5444E-01 -1.2398E-01-1.2398E-01 -3.0374E-01-3.0374E-01 4.9972E-014.9972E-01 -2.9791E-01-2.9791E-01 6.3553E-026.3553E-02 S4S4 2.1451E-022.1451E-02 1.5404E-011.5404E-01 -1.5537E-02-1.5537E-02 -1.1853E-01-1.1853E-01 1.0508E-011.0508E-01 5.1356E-025.1356E-02 -2.8879E-02-2.8879E-02 S5S5 -1.2527E-01-1.2527E-01 -9.9046E-04-9.9046E-04 7.5964E-037.5964E-03 -1.0241E-01-1.0241E-01 2.8890E-012.8890E-01 -3.6913E-01-3.6913E-01 1.9943E-011.9943E-01 S6S6 -8.5292E-02-8.5292E-02 -3.2348E-02-3.2348E-02 8.2299E-038.2299E-03 -4.9017E-02-4.9017E-02 8.9898E-028.9898E-02 -6.4413E-02-6.4413E-02 1.9961E-021.9961E-02 S7S7 2.6421E-022.6421E-02 1.9031E-021.9031E-02 -5.9176E-02-5.9176E-02 -8.5956E-03-8.5956E-03 3.6390E-023.6390E-02 -2.1129E-02-2.1129E-02 4.3941E-034.3941E-03 S8S8 -6.4075E-02-6.4075E-02 1.3629E-011.3629E-01 -1.5878E-01-1.5878E-01 9.8196E-029.8196E-02 -3.1266E-02-3.1266E-02 4.2273E-034.2273E-03 -1.0927E-04-1.0927E-04 S9S9 9.8044E-029.8044E-02 -1.8956E-01-1.8956E-01 3.7191E-023.7191E-02 4.3633E-024.3633E-02 -2.6347E-02-2.6347E-02 5.6607E-035.6607E-03 -4.4081E-04-4.4081E-04 S10S10 1.8839E-011.8839E-01 -3.4407E-01-3.4407E-01 2.1472E-012.1472E-01 -7.4134E-02-7.4134E-02 1.5413E-021.5413E-02 -1.7953E-03-1.7953E-03 8.9108E-058.9108E-05 S11S11 -1.7275E-01-1.7275E-01 1.0926E-021.0926E-02 4.5365E-024.5365E-02 -2.2304E-02-2.2304E-02 4.7859E-034.7859E-03 -5.0298E-04-5.0298E-04 2.1086E-052.1086E-05 S12S12 -1.8744E-01-1.8744E-01 1.1148E-011.1148E-01 -3.9727E-02-3.9727E-02 8.4697E-038.4697E-03 -1.0740E-03-1.0740E-03 7.4205E-057.4205E-05 -2.1123E-06-2.1123E-06

表11Table 11

Figure BDA0001365831590000192
Figure BDA0001365831590000192

表12Table 12

图8A示出了实施例4的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图8B示出了实施例4的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图8C示出了实施例4的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图8D示出了实施例4的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图8A至图8D可知,实施例4所给出的光学成像镜头能够实现良好的成像品质。FIG. 8A shows the axial chromatic aberration curve of the optical imaging lens of Embodiment 4, which indicates that the focal points of light rays of different wavelengths passing through the lens deviate. FIG. 8B shows the astigmatism curves of the optical imaging lens of Embodiment 4, which represent meridional image plane curvature and sagittal image plane curvature. FIG. 8C shows the distortion curves of the optical imaging lens of Embodiment 4, which represent the distortion values under different viewing angles. FIG. 8D shows the magnification chromatic aberration curve of the optical imaging lens of Embodiment 4, which represents the deviation of different image heights on the imaging plane after light passes through the lens. According to FIG. 8A to FIG. 8D , it can be known that the optical imaging lens provided in Embodiment 4 can achieve good imaging quality.

实施例5Example 5

以下参照图9至图10D描述了根据本申请实施例5的光学成像镜头。图9示出了根据本申请实施例5的光学成像镜头的结构示意图。The optical imaging lens according to Embodiment 5 of the present application is described below with reference to FIGS. 9 to 10D . FIG. 9 shows a schematic structural diagram of an optical imaging lens according to Embodiment 5 of the present application.

如图9所示,光学成像镜头沿着光轴从物侧至成像侧依序包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6和成像面S15。光学成像镜头还可包括设置于成像面S15的感光元件。As shown in Figure 9, the optical imaging lens includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens along the optical axis from the object side to the imaging side. E6 and imaging surface S15. The optical imaging lens may further include a photosensitive element disposed on the imaging surface S15.

第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面,并且第一透镜E1的物侧面S1和像侧面S2均为非球面。The first lens E1 has positive refractive power, its object side S1 is convex, and its image side S2 is concave, and both the object side S1 and the image side S2 of the first lens E1 are aspherical.

第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面,并且第二透镜E2的物侧面S3和像侧面S4均为非球面。The second lens E2 has negative refractive power, its object side S3 is convex, and its image side S4 is concave, and both the object side S3 and the image side S4 of the second lens E2 are aspherical.

第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面,并且第三透镜E3的物侧面S5和像侧面S6均为非球面。The third lens E3 has a negative refractive power, its object side S5 is convex, and its image side S6 is concave, and both the object side S5 and the image side S6 of the third lens E3 are aspherical.

第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面,并且第四透镜E4的物侧面S7和像侧面S8均为非球面。The fourth lens E4 has positive refractive power, its object side S7 is concave, and its image side S8 is convex, and both the object side S7 and the image side S8 of the fourth lens E4 are aspherical.

第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凸面,并且第五透镜E5的物侧面S9和像侧面S10均为非球面。The fifth lens E5 has negative refractive power, its object side S9 is concave, and its image side S10 is convex, and both the object side S9 and the image side S10 of the fifth lens E5 are aspherical.

第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面,并且第六透镜E6的物侧面S11和像侧面S12均为非球面。The sixth lens E6 has a negative refractive power, its object side S11 is convex, and its image side S12 is concave, and both the object side S11 and the image side S12 of the sixth lens E6 are aspherical.

可选地,光学成像镜头还可包括具有物侧面S13和像侧面S14的滤光片E7。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。Optionally, the optical imaging lens may further include a filter E7 having an object side S13 and an image side S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging plane S15.

可选地,可在物侧与第一透镜E1之间设置用于限制光束的光阑STO,以提升光学成像镜头的成像质量。Optionally, a diaphragm STO for limiting light beams may be provided between the object side and the first lens E1 to improve the imaging quality of the optical imaging lens.

表13示出了实施例5的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表14示出了可用于实施例5中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表15示出了实施例5中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、光学成像镜头的光学总长度TTL以及光学成像镜头成像面S15上有效像素区域对角线长的一半ImgH。Table 13 shows the surface type, radius of curvature, thickness, material and conic coefficient of each lens of the optical imaging lens of Example 5, where the units of radius of curvature and thickness are millimeters (mm). Table 14 shows the high-order term coefficients that can be used for each aspheric mirror surface in Embodiment 5, wherein each aspheric surface type can be defined by the formula (1) given in Embodiment 1 above. Table 15 shows the effective focal lengths f1 to f6 of each lens in Embodiment 5, the total effective focal length f of the optical imaging lens, the total optical length TTL of the optical imaging lens, and the diagonal length of the effective pixel area on the imaging surface S15 of the optical imaging lens half of ImgH.

Figure BDA0001365831590000201
Figure BDA0001365831590000201

Figure BDA0001365831590000211
Figure BDA0001365831590000211

表13Table 13

面号face number A4A4 A6A6 A8A8 A10A10 A12A12 A14A14 A16A16 S1S1 6.0555E-026.0555E-02 5.8092E-035.8092E-03 -3.9480E-02-3.9480E-02 5.8671E-025.8671E-02 -5.2338E-02-5.2338E-02 2.3803E-022.3803E-02 -5.0346E-03-5.0346E-03 S2S2 -1.1654E-01-1.1654E-01 1.2450E-011.2450E-01 5.3256E-025.3256E-02 -3.1606E-01-3.1606E-01 3.6955E-013.6955E-01 -2.0285E-01-2.0285E-01 4.3708E-024.3708E-02 S3S3 -1.7228E-01-1.7228E-01 2.8757E-012.8757E-01 8.3000E-028.3000E-02 -6.2173E-01-6.2173E-01 7.8280E-017.8280E-01 -4.3955E-01-4.3955E-01 9.3372E-029.3372E-02 S4S4 2.2603E-022.2603E-02 1.2581E-011.2581E-01 8.2631E-028.2631E-02 -2.2266E-01-2.2266E-01 9.3248E-029.3248E-02 1.6527E-011.6527E-01 -9.7760E-02-9.7760E-02 S5S5 -1.2894E-01-1.2894E-01 2.4952E-032.4952E-03 -1.8943E-02-1.8943E-02 3.6619E-033.6619E-03 9.6905E-029.6905E-02 -1.9447E-01-1.9447E-01 1.3534E-011.3534E-01 S6S6 -8.4146E-02-8.4146E-02 -3.5177E-02-3.5177E-02 7.2855E-037.2855E-03 -3.4277E-02-3.4277E-02 6.4405E-026.4405E-02 -4.5877E-02-4.5877E-02 1.5085E-021.5085E-02 S7S7 3.3380E-023.3380E-02 -1.8211E-02-1.8211E-02 2.5208E-022.5208E-02 -1.2361E-01-1.2361E-01 1.2591E-011.2591E-01 -5.7510E-02-5.7510E-02 1.0340E-021.0340E-02 S8S8 -6.8643E-02-6.8643E-02 1.4479E-011.4479E-01 -1.8285E-01-1.8285E-01 1.2190E-011.2190E-01 -4.0771E-02-4.0771E-02 5.4992E-035.4992E-03 -8.5891E-05-8.5891E-05 S9S9 8.7425E-028.7425E-02 -1.5107E-01-1.5107E-01 -2.9102E-02-2.9102E-02 9.8208E-029.8208E-02 -4.9810E-02-4.9810E-02 1.0762E-021.0762E-02 -8.8214E-04-8.8214E-04 S10S10 1.9566E-011.9566E-01 -3.4582E-01-3.4582E-01 2.1208E-012.1208E-01 -7.0951E-02-7.0951E-02 1.4058E-021.4058E-02 -1.5267E-03-1.5267E-03 6.8260E-056.8260E-05 S11S11 -1.7476E-01-1.7476E-01 1.3446E-021.3446E-02 4.2603E-024.2603E-02 -2.0705E-02-2.0705E-02 4.3014E-034.3014E-03 -4.2969E-04-4.2969E-04 1.6715E-051.6715E-05 S12S12 -1.7663E-01-1.7663E-01 1.0740E-011.0740E-01 -4.0417E-02-4.0417E-02 9.2473E-039.2473E-03 -1.2904E-03-1.2904E-03 1.0147E-041.0147E-04 -3.4208E-06-3.4208E-06

表14Table 14

Figure BDA0001365831590000212
Figure BDA0001365831590000212

表15Table 15

图10A示出了实施例5的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图10B示出了实施例5的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图10C示出了实施例5的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图10D示出了实施例5的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图10A至图10D可知,实施例5所给出的光学成像镜头能够实现良好的成像品质。FIG. 10A shows the axial chromatic aberration curve of the optical imaging lens of Embodiment 5, which indicates that the focal points of light rays of different wavelengths passing through the lens deviate. FIG. 10B shows the astigmatism curve of the optical imaging lens of Embodiment 5, which shows meridional image plane curvature and sagittal image plane curvature. FIG. 10C shows the distortion curves of the optical imaging lens of Embodiment 5, which represent the distortion values under different viewing angles. FIG. 10D shows the magnification chromatic aberration curve of the optical imaging lens of Embodiment 5, which represents the deviation of different image heights on the imaging plane after light passes through the lens. According to FIG. 10A to FIG. 10D , it can be seen that the optical imaging lens provided in Embodiment 5 can achieve good imaging quality.

实施例6Example 6

以下参照图11至图12D描述了根据本申请实施例6的光学成像镜头。图11示出了根据本申请实施例6的光学成像镜头的结构示意图。The optical imaging lens according to Embodiment 6 of the present application is described below with reference to FIGS. 11 to 12D . FIG. 11 shows a schematic structural diagram of an optical imaging lens according to Embodiment 6 of the present application.

如图11所示,光学成像镜头沿着光轴从物侧至成像侧依序包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6和成像面S15。光学成像镜头还可包括设置于成像面S15的感光元件。As shown in Figure 11, the optical imaging lens includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens in sequence from the object side to the imaging side along the optical axis. E6 and imaging surface S15. The optical imaging lens may further include a photosensitive element disposed on the imaging surface S15.

第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面,并且第一透镜E1的物侧面S1和像侧面S2均为非球面。The first lens E1 has positive refractive power, its object side S1 is convex, and its image side S2 is concave, and both the object side S1 and the image side S2 of the first lens E1 are aspherical.

第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面,并且第二透镜E2的物侧面S3和像侧面S4均为非球面。The second lens E2 has negative refractive power, its object side S3 is convex, and its image side S4 is concave, and both the object side S3 and the image side S4 of the second lens E2 are aspherical.

第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面,并且第三透镜E3的物侧面S5和像侧面S6均为非球面。The third lens E3 has a negative refractive power, its object side S5 is convex, and its image side S6 is concave, and both the object side S5 and the image side S6 of the third lens E3 are aspherical.

第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面,并且第四透镜E4的物侧面S7和像侧面S8均为非球面。The fourth lens E4 has positive refractive power, its object side S7 is convex, and its image side S8 is convex, and both the object side S7 and the image side S8 of the fourth lens E4 are aspherical.

第五透镜E5具有正光焦度,其物侧面S9为凹面,像侧面S10为凸面,并且第五透镜E5的物侧面S9和像侧面S10均为非球面。The fifth lens E5 has positive refractive power, its object side S9 is concave, and its image side S10 is convex, and both the object side S9 and the image side S10 of the fifth lens E5 are aspherical.

第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面,并且第六透镜E6的物侧面S11和像侧面S12均为非球面。The sixth lens E6 has a negative refractive power, its object side S11 is convex, and its image side S12 is concave, and both the object side S11 and the image side S12 of the sixth lens E6 are aspherical.

可选地,光学成像镜头还可包括具有物侧面S13和像侧面S14的滤光片E7。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。Optionally, the optical imaging lens may further include a filter E7 having an object side S13 and an image side S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging plane S15.

可选地,可在物侧与第一透镜E1之间设置用于限制光束的光阑STO,以提升光学成像镜头的成像质量。Optionally, a diaphragm STO for limiting light beams may be provided between the object side and the first lens E1 to improve the imaging quality of the optical imaging lens.

表16示出了实施例6的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表17示出了可用于实施例6中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表18示出了实施例6中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、光学成像镜头的光学总长度TTL以及光学成像镜头成像面S15上有效像素区域对角线长的一半ImgH。Table 16 shows the surface type, radius of curvature, thickness, material and conic coefficient of each lens of the optical imaging lens of Example 6, where the units of radius of curvature and thickness are millimeters (mm). Table 17 shows the high-order term coefficients that can be used for each aspheric mirror surface in Embodiment 6, wherein each aspheric surface type can be defined by the formula (1) given in Embodiment 1 above. Table 18 shows the effective focal lengths f1 to f6 of each lens in embodiment 6, the total effective focal length f of the optical imaging lens, the total optical length TTL of the optical imaging lens, and the diagonal length of the effective pixel area on the imaging surface S15 of the optical imaging lens half of ImgH.

Figure BDA0001365831590000231
Figure BDA0001365831590000231

表16Table 16

面号face number A4A4 A6A6 A8A8 A10A10 A12A12 A14A14 A16A16 S1S1 6.1804E-026.1804E-02 3.4033E-033.4033E-03 -3.4696E-02-3.4696E-02 5.8950E-025.8950E-02 -6.0090E-02-6.0090E-02 3.0669E-023.0669E-02 -7.2163E-03-7.2163E-03 S2S2 -1.0144E-01-1.0144E-01 1.0806E-011.0806E-01 1.4464E-021.4464E-02 -2.0290E-01-2.0290E-01 2.4999E-012.4999E-01 -1.4087E-01-1.4087E-01 3.0573E-023.0573E-02 S3S3 -1.6119E-01-1.6119E-01 2.5986E-012.5986E-01 2.7605E-022.7605E-02 -3.7524E-01-3.7524E-01 4.3038E-014.3038E-01 -2.0243E-01-2.0243E-01 3.2002E-023.2002E-02 S4S4 3.1557E-023.1557E-02 5.7324E-025.7324E-02 2.7530E-012.7530E-01 -6.2792E-01-6.2792E-01 7.1338E-017.1338E-01 -4.1032E-01-4.1032E-01 1.3174E-011.3174E-01 S5S5 -1.1395E-01-1.1395E-01 -1.6726E-01-1.6726E-01 8.0150E-018.0150E-01 -2.1428E+00-2.1428E+00 3.2208E+003.2208E+00 -2.5841E+00-2.5841E+00 8.8092E-018.8092E-01 S6S6 -9.8597E-02-9.8597E-02 -6.1531E-02-6.1531E-02 1.1663E-011.1663E-01 -2.0560E-01-2.0560E-01 2.1471E-012.1471E-01 -1.1364E-01-1.1364E-01 2.5674E-022.5674E-02 S7S7 2.3282E-022.3282E-02 1.6671E-021.6671E-02 -4.8096E-02-4.8096E-02 6.1130E-036.1130E-03 1.2506E-021.2506E-02 -8.0734E-03-8.0734E-03 1.6092E-031.6092E-03 S8S8 -5.7454E-02-5.7454E-02 1.1753E-011.1753E-01 -1.2888E-01-1.2888E-01 8.9872E-028.9872E-02 -3.7302E-02-3.7302E-02 7.9728E-037.9728E-03 -6.7447E-04-6.7447E-04 S9S9 1.2721E-011.2721E-01 -2.8510E-01-2.8510E-01 1.4365E-011.4365E-01 -1.4727E-02-1.4727E-02 -9.6776E-03-9.6776E-03 3.3687E-033.3687E-03 -3.2997E-04-3.2997E-04 S10S10 2.4459E-012.4459E-01 -4.6426E-01-4.6426E-01 3.2676E-013.2676E-01 -1.2764E-01-1.2764E-01 2.9345E-022.9345E-02 -3.6789E-03-3.6789E-03 1.9267E-041.9267E-04 S11S11 -2.1334E-01-2.1334E-01 1.8068E-021.8068E-02 6.4621E-026.4621E-02 -3.4958E-02-3.4958E-02 8.1245E-038.1245E-03 -9.1807E-04-9.1807E-04 4.1233E-054.1233E-05 S12S12 -2.0793E-01-2.0793E-01 1.4170E-011.4170E-01 -5.8523E-02-5.8523E-02 1.4868E-021.4868E-02 -2.3286E-03-2.3286E-03 2.0683E-042.0683E-04 -7.9281E-06-7.9281E-06

表17Table 17

Figure BDA0001365831590000241
Figure BDA0001365831590000241

表18Table 18

图12A示出了实施例6的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图12B示出了实施例6的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图12C示出了实施例6的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图12D示出了实施例6的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图12A至图12D可知,实施例6所给出的光学成像镜头能够实现良好的成像品质。FIG. 12A shows the axial chromatic aberration curve of the optical imaging lens of Embodiment 6, which indicates that the focal points of light rays of different wavelengths passing through the lens deviate. FIG. 12B shows the astigmatism curve of the optical imaging lens of Embodiment 6, which shows meridional image plane curvature and sagittal image plane curvature. FIG. 12C shows the distortion curves of the optical imaging lens of Embodiment 6, which represent the distortion values under different viewing angles. FIG. 12D shows the magnification chromatic aberration curve of the optical imaging lens of Embodiment 6, which represents the deviation of different image heights on the imaging plane after light passes through the lens. According to FIG. 12A to FIG. 12D , it can be seen that the optical imaging lens provided in Embodiment 6 can achieve good imaging quality.

实施例7Example 7

以下参照图13至图14D描述了根据本申请实施例7的光学成像镜头。图13示出了根据本申请实施例7的光学成像镜头的结构示意图。The optical imaging lens according to Embodiment 7 of the present application is described below with reference to FIGS. 13 to 14D . FIG. 13 shows a schematic structural diagram of an optical imaging lens according to Embodiment 7 of the present application.

如图13所示,光学成像镜头沿着光轴从物侧至成像侧依序包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6和成像面S15。光学成像镜头还可包括设置于成像面S15的感光元件。As shown in Figure 13, the optical imaging lens includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens in sequence from the object side to the imaging side along the optical axis. E6 and imaging surface S15. The optical imaging lens may further include a photosensitive element disposed on the imaging surface S15.

第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面,并且第一透镜E1的物侧面S1和像侧面S2均为非球面。The first lens E1 has positive refractive power, its object side S1 is convex, and its image side S2 is concave, and both the object side S1 and the image side S2 of the first lens E1 are aspherical.

第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面,并且第二透镜E2的物侧面S3和像侧面S4均为非球面。The second lens E2 has negative refractive power, its object side S3 is convex, and its image side S4 is concave, and both the object side S3 and the image side S4 of the second lens E2 are aspherical.

第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面,并且第三透镜E3的物侧面S5和像侧面S6均为非球面。The third lens E3 has a negative refractive power, its object side S5 is convex, and its image side S6 is concave, and both the object side S5 and the image side S6 of the third lens E3 are aspherical.

第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面,并且第四透镜E4的物侧面S7和像侧面S8均为非球面。The fourth lens E4 has positive refractive power, its object side S7 is concave, and its image side S8 is convex, and both the object side S7 and the image side S8 of the fourth lens E4 are aspherical.

第五透镜E5具有正光焦度,其物侧面S9为凹面,像侧面S10为凸面,并且第五透镜E5的物侧面S9和像侧面S10均为非球面。The fifth lens E5 has positive refractive power, its object side S9 is concave, and its image side S10 is convex, and both the object side S9 and the image side S10 of the fifth lens E5 are aspherical.

第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面S12为凹面,并且第六透镜E6的物侧面S11和像侧面S12均为非球面。The sixth lens E6 has negative refractive power, the object side S11 is concave, the image side S12 is concave, and both the object side S11 and the image side S12 of the sixth lens E6 are aspherical.

可选地,光学成像镜头还可包括具有物侧面S13和像侧面S14的滤光片E7。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。Optionally, the optical imaging lens may further include a filter E7 having an object side S13 and an image side S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging plane S15.

可选地,可在物侧与第一透镜E1之间设置用于限制光束的光阑STO,以提升光学成像镜头的成像质量。Optionally, a diaphragm STO for limiting light beams may be provided between the object side and the first lens E1 to improve the imaging quality of the optical imaging lens.

表19示出了实施例7的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表20示出了可用于实施例7中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表21示出了实施例7中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、光学成像镜头的光学总长度TTL以及光学成像镜头成像面S15上有效像素区域对角线长的一半ImgH。Table 19 shows the surface type, radius of curvature, thickness, material and conic coefficient of each lens of the optical imaging lens of Example 7, where the units of radius of curvature and thickness are millimeters (mm). Table 20 shows the high-order term coefficients that can be used for each aspheric mirror surface in Embodiment 7, wherein each aspheric surface type can be defined by the formula (1) given in Embodiment 1 above. Table 21 shows the effective focal lengths f1 to f6 of each lens in Embodiment 7, the total effective focal length f of the optical imaging lens, the total optical length TTL of the optical imaging lens, and the diagonal length of the effective pixel area on the imaging surface S15 of the optical imaging lens half of ImgH.

Figure BDA0001365831590000251
Figure BDA0001365831590000251

表19Table 19

Figure BDA0001365831590000252
Figure BDA0001365831590000252

Figure BDA0001365831590000261
Figure BDA0001365831590000261

表20Table 20

Figure BDA0001365831590000262
Figure BDA0001365831590000262

表21Table 21

图14A示出了实施例7的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图14B示出了实施例7的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图14C示出了实施例7的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图14D示出了实施例7的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图14A至图14D可知,实施例7所给出的光学成像镜头能够实现良好的成像品质。FIG. 14A shows the axial chromatic aberration curve of the optical imaging lens of Example 7, which indicates that the focal points of light rays of different wavelengths passing through the lens deviate. FIG. 14B shows the astigmatism curve of the optical imaging lens of Embodiment 7, which shows meridional image plane curvature and sagittal image plane curvature. FIG. 14C shows the distortion curves of the optical imaging lens of Embodiment 7, which represent the distortion values under different viewing angles. FIG. 14D shows the magnification chromatic aberration curve of the optical imaging lens of Embodiment 7, which represents the deviation of different image heights on the imaging plane after light passes through the lens. According to FIG. 14A to FIG. 14D , it can be seen that the optical imaging lens provided in Embodiment 7 can achieve good imaging quality.

实施例8Example 8

以下参照图15至图16D描述了根据本申请实施例8的光学成像镜头。图15示出了根据本申请实施例8的光学成像镜头的结构示意图。An optical imaging lens according to Embodiment 8 of the present application is described below with reference to FIGS. 15 to 16D . FIG. 15 shows a schematic structural diagram of an optical imaging lens according to Embodiment 8 of the present application.

如图15所示,光学成像镜头沿着光轴从物侧至成像侧依序包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6和成像面S15。光学成像镜头还可包括设置于成像面S15的感光元件。As shown in Figure 15, the optical imaging lens includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens in sequence from the object side to the imaging side along the optical axis. E6 and imaging surface S15. The optical imaging lens may further include a photosensitive element disposed on the imaging surface S15.

第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面,并且第一透镜E1的物侧面S1和像侧面S2均为非球面。The first lens E1 has positive refractive power, its object side S1 is convex, and its image side S2 is concave, and both the object side S1 and the image side S2 of the first lens E1 are aspherical.

第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面,并且第二透镜E2的物侧面S3和像侧面S4均为非球面。The second lens E2 has negative refractive power, its object side S3 is convex, and its image side S4 is concave, and both the object side S3 and the image side S4 of the second lens E2 are aspherical.

第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面,并且第三透镜E3的物侧面S5和像侧面S6均为非球面。The third lens E3 has a negative refractive power, its object side S5 is convex, and its image side S6 is concave, and both the object side S5 and the image side S6 of the third lens E3 are aspherical.

第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面,并且第四透镜E4的物侧面S7和像侧面S8均为非球面。The fourth lens E4 has positive refractive power, its object side S7 is concave, and its image side S8 is convex, and both the object side S7 and the image side S8 of the fourth lens E4 are aspherical.

第五透镜E5具有正光焦度,其物侧面S9为凹面,像侧面S10为凸面,并且第五透镜E5的物侧面S9和像侧面S10均为非球面。The fifth lens E5 has positive refractive power, its object side S9 is concave, and its image side S10 is convex, and both the object side S9 and the image side S10 of the fifth lens E5 are aspherical.

第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面,并且第六透镜E6的物侧面S11和像侧面S12均为非球面。The sixth lens E6 has a negative refractive power, its object side S11 is convex, and its image side S12 is concave, and both the object side S11 and the image side S12 of the sixth lens E6 are aspherical.

可选地,光学成像镜头还可包括具有物侧面S13和像侧面S14的滤光片E7。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。Optionally, the optical imaging lens may further include a filter E7 having an object side S13 and an image side S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging plane S15.

可选地,可在物侧与第一透镜E1之间设置用于限制光束的光阑STO,以提升光学成像镜头的成像质量。Optionally, a diaphragm STO for limiting light beams may be provided between the object side and the first lens E1 to improve the imaging quality of the optical imaging lens.

表22示出了实施例8的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表23示出了可用于实施例8中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表24示出了实施例8中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、光学成像镜头的光学总长度TTL以及光学成像镜头成像面S15上有效像素区域对角线长的一半ImgH。Table 22 shows the surface type, radius of curvature, thickness, material and conic coefficient of each lens of the optical imaging lens of Example 8, wherein the units of radius of curvature and thickness are millimeters (mm). Table 23 shows the high-order term coefficients that can be used for each aspheric mirror surface in Embodiment 8, wherein each aspheric surface type can be defined by the formula (1) given in Embodiment 1 above. Table 24 shows the effective focal lengths f1 to f6 of each lens in Embodiment 8, the total effective focal length f of the optical imaging lens, the total optical length TTL of the optical imaging lens, and the diagonal length of the effective pixel area on the imaging surface S15 of the optical imaging lens half of ImgH.

Figure BDA0001365831590000271
Figure BDA0001365831590000271

Figure BDA0001365831590000281
Figure BDA0001365831590000281

表22Table 22

面号face number A4A4 A6A6 A8A8 A10A10 A12A12 A14A14 A16A16 S1S1 6.1837E-026.1837E-02 -2.9733E-04-2.9733E-04 -3.0053E-02-3.0053E-02 5.5907E-025.5907E-02 -5.9103E-02-5.9103E-02 3.0452E-023.0452E-02 -6.7809E-03-6.7809E-03 S2S2 -1.2415E-01-1.2415E-01 1.7790E-011.7790E-01 -1.4983E-01-1.4983E-01 1.0919E-011.0919E-01 -1.2135E-01-1.2135E-01 8.9936E-028.9936E-02 -2.6450E-02-2.6450E-02 S3S3 -1.7685E-01-1.7685E-01 3.5182E-013.5182E-01 -2.0997E-01-2.0997E-01 6.6223E-026.6223E-02 -1.1206E-01-1.1206E-01 1.6445E-011.6445E-01 -7.0782E-02-7.0782E-02 S4S4 1.8047E-021.8047E-02 1.7774E-011.7774E-01 -1.0651E-01-1.0651E-01 1.5061E-011.5061E-01 -3.2325E-01-3.2325E-01 4.0698E-014.0698E-01 -1.5425E-01-1.5425E-01 S5S5 -1.2481E-01-1.2481E-01 -1.9806E-02-1.9806E-02 6.0802E-026.0802E-02 -1.3055E-01-1.3055E-01 2.0630E-012.0630E-01 -2.2318E-01-2.2318E-01 1.2821E-011.2821E-01 S6S6 -8.5553E-02-8.5553E-02 -2.4181E-02-2.4181E-02 -3.2193E-02-3.2193E-02 3.6590E-023.6590E-02 -1.9870E-03-1.9870E-03 -1.5447E-02-1.5447E-02 9.8993E-039.8993E-03 S7S7 3.4535E-023.4535E-02 -1.3846E-02-1.3846E-02 -4.7239E-03-4.7239E-03 -7.2329E-02-7.2329E-02 8.6801E-028.6801E-02 -4.3572E-02-4.3572E-02 8.4484E-038.4484E-03 S8S8 -5.5323E-02-5.5323E-02 1.0516E-011.0516E-01 -1.4195E-01-1.4195E-01 1.0406E-011.0406E-01 -3.9620E-02-3.9620E-02 6.8561E-036.8561E-03 -3.7311E-04-3.7311E-04 S9S9 8.4168E-028.4168E-02 -1.5180E-01-1.5180E-01 -2.5127E-02-2.5127E-02 9.2761E-029.2761E-02 -4.6599E-02-4.6599E-02 9.9491E-039.9491E-03 -8.0889E-04-8.0889E-04 S10S10 1.9624E-011.9624E-01 -3.4144E-01-3.4144E-01 2.0476E-012.0476E-01 -6.6321E-02-6.6321E-02 1.2664E-021.2664E-02 -1.3195E-03-1.3195E-03 5.5601E-055.5601E-05 S11S11 -1.8011E-01-1.8011E-01 1.4125E-021.4125E-02 4.4682E-024.4682E-02 -2.1922E-02-2.1922E-02 4.5761E-034.5761E-03 -4.5554E-04-4.5554E-04 1.7374E-051.7374E-05 S12S12 -1.7873E-01-1.7873E-01 1.0995E-011.0995E-01 -4.2208E-02-4.2208E-02 9.9545E-039.9545E-03 -1.4527E-03-1.4527E-03 1.2120E-041.2120E-04 -4.3871E-06-4.3871E-06

表23Table 23

Figure BDA0001365831590000282
Figure BDA0001365831590000282

表24Table 24

图16A示出了实施例8的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图16B示出了实施例8的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图16C示出了实施例8的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图16D示出了实施例8的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图16A至图16D可知,实施例8所给出的光学成像镜头能够实现良好的成像品质。FIG. 16A shows the axial chromatic aberration curve of the optical imaging lens of Embodiment 8, which indicates that the focal points of light rays of different wavelengths passing through the lens deviate. FIG. 16B shows the astigmatism curve of the optical imaging lens of Embodiment 8, which shows meridional image plane curvature and sagittal image plane curvature. FIG. 16C shows the distortion curves of the optical imaging lens of Embodiment 8, which represent the distortion values under different viewing angles. FIG. 16D shows the magnification chromatic aberration curve of the optical imaging lens of Embodiment 8, which represents the deviation of different image heights on the imaging plane after light passes through the lens. According to FIG. 16A to FIG. 16D , it can be seen that the optical imaging lens provided in Embodiment 8 can achieve good imaging quality.

实施例9Example 9

以下参照图17至图18D描述了根据本申请实施例9的光学成像镜头。图17示出了根据本申请实施例9的光学成像镜头的结构示意图。An optical imaging lens according to Embodiment 9 of the present application is described below with reference to FIGS. 17 to 18D . FIG. 17 shows a schematic structural diagram of an optical imaging lens according to Embodiment 9 of the present application.

如图17所示,光学成像镜头沿着光轴从物侧至成像侧依序包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6和成像面S15。光学成像镜头还可包括设置于成像面S15的感光元件。As shown in Figure 17, the optical imaging lens includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens in sequence from the object side to the imaging side along the optical axis. E6 and imaging surface S15. The optical imaging lens may further include a photosensitive element disposed on the imaging surface S15.

第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面,并且第一透镜E1的物侧面S1和像侧面S2均为非球面。The first lens E1 has positive refractive power, its object side S1 is convex, and its image side S2 is concave, and both the object side S1 and the image side S2 of the first lens E1 are aspherical.

第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面,并且第二透镜E2的物侧面S3和像侧面S4均为非球面。The second lens E2 has negative refractive power, its object side S3 is convex, and its image side S4 is concave, and both the object side S3 and the image side S4 of the second lens E2 are aspherical.

第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面,并且第三透镜E3的物侧面S5和像侧面S6均为非球面。The third lens E3 has positive refractive power, its object side S5 is convex, and its image side S6 is convex, and both the object side S5 and the image side S6 of the third lens E3 are aspherical.

第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面,并且第四透镜E4的物侧面S7和像侧面S8均为非球面。The fourth lens E4 has positive refractive power, its object side S7 is concave, and its image side S8 is convex, and both the object side S7 and the image side S8 of the fourth lens E4 are aspherical.

第五透镜E5具有正光焦度,其物侧面S9为凹面,像侧面S10为凸面,并且第五透镜E5的物侧面S9和像侧面S10均为非球面。The fifth lens E5 has positive refractive power, its object side S9 is concave, and its image side S10 is convex, and both the object side S9 and the image side S10 of the fifth lens E5 are aspherical.

第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面,并且第六透镜E6的物侧面S11和像侧面S12均为非球面。The sixth lens E6 has a negative refractive power, its object side S11 is convex, and its image side S12 is concave, and both the object side S11 and the image side S12 of the sixth lens E6 are aspherical.

可选地,光学成像镜头还可包括具有物侧面S13和像侧面S14的滤光片E7。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。Optionally, the optical imaging lens may further include a filter E7 having an object side S13 and an image side S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging plane S15.

可选地,可在物侧与第一透镜E1之间设置用于限制光束的光阑STO,以提升光学成像镜头的成像质量。Optionally, a diaphragm STO for limiting light beams may be provided between the object side and the first lens E1 to improve the imaging quality of the optical imaging lens.

表25示出了实施例9的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表26示出了可用于实施例9中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表27示出了实施例9中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、光学成像镜头的光学总长度TTL以及光学成像镜头成像面S15上有效像素区域对角线长的一半ImgH。Table 25 shows the surface type, radius of curvature, thickness, material and conic coefficient of each lens of the optical imaging lens of Example 9, where the units of radius of curvature and thickness are millimeters (mm). Table 26 shows the high-order term coefficients that can be used for each aspheric mirror surface in Embodiment 9, wherein each aspheric surface type can be defined by the formula (1) given in Embodiment 1 above. Table 27 shows the effective focal lengths f1 to f6 of each lens in Embodiment 9, the total effective focal length f of the optical imaging lens, the total optical length TTL of the optical imaging lens, and the diagonal length of the effective pixel area on the imaging surface S15 of the optical imaging lens half of ImgH.

Figure BDA0001365831590000301
Figure BDA0001365831590000301

表25Table 25

面号face number A4A4 A6A6 A8A8 A10A10 A12A12 A14A14 A16A16 S1S1 5.4661E-025.4661E-02 2.0126E-022.0126E-02 -1.0234E-01-1.0234E-01 1.9923E-011.9923E-01 -2.1979E-01-2.1979E-01 1.2442E-011.2442E-01 -2.9404E-02-2.9404E-02 S2S2 -1.1236E-01-1.1236E-01 1.8584E-011.8584E-01 -1.3845E-01-1.3845E-01 -2.3930E-02-2.3930E-02 1.2707E-011.2707E-01 -9.0198E-02-9.0198E-02 1.9613E-021.9613E-02 S3S3 -1.9766E-01-1.9766E-01 4.4557E-014.4557E-01 -3.4579E-01-3.4579E-01 -9.2077E-02-9.2077E-02 4.5219E-014.5219E-01 -3.5421E-01-3.5421E-01 9.1892E-029.1892E-02 S4S4 3.3993E-023.3993E-02 1.7743E-011.7743E-01 -1.7989E-01-1.7989E-01 1.8027E-011.8027E-01 -2.6894E-01-2.6894E-01 3.4322E-013.4322E-01 -1.5499E-01-1.5499E-01 S5S5 -1.0733E-01-1.0733E-01 7.4068E-027.4068E-02 -4.0322E-01-4.0322E-01 1.0092E+001.0092E+00 -1.3669E+00-1.3669E+00 9.4378E-019.4378E-01 -2.4627E-01-2.4627E-01 S6S6 -6.2493E-02-6.2493E-02 -6.9770E-02-6.9770E-02 1.5363E-011.5363E-01 -2.9558E-01-2.9558E-01 3.2357E-013.2357E-01 -1.8233E-01-1.8233E-01 4.3273E-024.3273E-02 S7S7 2.8019E-022.8019E-02 6.2693E-036.2693E-03 -4.8186E-02-4.8186E-02 3.5442E-023.5442E-02 -1.5537E-02-1.5537E-02 3.2405E-033.2405E-03 -1.7281E-04-1.7281E-04 S8S8 -4.5520E-02-4.5520E-02 7.2976E-027.2976E-02 -9.4583E-02-9.4583E-02 8.1151E-028.1151E-02 -3.7846E-02-3.7846E-02 8.7795E-038.7795E-03 -8.0679E-04-8.0679E-04 S9S9 1.3842E-011.3842E-01 -2.6811E-01-2.6811E-01 1.5291E-011.5291E-01 -4.4325E-02-4.4325E-02 7.5135E-037.5135E-03 -7.1773E-04-7.1773E-04 2.7922E-052.7922E-05 S10S10 1.9802E-011.9802E-01 -3.5615E-01-3.5615E-01 2.2605E-012.2605E-01 -7.7140E-02-7.7140E-02 1.5180E-021.5180E-02 -1.6042E-03-1.6042E-03 6.9694E-056.9694E-05 S11S11 -1.9383E-01-1.9383E-01 1.5184E-021.5184E-02 5.2852E-025.2852E-02 -2.7222E-02-2.7222E-02 6.0493E-036.0493E-03 -6.5550E-04-6.5550E-04 2.8332E-052.8332E-05 S12S12 -1.8885E-01-1.8885E-01 1.2297E-011.2297E-01 -4.8187E-02-4.8187E-02 1.1149E-021.1149E-02 -1.5087E-03-1.5087E-03 1.0826E-041.0826E-04 -3.0459E-06-3.0459E-06

表26Table 26

Figure BDA0001365831590000302
Figure BDA0001365831590000302

表27Table 27

图18A示出了实施例9的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图18B示出了实施例9的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图18C示出了实施例9的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图18D示出了实施例9的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图18A至图18D可知,实施例9所给出的光学成像镜头能够实现良好的成像品质。FIG. 18A shows the axial chromatic aberration curve of the optical imaging lens of Embodiment 9, which indicates that the focal points of light rays of different wavelengths passing through the lens deviate. FIG. 18B shows the astigmatism curves of the optical imaging lens of Embodiment 9, which represent meridional image plane curvature and sagittal image plane curvature. FIG. 18C shows the distortion curves of the optical imaging lens of Embodiment 9, which represent the distortion values under different viewing angles. FIG. 18D shows the magnification chromatic aberration curve of the optical imaging lens of Embodiment 9, which represents the deviation of different image heights on the imaging plane after light passes through the lens. According to FIG. 18A to FIG. 18D , it can be seen that the optical imaging lens provided in Embodiment 9 can achieve good imaging quality.

综上,实施例1至实施例9分别满足以下表28所示的关系。To sum up, Embodiment 1 to Embodiment 9 respectively satisfy the relationship shown in Table 28 below.

条件式\实施例conditional\example 11 22 33 44 55 66 77 88 99 f/EPDf/EPD 1.681.68 1.681.68 1.701.70 1.691.69 1.701.70 1.691.69 1.781.78 1.691.69 1.681.68 f/|R9|f/|R9| 0.110.11 0.070.07 0.100.10 0.000.00 0.270.27 0.150.15 0.160.16 0.270.27 0.130.13 f/|R10|f/|R10| 0.240.24 0.180.18 0.150.15 0.080.08 0.260.26 0.280.28 0.420.42 0.390.39 0.200.20 TTL/ImgHTTL/ImgH 1.561.56 1.561.56 1.561.56 1.561.56 1.561.56 1.561.56 1.561.56 1.561.56 1.641.64 f1/f2f1/f2 -0.32-0.32 -0.32-0.32 -0.50-0.50 -0.37-0.37 -0.32-0.32 -0.33-0.33 -0.36-0.36 -0.33-0.33 -0.57-0.57 f/f1f/f1 1.071.07 1.061.06 1.341.34 1.111.11 1.081.08 1.051.05 1.101.10 1.081.08 1.161.16 CT1/CT2CT1/CT2 3.093.09 2.982.98 3.403.40 3.243.24 3.383.38 2.962.96 3.133.13 3.413.41 2.272.27 f/R12f/R12 3.213.21 3.253.25 2.932.93 3.093.09 3.143.14 3.133.13 2.932.93 3.153.15 3.793.79 f/R1f/R1 2.302.30 2.312.31 2.142.14 2.302.30 2.312.31 2.312.31 2.342.34 2.312.31 2.032.03 f4/ff4/f 0.910.91 0.920.92 1.041.04 0.940.94 0.840.84 0.860.86 0.850.85 0.870.87 1.031.03 V1/V2V1/V2 3.143.14 3.143.14 3.143.14 2.962.96 3.143.14 3.143.14 3.143.14 3.113.11 2.232.23 β62(°)β62(°) 10.710.7 10.510.5 10.310.3 10.410.4 11.011.0 9.09.0 8.38.3 9.89.8 10.410.4

表28Table 28

本申请还提供一种成像装置,其电子感光元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。成像装置可以是诸如数码相机的独立摄像设备,也可以是集成在诸如手机等移动电子设备上的成像模块。该成像装置装配有以上描述的光学成像镜头。The present application also provides an imaging device, the electronic photosensitive element of which can be a photosensitive coupling device (CCD) or a complementary metal oxide semiconductor device (CMOS). The imaging device may be an independent imaging device such as a digital camera, or an imaging module integrated on a mobile electronic device such as a mobile phone. The imaging device is equipped with the optical imaging lens described above.

以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。The above description is only a preferred embodiment of the present application and an illustration of the applied technical principles. Those skilled in the art should understand that the scope of the invention involved in this application is not limited to the technical solution formed by the specific combination of the above-mentioned technical features, but should also cover the technical solution formed by the above-mentioned technical features without departing from the inventive concept. Other technical solutions formed by any combination of or equivalent features thereof. For example, a technical solution formed by replacing the above-mentioned features with technical features with similar functions disclosed in (but not limited to) this application.

Claims (10)

1. The optical imaging lens sequentially comprises from an object side to an image side along an optical axis: a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and a sixth lens,
the first lens has positive optical power;
the second lens, the third lens and the sixth lens each have a negative optical power;
the fourth lens and the fifth lens each have positive optical power;
the object side surface of the first lens and the image side surface of the fourth lens are convex surfaces;
the image side surface of the second lens and the image side surface of the sixth lens are both concave surfaces;
the number of lenses having focal power in the optical imaging lens is six;
the effective focal length f4 of the fourth lens and the total effective focal length f of the optical imaging lens meet the condition that f4/f is more than 0.7 and less than 1.2; and
the total effective focal length f of the optical imaging lens and the curvature radius R9 of the object side surface of the fifth lens meet the condition that f/| R9| is less than or equal to 0.35.
2. The optical imaging lens of claim 1, wherein the total effective focal length f of the optical imaging lens and the entrance pupil diameter EPD of the optical imaging lens satisfy f/EPD ≦ 1.8.
3. The optical imaging lens according to claim 2, wherein an effective focal length f1 of the first lens and an effective focal length f2 of the second lens satisfy-1 < f1/f2 < 0.
4. The optical imaging lens according to claim 2, wherein the total effective focal length f of the optical imaging lens and the effective focal length f1 of the first lens satisfy 1 < f/f1 < 1.5.
5. The optical imaging lens of claim 2, wherein a central thickness CT1 of the first lens element on the optical axis and a central thickness CT2 of the second lens element on the optical axis satisfy 2.0 < CT1/CT2 < 3.5.
6. The optical imaging lens of claim 2, wherein the total effective focal length f of the optical imaging lens and the radius of curvature R12 of the image side surface of the sixth lens satisfy 2.5 < f/R12 < 4.0.
7. The optical imaging lens of claim 2, wherein the total effective focal length f of the optical imaging lens and the radius of curvature R1 of the object side surface of the first lens satisfy 2 ≦ f/R1 < 2.5.
8. The optical imaging lens according to claim 2, wherein the abbe number V1 of the first lens and the abbe number V2 of the second lens satisfy 2.0 < V1/V2 < 4.0.
9. The optical imaging lens according to claim 2, characterized in that an incident angle β 62 of the upper rays of the maximum field of view on the image side surface of the sixth lens satisfies 7 ° < β 62 < 12 °.
10. The optical imaging lens of any one of claims 1 to 9, wherein a distance TTL between a center of an object side surface of the first lens element and an imaging surface of the optical imaging lens on the optical axis and a half ImgH of a diagonal length of an effective pixel area on the imaging surface of the optical imaging lens satisfy TTL/ImgH ≦ 1.7.
CN201710640672.2A 2017-07-31 2017-07-31 Optical imaging lens Active CN107219613B (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201710640672.2A CN107219613B (en) 2017-07-31 2017-07-31 Optical imaging lens
CN202111511773.2A CN114114656B (en) 2017-07-31 2017-07-31 Optical imaging lens
PCT/CN2018/077203 WO2019024490A1 (en) 2017-07-31 2018-02-26 Optical imaging lens
US16/226,181 US10859796B2 (en) 2017-07-31 2018-12-19 Optical imaging lens assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710640672.2A CN107219613B (en) 2017-07-31 2017-07-31 Optical imaging lens

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202111511773.2A Division CN114114656B (en) 2017-07-31 2017-07-31 Optical imaging lens

Publications (2)

Publication Number Publication Date
CN107219613A CN107219613A (en) 2017-09-29
CN107219613B true CN107219613B (en) 2022-10-28

Family

ID=59954251

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202111511773.2A Active CN114114656B (en) 2017-07-31 2017-07-31 Optical imaging lens
CN201710640672.2A Active CN107219613B (en) 2017-07-31 2017-07-31 Optical imaging lens

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202111511773.2A Active CN114114656B (en) 2017-07-31 2017-07-31 Optical imaging lens

Country Status (1)

Country Link
CN (2) CN114114656B (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019024490A1 (en) * 2017-07-31 2019-02-07 浙江舜宇光学有限公司 Optical imaging lens
CN108107547B (en) * 2017-10-13 2021-12-07 玉晶光电(厦门)有限公司 Optical imaging lens
JP6709564B2 (en) 2017-11-01 2020-06-17 カンタツ株式会社 Imaging lens
CN107656358B (en) * 2017-11-08 2022-10-28 浙江舜宇光学有限公司 Optical lens
US10908389B2 (en) 2017-11-09 2021-02-02 Samsung Electro-Mechanics Co., Ltd. Telescopic optical imaging system
US10712534B2 (en) * 2018-02-11 2020-07-14 Aac Optics Solutions Pte. Ltd. Camera optical lens
US10613293B2 (en) * 2018-02-11 2020-04-07 AAC Technologies Pte. Ltd. Camera optical lens
CN109507787A (en) * 2018-03-07 2019-03-22 浙江舜宇光学有限公司 Optical imaging lens
JP6518364B1 (en) * 2018-04-26 2019-05-22 エーエーシー テクノロジーズ ピーティーイー リミテッド Imaging optical lens
JP6526296B1 (en) * 2018-04-26 2019-06-05 エーエーシー テクノロジーズ ピーティーイー リミテッド Imaging optical lens
CN109459842B (en) 2018-12-31 2019-05-10 瑞声光电科技(常州)有限公司 Camera optical camera lens
CN109613681B (en) * 2018-12-31 2020-11-27 诚瑞光学(常州)股份有限公司 Camera optics
CN109856780B (en) * 2018-12-31 2021-07-30 瑞声光学解决方案私人有限公司 Camera optics
CN110412737B (en) * 2019-06-30 2021-08-17 瑞声光学解决方案私人有限公司 Image pickup optical lens
CN110632744B (en) * 2019-09-12 2021-09-28 江西联创电子有限公司 Wide-angle imaging lens
CN113296229A (en) * 2020-02-24 2021-08-24 江西晶超光学有限公司 Optical imaging system, image capturing device with same and electronic device
CN111751963B (en) * 2020-08-10 2024-08-13 辽宁中蓝光电科技有限公司 A small-head, large-aperture camera lens
CN111812820B (en) * 2020-09-10 2020-11-27 瑞泰光学(常州)有限公司 Image pickup optical lens
CN113391433B (en) * 2021-06-02 2022-08-30 江西晶超光学有限公司 Optical lens, camera module and electronic equipment
CN115808769A (en) * 2021-09-13 2023-03-17 宁波舜宇车载光学技术有限公司 Optical lenses and imaging equipment
CN115166945B (en) * 2021-12-08 2025-04-01 三星电机株式会社 Optical imaging systems and electronic equipment
CN114185154B (en) * 2021-12-16 2025-07-04 惠州萨至德光电科技有限公司 A high-pixel optical imaging lens
CN116931220A (en) * 2022-04-08 2023-10-24 华为技术有限公司 Lens assembly, camera module and electronic equipment
CN115113366B (en) * 2022-05-23 2023-12-15 江西欧菲光学有限公司 Optical system, lens module and electronic equipment

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI457591B (en) * 2013-04-25 2014-10-21 Largan Precision Co Ltd Photographing lens assembly
JP2015102673A (en) * 2013-11-25 2015-06-04 富士フイルム株式会社 Imaging lens and imaging device provided with imaging lens
JP5651881B1 (en) * 2014-08-13 2015-01-14 株式会社AAC Technologies Japan R&D Center Imaging lens
JP6351171B2 (en) * 2014-09-30 2018-07-04 カンタツ株式会社 Imaging lens with 7 optical elements
US10254510B2 (en) * 2015-01-07 2019-04-09 Zhejiang Sunny Optics Co., Ltd. Camera lens
KR101690481B1 (en) * 2016-03-07 2016-12-28 주식회사 세코닉스 High-resolution photographing wide angle lens system
CN106646833B (en) * 2017-02-23 2019-01-25 浙江舜宇光学有限公司 Pick-up lens
CN206930826U (en) * 2017-07-31 2018-01-26 浙江舜宇光学有限公司 Optical imaging lens

Also Published As

Publication number Publication date
CN107219613A (en) 2017-09-29
CN114114656B (en) 2023-09-15
CN114114656A (en) 2022-03-01

Similar Documents

Publication Publication Date Title
CN107219613B (en) Optical imaging lens
CN109343204B (en) Optical imaging lens
CN109298516B (en) Optical imaging lens
CN110412749B (en) Optical imaging lens
CN108535843B (en) optical imaging system
CN109407284B (en) Optical imaging system
CN108469669B (en) camera lens
CN107272161B (en) Optical imaging lens
CN108919468B (en) Optical imaging lens
CN108873272A (en) Optical imaging lens
WO2020010879A1 (en) Optical imaging system
CN108152934A (en) Optical imaging lens
WO2020001119A1 (en) Camera lens
CN107436477B (en) Optical imaging lens
CN107577034A (en) camera lens
CN108469668A (en) Imaging lens
CN107703608A (en) Optical imaging lens
CN107957619A (en) Optical imaging lens
CN108983399A (en) Optical Imaging Lens Group
WO2020029613A1 (en) Optical imaging lens
CN106338815A (en) Shooting lens and camera device assembled with shooting lens
WO2018153012A1 (en) Camera lens
CN106896481A (en) Imaging lens
CN109739012A (en) Optical imaging lens
CN106990511A (en) Imaging lens

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant