[go: up one dir, main page]

CN107222249B - Method and device for acquiring channel state information - Google Patents

Method and device for acquiring channel state information Download PDF

Info

Publication number
CN107222249B
CN107222249B CN201610162298.5A CN201610162298A CN107222249B CN 107222249 B CN107222249 B CN 107222249B CN 201610162298 A CN201610162298 A CN 201610162298A CN 107222249 B CN107222249 B CN 107222249B
Authority
CN
China
Prior art keywords
pmi
type
layer
optimal
precoding matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610162298.5A
Other languages
Chinese (zh)
Other versions
CN107222249A (en
Inventor
谢纪岭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanechips Technology Co Ltd
Original Assignee
Sanechips Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanechips Technology Co Ltd filed Critical Sanechips Technology Co Ltd
Priority to CN201610162298.5A priority Critical patent/CN107222249B/en
Priority to PCT/CN2017/076481 priority patent/WO2017162066A1/en
Publication of CN107222249A publication Critical patent/CN107222249A/en
Application granted granted Critical
Publication of CN107222249B publication Critical patent/CN107222249B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0486Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking channel rank into account

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

The invention discloses a channel state information acquisition method, which comprises the following steps: selecting a first precoding codebook index PMI for each layer, and selecting an optimal second PMI for each layer according to a preset criterion according to the first PMI and the second PMI set of each layer; selecting an optimal first class PMI for each layer according to the optimal second class PMI of each layer and the first class PMI set according to a preset criterion; and selecting the first class PMI and the second class PMI which are most matched with the current channel from the optimal first class PMI and the optimal second class PMI of each layer according to a preset criterion, and taking the number of layers corresponding to the most matched first class PMI and the most matched second class PMI as the rank RI of the channel matrix. The invention also discloses a device for acquiring the channel state information.

Description

一种信道状态信息获取方法及装置Method and device for acquiring channel state information

技术领域technical field

本发明涉及无线通信领域,尤其涉及一种信道状态信息获取方法及装置。The present invention relates to the field of wireless communication, and in particular, to a method and device for acquiring channel state information.

背景技术Background technique

第四代移动通信系统采用多输入多输出(Multi-Input Multi-Output,MIMO)技术提高峰值吞吐量、频谱效率和系统容量,尤其基于预编码码本的闭环空间复用可进一步提高系统性能。闭环空间复用技术得以实施的前提是发送端获得准确的信道状态信息(Channel Sate Information,CSI),依据该信道状态信息选择合适的层数和预编码码本对发送信号进行预处理。在长期演进(Long Term Evolution,LTE)和高级长期演进(LongTerm Evolution Advance,LTE-A)系统中由处于接收端的用户设备(User Equipment,UE)来向发送端反馈信道状态信息,该信息包括信道矩阵的秩(Rank Indicator,RI)、预编码码本索引(Precoding Matrix Index,PMI)和信道质量指示(Channel Quality Indicator,CQI)。接收端利用导频信号获得信道系数矩阵H,按照某种最优准则选出与当前信道最匹配的RI和PMI,并计算使用该RI和PMI后的CQI,常规的处理方法是遍历所有的RI和PMI,按照某种最优准则选出最优的RI和PMI,常用的最优准则有最大信道容量准则或最小均方误差准则,然后,基于选出的RI和PMI计算CQI,因此,码本的数量决定了计算的复杂度。The fourth-generation mobile communication system adopts the Multi-Input Multi-Output (MIMO) technology to improve peak throughput, spectral efficiency and system capacity. In particular, closed-loop spatial multiplexing based on precoding codebooks can further improve system performance. The prerequisite for the implementation of closed-loop spatial multiplexing technology is that the transmitter obtains accurate channel state information (Channel Sate Information, CSI), and selects an appropriate number of layers and precoding codebooks to preprocess the transmitted signal according to the channel state information. In the Long Term Evolution (Long Term Evolution, LTE) and Long Term Evolution Advance (Long Term Evolution Advance, LTE-A) systems, the user equipment (User Equipment, UE) at the receiving end feeds back channel state information to the transmitting end, where the information includes the channel The rank indicator (RI) of the matrix, the precoding codebook index (Precoding Matrix Index, PMI), and the channel quality indicator (Channel Quality Indicator, CQI). The receiving end uses the pilot signal to obtain the channel coefficient matrix H, selects the RI and PMI that best match the current channel according to some optimal criterion, and calculates the CQI after using the RI and PMI. The conventional processing method is to traverse all RIs. and PMI, select the optimal RI and PMI according to a certain optimal criterion. The commonly used optimal criterion is the maximum channel capacity criterion or the minimum mean square error criterion. Then, the CQI is calculated based on the selected RI and PMI. Therefore, the code The number of books determines the computational complexity.

在LTE Release 8和9版本中,处于发送端的基站(eNodeB)最多支持4天线端口,每种RI下最多有16个码本,具体码本见TS 36.211v9.1.0,而在LTE-A的Release 10版本中,基站最多支持8个发送天线端口,并且为了提高性能引入了两级码本,所谓两级码本是指每个预编码矩阵由第一级码本的索引(First PMI)i1和第二级码本的索引(Second PMI)i2两个索引决定,从技术规范TS36.213v10.13.0可知,8天线端口1层和2层的码本中,i1和i2的取值都是0~15,因此,1层和2层的码本个数都为256,3层的码本i1和i2的取值分别为0~3和0~15,4层的码本i1和i2的取值分别为0~3和0~7,3层和4层的码本总数分别为64和32;为了进一步提高4天线端口的性能,在R12版本中,又引入了4天线端口的两级码本,从技术规范TS36.213v12.6.0中可知,新引入的4天线端口1层和2层的码本中,i1和i2的取值都是0~15,因此,4天线端口1层和2层的码本数量也增加到256,具体码本见TS 36.213。因此,若继续采用遍历RI和PMI选择最优RI和PMI的方法,每一层需要计算i1×i2个预编码矩阵对应的信道容量,计算量十分巨大。In LTE Release 8 and 9, the base station (eNodeB) at the transmitting end supports a maximum of 4 antenna ports, and each RI has a maximum of 16 codebooks. For specific codebooks, see TS 36.211v9.1.0, and in LTE-A Release In version 10, the base station supports up to 8 transmit antenna ports, and in order to improve performance, a two-level codebook is introduced. The so-called two-level codebook means that each precoding matrix is indexed by the first-level codebook (First PMI) i 1 And the index of the second-level codebook (Second PMI) i 2 is determined by two indexes. From the technical specification TS36.213v10.13.0, it can be seen that in the codebook of the 8-antenna port layer 1 and layer 2, the values of i 1 and i 2 are 0 to 15. Therefore, the number of codebooks in layers 1 and 2 is 256. The values of codebooks i 1 and i 2 in layer 3 are 0 to 3 and 0 to 15, respectively. Codebooks in layer 4 The values of i 1 and i 2 are 0 to 3 and 0 to 7, respectively, and the total number of codebooks for layers 3 and 4 are 64 and 32, respectively; in order to further improve the performance of the 4-antenna port, in version R12, the For the two-level codebook of 4-antenna ports, from the technical specification TS36.213v12.6.0, it can be known that in the newly introduced codebooks of layers 1 and 2 of 4-antenna ports, the values of i 1 and i 2 are both 0 to 15. Therefore, the number of codebooks for layers 1 and 2 of the 4-antenna port is also increased to 256, see TS 36.213 for specific codebooks. Therefore, if the method of selecting the optimal RI and PMI by traversing the RI and PMI is continued, each layer needs to calculate the channel capacity corresponding to the i 1 ×i 2 precoding matrices, and the calculation amount is huge.

针对两级码本的PMI选择计算复杂度大的问题,相关技术提供了三种两级码本的PMI选择方法,第一种通过分析码本和算法公式的特点,结合快速傅里叶变换技术来降低计算复杂度,提出了使用迫零和最小均方误差算法计算信噪比和容量来选择PMI的简化计算方法。第二种选择第一级码本时压缩信道矩阵的数量,遍历全部码本采用容量最大化准则,选择子带的第二级码本时同样压缩信道矩阵数量,采用最大化最小欧式距离准则。第三种第一码本选择时通过信道矩阵分块、特征分解等步骤,采用特征值之和最大准则,第二级码本选择时采用常用的最大化信道容量准则、最小均方误差准则或最最小误比特率准则等。Aiming at the problem that the calculation complexity of the PMI selection of the two-level codebook is large, the related art provides three PMI selection methods for the two-level codebook. In order to reduce the computational complexity, a simplified calculation method of selecting PMI by using the zero-forcing and minimum mean square error algorithm to calculate the signal-to-noise ratio and capacity is proposed. The second is to compress the number of channel matrices when selecting the first-level codebook, and traverse all the codebooks to use the capacity maximization criterion. When selecting the second-level codebook of the subband, the number of channel matrices is also compressed, and the maximum minimum Euclidean distance criterion is adopted. In the third type of first codebook selection, the channel matrix block, eigendecomposition and other steps are used, and the maximum sum of eigenvalues criterion is used, and the commonly used maximum channel capacity criterion, minimum mean square error criterion or Minimum bit error rate criterion, etc.

但现有技术存在如下问题:第一种方法不能最大程度降低PMI选择过程的计算复杂度;第二及第三种方法采取不同方法来降低该计算复杂度,但在软硬件实现时,第二级码本选择无法复用第一级码本选择模块,即实现上较复杂。However, the prior art has the following problems: the first method cannot reduce the computational complexity of the PMI selection process to the greatest extent; the second and third methods adopt different methods to reduce the computational complexity, but when implemented in software and hardware, the second The level codebook selection cannot reuse the first level codebook selection module, that is, the implementation is complicated.

发明内容SUMMARY OF THE INVENTION

有鉴于此,本发明实施例期望提供一种信道状态信息获取方法及装置,以降低RI和PMI选择过程在计算及实现上的复杂度。In view of this, the embodiments of the present invention are expected to provide a method and apparatus for acquiring channel state information, so as to reduce the complexity of calculation and implementation of the RI and PMI selection process.

一种信道状态信息获取方法,所述方法包括:A method for acquiring channel state information, the method comprising:

为每一层选择第一类预编码码本索引PMI,并根据每一层的所述第一类PMI及第二类PMI集合按照预设准则为每一层选出最优第二类PMI;Selecting the first-type precoding codebook index PMI for each layer, and selecting the optimal second-type PMI for each layer according to a preset criterion according to the first-type PMI and the second-type PMI set of each layer;

根据每一层的所述最优第二类PMI及第一类PMI集合按照所述预设准则为每一层选出最优第一类PMI;According to the optimal second-type PMI and the first-type PMI set of each layer, the optimal first-type PMI is selected for each layer according to the preset criterion;

按照所述预设准则从各个层的所述最优第一类PMI及最优第二类PMI中选出与当前信道最匹配的第一类PMI及第二类PMI,并将所述最匹配的第一类PMI及第二类PMI对应的层数作为信道矩阵的秩RI。According to the preset criteria, the first-type PMI and the second-type PMI that best match the current channel are selected from the optimal first-type PMI and the optimal second-type PMI of each layer, and the best matching The number of layers corresponding to the first type PMI and the second type PMI is taken as the rank RI of the channel matrix.

其中,在所述为每一层选择第一类预编码码本索引PMI,并根据每一层的所述第一类PMI及第二类PMI集合按照预设准则为每一层选出最优第二类PMI之前,所述方法还包括:利用导频信号估计获得每个子载波上的信道系数矩阵及噪声方差矩阵。Wherein, the first type of precoding codebook index PMI is selected for each layer, and the optimal PMI is selected for each layer according to the set of the first type of PMI and the second type of PMI for each layer according to a preset criterion Before the second type of PMI, the method further includes: using the pilot signal to estimate and obtain a channel coefficient matrix and a noise variance matrix on each subcarrier.

其中,所述为每一层选择第一类预编码码本索引PMI,并根据每一层的所述第一类PMI及第二类PMI集合按照预设准则为每一层选出最优第二类PMI,包括:Wherein, the first type of precoding codebook index PMI is selected for each layer, and the optimal first type of precoding codebook index PMI is selected for each layer according to the set of the first type of PMI and the second type of PMI according to preset criteria for each layer. Category II PMIs include:

从选定层的第一类PMI集合中为所述选定层随机选一个第一类PMI;randomly select a first-type PMI for the selected layer from the first-type PMI set of the selected layer;

根据信道系数矩阵及噪声方差矩阵,计算每个子载波上使用所述选定层的选定预编码矩阵一时的信道容量一,所述选定层的选定预编码矩阵一是由所述选定层的所述第一类PMI及第二类PMI集合中的一个第二类PMI指示的预编码矩阵;According to the channel coefficient matrix and the noise variance matrix, calculate the channel capacity 1 when the selected precoding matrix 1 of the selected layer is used on each subcarrier, and the selected precoding matrix 1 of the selected layer is determined by the selected precoding matrix 1 a precoding matrix indicated by a second-type PMI in the first-type PMI and the second-type PMI set of the layer;

将每个子载波的所述信道容量一累加,获得整个带宽上使用所述选定层的选定预编码矩阵一时的信道容量二;Accumulate the channel capacity 1 of each subcarrier to obtain the channel capacity 2 when the selected precoding matrix of the selected layer is used on the entire bandwidth;

比较所述选定层的每个预编码矩阵一对应的所述信道容量二,将最大所述信道容量二对应的预编码矩阵一的第二类PMI作为所述选定层的最优第二类PMI。Compare the channel capacity 2 corresponding to each precoding matrix 1 of the selected layer, and take the second type PMI of the precoding matrix 1 corresponding to the maximum channel capacity 2 as the optimal second PMI of the selected layer. Class PMI.

其中,所述根据每一层的所述最优第二类PMI及第一类PMI集合按照所述预设准则为每一层选出最优第一类PMI,包括:Wherein, selecting the optimal first-type PMI for each layer according to the optimal second-type PMI and the first-type PMI set for each layer according to the preset criteria, including:

根据信道系数矩阵及噪声方差矩阵,计算每个子载波上使用选定层的选定预编码矩阵二时的信道容量三,所述选定层的选定预编码矩阵二是由所述选定层的所述最优第二类PMI及第一类PMI集合中的一个第一类PMI指示的预编码矩阵;According to the channel coefficient matrix and the noise variance matrix, calculate the channel capacity 3 when the selected precoding matrix 2 of the selected layer is used on each subcarrier, and the selected precoding matrix 2 of the selected layer is determined by the selected layer. The optimal second type PMI and a precoding matrix indicated by a first type PMI in the first type PMI set;

将每个子载波的所述信道容量三累加,获得整个带宽上使用所述选定层的选定预编码矩阵二时的信道容量四;Accumulate the channel capacity 3 of each subcarrier to obtain the channel capacity 4 when the selected precoding matrix 2 of the selected layer is used on the entire bandwidth;

比较所述选定层的每个预编码矩阵二对应的所述信道容量四,将最大所述信道容量四对应的预编码矩阵二的第一类PMI作为所述选定层的最优第一类PMI。Comparing the channel capacity 4 corresponding to each precoding matrix 2 of the selected layer, and taking the first type PMI of the precoding matrix 2 corresponding to the maximum channel capacity 4 as the optimal first PMI of the selected layer Class PMI.

其中,所述按照所述预设准则从各个层的所述最优第一类PMI及最优第二类PMI中选出与当前信道最匹配的第一类PMI及第二类PMI,并将所述最匹配的第一类PMI及第二类PMI对应的层数作为信道矩阵的秩RI,包括:Wherein, according to the preset criteria, the first type PMI and the second type PMI that best match the current channel are selected from the optimal first type PMI and the optimal second type PMI of each layer, and the The number of layers corresponding to the most matching first-type PMI and second-type PMI is used as the rank RI of the channel matrix, including:

读取整个带宽上使用选定层的预编码矩阵时的信道容量,所述选定层的预编码矩阵是由选定层的所述最优第一类PMI及最优第二类PMI指示的预编码矩阵;Read the channel capacity when using the precoding matrix of the selected layer over the entire bandwidth, the precoding matrix of the selected layer is indicated by the optimal first type PMI and the optimal second type PMI for the selected layer precoding matrix;

比较各个层的所述信道容量,将最大所述信道容量对应的预编码矩阵的最优第一类PMI及最优第二类PMI作为与当前信道最匹配的第一类PMI及第二类PMI,并将所述最匹配的第一类PMI及第二类PMI对应的层数作为信道矩阵的秩RI。Compare the channel capacity of each layer, and take the optimal first-type PMI and the optimal second-type PMI of the precoding matrix corresponding to the maximum channel capacity as the first-type PMI and the second-type PMI that best match the current channel , and the number of layers corresponding to the most matched first-type PMI and second-type PMI is used as the rank RI of the channel matrix.

其中,所述第一类PMI为第二级码本的索引,所述第二类PMI为第一级码本的索引。The first type of PMI is an index of a second-level codebook, and the second-type PMI is an index of a first-level codebook.

一种信道状态信息获取装置,所述装置包括:An apparatus for acquiring channel state information, the apparatus comprising:

第一选择模块,用于为每一层选择第一类预编码码本索引PMI,并根据每一层的所述第一类PMI及第二类PMI集合按照预设准则为每一层选出最优第二类PMI;根据每一层的所述最优第二类PMI及第一类PMI集合按照所述预设准则为每一层选出最优第一类PMI;The first selection module is used to select the first type of precoding codebook index PMI for each layer, and select the first type of PMI and the second type of PMI set for each layer according to preset criteria for each layer. The optimal second-type PMI; according to the optimal second-type PMI and the first-type PMI set of each layer, the optimal first-type PMI is selected for each layer according to the preset criterion;

第二选择模块,用于按照所述预设准则从各个层的所述最优第一类PMI及最优第二类PMI中选出与当前信道最匹配的第一类PMI及第二类PMI,并将所述最匹配的第一类PMI及第二类PMI对应的层数作为信道矩阵的秩RI。The second selection module is configured to select the first-type PMI and the second-type PMI that best match the current channel from the optimal first-type PMI and the optimal second-type PMI of each layer according to the preset criterion , and the number of layers corresponding to the most matched first-type PMI and second-type PMI is used as the rank RI of the channel matrix.

其中,所述装置还包括:估计模块,用于在所述为每一层选择第一类预编码码本索引PMI,并根据每一层的所述第一类PMI及第二类PMI集合按照预设准则为每一层选出最优第二类PMI之前,利用导频信号估计获得每个子载波上的信道系数矩阵及噪声方差矩阵。Wherein, the apparatus further includes: an estimation module for selecting the first type of precoding codebook index PMI for each layer, and according to the set of the first type PMI and the second type PMI of each layer according to The preset criterion is that before selecting the optimal second-type PMI for each layer, the channel coefficient matrix and the noise variance matrix on each subcarrier are estimated by using the pilot signal.

其中,所述第一选择模块包括:Wherein, the first selection module includes:

选定模块,用于从选定层的第一类PMI集合中为所述选定层随机选一个第一类PMI;A selection module, configured to randomly select a first-type PMI for the selected layer from the first-type PMI set of the selected layer;

容量计算模块,用于根据信道系数矩阵及噪声方差矩阵,计算每个子载波上使用所述选定层的选定预编码矩阵一时的信道容量一,所述选定层的选定预编码矩阵一是由所述选定层的所述第一类PMI及第二类PMI集合中的一个第二类PMI指示的预编码矩阵;The capacity calculation module is used to calculate the channel capacity 1 when the selected precoding matrix 1 of the selected layer is used on each subcarrier according to the channel coefficient matrix and the noise variance matrix, and the selected precoding matrix 1 of the selected layer is used. is a precoding matrix indicated by a second-type PMI in the first-type PMI and second-type PMI set for the selected layer;

容量累加模块,用于将每个子载波的所述信道容量一累加,获得整个带宽上使用所述选定层的选定预编码矩阵一时的信道容量二;A capacity accumulating module, configured to accumulate the channel capacity 1 of each subcarrier to obtain the channel capacity 2 when the selected precoding matrix of the selected layer is used in the entire bandwidth;

比较模块,用于比较所述选定层的每个预编码矩阵一对应的所述信道容量二,将最大所述信道容量二对应的预编码矩阵一的第二类PMI作为所述选定层的最优第二类PMI。A comparison module, configured to compare the channel capacity 2 corresponding to each precoding matrix 1 of the selected layer, and use the second type PMI of the precoding matrix 1 corresponding to the maximum channel capacity 2 as the selected layer The optimal second-class PMI.

其中,所述装置还包括:上报模块,用于上报所述信道矩阵的秩RI和所述与当前信道最匹配的第一类PMI及第二类PMI。Wherein, the apparatus further includes: a reporting module configured to report the rank RI of the channel matrix and the first-type PMI and the second-type PMI that best match the current channel.

其中,所述第一类PMI为第二级码本的索引,所述第二类PMI为第一级码本的索引。The first type of PMI is an index of a second-level codebook, and the second-type PMI is an index of a first-level codebook.

本发明实施例提供的一种信道状态信息获取方法及装置,为每一层选择第一类预编码码本索引PMI,并根据每一层的第一类PMI及第二类PMI集合按照预设准则为每一层选出最优第二类PMI;根据每一层的最优第二类PMI及第一类PMI集合按照预设准则为每一层选出最优第一类PMI;按照预设准则从各个层的最优第一类PMI及最优第二类PMI中选出与当前信道最匹配的第一类PMI及第二类PMI,并将最匹配的第一类PMI及第二类PMI对应的层数作为信道矩阵的秩RI。如此,分离选择第一级码本的索引和第二级码本的索引,能实现降低RI和PMI选取过程在计算上的复杂度;同时,由于在本发明中选最优第一级码本的索引和选最优第二级码本的索引时采用了相同的准则,能实现降低RI和PMI选择过程在实现上的复杂度。In a method and device for acquiring channel state information provided by an embodiment of the present invention, a first type of precoding codebook index PMI is selected for each layer, and according to a set of the first type of PMI and the second type of PMI of each layer, a preset The criterion is to select the optimal second-type PMI for each layer; according to the optimal second-type PMI and the first-type PMI set of each layer, the optimal first-type PMI is selected for each layer according to the preset criteria; Suppose the criterion selects the first type PMI and the second type PMI that best match the current channel from the optimal first type PMI and the optimal second type PMI of each layer, and selects the best matching first type PMI and second type PMI. The number of layers corresponding to the class PMI is used as the rank RI of the channel matrix. In this way, by separately selecting the index of the first-level codebook and the index of the second-level codebook, the computational complexity of the selection process of RI and PMI can be reduced; The index and the index of the optimal second-level codebook are selected using the same criterion, which can reduce the implementation complexity of the RI and PMI selection process.

附图说明Description of drawings

图1为本发明实施例提供的一种信道状态信息获取方法的流程示意图;FIG. 1 is a schematic flowchart of a method for acquiring channel state information according to an embodiment of the present invention;

图2为本发明实施例提供的一种信道状态信息获取装置的结构示意图一;FIG. 2 is a schematic structural diagram 1 of an apparatus for obtaining channel state information according to an embodiment of the present invention;

图3为本发明实施例提供的一种信道状态信息获取装置的结构示意图二;FIG. 3 is a second schematic structural diagram of an apparatus for obtaining channel state information according to an embodiment of the present invention;

图4为本发明提供的一种信道状态信息获取方法具体实施例一的流程示意图;4 is a schematic flowchart of a specific embodiment 1 of a method for acquiring channel state information provided by the present invention;

图5为本发明提供的一种信道状态信息获取方法具体实施例二的流程示意图;5 is a schematic flowchart of a specific embodiment 2 of a method for acquiring channel state information provided by the present invention;

图6为本发明提供的一种信道状态信息获取方法具体实施例三的流程示意图;FIG. 6 is a schematic flowchart of Embodiment 3 of a method for acquiring channel state information provided by the present invention;

图7为本发明提供的一种信道状态信息获取方法具体实施例四的流程示意图。FIG. 7 is a schematic flowchart of Embodiment 4 of a method for acquiring channel state information provided by the present invention.

具体实施方式Detailed ways

在本发明实施例中,终端为每一层选择第一类预编码码本索引PMI,并根据每一层的该第一类PMI及第二类PMI集合按照预设准则为每一层选出最优第二类PMI;终端根据每一层的最优第二类PMI及第一类PMI集合按照预设准则为每一层选出最优第一类PMI;终端按照预设准则从各个层的最优第一类PMI及最优第二类PMI中选出与当前信道最匹配的第一类PMI及第二类PMI,并将最匹配的第一类PMI及第二类PMI对应的层数作为信道矩阵的秩RI。In the embodiment of the present invention, the terminal selects the first-type precoding codebook index PMI for each layer, and selects the first-type PMI and the second-type PMI set for each layer according to a preset criterion for each layer The optimal second-type PMI; the terminal selects the optimal first-type PMI for each layer according to the preset criteria according to the optimal second-type PMI of each layer and the first-type PMI set; the terminal selects the optimal first-type PMI from each layer according to the preset criteria From the optimal first-type PMI and the optimal second-type PMI, select the first-type PMI and the second-type PMI that best match the current channel, and assign the layers corresponding to the best-matching first-type PMI and second-type PMI number as the rank RI of the channel matrix.

下面结合附图和具体实施例,对本发明进一步详细说明。The present invention will be described in further detail below with reference to the accompanying drawings and specific embodiments.

图1为本发明实施例提供的一种信道状态信息获取方法的流程示意图,如图1所示,该方法包括:FIG. 1 is a schematic flowchart of a method for obtaining channel state information according to an embodiment of the present invention. As shown in FIG. 1 , the method includes:

步骤101:为每一层选择第一类预编码码本索引PMI,并根据每一层的该第一类PMI及第二类PMI集合按照预设准则为每一层选出最优第二类PMI。Step 101: Select the first-type precoding codebook index PMI for each layer, and select the optimal second-type PMI for each layer according to the set of the first-type PMI and the second-type PMI for each layer according to a preset criterion PMI.

具体地,本步骤可以为,终端为每一层随机选一个第一类预编码码本索引PMI,并根据每一层的该第一类PMI及第二类PMI集合按照预设准则为每一层选出最优第二类PMI。Specifically, in this step, the terminal randomly selects a first-type precoding codebook index PMI for each layer, and according to the set of the first-type PMI and the second-type PMI of each layer, according to a preset criterion for each layer The layer selects the optimal second-class PMI.

其中,所述终端为相对于发送端基站的接收端设备,如手机或移动数据卡等设备。所述移动数据卡是指为电脑等便携式设备提供无线上网的客户识别模块(SubscriberIdentity Module,SIM)。The terminal is a receiver device relative to the transmitter base station, such as a mobile phone or a mobile data card. The mobile data card refers to a Subscriber Identity Module (SIM) that provides wireless Internet access for portable devices such as computers.

具体地,所述第一类PMI可以为第二级码本的索引,即Second PMI,所述第二类PMI可以为第一级码本的索引,即First PMI。具体地,本步骤可以为,终端从每一层的SecondPMI集合中为每一层随机选出一个Second PMI,并根据每一层的该Second PMI及First PMI集合按照预设准则,从每一层的First PMI集合中为每一层选出最优First PMI。即在本步骤中先选出每一层的最优第一级码本的索引,再根据后续步骤选出每一层的最优第二级码本的索引。Specifically, the first type of PMI may be an index of a second-level codebook, that is, Second PMI, and the second-type PMI may be an index of a first-level codebook, that is, First PMI. Specifically, this step may be that the terminal randomly selects a Second PMI for each layer from the SecondPMI set of each layer, and according to the Second PMI and First PMI set of each layer according to a preset criterion, selects a second PMI from each layer from each layer. Select the optimal First PMI for each layer in the First PMI set of . That is, in this step, the index of the optimal first-level codebook of each layer is selected first, and then the index of the optimal second-level codebook of each layer is selected according to the subsequent steps.

当然,所述第一类PMI或者为First PMI,所述第二类PMI或者为Second PMI。具体地,本步骤可以为,终端从每一层的First PMI集合中为每一层随机选出一个First PMI,并根据每一层的该First PMI及Second PMI集合按照预设准则,从每一层的Second PMI集合中为每一层选出最优Second PMI。即在本步骤中先选出每一层的最优第二级码本的索引,再根据后续步骤选出每一层的最优第一级码本的索引。Certainly, the first type of PMI is either First PMI, and the second type of PMI is either Second PMI. Specifically, this step may be that the terminal randomly selects a First PMI for each layer from the First PMI set of each layer, and selects a First PMI for each layer from the set of First PMI and Second PMI of each layer according to a preset criterion, from each layer The optimal Second PMI is selected for each layer in the Second PMI set of the layer. That is, in this step, the index of the optimal second-level codebook of each layer is selected first, and then the index of the optimal first-level codebook of each layer is selected according to the subsequent steps.

需说明的是,由于First PMI代表的是信道长期的或慢变的特性,Second PMI代表的是信道短期的或快变的特性,因此,按照后一种顺序选择码本的索引的通信系统性能,要比按照前一种顺序选择码本索引的通信系统性能差一些,该通信系统性能如吞吐量、误码率等;所以,在期望获得更好的通信系统性能的场景下,可以按照前一种顺序选择码本的索引。It should be noted that, since the First PMI represents the long-term or slow-changing characteristics of the channel, and the Second PMI represents the short-term or fast-changing characteristics of the channel, the communication system performance of selecting the index of the codebook according to the latter order , the performance of the communication system such as throughput, bit error rate, etc. is worse than that of the communication system that selects the codebook index according to the previous order; therefore, in the scenario where better communication system performance is expected, the previous A sequential selection codebook index.

具体地,所述预设准则可以为最大信道容量准则。当然,所述预设准则或者为最小均方误差准则,或者为最小误比特率准则。Specifically, the preset criterion may be a maximum channel capacity criterion. Of course, the preset criterion is either the minimum mean square error criterion or the minimum bit error rate criterion.

需说明的是,在所述预设准则为最大信道容量准则时,在本步骤之前,本发明实施例提供的信道状态信息获取方法还可以包括:终端利用导频信号估计获得每个子载波上的信道系数矩阵及噪声方差矩阵。It should be noted that, when the preset criterion is the maximum channel capacity criterion, before this step, the method for obtaining the channel state information provided by the embodiment of the present invention may further include: the terminal uses the pilot signal to estimate and obtain the channel state information on each subcarrier. Channel coefficient matrix and noise variance matrix.

如以R11版本的发送端8天线端口,接收端4天线的MIMO系统为例,并假设高层配置的码本子集限制中所有码本都可用;对于8×4的MIMO系统,终端利用小区导频信号(CellReference Signal,CRS)或信道状态信息导频信号(Channel State InformationReference Signal,CSI-RS)估计获得的第k个子载波上的信道系数矩阵记为Hk及噪声方差矩阵记为

Figure GDA0002488293550000081
其中,For example, take the MIMO system with 8 antenna ports at the transmitter and 4 antennas at the receiver as an example, and assume that all codebooks in the codebook subset limit configured by the high layer are available; for an 8×4 MIMO system, the terminal uses cell guidance The channel coefficient matrix on the kth subcarrier obtained by estimation of the frequency signal (Cell Reference Signal, CRS) or the channel state information pilot signal (Channel State Information Reference Signal, CSI-RS) is denoted as H k and the noise variance matrix is denoted as
Figure GDA0002488293550000081
in,

Figure GDA0002488293550000082
Figure GDA0002488293550000082

hij表示第j个发射天线端口到第i个接收天线的信道系数,σ2为噪声功率,I4为4×4的单位阵。h ij represents the channel coefficient from the j-th transmit antenna port to the i-th receive antenna, σ 2 is the noise power, and I 4 is a 4×4 identity matrix.

具体地,在所述预设准则为最大信道容量准则时,本步骤可以包括,终端从选定层的第一类PMI集合中为该选定层随机选一个第一类PMI;终端根据信道系数矩阵及噪声方差矩阵,计算每个子载波上使用选定层的选定预编码矩阵一时的信道容量一,所述选定层的选定预编码矩阵一是由选定层随机选出的第一类PMI及第二类PMI集合中的一个第二类PMI指示的预编码矩阵;终端将每个子载波的信道容量一累加,获得整个带宽上使用选定层的选定预编码矩阵一时的信道容量二;终端比较选定层的每个预编码矩阵一对应的信道容量二,将最大信道容量二对应的预编码矩阵一的第二类PMI作为选定层的最优第二类PMI。Specifically, when the preset criterion is the maximum channel capacity criterion, this step may include: the terminal randomly selects a first-type PMI for the selected layer from the first-type PMI set of the selected layer; the terminal selects a first-type PMI for the selected layer according to the channel coefficient matrix and noise variance matrix, calculate the channel capacity 1 when using the selected precoding matrix 1 of the selected layer on each subcarrier, and the selected precoding matrix 1 of the selected layer is the first random selected by the selected layer. The precoding matrix indicated by the class PMI and a class 2 PMI in the set of class 2 PMIs; the terminal accumulates the channel capacity of each subcarrier to obtain the channel capacity of the entire bandwidth when the precoding matrix of the selected layer is used 2. The terminal compares the channel capacity 2 corresponding to each precoding matrix 1 of the selected layer, and takes the second type PMI of the precoding matrix 1 corresponding to the maximum channel capacity 2 as the optimal second type PMI of the selected layer.

具体地,仍以上述8×4的MIMO系统为例,First PMI记为i1,Second PMI记为i2,i1集合记为Ω1,i2集合记为Ω2,在预设准则为最大信道容量准则,第一类PMI为Second PMI,第二类PMI为First PMI时,上述过程可以包括:Specifically, still taking the above-mentioned 8×4 MIMO system as an example, the First PMI is denoted as i 1 , the Second PMI is denoted as i 2 , the i 1 set is denoted as Ω 1 , and the i 2 set is denoted as Ω 2 , and the preset criterion is The maximum channel capacity criterion, when the first type of PMI is Second PMI, and the second type of PMI is First PMI, the above process may include:

终端从第一层的Ω2={i2|0≤i2≤15}中为第一层随机选出一个Second PMI记为i'2;终端遍历Ω1={i1|0≤i1≤15}中每一个值;终端计算每个子载波上使用索引(0,i'2)指示的预编码矩阵时的信道容量一;终端将每个子载波上的该信道容量一累加,获得整个带宽上使用(0,i'2)指示的预编码矩阵时的信道容量二;终端计算每个子载波上使用索引(1,i'2)指示的预编码矩阵时的信道容量一;终端将每个子载波上的该信道容量一累加,获得整个带宽上使用(1,i'2)指示的预编码矩阵时的信道容量二;以此类推,直至获得整个带宽上使用(15,i'2)指示的预编码矩阵时的信道容量二;终端比较第一层的16个信道容量二,将最大信道容量二对应的First PMI作为第一层的最优First PMI,并将该最优First PMI记为i”11The terminal randomly selects a Second PMI for the first layer from Ω 2 ={i 2 |0≤i 2 ≤15} of the first layer, denoted as i'2; the terminal traverses Ω 1 ={i 1 |0≤i 1 ≤15} each value; the terminal calculates the channel capacity 1 when using the precoding matrix indicated by the index (0, i' 2 ) on each subcarrier; the terminal accumulates the channel capacity 1 on each subcarrier to obtain the entire bandwidth Channel capacity two when using the precoding matrix indicated by (0, i' 2 ) on the terminal; the terminal calculates the channel capacity one when using the precoding matrix indicated by the index (1, i' 2 ) on each subcarrier; Once the channel capacity on the carrier is accumulated, the channel capacity 2 when the precoding matrix indicated by (1, i' 2 ) is used on the entire bandwidth is obtained; and so on, until the (15, i' 2 ) indication on the entire bandwidth is obtained The channel capacity 2 when the precoding matrix is set; the terminal compares the 16 channel capacity 2 of the first layer, takes the First PMI corresponding to the maximum channel capacity 2 as the optimal First PMI of the first layer, and records the optimal First PMI as i” 11 ;

终端从第二层的Ω2={i2|0≤i2≤15}中为第二层随机选出一个Second PMI记为i'2;终端遍历Ω1={i1|0≤i1≤15}中每一个值;终端计算每个子载波上使用索引(0,i'2)指示的预编码矩阵时的信道容量一;终端将每个子载波上的该信道容量一累加,获得整个带宽上使用(0,i'2)指示的预编码矩阵时的信道容量二;终端计算每个子载波上使用索引(1,i'2)指示的预编码矩阵时的信道容量一;终端将每个子载波上的该信道容量一累加,获得整个带宽上使用(1,i'2)指示的预编码矩阵时的信道容量二;以此类推,直至获得整个带宽上使用(15,i'2)指示的预编码矩阵时的信道容量二;终端比较第二层的16个信道容量二,将最大信道容量二对应的First PMI作为第二层的最优First PMI,并将该最优First PMI记为i”12The terminal randomly selects a Second PMI for the second layer from Ω 2 ={i 2 |0≤i 2 ≤15} of the second layer and denote it as i'2; the terminal traverses Ω 1 ={i 1 |0≤i 1 ≤15} each value; the terminal calculates the channel capacity 1 when using the precoding matrix indicated by the index (0, i' 2 ) on each subcarrier; the terminal accumulates the channel capacity 1 on each subcarrier to obtain the entire bandwidth Channel capacity two when using the precoding matrix indicated by (0, i' 2 ) on the terminal; the terminal calculates the channel capacity one when using the precoding matrix indicated by the index (1, i' 2 ) on each subcarrier; Once the channel capacity on the carrier is accumulated, the channel capacity 2 when the precoding matrix indicated by (1, i' 2 ) is used on the entire bandwidth is obtained; and so on, until the (15, i' 2 ) indication on the entire bandwidth is obtained The channel capacity 2 when the precoding matrix is set; the terminal compares the 16 channel capacity 2 of the second layer, takes the First PMI corresponding to the maximum channel capacity 2 as the optimal First PMI of the second layer, and records the optimal First PMI as i” 12 ;

终端从第三层的Ω2={i2|0≤i2≤15}中为第三层随机选出一个Second PMI记为i'2;终端遍历Ω1={i1|0≤i1≤3}中每一个值;终端计算每个子载波上使用索引(0,i'2)指示的预编码矩阵时的信道容量一;终端将每个子载波上的该信道容量一累加,获得整个带宽上使用(0,i'2)指示的预编码矩阵时的信道容量二;终端计算每个子载波上使用索引(1,i'2)指示的预编码矩阵时的信道容量一;终端将每个子载波上的该信道容量一累加,获得整个带宽上使用(1,i'2)指示的预编码矩阵时的信道容量二;以此类推,直至获得整个带宽上使用(3,i'2)指示的预编码矩阵时的信道容量二;终端比较第三层的4个信道容量二,将最大信道容量二对应的First PMI作为第三层的最优First PMI,并将该最优First PMI记为i”13The terminal randomly selects a Second PMI for the third layer from Ω 2 ={i 2 |0≤i 2 ≤15} of the third layer and denote it as i'2; the terminal traverses Ω 1 ={i 1 |0≤i 1 ≤3} each value; the terminal calculates the channel capacity 1 when using the precoding matrix indicated by the index (0, i' 2 ) on each subcarrier; the terminal accumulates the channel capacity 1 on each subcarrier to obtain the entire bandwidth Channel capacity two when using the precoding matrix indicated by (0, i' 2 ) on the terminal; the terminal calculates the channel capacity one when using the precoding matrix indicated by the index (1, i' 2 ) on each subcarrier; Once the channel capacity on the carrier is accumulated, the channel capacity 2 when the precoding matrix indicated by (1, i' 2 ) is used on the entire bandwidth is obtained; and so on, until the (3, i' 2 ) indication on the entire bandwidth is obtained The channel capacity 2 when the precoding matrix is set; the terminal compares the 4 channel capacity 2 of the third layer, takes the First PMI corresponding to the maximum channel capacity 2 as the optimal First PMI of the third layer, and records the optimal First PMI as i” 13 ;

终端从第四层的Ω2={i2|0≤i2≤7}中为第四层随机选出一个Second PMI记为i'2;终端遍历Ω1={i1|0≤i1≤3}中每一个值;终端计算每个子载波上使用索引(0,i'2)指示的预编码矩阵时的信道容量一;终端将每个子载波上的该信道容量一累加,获得整个带宽上使用(0,i'2)指示的预编码矩阵时的信道容量二;终端计算每个子载波上使用索引(1,i'2)指示的预编码矩阵时的信道容量一;终端将每个子载波上的该信道容量一累加,获得整个带宽上使用(1,i'2)指示的预编码矩阵时的信道容量二;以此类推,直至获得整个带宽上使用(3,i'2)指示的预编码矩阵时的信道容量二;终端比较第四层的4个信道容量二,将最大信道容量二对应的First PMI作为第四层的最优First PMI,并将该最优First PMI记为i”14The terminal randomly selects a Second PMI for the fourth layer from Ω 2 ={i 2 |0≤i 2 ≤7} of the fourth layer and denote it as i'2; the terminal traverses Ω 1 ={i 1 |0≤i 1 ≤3} each value; the terminal calculates the channel capacity 1 when using the precoding matrix indicated by the index (0, i' 2 ) on each subcarrier; the terminal accumulates the channel capacity 1 on each subcarrier to obtain the entire bandwidth Channel capacity two when using the precoding matrix indicated by (0, i' 2 ) on the terminal; the terminal calculates the channel capacity one when using the precoding matrix indicated by the index (1, i' 2 ) on each subcarrier; Once the channel capacity on the carrier is accumulated, the channel capacity 2 when the precoding matrix indicated by (1, i' 2 ) is used on the entire bandwidth is obtained; and so on, until the (3, i' 2 ) indication on the entire bandwidth is obtained channel capacity 2 when the precoding matrix of i” 14 .

其中,终端计算每个子载波上使用索引(i1,i'2)指示的预编码矩阵时的信道容量一,采用的公式如下所示:Wherein, when the terminal calculates the channel capacity 1 when using the precoding matrix indicated by the index (i 1 , i' 2 ) on each subcarrier, the formula used is as follows:

Figure GDA0002488293550000101
Figure GDA0002488293550000101

式中,C表示信道容量,W为由(i1,i'2)指示的预编码矩阵,WH为W的共轭转置矩阵,Hk为第k个子载波上的信道系数矩阵,

Figure GDA0002488293550000102
为Hk的共轭转置矩阵,
Figure GDA0002488293550000103
为第k个子载波上的噪声方差估计值,I为单位阵,在上述例子中I=I4。where C represents the channel capacity, W is the precoding matrix indicated by (i 1 , i' 2 ), W H is the conjugate transpose matrix of W, H k is the channel coefficient matrix on the kth subcarrier,
Figure GDA0002488293550000102
is the conjugate transpose matrix of H k ,
Figure GDA0002488293550000103
is the estimated value of the noise variance on the kth subcarrier, I is the identity matrix, and I=I 4 in the above example.

其中,终端比较第n层的信道容量二,选出最优First PMIi”1n,采用的公式如下所示:Among them, the terminal compares the channel capacity 2 of the nth layer, and selects the optimal First PMIi" 1n , and the formula used is as follows:

Figure GDA0002488293550000111
Figure GDA0002488293550000111

式中,i”1n表示第n层的最优First PMI,W为由(i1,i'2)指示的预编码矩阵,WH为W的共轭转置矩阵,Hk为第k个子载波上的信道系数矩阵,

Figure GDA0002488293550000112
为Hk的共轭转置矩阵,
Figure GDA0002488293550000113
为第k个子载波上的噪声方差估计值,I为单位阵,在上述例子中I=I4。In the formula, i" 1n represents the optimal First PMI of the nth layer, W is the precoding matrix indicated by (i 1 , i' 2 ), W H is the conjugate transpose matrix of W, and H k is the k-th sub the matrix of channel coefficients on the carrier,
Figure GDA0002488293550000112
is the conjugate transpose matrix of H k ,
Figure GDA0002488293550000113
is the estimated value of the noise variance on the kth subcarrier, I is the identity matrix, and I=I 4 in the above example.

具体地,仍以上述8×4的MIMO系统为例,First PMI记为i1,Second PMI记为i2,i1集合记为Ω1,i2集合记为Ω2,在预设准则为最大信道容量准则,且第一类PMI为First PMI,第二类PMI为Second PMI时,实现本步骤的具体过程与上述过程类似,在此不再赘述。Specifically, still taking the above-mentioned 8×4 MIMO system as an example, the First PMI is denoted as i 1 , the Second PMI is denoted as i 2 , the i 1 set is denoted as Ω 1 , and the i 2 set is denoted as Ω 2 , and the preset criterion is When the maximum channel capacity criterion is used, and the first type of PMI is the First PMI and the second type of PMI is the Second PMI, the specific process for implementing this step is similar to the above-mentioned process, and details are not repeated here.

需说明的是,在预设准则为最小均方误差准则时,本步骤可以包括,终端从选定层的第一类PMI集合中为该选定层随机选一个第一类PMI;终端计算整个带宽上使用选定层的选定预编码矩阵一时的均方误差,所述选定层的选定预编码矩阵一是由选定层随机选出的第一类PMI及第二类PMI集合中的一个第二类PMI指示的预编码矩阵;终端比较选定层的每个预编码矩阵一对应的均方误差,将最小均方误差对应的预编码矩阵一的第二类PMI作为选定层的最优第二类PMI。It should be noted that, when the preset criterion is the minimum mean square error criterion, this step may include: the terminal randomly selects a first-type PMI for the selected layer from the first-type PMI set of the selected layer; the terminal calculates the entire The mean square error when using the selected precoding matrix one of the selected layer over the bandwidth, where the selected precoding matrix one of the selected layer is randomly selected by the selected layer in the first type PMI and the second type PMI set A precoding matrix indicated by a second type PMI; the terminal compares the mean square error corresponding to each precoding matrix one of the selected layer, and uses the second type PMI of the precoding matrix one corresponding to the minimum mean square error as the selected layer The optimal second-class PMI.

需说明的是,在预设准则为最小误比特率准则时,本步骤可以包括,终端从选定层的第一类PMI集合中为该选定层随机选一个第一类PMI;终端获取整个带宽上使用选定层的选定预编码矩阵一时的误比特率或误块率,所述选定层的选定预编码矩阵一是由选定层随机选出的第一类PMI及第二类PMI集合中的一个第二类PMI指示的预编码矩阵;终端比较选定层的每个预编码矩阵一对应的误比特率或误块率,将最小误比特率或误块率对应的预编码矩阵一的第二类PMI作为选定层的最优第二类PMI。It should be noted that, when the preset criterion is the minimum bit error rate criterion, this step may include: the terminal randomly selects a first-type PMI for the selected layer from the first-type PMI set of the selected layer; Bit error rate or block error rate when using the selected precoding matrix one of the selected layer over the bandwidth, and the selected precoding matrix one of the selected layer is the first type PMI and the second type PMI randomly selected by the selected layer. A precoding matrix indicated by a second-type PMI in the set of class PMIs; The second-type PMI of encoding matrix one is taken as the optimal second-type PMI for the selected layer.

具体地,所述终端获取整个带宽上使用选定层的选定预编码矩阵一时的误比特率或误块率,可以包括,终端计算带宽上的信道系数矩阵与选定预编码矩阵一的乘积;终端根据该乘积结果和带宽上的噪声方差估计值,从预设表格中查找获得带宽上使用选定层的选定预编码矩阵一时的误比特率或误块率。Specifically, the terminal acquiring the bit error rate or block error rate of the selected precoding matrix one of the selected layer over the entire bandwidth may include: the terminal calculating the product of the channel coefficient matrix over the bandwidth and the selected precoding matrix one ; According to the product result and the noise variance estimation value on the bandwidth, the terminal searches the preset table to obtain the bit error rate or block error rate of the selected precoding matrix using the selected layer on the bandwidth temporarily.

其中,所述预设表格对应带宽上的信道系数矩阵与选定预编码矩阵一的乘积,及带宽上的噪声方差估计值,存储了带宽上使用选定层的选定预编码矩阵一时的误比特率或误块率。在实际应用中,该预设表格中的误比特率或误块率可以通过仿真获得。The preset table corresponds to the product of the channel coefficient matrix on the bandwidth and the selected precoding matrix one, and the noise variance estimate value on the bandwidth, and stores the error of using the selected precoding matrix one of the selected layer on the bandwidth. Bit rate or block error rate. In practical applications, the bit error rate or block error rate in the preset table can be obtained through simulation.

步骤102:根据每一层的最优第二类PMI及第一类PMI集合按照预设准则为每一层选出最优第一类PMI。Step 102: According to the optimal second-type PMI and the first-type PMI set of each layer, the optimal first-type PMI is selected for each layer according to a preset criterion.

具体地,本步骤可以为,终端根据每一层的最优第二类PMI及第一类PMI集合按照预设准则为每一层选出最优第一类PMI。Specifically, this step may be that the terminal selects the optimal first-type PMI for each layer according to the optimal second-type PMI and the first-type PMI set for each layer according to a preset criterion.

具体地,在第一类PMI为Second PMI,第二类PMI为First PMI时,本步骤可以为,终端根据每一层的最优First PMI及Second PMI集合按照预设准则为每一层选出最优SecondPMI。Specifically, when the first type of PMI is the Second PMI and the second type of PMI is the First PMI, this step may be that the terminal selects each layer according to the optimal First PMI and the Second PMI set of each layer according to a preset criterion Optimal SecondPMI.

具体地,在第一类PMI为First PMI,第二类PMI为Second PMI时,本步骤可以为,终端根据每一层的最优Second PMI及First PMI集合按照预设准则为每一层选出最优FirstPMI。Specifically, when the first type of PMI is the First PMI and the second type of PMI is the Second PMI, this step may be that the terminal selects for each layer according to the set of the optimal Second PMI and the First PMI of each layer according to a preset criterion Optimal FirstPMI.

需说明的是,在预设准则为最大信道容量准则时,本步骤可以包括,终端根据信道系数矩阵及噪声方差矩阵,计算每个子载波上使用选定层的选定预编码矩阵二时的信道容量三,所述选定层的选定预编码矩阵二是由选定层的最优第二类PMI及第一类PMI集合中的一个第一类PMI指示的预编码矩阵;终端将每个子载波的该信道容量三累加,获得整个带宽上使用选定层的选定预编码矩阵二时的信道容量四;终端比较选定层的每个预编码矩阵二对应的信道容量四,将最大信道容量四对应的预编码矩阵二的第一类PMI作为选定层的最优第一类PMI。It should be noted that, when the preset criterion is the maximum channel capacity criterion, this step may include that the terminal calculates, according to the channel coefficient matrix and the noise variance matrix, the channel when the selected precoding matrix 2 of the selected layer is used on each subcarrier. Capacity 3, the selected precoding matrix 2 of the selected layer is a precoding matrix indicated by the optimal second-type PMI of the selected layer and a first-type PMI in the first-type PMI set; The channel capacity 3 of the carrier is accumulated to obtain the channel capacity 4 when the selected precoding matrix 2 of the selected layer is used in the entire bandwidth; the terminal compares the channel capacity 4 corresponding to each precoding matrix 2 of the selected layer, and the maximum channel The first-type PMI of precoding matrix two corresponding to capacity four is taken as the optimal first-type PMI of the selected layer.

具体地,仍以上述8×4的MIMO系统为例,First PMI记为i1,Second PMI记为i2,i1集合记为Ω1,i2集合记为Ω2,在预设准则为最大信道容量准则,且第一类PMI为SecondPMI,第二类PMI为First PMI时,上述过程可以包括:Specifically, still taking the above-mentioned 8×4 MIMO system as an example, the First PMI is denoted as i 1 , the Second PMI is denoted as i 2 , the i 1 set is denoted as Ω 1 , and the i 2 set is denoted as Ω 2 , and the preset criterion is When the maximum channel capacity criterion is used, and the first type of PMI is SecondPMI and the second type of PMI is First PMI, the above process may include:

终端读取第一层的最优

Figure GDA0002488293550000131
获得i”11;终端遍历Ω2={i2|0≤i2≤15}中每一个值;终端计算每个子载波上使用索引(i”11,0)指示的预编码矩阵时的信道容量三;终端将每个子载波上的该信道容量三累加,获得整个带宽上使用(i”11,0)指示的预编码矩阵时的信道容量四;终端计算每个子载波上使用索引(i”11,1)指示的预编码矩阵时的信道容量三;终端将每个子载波上的该信道容量三累加,获得整个带宽上使用(i”11,1)指示的预编码矩阵时的信道容量四;以此类推,直至获得整个带宽上使用(i”11,15)指示的预编码矩阵时的信道容量四;终端比较第一层的16个信道容量四,将最大信道容量四对应的SecondPMI作为第一层的最优Second PMI,并将该最优Second PMI记为i”21;The terminal reads the optimal of the first layer
Figure GDA0002488293550000131
Obtain i"11; the terminal traverses each value in Ω 2 ={i 2 |0≤i 2 ≤15}; the terminal calculates the channel capacity when using the precoding matrix indicated by the index (i" 11 , 0) on each subcarrier Three; the terminal accumulates the channel capacity three on each subcarrier to obtain the channel capacity four when using the precoding matrix indicated by (i" 11 , 0) on the entire bandwidth; the terminal calculates the use index (i" 11 on each subcarrier , 1) the channel capacity three when the indicated precoding matrix; the terminal accumulates the channel capacity three on each subcarrier to obtain the channel capacity four when using the precoding matrix indicated by (i" 11 , 1) on the entire bandwidth; And so on, until the channel capacity 4 when the precoding matrix indicated by (i" 11 , 15) is used on the entire bandwidth is obtained; the terminal compares the 16 channel capacity 4 of the first layer, and takes the SecondPMI corresponding to the maximum channel capacity 4 as the second PMI. the optimal Second PMI of one layer, and denote the optimal Second PMI as i"21;

终端读取第二层的最优

Figure GDA0002488293550000132
获得i”12;终端遍历Ω2={i2|0≤i2≤15}中每一个值;终端计算每个子载波上使用索引(i”12,0)指示的预编码矩阵时的信道容量三;终端将每个子载波上的该信道容量三累加,获得整个带宽上使用(i”12,0)指示的预编码矩阵时的信道容量四;终端计算每个子载波上使用索引(i”12,1)指示的预编码矩阵时的信道容量三;终端将每个子载波上的该信道容量三累加,获得整个带宽上使用(i”12,1)指示的预编码矩阵时的信道容量四;以此类推,直至获得整个带宽上使用(i”12,15)指示的预编码矩阵时的信道容量四;终端比较第二层的16个信道容量四,将最大信道容量四对应的SecondPMI作为第二层的最优Second PMI,并将该最优Second PMI记为i”22;The terminal reads the optimal of the second layer
Figure GDA0002488293550000132
Obtain i"12; the terminal traverses each value in Ω 2 ={i 2 |0≤i 2 ≤15}; the terminal calculates the channel capacity when using the precoding matrix indicated by the index (i" 12 , 0) on each subcarrier Three; the terminal accumulates the channel capacity three on each subcarrier to obtain the channel capacity four when using the precoding matrix indicated by (i" 12 , 0) on the entire bandwidth; the terminal calculates the use index (i" 12 on each subcarrier , 1) the channel capacity three during the indicated precoding matrix; the terminal accumulates the channel capacity three on each subcarrier to obtain the channel capacity four when using the precoding matrix indicated by (i" 12 , 1) on the entire bandwidth; And so on, until the channel capacity 4 when the precoding matrix indicated by (i" 12 , 15) is used on the entire bandwidth is obtained; The optimal Second PMI of the second floor, and this optimal Second PMI is denoted as i"22;

终端读取第三层的最优

Figure GDA0002488293550000133
获得i”13;终端遍历Ω2={i2|0≤i2≤15}中每一个值;终端计算每个子载波上使用索引(i”13,0)指示的预编码矩阵时的信道容量三;终端将每个子载波上的该信道容量三累加,获得整个带宽上使用(i”13,0)指示的预编码矩阵时的信道容量四;终端计算每个子载波上使用索引(i”13,1)指示的预编码矩阵时的信道容量三;终端将每个子载波上的该信道容量三累加,获得整个带宽上使用(i”13,1)指示的预编码矩阵时的信道容量四;以此类推,直至获得整个带宽上使用(i”13,15)指示的预编码矩阵时的信道容量四;终端比较第三层的16个信道容量四,将最大信道容量四对应的Second PMI作为第三层的最优Second PMI,并将该最优Second PMI记为i”23;The terminal reads the optimal of the third layer
Figure GDA0002488293550000133
Obtain i"13; the terminal traverses each value in Ω 2 ={i 2 |0≤i 2 ≤15}; the terminal calculates the channel capacity when using the precoding matrix indicated by the index (i" 13 , 0) on each subcarrier Three; the terminal accumulates the channel capacity three on each subcarrier to obtain the channel capacity four when using the precoding matrix indicated by (i" 13 , 0) on the entire bandwidth; the terminal calculates the use index (i" 13 on each subcarrier , 1) the channel capacity three during the indicated precoding matrix; the terminal accumulates the channel capacity three on each subcarrier to obtain the channel capacity four when using the precoding matrix indicated by (i" 13 , 1) on the entire bandwidth; And so on, until the channel capacity 4 when the precoding matrix indicated by (i" 13 , 15) is used on the entire bandwidth is obtained; the terminal compares the 16 channel capacity 4 of the third layer, and takes the Second PMI corresponding to the maximum channel capacity 4 as The optimal Second PMI of the third layer, and this optimal Second PMI is denoted as i"23;

终端读取第四层的最优

Figure GDA0002488293550000147
获得i”14;终端遍历Ω2={i2|0≤i2≤7}中每一个值;终端计算每个子载波上使用索引(i”14,0)指示的预编码矩阵时的信道容量三;终端将每个子载波上的该信道容量三累加,获得整个带宽上使用(i”14,0)指示的预编码矩阵时的信道容量四;终端计算每个子载波上使用索引(i”14,1)指示的预编码矩阵时的信道容量三;终端将每个子载波上的该信道容量三累加,获得整个带宽上使用(i”14,1)指示的预编码矩阵时的信道容量四;以此类推,直至获得整个带宽上使用(i”14,15)指示的预编码矩阵时的信道容量四;终端比较第四层的8个信道容量四,将最大信道容量四对应的Second PMI作为第四层的最优Second PMI,并将该最优Second PMI记为i”24。The terminal reads the optimal of the fourth layer
Figure GDA0002488293550000147
Obtain i"14; the terminal traverses each value in Ω 2 ={i 2 |0≤i 2 ≤7}; the terminal calculates the channel capacity when using the precoding matrix indicated by the index (i" 14 , 0) on each subcarrier Three; the terminal accumulates the channel capacity three on each subcarrier to obtain the channel capacity four when using the precoding matrix indicated by (i" 14 , 0) on the entire bandwidth; the terminal calculates the use index (i" 14 on each subcarrier , 1) the channel capacity three during the indicated precoding matrix; the terminal accumulates the channel capacity three on each subcarrier to obtain the channel capacity four when using the precoding matrix indicated by (i" 14 , 1) on the entire bandwidth; And so on, until the channel capacity 4 when using the precoding matrix indicated by (i" 14 , 15) on the entire bandwidth is obtained; The optimal Second PMI of the fourth layer, and the optimal Second PMI is denoted as i” 24 .

其中,终端计算每个子载波上使用索引(i”1n,i2)指示的预编码矩阵时的信道容量三,采用的公式如下所示:Wherein, when the terminal calculates the channel capacity three when using the precoding matrix indicated by the index (i" 1n , i 2 ) on each subcarrier, the formula used is as follows:

Figure GDA0002488293550000141
Figure GDA0002488293550000141

式中,C表示信道容量,W为由(i”1n,i2)指示的预编码矩阵,WH为W的共轭转置矩阵,Hk为第k个子载波上的信道系数矩阵,

Figure GDA0002488293550000142
为Hk的共轭转置矩阵,
Figure GDA0002488293550000143
为第k个子载波上的噪声方差估计值,I为单位阵,在上述例子中I=I4。where C represents the channel capacity, W is the precoding matrix indicated by (i” 1n , i 2 ), W H is the conjugate transpose matrix of W, H k is the channel coefficient matrix on the kth subcarrier,
Figure GDA0002488293550000142
is the conjugate transpose matrix of H k ,
Figure GDA0002488293550000143
is the estimated value of the noise variance on the kth subcarrier, I is the identity matrix, and I=I 4 in the above example.

其中,终端比较第n层的信道容量四,选出最优Second PMIi”2n,采用的公式如下所示:Among them, the terminal compares the channel capacity of the nth layer, and selects the optimal Second PMIi” 2n . The formula used is as follows:

Figure GDA0002488293550000144
Figure GDA0002488293550000144

式中,i”2n表示第n层的最优Second PMI,W为由(i”1n,i2)指示的预编码矩阵,WH为W的共轭转置矩阵,Hk为第k个子载波上的信道系数矩阵,

Figure GDA0002488293550000145
为Hk的共轭转置矩阵,
Figure GDA0002488293550000146
为第k个子载波上的噪声方差估计值,I为单位阵,在上述例子中I=I4。In the formula, i” 2n represents the optimal Second PMI of the nth layer, W is the precoding matrix indicated by (i” 1n , i 2 ), W H is the conjugate transpose matrix of W, and H k is the k-th sub the matrix of channel coefficients on the carrier,
Figure GDA0002488293550000145
is the conjugate transpose matrix of H k ,
Figure GDA0002488293550000146
is the estimated value of the noise variance on the kth subcarrier, I is the identity matrix, and I=I 4 in the above example.

具体地,仍以上述8×4的MIMO系统为例,First PMI记为i1,Second PMI记为i2,i1集合记为Ω1,i2集合记为Ω2,在预设准则为最大信道容量准则,且第一类PMI为First PMI,第二类PMI为Second PMI时,实现本步骤的具体过程与上述过程类似,在此不再赘述。Specifically, still taking the above-mentioned 8×4 MIMO system as an example, the First PMI is denoted as i 1 , the Second PMI is denoted as i 2 , the i 1 set is denoted as Ω 1 , and the i 2 set is denoted as Ω 2 , and the preset criterion is When the maximum channel capacity criterion is used, and the first type of PMI is the First PMI and the second type of PMI is the Second PMI, the specific process for implementing this step is similar to the above-mentioned process, and details are not repeated here.

需说明的是,在预设准则为最小均方误差准则时,本步骤可以包括,终端计算整个带宽上使用选定层的选定预编码矩阵二时的均方误差,所述选定层的选定预编码矩阵二是由选定层的最优第二类PMI及第一类PMI集合中的一个第一类PMI指示的预编码矩阵;终端比较选定层的每个预编码矩阵二对应的均方误差,将最小均方误差对应的预编码矩阵二的第一类PMI作为选定层的最优第一类PMI。It should be noted that, when the preset criterion is the minimum mean square error criterion, this step may include: the terminal calculates the mean square error when the selected precoding matrix 2 of the selected layer is used over the entire bandwidth, and the The selected precoding matrix 2 is a precoding matrix indicated by the optimal second-type PMI of the selected layer and a first-type PMI in the first-type PMI set; the terminal compares the corresponding precoding matrix 2 of the selected layer. The mean square error of , the first type PMI of the precoding matrix 2 corresponding to the minimum mean square error is taken as the optimal first type PMI of the selected layer.

需说明的是,在预设准则为最小误比特率准则时,本步骤可以包括,终端获取整个带宽上使用选定层的选定预编码矩阵二时的误比特率或误块率,所述选定层的选定预编码矩阵二是由选定层的最优第二类PMI及第一类PMI集合中的一个第一类PMI指示的预编码矩阵;终端比较选定层的每个预编码矩阵二对应的误比特率或误块率,将最小误比特率对应的预编码矩阵二的第一类PMI作为选定层的最优第一类PMI。It should be noted that, when the preset criterion is the minimum bit error rate criterion, this step may include that the terminal obtains the bit error rate or block error rate when the selected precoding matrix 2 of the selected layer is used over the entire bandwidth, and the The second selected precoding matrix of the selected layer is a precoding matrix indicated by the optimal second type PMI of the selected layer and one first type PMI in the first type PMI set; the terminal compares each precoding matrix of the selected layer. For the bit error rate or block error rate corresponding to the coding matrix 2, the first type PMI of the precoding matrix 2 corresponding to the minimum bit error rate is taken as the optimal first type PMI of the selected layer.

具体地,所述终端获取整个带宽上使用选定层的选定预编码矩阵二时的误比特率或误块率,与上述所述终端获取整个带宽上使用选定层的选定预编码矩阵一时的误比特率或误块率过程类似,在此不再赘述。Specifically, the terminal acquires the bit error rate or block error rate when the selected precoding matrix 2 of the selected layer is used over the entire bandwidth, and the above-mentioned terminal acquires the selected precoding matrix using the selected layer over the entire bandwidth. The temporary bit error rate or block error rate process is similar and will not be repeated here.

步骤103:按照预设准则从各个层的最优第一类PMI及最优第二类PMI中选出与当前信道最匹配的第一类PMI及第二类PMI,并将该最匹配的第一类PMI及第二类PMI对应的层数作为信道矩阵的秩RI。Step 103: Select the first-type PMI and the second-type PMI that best match the current channel from the optimal first-type PMI and the optimal second-type PMI of each layer according to the preset criteria, The number of layers corresponding to one type of PMI and the second type of PMI is used as the rank RI of the channel matrix.

具体地,本步骤可以为,终端按照预设准则从各个层的最优第一类PMI及最优第二类PMI中选出与当前信道最匹配的第一类PMI及第二类PMI,并将该最匹配的第一类PMI及第二类PMI对应的层数作为信道矩阵的秩RI。Specifically, this step may be that the terminal selects the first-type PMI and the second-type PMI that best match the current channel from the optimal first-type PMI and the optimal second-type PMI of each layer according to a preset criterion, and The number of layers corresponding to the most matching first-type PMI and second-type PMI is taken as the rank RI of the channel matrix.

需说明的是,在预设准则为最大信道容量准则时,本步骤可以包括,终端读取整个带宽上使用选定层的预编码矩阵时的信道容量,所述选定层的预编码矩阵是由选定层的最优第一类PMI及最优第二类PMI指示的预编码矩阵;终端比较各个层的该信道容量,将最大该信道容量对应的预编码矩阵的最优第一类PMI及最优第二类PMI作为与当前信道最匹配的第一类PMI及第二类PMI,并将该最匹配的第一类PMI及第二类PMI对应的层数作为信道矩阵的秩RI。It should be noted that, when the preset criterion is the maximum channel capacity criterion, this step may include: the terminal reads the channel capacity when the precoding matrix of the selected layer is used over the entire bandwidth, and the precoding matrix of the selected layer is: The precoding matrix indicated by the optimal first-type PMI and the optimal second-type PMI of the selected layer; the terminal compares the channel capacity of each layer, and assigns the optimal first-type PMI of the precoding matrix corresponding to the maximum channel capacity and the optimal second-type PMI as the first-type PMI and the second-type PMI that best match the current channel, and the number of layers corresponding to the best-matched first-type PMI and the second-type PMI as the rank RI of the channel matrix.

具体地,仍以上述8×4的MIMO系统为例,First PMI记为i1,Second PMI记为i2,i1集合记为Ω1,i2集合记为Ω2,在预设准则为最大信道容量准则时,上述过程可以包括:Specifically, still taking the above-mentioned 8×4 MIMO system as an example, the First PMI is denoted as i 1 , the Second PMI is denoted as i 2 , the i 1 set is denoted as Ω 1 , and the i 2 set is denoted as Ω 2 , and the preset criterion is When the maximum channel capacity criterion is used, the above process may include:

终端从步骤102计算结果中读取出整个带宽上使用(i”11,i”21)指示的预编码矩阵时的信道容量;终端从步骤102计算结果中读取出整个带宽上使用(i”12,i”22)指示的预编码矩阵时的信道容量;终端从步骤102计算结果中读取出整个带宽上使用(i”13,i”23)指示的预编码矩阵时的信道容量;终端从步骤102计算结果中读取出整个带宽上使用(i”14,i”24)指示的预编码矩阵时的信道容量;终端比较4个信道容量,将最大信道容量对应的预编码矩阵的最优第一类PMI及最优第二类PMI作为与当前信道最匹配的第一类PMI及第二类PMI,并将该最匹配的第一类PMI及第二类PMI对应的层数作为信道矩阵的秩RI。The terminal reads from the calculation result in step 102 the channel capacity when using the precoding matrix indicated by (i" 11 , i" 21 ) over the entire bandwidth; the terminal reads the calculation result in step 102 to use (i" 12 , i" 22 ) indicates the channel capacity of the precoding matrix; the terminal reads from the calculation result in step 102 the channel capacity when the precoding matrix indicated by (i" 13 , i" 23 ) is used on the entire bandwidth; the terminal The channel capacity when the precoding matrix indicated by (i" 14 , i" 24 ) is used on the entire bandwidth is read from the calculation result in step 102; The optimal first-type PMI and the optimal second-type PMI are used as the first-type PMI and the second-type PMI that best match the current channel, and the number of layers corresponding to the best-matched first-type PMI and the second-type PMI is used as the channel The rank RI of the matrix.

需说明的是,在预设准则为最小均方误差准则时,本步骤可以包括,终端计算整个带宽上使用选定层的预编码矩阵时的均方误差,所述选定层的预编码矩阵是由选定层的最优第一类PMI及最优第二类PMI指示的预编码矩阵;终端比较各个层的该均方误差,将最小均方误差对应的预编码矩阵的最优第一类PMI及最优第二类PMI作为与当前信道最匹配的第一类PMI及第二类PMI,并将该最匹配的第一类PMI及第二类PMI对应的层数作为信道矩阵的秩RI。It should be noted that when the preset criterion is the minimum mean square error criterion, this step may include: the terminal calculates the mean square error when the precoding matrix of the selected layer is used over the entire bandwidth, and the precoding matrix of the selected layer is used. is the precoding matrix indicated by the optimal first-type PMI and the optimal second-type PMI of the selected layer; the terminal compares the mean square error of each layer, and assigns the optimal first type of the precoding matrix corresponding to the minimum mean square error The class PMI and the optimal second class PMI are taken as the first class PMI and the second class PMI that best match the current channel, and the number of layers corresponding to the best matched first class PMI and the second class PMI is taken as the rank of the channel matrix RI.

需说明的是,在预设准则为最小误比特率准则时,本步骤可以包括,终端获得整个带宽上使用选定层的预编码矩阵时的误比特率或误块率,所述选定层的预编码矩阵是由选定层的最优第一类PMI及最优第二类PMI指示的预编码矩阵;终端比较各个层的该误比特率或误块率,将最小误比特率或误块率对应的预编码矩阵的最优第一类PMI及最优第二类PMI作为与当前信道最匹配的第一类PMI及第二类PMI,并将该最匹配的第一类PMI及第二类PMI对应的层数作为信道矩阵的秩RI。It should be noted that, when the preset criterion is the minimum bit error rate criterion, this step may include that the terminal obtains the bit error rate or block error rate when using the precoding matrix of the selected layer over the entire bandwidth, and the selected layer The precoding matrix is the precoding matrix indicated by the optimal first type PMI and the optimal second type PMI of the selected layer; the terminal compares the bit error rate or block error rate of each layer, and assigns the minimum bit error rate or error The optimal first-type PMI and the optimal second-type PMI of the precoding matrix corresponding to the block rate are taken as the first-type PMI and the second-type PMI that best match the current channel, and the best-matched first-type PMI and second-type PMI are used. The number of layers corresponding to the second type of PMI is used as the rank RI of the channel matrix.

具体地,所述终端获得整个带宽上使用选定层的预编码矩阵时的误比特率或误块率,与上述所述终端获取整个带宽上使用选定层的选定预编码矩阵一时的误比特率或误块率过程类似,在此不再赘述。Specifically, the terminal obtains the bit error rate or block error rate when the precoding matrix of the selected layer is used over the entire bandwidth, which is the same as the above-mentioned error when the terminal obtains the selected precoding matrix of the selected layer over the entire bandwidth. The bit rate or block error rate process is similar and will not be repeated here.

如此,分离选择第一级码本的索引和第二级码本的索引,每一层仅需计算i1+i2个预编码矩阵对应的信道容量、均方误差或误比特率就可以选出RI和PMI,避免了需计算i1×i2个预编码矩阵对应的信道容量、均方误差或误比特率才可以选出PMI,从而实现降低了RI和PMI选取过程在计算上的复杂度;同时,由于在本发明中选最优第一级码本的索引和选最优第二级码本的索引时采用了相同的准则,计算方法一致,可以分时复用相同模块来实现选出最优第一级码本的索引和选最优第二级码本的索引,降低了软硬件规模,从而降低了RI和PMI选择过程在实现上的复杂度。In this way, the index of the first-level codebook and the index of the second-level codebook are selected separately, and each layer only needs to calculate the channel capacity, mean square error or bit error rate corresponding to the i 1 +i 2 precoding matrices. The RI and PMI are obtained, avoiding the need to calculate the channel capacity, mean square error or bit error rate corresponding to the i 1 ×i 2 precoding matrices to select the PMI, thereby reducing the computational complexity of the RI and PMI selection process. At the same time, because the same criterion is adopted when selecting the index of the optimal first-level codebook and the index of the optimal second-level codebook in the present invention, the calculation method is consistent, and the same module can be time-division multiplexed to realize the selection. The index of the optimal first-level codebook and the index of the optimal second-level codebook are obtained, which reduces the scale of software and hardware, thereby reducing the implementation complexity of the RI and PMI selection process.

需说明的是,本发明实施例提供的信道状态信息获取方法还可以包括:终端上报信道矩阵的秩RI和与当前信道最匹配的第一类PMI及第二类PMI。It should be noted that, the method for acquiring channel state information provided by the embodiment of the present invention may further include: the terminal reporting the rank RI of the channel matrix and the first type PMI and the second type PMI that best match the current channel.

为了实现上述方法,本发明公开了一种信道状态信息获取装置。In order to realize the above method, the present invention discloses a channel state information acquisition device.

图2为本发明实施例提供的一种信道状态信息获取装置的结构示意图一,如图2所示,所述发射功率检测装置包括:FIG. 2 is a schematic structural diagram 1 of an apparatus for obtaining channel state information according to an embodiment of the present invention. As shown in FIG. 2 , the transmit power detection apparatus includes:

第一选择模块202A,用于为每一层选择第一类预编码码本索引PMI,并根据每一层的所述第一类PMI及第二类PMI集合按照预设准则为每一层选出最优第二类PMI;根据每一层的所述最优第二类PMI及第一类PMI集合按照所述预设准则为每一层选出最优第一类PMI;The first selection module 202A is configured to select the first-type precoding codebook index PMI for each layer, and select the first-type PMI and the second-type PMI set for each layer according to a preset criterion for each layer. Obtain the optimal second-type PMI; select the optimal first-type PMI for each layer according to the optimal second-type PMI and the first-type PMI set for each layer according to the preset criteria;

第二选择模块202B,用于按照所述预设准则从各个层的所述最优第一类PMI及最优第二类PMI中选出与当前信道最匹配的第一类PMI及第二类PMI,并将所述最匹配的第一类PMI及第二类PMI对应的层数作为信道矩阵的秩RI。The second selection module 202B is configured to select the first-type PMI and the second-type PMI that best match the current channel from the optimal first-type PMI and the optimal second-type PMI of each layer according to the preset criterion PMI, and the number of layers corresponding to the most matched first-type PMI and second-type PMI is used as the rank RI of the channel matrix.

进一步,如图3所示,所述装置还包括:估计模块201,用于在所述为每一层选择第一类预编码码本索引PMI,并根据每一层的所述第一类PMI及第二类PMI集合按照预设准则为每一层选出最优第二类PMI之前,利用导频信号估计获得每个子载波上的信道系数矩阵及噪声方差矩阵。Further, as shown in FIG. 3 , the apparatus further includes: an estimation module 201, configured to select a first type of precoding codebook index PMI for each layer, and based on the first type of PMI of each layer And before selecting the optimal second-type PMI set for each layer according to a preset criterion, the channel coefficient matrix and the noise variance matrix on each subcarrier are obtained by using the pilot signal estimation.

进一步,如图3所示,所述第一选择模块202A包括:Further, as shown in FIG. 3 , the first selection module 202A includes:

选定模块2021,用于从选定层的第一类PMI集合中为所述选定层随机选一个第一类PMI;A selection module 2021, configured to randomly select a first-type PMI for the selected layer from the first-type PMI set of the selected layer;

容量计算模块2022,用于根据信道系数矩阵及噪声方差矩阵,计算每个子载波上使用所述选定层的选定预编码矩阵一时的信道容量一,所述选定层的选定预编码矩阵一是由所述选定层的所述第一类PMI及第二类PMI集合中的一个第二类PMI指示的预编码矩阵;The capacity calculation module 2022 is used to calculate the channel capacity 1 when the selected precoding matrix of the selected layer is used on each subcarrier according to the channel coefficient matrix and the noise variance matrix, and the selected precoding matrix of the selected layer is used. one is a precoding matrix indicated by a second type PMI in the set of first type PMI and second type PMI for the selected layer;

容量累加模块2023,用于将每个子载波的所述信道容量一累加,获得整个带宽上使用所述选定层的选定预编码矩阵一时的信道容量二;A capacity accumulation module 2023, configured to accumulate the channel capacity 1 of each subcarrier to obtain the channel capacity 2 when the selected precoding matrix of the selected layer is used on the entire bandwidth;

比较模块2024,用于比较所述选定层的每个预编码矩阵一对应的所述信道容量二,将最大所述信道容量二对应的预编码矩阵一的第二类PMI作为所述选定层的最优第二类PMI。A comparison module 2024, configured to compare the channel capacity 2 corresponding to each precoding matrix 1 of the selected layer, and use the second type PMI of the precoding matrix 1 corresponding to the maximum channel capacity 2 as the selected layer The optimal second-class PMI for the layer.

进一步,如图3所示,所述装置还包括:Further, as shown in Figure 3, the device further includes:

上报模块203,用于上报所述信道矩阵的秩RI和所述与当前信道最匹配的第一类PMI及第二类PMI。A reporting module 203, configured to report the rank RI of the channel matrix and the first-type PMI and the second-type PMI that best match the current channel.

进一步,所述第一类PMI为第二级码本的索引,所述第二类PMI为第一级码本的索引。Further, the first-type PMI is an index of the second-level codebook, and the second-type PMI is an index of the first-level codebook.

在实际应用中,所述估计模块201、第一选择模块202A、第二选择模块202B、上报模块203均可由位于终端中的中央处理器(Central Processing Unit,CPU)、微处理器(MicroProcessor Unit,MPU)、数字信号处理器(Digital Signal Processor,DSP)、或现场可编程门阵列(Field Programmable Gate Array,FPGA)等实现。In practical applications, the estimation module 201, the first selection module 202A, the second selection module 202B, and the reporting module 203 can all be composed of a central processing unit (Central Processing Unit, CPU), a microprocessor (MicroProcessor Unit, MPU), digital signal processor (Digital Signal Processor, DSP), or Field Programmable Gate Array (Field Programmable Gate Array, FPGA) and other implementations.

图4为本发明提供的一种信道状态信息获取方法具体实施例一的流程示意图,如图4所示,以R11版本的发送端8天线端口,接收端4天线的MIMO系统为例,并假设高层配置的码本子集限制中所有码本都可用,具体步骤包括:FIG. 4 is a schematic flowchart of a specific embodiment 1 of a method for obtaining channel state information provided by the present invention. As shown in FIG. 4 , a MIMO system of the R11 version with 8 antenna ports at the transmitting end and 4 antennas at the receiving end is used as an example, and it is assumed that All codebooks in the codebook subset limit configured by the high layer are available, and the specific steps include:

步骤401:利用小区导频信号CRS或信道状态信息导频信号CSI-RS估计获得每个子载波上的信道系数矩阵及噪声方差矩阵。Step 401: Use the cell pilot signal CRS or the channel state information pilot signal CSI-RS to estimate and obtain the channel coefficient matrix and the noise variance matrix on each subcarrier.

具体地,本步骤可以为,终端利用小区导频信号CRS或信道状态信息导频信号CSI-RS估计获得每个子载波上的信道系数矩阵及噪声方差矩阵。Specifically, in this step, the terminal uses the cell pilot signal CRS or the channel state information pilot signal CSI-RS to estimate and obtain the channel coefficient matrix and the noise variance matrix on each subcarrier.

其中,终端估计获得的第k个子载波上的信道系数矩阵记为Hk及噪声方差矩阵记为

Figure GDA0002488293550000191
其中,Among them, the channel coefficient matrix on the kth subcarrier estimated by the terminal is denoted as H k and the noise variance matrix is denoted as
Figure GDA0002488293550000191
in,

Figure GDA0002488293550000192
Figure GDA0002488293550000192

hij表示第j个发射天线端口到第i个接收天线的信道系数,σ2为噪声功率,I4为4×4的单位阵。h ij represents the channel coefficient from the j-th transmit antenna port to the i-th receive antenna, σ 2 is the noise power, and I 4 is a 4×4 identity matrix.

步骤402:从每一层的Second PMI集合中为每一层随机选出一个Second PMI,并根据每一层的该Second PMI及First PMI集合按照最大信道容量准则,从每一层的First PMI集合中为每一层选出最优First PMI。Step 402: Randomly select a Second PMI for each layer from the Second PMI set of each layer, and according to the Second PMI and First PMI set of each layer, according to the maximum channel capacity criterion, from the First PMI set of each layer Select the optimal First PMI for each layer.

具体地,本步骤可以为,终端从每一层的Second PMI集合中为每一层随机选出一个Second PMI,并根据每一层的该Second PMI及First PMI集合按照最大信道容量准则,从每一层的First PMI集合中为每一层选出最优First PMI。Specifically, this step may be that the terminal randomly selects a Second PMI for each layer from the Second PMI set of each layer, and according to the Second PMI and First PMI set of each layer, according to the maximum channel capacity criterion, from each layer The optimal First PMI is selected for each layer in the First PMI set of one layer.

具体地,本步骤可以包括,终端从第一层的Ω2={i2|0≤i2≤15}中为第一层随机选出一个Second PMI记为i'2;终端遍历Ω1={i1|0≤i1≤15}中每一个值;终端计算每个子载波上使用索引(0,i'2)指示的预编码矩阵时的信道容量一;终端将每个子载波上的该信道容量一累加,获得整个带宽上使用(0,i'2)指示的预编码矩阵时的信道容量二;终端计算每个子载波上使用索引(1,i'2)指示的预编码矩阵时的信道容量一;终端将每个子载波上的该信道容量一累加,获得整个带宽上使用(1,i'2)指示的预编码矩阵时的信道容量二;以此类推,直至获得整个带宽上使用(15,i'2)指示的预编码矩阵时的信道容量二;终端比较第一层的16个信道容量二,将最大信道容量二对应的First PMI作为第一层的最优FirstPMI,并将该最优First PMI记为i”11Specifically, this step may include: the terminal randomly selects a Second PMI for the first layer from Ω 2 ={i 2 |0≤i 2 ≤15} of the first layer, and denotes it as i'2; the terminal traverses Ω 1 = Each value in {i 1 |0≤i 1 ≤15}; the terminal calculates the channel capacity one when using the precoding matrix indicated by index (0, i' 2 ) on each subcarrier; Channel capacity 1 is accumulated to obtain channel capacity 2 when the precoding matrix indicated by (0, i' 2 ) is used on the entire bandwidth; when the terminal calculates the precoding matrix indicated by index (1, i' 2 ) on each subcarrier, the Channel capacity 1; the terminal accumulates the channel capacity 1 on each subcarrier to obtain the channel capacity 2 when the precoding matrix indicated by (1, i' 2 ) is used on the entire bandwidth; and so on, until the entire bandwidth is obtained. (15, i' 2 ) indicates the channel capacity 2 of the precoding matrix; the terminal compares the 16 channel capacity 2 of the first layer, takes the First PMI corresponding to the maximum channel capacity 2 as the optimal FirstPMI of the first layer, and uses the The optimal First PMI is denoted as i"11;

终端从第二层的Ω2={i2|0≤i2≤15}中为第二层随机选出一个Second PMI记为i'2;终端遍历Ω1={i1|0≤i1≤15}中每一个值;终端计算每个子载波上使用索引(0,i'2)指示的预编码矩阵时的信道容量一;终端将每个子载波上的该信道容量一累加,获得整个带宽上使用(0,i'2)指示的预编码矩阵时的信道容量二;终端计算每个子载波上使用索引(1,i'2)指示的预编码矩阵时的信道容量一;终端将每个子载波上的该信道容量一累加,获得整个带宽上使用(1,i'2)指示的预编码矩阵时的信道容量二;以此类推,直至获得整个带宽上使用(15,i'2)指示的预编码矩阵时的信道容量二;终端比较第二层的16个信道容量二,将最大信道容量二对应的First PMI作为第二层的最优First PMI,并将该最优First PMI记为i”12The terminal randomly selects a Second PMI for the second layer from Ω 2 ={i 2 |0≤i 2 ≤15} of the second layer and denote it as i'2; the terminal traverses Ω 1 ={i 1 |0≤i 1 ≤15} each value; the terminal calculates the channel capacity 1 when using the precoding matrix indicated by the index (0, i' 2 ) on each subcarrier; the terminal accumulates the channel capacity 1 on each subcarrier to obtain the entire bandwidth Channel capacity two when using the precoding matrix indicated by (0, i' 2 ) on the terminal; the terminal calculates the channel capacity one when using the precoding matrix indicated by the index (1, i' 2 ) on each subcarrier; Once the channel capacity on the carrier is accumulated, the channel capacity 2 when the precoding matrix indicated by (1, i' 2 ) is used on the entire bandwidth is obtained; and so on, until the (15, i' 2 ) indication on the entire bandwidth is obtained The channel capacity 2 when the precoding matrix is set; the terminal compares the 16 channel capacity 2 of the second layer, takes the First PMI corresponding to the maximum channel capacity 2 as the optimal First PMI of the second layer, and records the optimal First PMI as i” 12 ;

终端从第三层的Ω2={i2|0≤i2≤15}中为第三层随机选出一个Second PMI记为i'2;终端遍历Ω1={i1|0≤i1≤3}中每一个值;终端计算每个子载波上使用索引(0,i'2)指示的预编码矩阵时的信道容量一;终端将每个子载波上的该信道容量一累加,获得整个带宽上使用(0,i'2)指示的预编码矩阵时的信道容量二;终端计算每个子载波上使用索引(1,i'2)指示的预编码矩阵时的信道容量一;终端将每个子载波上的该信道容量一累加,获得整个带宽上使用(1,i'2)指示的预编码矩阵时的信道容量二;以此类推,直至获得整个带宽上使用(3,i'2)指示的预编码矩阵时的信道容量二;终端比较第三层的4个信道容量二,将最大信道容量二对应的First PMI作为第三层的最优First PMI,并将该最优First PMI记为i”13The terminal randomly selects a Second PMI for the third layer from Ω 2 ={i 2 |0≤i 2 ≤15} of the third layer and denote it as i'2; the terminal traverses Ω 1 ={i 1 |0≤i 1 ≤3} each value; the terminal calculates the channel capacity 1 when using the precoding matrix indicated by the index (0, i' 2 ) on each subcarrier; the terminal accumulates the channel capacity 1 on each subcarrier to obtain the entire bandwidth Channel capacity two when using the precoding matrix indicated by (0, i' 2 ) on the terminal; the terminal calculates the channel capacity one when using the precoding matrix indicated by the index (1, i' 2 ) on each subcarrier; Once the channel capacity on the carrier is accumulated, the channel capacity 2 when the precoding matrix indicated by (1, i' 2 ) is used on the entire bandwidth is obtained; and so on, until the (3, i' 2 ) indication on the entire bandwidth is obtained The channel capacity 2 when the precoding matrix is set; the terminal compares the 4 channel capacity 2 of the third layer, takes the First PMI corresponding to the maximum channel capacity 2 as the optimal First PMI of the third layer, and records the optimal First PMI as i” 13 ;

终端从第四层的Ω2={i2|0≤i2≤7}中为第四层随机选出一个Second PMI记为i'2;终端遍历Ω1={i1|0≤i1≤3}中每一个值;终端计算每个子载波上使用索引(0,i'2)指示的预编码矩阵时的信道容量一;终端将每个子载波上的该信道容量一累加,获得整个带宽上使用(0,i'2)指示的预编码矩阵时的信道容量二;终端计算每个子载波上使用索引(1,i'2)指示的预编码矩阵时的信道容量一;终端将每个子载波上的该信道容量一累加,获得整个带宽上使用(1,i'2)指示的预编码矩阵时的信道容量二;以此类推,直至获得整个带宽上使用(3,i'2)指示的预编码矩阵时的信道容量二;终端比较第四层的4个信道容量二,将最大信道容量二对应的First PMI作为第四层的最优First PMI,并将该最优First PMI记为i”14The terminal randomly selects a Second PMI for the fourth layer from Ω 2 ={i 2 |0≤i 2 ≤7} of the fourth layer and denote it as i'2; the terminal traverses Ω 1 ={i 1 |0≤i 1 ≤3} each value; the terminal calculates the channel capacity 1 when using the precoding matrix indicated by the index (0, i' 2 ) on each subcarrier; the terminal accumulates the channel capacity 1 on each subcarrier to obtain the entire bandwidth Channel capacity two when using the precoding matrix indicated by (0, i' 2 ) on the terminal; the terminal calculates the channel capacity one when using the precoding matrix indicated by the index (1, i' 2 ) on each subcarrier; Once the channel capacity on the carrier is accumulated, the channel capacity 2 when the precoding matrix indicated by (1, i' 2 ) is used on the entire bandwidth is obtained; and so on, until the (3, i' 2 ) indication on the entire bandwidth is obtained channel capacity 2 when the precoding matrix of i” 14 .

其中,终端计算每个子载波上使用索引(i1,i'2)指示的预编码矩阵时的信道容量一,采用的公式如下所示:Wherein, when the terminal calculates the channel capacity 1 when using the precoding matrix indicated by the index (i 1 , i' 2 ) on each subcarrier, the formula used is as follows:

Figure GDA0002488293550000211
Figure GDA0002488293550000211

式中,C表示信道容量,W为由(i1,i'2)指示的预编码矩阵,WH为W的共轭转置矩阵,Hk为第k个子载波上的信道系数矩阵,

Figure GDA0002488293550000212
为Hk的共轭转置矩阵,
Figure GDA0002488293550000213
为第k个子载波上的噪声方差估计值,I为单位阵,在上述例子中I=I4。where C represents the channel capacity, W is the precoding matrix indicated by (i 1 , i' 2 ), W H is the conjugate transpose matrix of W, H k is the channel coefficient matrix on the kth subcarrier,
Figure GDA0002488293550000212
is the conjugate transpose matrix of H k ,
Figure GDA0002488293550000213
is the estimated value of the noise variance on the kth subcarrier, I is the identity matrix, and I=I 4 in the above example.

其中,终端比较第n层的信道容量二,选出最优First PMIi”1n,采用的公式如下所示:Among them, the terminal compares the channel capacity 2 of the nth layer, and selects the optimal First PMIi" 1n , and the formula used is as follows:

Figure GDA0002488293550000214
Figure GDA0002488293550000214

式中,i”1n表示第n层的最优First PMI,W为由(i1,i'2)指示的预编码矩阵,WH为W的共轭转置矩阵,Hk为第k个子载波上的信道系数矩阵,

Figure GDA0002488293550000215
为Hk的共轭转置矩阵,
Figure GDA0002488293550000216
为第k个子载波上的噪声方差估计值,I为单位阵,在上述例子中I=I4。In the formula, i" 1n represents the optimal First PMI of the nth layer, W is the precoding matrix indicated by (i 1 , i' 2 ), W H is the conjugate transpose matrix of W, and H k is the k-th sub the matrix of channel coefficients on the carrier,
Figure GDA0002488293550000215
is the conjugate transpose matrix of H k ,
Figure GDA0002488293550000216
is the estimated value of the noise variance on the kth subcarrier, I is the identity matrix, and I=I 4 in the above example.

步骤403:根据每一层的最优First PMI及Second PMI集合按照最大信道容量准则为每一层选出最优Second PMI。Step 403: According to the optimal First PMI and Second PMI set of each layer, select the optimal Second PMI for each layer according to the maximum channel capacity criterion.

具体地,本步骤可以为,终端根据每一层的最优First PMI及Second PMI集合按照预设准则为每一层选出最优Second PMI。Specifically, this step may be that the terminal selects the optimal Second PMI for each layer according to a preset criterion according to the optimal First PMI and Second PMI set of each layer.

具体地,本步骤可以包括,终端读取第一层的最优

Figure GDA0002488293550000221
获得i”11;终端遍历Ω2={i2|0≤i2≤15}中每一个值;终端计算每个子载波上使用索引(i”11,0)指示的预编码矩阵时的信道容量三;终端将每个子载波上的该信道容量三累加,获得整个带宽上使用(i”11,0)指示的预编码矩阵时的信道容量四;终端计算每个子载波上使用索引(i”11,1)指示的预编码矩阵时的信道容量三;终端将每个子载波上的该信道容量三累加,获得整个带宽上使用(i”11,1)指示的预编码矩阵时的信道容量四;以此类推,直至获得整个带宽上使用(i”11,15)指示的预编码矩阵时的信道容量四;终端比较第一层的16个信道容量四,将最大信道容量四对应的Second PMI作为第一层的最优Second PMI,并将该最优Second PMI记为i”21;Specifically, this step may include: the terminal reads the optimal value of the first layer
Figure GDA0002488293550000221
Obtain i"11; the terminal traverses each value in Ω 2 ={i 2 |0≤i 2 ≤15}; the terminal calculates the channel capacity when using the precoding matrix indicated by the index (i" 11 , 0) on each subcarrier Three; the terminal accumulates the channel capacity three on each subcarrier to obtain the channel capacity four when using the precoding matrix indicated by (i" 11 , 0) on the entire bandwidth; the terminal calculates the use index (i" 11 on each subcarrier , 1) the channel capacity three when the indicated precoding matrix; the terminal accumulates the channel capacity three on each subcarrier to obtain the channel capacity four when using the precoding matrix indicated by (i" 11 , 1) on the entire bandwidth; And so on, until the channel capacity 4 when the precoding matrix indicated by (i" 11 , 15) is used in the entire bandwidth is obtained; the optimal Second PMI of the first layer, and denote the optimal Second PMI as i"21;

终端读取第二层的最优

Figure GDA0002488293550000222
获得i”12;终端遍历Ω2={i2|0≤i2≤15}中每一个值;终端计算每个子载波上使用索引(i”12,0)指示的预编码矩阵时的信道容量三;终端将每个子载波上的该信道容量三累加,获得整个带宽上使用(i”12,0)指示的预编码矩阵时的信道容量四;终端计算每个子载波上使用索引(i”12,1)指示的预编码矩阵时的信道容量三;终端将每个子载波上的该信道容量三累加,获得整个带宽上使用(i”12,1)指示的预编码矩阵时的信道容量四;以此类推,直至获得整个带宽上使用(i”12,15)指示的预编码矩阵时的信道容量四;终端比较第二层的16个信道容量四,将最大信道容量四对应的SecondPMI作为第二层的最优Second PMI,并将该最优Second PMI记为i”22;The terminal reads the optimal of the second layer
Figure GDA0002488293550000222
Obtain i"12; the terminal traverses each value in Ω 2 ={i 2 |0≤i 2 ≤15}; the terminal calculates the channel capacity when using the precoding matrix indicated by the index (i" 12 , 0) on each subcarrier Three; the terminal accumulates the channel capacity three on each subcarrier to obtain the channel capacity four when using the precoding matrix indicated by (i" 12 , 0) on the entire bandwidth; the terminal calculates the use index (i" 12 on each subcarrier , 1) the channel capacity three during the indicated precoding matrix; the terminal accumulates the channel capacity three on each subcarrier to obtain the channel capacity four when using the precoding matrix indicated by (i" 12 , 1) on the entire bandwidth; And so on, until the channel capacity 4 when the precoding matrix indicated by (i" 12 , 15) is used on the entire bandwidth is obtained; The optimal Second PMI of the second floor, and this optimal Second PMI is denoted as i"22;

终端读取第三层的最优

Figure GDA0002488293550000223
获得i”13;终端遍历Ω2={i2|0≤i2≤15}中每一个值;终端计算每个子载波上使用索引(i”13,0)指示的预编码矩阵时的信道容量三;终端将每个子载波上的该信道容量三累加,获得整个带宽上使用(i”13,0)指示的预编码矩阵时的信道容量四;终端计算每个子载波上使用索引(i”13,1)指示的预编码矩阵时的信道容量三;终端将每个子载波上的该信道容量三累加,获得整个带宽上使用(i”13,1)指示的预编码矩阵时的信道容量四;以此类推,直至获得整个带宽上使用(i”13,15)指示的预编码矩阵时的信道容量四;终端比较第三层的16个信道容量四,将最大信道容量四对应的SecondPMI作为第三层的最优Second PMI,并将该最优Second PMI记为i”23;The terminal reads the optimal of the third layer
Figure GDA0002488293550000223
Obtain i"13; the terminal traverses each value in Ω 2 ={i 2 |0≤i 2 ≤15}; the terminal calculates the channel capacity when using the precoding matrix indicated by the index (i" 13 , 0) on each subcarrier Three; the terminal accumulates the channel capacity three on each subcarrier to obtain the channel capacity four when using the precoding matrix indicated by (i" 13 , 0) on the entire bandwidth; the terminal calculates the use index (i" 13 on each subcarrier , 1) the channel capacity three during the indicated precoding matrix; the terminal accumulates the channel capacity three on each subcarrier to obtain the channel capacity four when using the precoding matrix indicated by (i" 13 , 1) on the entire bandwidth; And so on, until the channel capacity 4 when the precoding matrix indicated by (i" 13 , 15) is used on the whole bandwidth is obtained; The optimal Second PMI of the three layers, and this optimal Second PMI is denoted as i"23;

终端读取第四层的最优

Figure GDA0002488293550000234
获得i”14;终端遍历Ω2={i2|0≤i2≤7}中每一个值;终端计算每个子载波上使用索引(i”14,0)指示的预编码矩阵时的信道容量三;终端将每个子载波上的该信道容量三累加,获得整个带宽上使用(i”14,0)指示的预编码矩阵时的信道容量四;终端计算每个子载波上使用索引(i”14,1)指示的预编码矩阵时的信道容量三;终端将每个子载波上的该信道容量三累加,获得整个带宽上使用(i”14,1)指示的预编码矩阵时的信道容量四;以此类推,直至获得整个带宽上使用(i”14,15)指示的预编码矩阵时的信道容量四;终端比较第四层的8个信道容量四,将最大信道容量四对应的Second PMI作为第四层的最优Second PMI,并将该最优Second PMI记为i”24。The terminal reads the optimal of the fourth layer
Figure GDA0002488293550000234
Obtain i"14; the terminal traverses each value in Ω 2 ={i 2 |0≤i 2 ≤7}; the terminal calculates the channel capacity when using the precoding matrix indicated by the index (i" 14 , 0) on each subcarrier Three; the terminal accumulates the channel capacity three on each subcarrier to obtain the channel capacity four when using the precoding matrix indicated by (i" 14 , 0) on the entire bandwidth; the terminal calculates the use index (i" 14 on each subcarrier , 1) the channel capacity three during the indicated precoding matrix; the terminal accumulates the channel capacity three on each subcarrier to obtain the channel capacity four when using the precoding matrix indicated by (i" 14 , 1) on the entire bandwidth; And so on, until the channel capacity 4 when using the precoding matrix indicated by (i" 14 , 15) on the entire bandwidth is obtained; The optimal Second PMI of the fourth layer, and the optimal Second PMI is denoted as i” 24 .

其中,终端计算每个子载波上使用索引(i”1n,i2)指示的预编码矩阵时的信道容量三,采用的公式如下所示:Wherein, when the terminal calculates the channel capacity three when using the precoding matrix indicated by the index (i" 1n , i 2 ) on each subcarrier, the formula used is as follows:

Figure GDA0002488293550000231
Figure GDA0002488293550000231

式中,C表示信道容量,W为由(i”1n,i2)指示的预编码矩阵,WH为W的共轭转置矩阵,Hk为第k个子载波上的信道系数矩阵,

Figure GDA0002488293550000232
为Hk的共轭转置矩阵,
Figure GDA0002488293550000233
为第k个子载波上的噪声方差估计值,I为单位阵,在上述例子中I=I4。where C represents the channel capacity, W is the precoding matrix indicated by (i” 1n , i 2 ), W H is the conjugate transpose matrix of W, H k is the channel coefficient matrix on the kth subcarrier,
Figure GDA0002488293550000232
is the conjugate transpose matrix of H k ,
Figure GDA0002488293550000233
is the estimated value of the noise variance on the kth subcarrier, I is the identity matrix, and I=I 4 in the above example.

其中,终端比较第n层的信道容量四,选出最优Second PMIi”2n,采用的公式如下所示:Among them, the terminal compares the channel capacity of the nth layer, and selects the optimal Second PMIi” 2n . The formula used is as follows:

Figure GDA0002488293550000241
Figure GDA0002488293550000241

式中,i”2n表示第n层的最优Second PMI,W为由(i”1n,i2)指示的预编码矩阵,WH为W的共轭转置矩阵,Hk为第k个子载波上的信道系数矩阵,

Figure GDA0002488293550000242
为Hk的共轭转置矩阵,
Figure GDA0002488293550000243
为第k个子载波上的噪声方差估计值,I为单位阵,在上述例子中I=I4。In the formula, i” 2n represents the optimal Second PMI of the nth layer, W is the precoding matrix indicated by (i” 1n , i 2 ), W H is the conjugate transpose matrix of W, and H k is the k-th sub the matrix of channel coefficients on the carrier,
Figure GDA0002488293550000242
is the conjugate transpose matrix of H k ,
Figure GDA0002488293550000243
is the estimated value of the noise variance on the kth subcarrier, I is the identity matrix, and I=I 4 in the above example.

步骤404:按照最大信道容量从各个层的最优First PMI及最优Second PMI中选出与当前信道最匹配的First PMI及Second PMI,并将该最匹配的First PMI及Second PMI对应的层数作为信道矩阵的秩RI。Step 404: Select the First PMI and Second PMI that best match the current channel from the optimal First PMI and the second PMI of each layer according to the maximum channel capacity, and assign the number of layers corresponding to the best matching First PMI and Second PMI Rank RI as the channel matrix.

具体地,本步骤可以为,终端按照最大信道容量从各个层的最优First PMI及最优Second PMI中选出与当前信道最匹配的First PMI及Second PMI,并将该最匹配的FirstPMI及Second PMI对应的层数作为信道矩阵的秩RI。Specifically, this step may be that the terminal selects the First PMI and Second PMI that best match the current channel from the optimal First PMI and the optimal Second PMI of each layer according to the maximum channel capacity, and uses the best matching First PMI and Second PMI The number of layers corresponding to the PMI is used as the rank RI of the channel matrix.

具体地,本步骤可以包括,终端从步骤403的计算结果中读取出整个带宽上使用(i”11,i”21)指示的预编码矩阵时的信道容量;终端从步骤403的计算结果中读取出整个带宽上使用(i”12,i”22)指示的预编码矩阵时的信道容量;终端从步骤403的计算结果中读取出整个带宽上使用(i”13,i”23)指示的预编码矩阵时的信道容量;终端从步骤403的计算结果中读取出整个带宽上使用(i”14,i”24)指示的预编码矩阵时的信道容量;终端比较4个信道容量,将最大信道容量对应的预编码矩阵的最优First PMI及最优Second PMI作为与当前信道最匹配的First PMI及Second PMI,并将该最匹配的First PMI及Second PMI对应的层数作为信道矩阵的秩RI。Specifically, this step may include: the terminal reads out the channel capacity when the precoding matrix indicated by (i" 11 , i" 21 ) is used over the entire bandwidth from the calculation result in step 403; Read out the channel capacity when the precoding matrix indicated by (i” 12 , i” 22 ) is used over the entire bandwidth; The channel capacity when the indicated precoding matrix is used; the terminal reads from the calculation result in step 403 the channel capacity when using the precoding matrix indicated by (i” 14 , i” 24 ) on the entire bandwidth; the terminal compares the 4 channel capacities , take the optimal First PMI and the optimal Second PMI of the precoding matrix corresponding to the maximum channel capacity as the First PMI and Second PMI that best match the current channel, and take the number of layers corresponding to the best matching First PMI and Second PMI as the channel The rank RI of the matrix.

图5为本发明提供的一种信道状态信息获取方法具体实施例二的流程示意图,如图5所示,以R11版本的发送端8天线端口,接收端4天线的MIMO系统为例,并假设高层配置的码本子集限制中所有码本都可用,具体步骤包括:FIG. 5 is a schematic flowchart of a specific embodiment 2 of a method for obtaining channel state information provided by the present invention. As shown in FIG. 5 , a MIMO system with 8 antenna ports at the transmitting end and 4 antennas at the receiving end of the R11 version is taken as an example, and it is assumed that All codebooks in the codebook subset limit configured by the high layer are available, and the specific steps include:

步骤501:利用小区导频信号CRS或信道状态信息导频信号CSI-RS估计获得每个子载波上的信道系数矩阵及噪声方差矩阵。Step 501: Use the cell pilot signal CRS or the channel state information pilot signal CSI-RS to estimate and obtain the channel coefficient matrix and the noise variance matrix on each subcarrier.

具体地,本步骤可以为,终端利用小区导频信号CRS或信道状态信息导频信号CSI-RS估计获得每个子载波上的信道系数矩阵及噪声方差矩阵。Specifically, in this step, the terminal uses the cell pilot signal CRS or the channel state information pilot signal CSI-RS to estimate and obtain the channel coefficient matrix and the noise variance matrix on each subcarrier.

其中,终端估计获得的第k个子载波上的信道系数矩阵记为Hk及噪声方差矩阵记为

Figure GDA0002488293550000251
其中,Among them, the channel coefficient matrix on the kth subcarrier estimated by the terminal is denoted as H k and the noise variance matrix is denoted as
Figure GDA0002488293550000251
in,

Figure GDA0002488293550000252
Figure GDA0002488293550000252

hij表示第j个发射天线端口到第i个接收天线的信道系数,σ2为噪声功率,I4为4×4的单位阵。h ij represents the channel coefficient from the j-th transmit antenna port to the i-th receive antenna, σ 2 is the noise power, and I 4 is a 4×4 identity matrix.

步骤502:从每一层的First PMI集合中为每一层随机选出一个First PMI,并根据每一层的该First PMI及Second PMI集合按照最大信道容量准则,从每一层的Second PMI集合中为每一层选出最优Second PMII。Step 502: Randomly select a First PMI for each layer from the First PMI set of each layer, and according to the First PMI and Second PMI set of each layer, according to the maximum channel capacity criterion, from the Second PMI set of each layer Select the optimal Second PMII for each layer.

具体地,本步骤可以为,终端从每一层的First PMI集合中为每一层随机选出一个First PMI,并根据每一层的该First PMI及Second PMI集合按照最大信道容量准则,从每一层的Second PMI集合中为每一层选出最优Second PMII。Specifically, this step may be that the terminal randomly selects a First PMI for each layer from the First PMI set of each layer, and according to the First PMI and Second PMI set of each layer, according to the maximum channel capacity criterion, from each layer The optimal Second PMII is selected for each layer in the Second PMI set of one layer.

步骤503:根据每一层的最优Second PMII及First PMI集合按照最大信道容量准则为每一层选出最优First PMI。Step 503: According to the optimal Second PMI and First PMI sets of each layer, select the optimal First PMI for each layer according to the maximum channel capacity criterion.

具体地,本步骤可以为,终端根据每一层的最优Second PMII及First PMI集合按照最大信道容量准则为每一层选出最优First PMI。Specifically, this step may be that the terminal selects the optimal First PMI for each layer according to the set of the optimal Second PMI and the First PMI of each layer according to the maximum channel capacity criterion.

步骤504:按照最大信道容量从各个层的最优First PMI及最优Second PMI中选出与当前信道最匹配的First PMI及Second PMI,并将该最匹配的First PMI及Second PMI对应的层数作为信道矩阵的秩RI。Step 504: Select the First PMI and Second PMI that best match the current channel from the optimal First PMI and the optimal Second PMI of each layer according to the maximum channel capacity, and assign the number of layers corresponding to the best matching First PMI and Second PMI Rank RI as the channel matrix.

具体地,本步骤可以为,终端按照最大信道容量从各个层的最优First PMI及最优Second PMI中选出与当前信道最匹配的First PMI及Second PMI,并将该最匹配的FirstPMI及Second PMI对应的层数作为信道矩阵的秩RI。Specifically, this step may be that the terminal selects the First PMI and Second PMI that best match the current channel from the optimal First PMI and the optimal Second PMI of each layer according to the maximum channel capacity, and uses the best matching First PMI and Second PMI The number of layers corresponding to the PMI is used as the rank RI of the channel matrix.

具体地,本步骤可以包括,终端从步骤503的计算结果中读取出整个带宽上使用(i”11,i”21)指示的预编码矩阵时的信道容量;终端从步骤503的计算结果中读取出整个带宽上使用(i”12,i”22)指示的预编码矩阵时的信道容量;终端从步骤503的计算结果中读取出整个带宽上使用(i”13,i”23)指示的预编码矩阵时的信道容量;终端从步骤503的计算结果中读取出整个带宽上使用(i”14,i”24)指示的预编码矩阵时的信道容量;终端比较4个信道容量,将最大信道容量对应的预编码矩阵的最优First PMI及最优Second PMI作为与当前信道最匹配的First PMI及Second PMI,并将该最匹配的First PMI及Second PMI对应的层数作为信道矩阵的秩RI。Specifically, this step may include: the terminal reads the channel capacity when the precoding matrix indicated by (i" 11 , i" 21 ) is used over the entire bandwidth from the calculation result of step 503; Read out the channel capacity when the precoding matrix indicated by (i” 12 , i” 22 ) is used over the entire bandwidth; The channel capacity when the indicated precoding matrix is used; the terminal reads out the channel capacity when the precoding matrix indicated by (i” 14 , i” 24 ) is used on the entire bandwidth from the calculation result in step 503; the terminal compares the 4 channel capacities , take the optimal First PMI and the optimal Second PMI of the precoding matrix corresponding to the maximum channel capacity as the First PMI and Second PMI that best match the current channel, and take the number of layers corresponding to the best matching First PMI and Second PMI as the channel The rank RI of the matrix.

图6为本发明提供的一种信道状态信息获取方法具体实施例三的流程示意图,如图6所示,具体步骤包括:FIG. 6 is a schematic flowchart of a specific embodiment 3 of a method for acquiring channel state information provided by the present invention. As shown in FIG. 6 , the specific steps include:

步骤601:为每一层随机选一个第一类预编码码本索引PMI,并根据每一层的该第一类PMI及第二类PMI集合按照最小均方误差准则为每一层选出最优第二类PMI。Step 601: Randomly select a first-type precoding codebook index PMI for each layer, and select the most precoding codebook index PMI for each layer according to the set of the first-type PMI and the second-type PMI for each layer according to the minimum mean square error criterion. Excellent Class II PMI.

具体地,本步骤可以为,终端为每一层随机选一个第一类预编码码本索引PMI,并根据每一层的该第一类PMI及第二类PMI集合按照最小均方误差准则为每一层选出最优第二类PMI。Specifically, in this step, the terminal randomly selects a first-type precoding codebook index PMI for each layer, and according to the set of the first-type PMI and the second-type PMI of each layer, according to the minimum mean square error criterion: The optimal second-class PMI is selected for each layer.

具体地,本步骤可以包括,终端从选定层的第一类PMI集合中为该选定层随机选一个第一类PMI;终端计算整个带宽上使用选定层的选定预编码矩阵一时的均方误差,所述选定层的选定预编码矩阵一是由选定层随机选出的第一类PMI及第二类PMI集合中的一个第二类PMI指示的预编码矩阵;终端比较选定层的每个预编码矩阵一对应的均方误差,将最小均方误差对应的预编码矩阵一的第二类PMI作为选定层的最优第二类PMI。Specifically, this step may include: the terminal randomly selects a first-type PMI for the selected layer from the first-type PMI set of the selected layer; mean square error, the selected precoding matrix one of the selected layer is a precoding matrix indicated by a first-type PMI randomly selected by the selected layer and a second-type PMI in the second-type PMI set; the terminal compares The mean square error corresponding to each precoding matrix 1 of the selected layer, and the second type PMI of the precoding matrix 1 corresponding to the minimum mean square error is taken as the optimal second type PMI of the selected layer.

步骤602:根据每一层的最优第二类PMI及第一类PMI集合按照最小均方误差准则为每一层选出最优第一类PMI。Step 602: According to the optimal second-type PMI and the first-type PMI set of each layer, select the optimal first-type PMI for each layer according to the minimum mean square error criterion.

具体地,本步骤可以为,终端根据每一层的最优第二类PMI及第一类PMI集合按照最小均方误差准则为每一层选出最优第一类PMI。Specifically, this step may be that the terminal selects the optimal first-type PMI for each layer according to the optimal second-type PMI and the first-type PMI set according to the minimum mean square error criterion for each layer.

具体地,本步骤可以包括,终端计算整个带宽上使用选定层的选定预编码矩阵二时的均方误差,所述选定层的选定预编码矩阵二是由选定层的最优第二类PMI及第一类PMI集合中的一个第一类PMI指示的预编码矩阵;终端比较选定层的每个预编码矩阵二对应的均方误差,将最小均方误差对应的预编码矩阵二的第一类PMI作为选定层的最优第一类PMI。Specifically, this step may include: the terminal calculates the mean square error when using the selected precoding matrix 2 of the selected layer over the entire bandwidth, and the selected precoding matrix 2 of the selected layer is determined by the optimal precoding matrix of the selected layer. The second type of PMI and the precoding matrix indicated by the first type of PMI in the first type of PMI set; the terminal compares the mean square error corresponding to each precoding matrix of the selected layer The first-type PMI of matrix two is taken as the optimal first-type PMI for the selected layer.

步骤603:按照最小均方误差准则从各个层的最优第一类PMI及最优第二类PMI中选出与当前信道最匹配的第一类PMI及第二类PMI,并将该最匹配的第一类PMI及第二类PMI对应的层数作为信道矩阵的秩RI。Step 603: According to the minimum mean square error criterion, the first type PMI and the second type PMI that best match the current channel are selected from the optimal first type PMI and the optimal second type PMI of each layer, and the most matching type PMI and the second type PMI are selected. The number of layers corresponding to the first type PMI and the second type PMI is taken as the rank RI of the channel matrix.

具体地,本步骤可以为,终端按照最小均方误差准则从各个层的最优第一类PMI及最优第二类PMI中选出与当前信道最匹配的第一类PMI及第二类PMI,并将该最匹配的第一类PMI及第二类PMI对应的层数作为信道矩阵的秩RI。Specifically, this step may be that the terminal selects the first type PMI and the second type PMI that best match the current channel from the optimal first type PMI and the optimal second type PMI of each layer according to the minimum mean square error criterion , and the number of layers corresponding to the most matching first-type PMI and second-type PMI is used as the rank RI of the channel matrix.

具体地,本步骤可以包括,终端计算整个带宽上使用选定层的预编码矩阵时的均方误差,所述选定层的预编码矩阵是由选定层的最优第一类PMI及最优第二类PMI指示的预编码矩阵;终端比较各个层的该均方误差,将最小均方误差对应的预编码矩阵的最优第一类PMI及最优第二类PMI作为与当前信道最匹配的第一类PMI及第二类PMI,并将该最匹配的第一类PMI及第二类PMI对应的层数作为信道矩阵的秩RI。Specifically, this step may include that the terminal calculates the mean square error when using the precoding matrix of the selected layer over the entire bandwidth, where the precoding matrix of the selected layer is determined by the optimal first-type PMI and the most optimal PMI of the selected layer. The precoding matrix indicated by the second type PMI is preferred; the terminal compares the mean square error of each layer, and takes the optimal first type PMI and the optimal second type PMI of the precoding matrix corresponding to the minimum mean square error as the most relevant to the current channel. The matched first-type PMI and the second-type PMI, and the number of layers corresponding to the most matched first-type PMI and the second-type PMI is used as the rank RI of the channel matrix.

图7为本发明提供的一种信道状态信息获取方法具体实施例四的流程示意图,如图7所示,具体步骤包括:FIG. 7 is a schematic flowchart of Embodiment 4 of a method for acquiring channel state information provided by the present invention. As shown in FIG. 7 , the specific steps include:

步骤701:为每一层随机选一个第一类预编码码本索引PMI,并根据每一层的该第一类PMI及第二类PMI集合按照最小误比特率准则为每一层选出最优第二类PMI。Step 701: Randomly select a first-type precoding codebook index PMI for each layer, and select the highest-level precoding codebook index PMI for each layer according to the set of the first-type PMI and the second-type PMI for each layer according to the minimum bit error rate criterion. Excellent Class II PMI.

具体地,本步骤可以为,终端为每一层随机选一个第一类预编码码本索引PMI,并根据每一层的该第一类PMI及第二类PMI集合按照最小误比特率准则为每一层选出最优第二类PMI。Specifically, in this step, the terminal randomly selects a first-type precoding codebook index PMI for each layer, and according to the set of the first-type PMI and the second-type PMI of each layer, according to the minimum bit error rate criterion: The optimal second-type PMI is selected for each layer.

具体地,本步骤可以包括,终端从选定层的第一类PMI集合中为该选定层随机选一个第一类PMI;终端获取整个带宽上使用选定层的选定预编码矩阵一时的误比特率或误块率,所述选定层的选定预编码矩阵一是由选定层随机选出的第一类PMI及第二类PMI集合中的一个第二类PMI指示的预编码矩阵;终端比较选定层的每个预编码矩阵一对应的误比特率或误块率,将最小误比特率或误块率对应的预编码矩阵一的第二类PMI作为选定层的最优第二类PMI。Specifically, this step may include: the terminal randomly selects a first-type PMI for the selected layer from the first-type PMI set of the selected layer; Bit error rate or block error rate, the selected precoding matrix 1 of the selected layer is the precoding indicated by the first type PMI and the second type PMI in the set of the first type PMI and the second type PMI randomly selected by the selected layer. Matrix; the terminal compares the bit error rate or block error rate corresponding to each precoding matrix 1 of the selected layer, and takes the second type PMI of the precoding matrix 1 corresponding to the minimum bit error rate or block error rate as the maximum value of the selected layer. Excellent Class II PMI.

具体地,所述终端获取整个带宽上使用选定层的选定预编码矩阵一时的误比特率或误块率,可以包括,终端计算带宽上的信道系数矩阵与选定预编码矩阵一的乘积;终端根据该乘积结果和带宽上的噪声方差估计值,从预设表格中查找获得带宽上使用选定层的选定预编码矩阵一时的误比特率或误块率。Specifically, the terminal acquiring the bit error rate or block error rate of the selected precoding matrix one of the selected layer over the entire bandwidth may include: the terminal calculating the product of the channel coefficient matrix over the bandwidth and the selected precoding matrix one ; According to the product result and the noise variance estimation value on the bandwidth, the terminal searches the preset table to obtain the bit error rate or block error rate of the selected precoding matrix using the selected layer on the bandwidth temporarily.

其中,所述预设表格对应带宽上的信道系数矩阵与选定预编码矩阵一的乘积,及带宽上的噪声方差估计值,存储了带宽上使用选定层的选定预编码矩阵一时的误比特率或误块率。在实际应用中,该预设表格中的误比特率或误块率可以通过仿真获得。The preset table corresponds to the product of the channel coefficient matrix on the bandwidth and the selected precoding matrix one, and the noise variance estimate value on the bandwidth, and stores the error of using the selected precoding matrix one of the selected layer on the bandwidth. Bit rate or block error rate. In practical applications, the bit error rate or block error rate in the preset table can be obtained through simulation.

步骤702:根据每一层的最优第二类PMI及第一类PMI集合按照最小误比特率准则为每一层选出最优第一类PMI。Step 702: According to the optimal second-type PMI and the first-type PMI set of each layer, select the optimal first-type PMI for each layer according to the minimum bit error rate criterion.

具体地,本步骤可以为,终端根据每一层的最优第二类PMI及第一类PMI集合按照最小误比特率准则为每一层选出最优第一类PMI。Specifically, this step may be that the terminal selects the optimal first-type PMI for each layer according to the optimal second-type PMI and the first-type PMI set for each layer according to the minimum bit error rate criterion.

具体地,本步骤可以包括,终端获取整个带宽上使用选定层的选定预编码矩阵二时的误比特率或误块率,所述选定层的选定预编码矩阵二是由选定层的最优第二类PMI及第一类PMI集合中的一个第一类PMI指示的预编码矩阵;终端比较选定层的每个预编码矩阵二对应的误比特率或误块率,将最小误比特率或误块率对应的预编码矩阵二的第一类PMI作为选定层的最优第一类PMI。Specifically, this step may include that the terminal obtains the bit error rate or block error rate when using the selected precoding matrix 2 of the selected layer over the entire bandwidth, and the selected precoding matrix 2 of the selected layer is selected by The optimal second-type PMI of the layer and the precoding matrix indicated by a first-type PMI in the first-type PMI set; the terminal compares the bit error rate or block error rate corresponding to each precoding matrix two of the selected layer, and uses The first-type PMI of precoding matrix 2 corresponding to the minimum bit error rate or block error rate is taken as the optimal first-type PMI of the selected layer.

具体地,所述终端获取整个带宽上使用选定层的选定预编码矩阵二时的误比特率或误块率,与上述所述终端获取整个带宽上使用选定层的选定预编码矩阵一时的误比特率或误块率过程类似,在此不再赘述。Specifically, the terminal acquires the bit error rate or block error rate when the selected precoding matrix 2 of the selected layer is used over the entire bandwidth, and the above-mentioned terminal acquires the selected precoding matrix using the selected layer over the entire bandwidth. The temporary bit error rate or block error rate process is similar and will not be repeated here.

步骤703:按照最小误比特率准则从各个层的最优第一类PMI及最优第二类PMI中选出与当前信道最匹配的第一类PMI及第二类PMI,并将该最匹配的第一类PMI及第二类PMI对应的层数作为信道矩阵的秩RI。Step 703: Select the first type PMI and the second type PMI that best match the current channel from the optimal first type PMI and the optimal second type PMI of each layer according to the minimum bit error rate criterion, and use the best matching The number of layers corresponding to the first type PMI and the second type PMI is taken as the rank RI of the channel matrix.

具体地,本步骤可以为,终端按照最小误比特率准则从各个层的最优第一类PMI及最优第二类PMI中选出与当前信道最匹配的第一类PMI及第二类PMI,并将该最匹配的第一类PMI及第二类PMI对应的层数作为信道矩阵的秩RI。Specifically, this step may be that the terminal selects the first type PMI and the second type PMI that best match the current channel from the optimal first type PMI and the optimal second type PMI of each layer according to the minimum bit error rate criterion , and the number of layers corresponding to the most matching first-type PMI and second-type PMI is used as the rank RI of the channel matrix.

具体地,本步骤可以包括,终端获取整个带宽上使用选定层的预编码矩阵时的误比特率或误块率,所述选定层的预编码矩阵是由选定层的最优第一类PMI及最优第二类PMI指示的预编码矩阵;终端比较各个层的该误比特率或误块率,将最小误比特率对应的预编码矩阵的最优第一类PMI及最优第二类PMI作为与当前信道最匹配的第一类PMI及第二类PMI,并将该最匹配的第一类PMI及第二类PMI对应的层数作为信道矩阵的秩RI。Specifically, this step may include that the terminal obtains the bit error rate or block error rate when using the precoding matrix of the selected layer over the entire bandwidth, and the precoding matrix of the selected layer is determined by the optimal first layer of the selected layer. The precoding matrix indicated by the class PMI and the optimal second class PMI; the terminal compares the bit error rate or block error rate of each layer, and compares the optimal first class PMI and the optimal first class PMI of the precoding matrix corresponding to the minimum bit error rate. The second-type PMI is used as the first-type PMI and the second-type PMI that best match the current channel, and the number of layers corresponding to the first-type PMI and the second-type PMI that best match is used as the rank RI of the channel matrix.

具体地,所述终端获取整个带宽上使用选定层的预编码矩阵时的误比特率或误块率,与上述所述终端获取整个带宽上使用选定层的选定预编码矩阵一时的误比特率或误块率过程类似,在此不再赘述。Specifically, the terminal obtains the bit error rate or block error rate when the precoding matrix of the selected layer is used over the entire bandwidth, and the above-mentioned terminal obtains the error when the selected precoding matrix of the selected layer is used over the entire bandwidth. The bit rate or block error rate process is similar and will not be repeated here.

以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化,本发明的保护范围以权利要求为准。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and changes, and the protection scope of the present invention is subject to the claims.

Claims (11)

1.一种信道状态信息获取方法,其特征在于,所述方法包括:1. A method for acquiring channel state information, wherein the method comprises: 为每一层选择第一类预编码码本索引PMI,并根据每一层的所述第一类PMI及第二类PMI集合按照预设准则为每一层选出最优第二类PMI;Selecting the first-type precoding codebook index PMI for each layer, and selecting the optimal second-type PMI for each layer according to a preset criterion according to the first-type PMI and the second-type PMI set of each layer; 根据每一层的所述最优第二类PMI及第一类PMI集合按照所述预设准则为每一层选出最优第一类PMI;According to the optimal second-type PMI and the first-type PMI set of each layer, the optimal first-type PMI is selected for each layer according to the preset criterion; 按照所述预设准则从各个层的所述最优第一类PMI及最优第二类PMI中选出与当前信道最匹配的第一类PMI及第二类PMI,并将所述最匹配的第一类PMI及第二类PMI对应的层数作为信道矩阵的秩RI。According to the preset criteria, the first-type PMI and the second-type PMI that best match the current channel are selected from the optimal first-type PMI and the optimal second-type PMI of each layer, and the best matching The number of layers corresponding to the first type PMI and the second type PMI is taken as the rank RI of the channel matrix. 2.根据权利要求1所述的方法,其特征在于,在所述为每一层选择第一类预编码码本索引PMI,并根据每一层的所述第一类PMI及第二类PMI集合按照预设准则为每一层选出最优第二类PMI之前,所述方法还包括:2 . The method according to claim 1 , wherein a first type of precoding codebook index PMI is selected for each layer, and according to the first type of PMI and the second type of PMI of each layer. 3 . Before the set selects the optimal second-type PMI for each layer according to a preset criterion, the method further includes: 利用导频信号估计获得每个子载波上的信道系数矩阵及噪声方差矩阵。The channel coefficient matrix and the noise variance matrix on each sub-carrier are estimated by using the pilot signal. 3.根据权利要求1所述的方法,其特征在于,所述为每一层选择第一类预编码码本索引PMI,并根据每一层的所述第一类PMI及第二类PMI集合按照预设准则为每一层选出最优第二类PMI,包括:3. The method according to claim 1, wherein the first type of precoding codebook index PMI is selected for each layer, and the first type of PMI and the second type of PMI are set according to the first type of PMI and the second type of PMI for each layer. The optimal second-type PMI is selected for each layer according to preset criteria, including: 从选定层的第一类PMI集合中为所述选定层随机选一个第一类PMI;randomly select a first-type PMI for the selected layer from the first-type PMI set of the selected layer; 根据信道系数矩阵及噪声方差矩阵,计算每个子载波上使用所述选定层的选定预编码矩阵一时的信道容量一,所述选定层的选定预编码矩阵一是由所述选定层的所述第一类PMI及第二类PMI集合中的一个第二类PMI指示的预编码矩阵;According to the channel coefficient matrix and the noise variance matrix, calculate the channel capacity 1 when the selected precoding matrix 1 of the selected layer is used on each subcarrier, and the selected precoding matrix 1 of the selected layer is determined by the selected precoding matrix 1 a precoding matrix indicated by a second-type PMI in the first-type PMI and the second-type PMI set of the layer; 将每个子载波的所述信道容量一累加,获得整个带宽上使用所述选定层的选定预编码矩阵一时的信道容量二;Accumulate the channel capacity 1 of each subcarrier to obtain the channel capacity 2 when the selected precoding matrix of the selected layer is used on the entire bandwidth; 比较所述选定层的每个预编码矩阵一对应的所述信道容量二,将最大所述信道容量二对应的预编码矩阵一的第二类PMI作为所述选定层的最优第二类PMI。Compare the channel capacity 2 corresponding to each precoding matrix 1 of the selected layer, and take the second type PMI of the precoding matrix 1 corresponding to the maximum channel capacity 2 as the optimal second PMI of the selected layer. Class PMI. 4.根据权利要求1所述的方法,其特征在于,所述根据每一层的所述最优第二类PMI及第一类PMI集合按照所述预设准则为每一层选出最优第一类PMI,包括:4. The method according to claim 1, wherein the optimal second-type PMI and the first-type PMI set for each layer are selected according to the preset criteria for each layer. Category 1 PMI, including: 根据信道系数矩阵及噪声方差矩阵,计算每个子载波上使用选定层的选定预编码矩阵二时的信道容量三,所述选定层的选定预编码矩阵二是由所述选定层的所述最优第二类PMI及第一类PMI集合中的一个第一类PMI指示的预编码矩阵;According to the channel coefficient matrix and the noise variance matrix, calculate the channel capacity 3 when the selected precoding matrix 2 of the selected layer is used on each subcarrier, and the selected precoding matrix 2 of the selected layer is determined by the selected layer. The optimal second type PMI and a precoding matrix indicated by a first type PMI in the first type PMI set; 将每个子载波的所述信道容量三累加,获得整个带宽上使用所述选定层的选定预编码矩阵二时的信道容量四;Accumulate the channel capacity 3 of each subcarrier to obtain the channel capacity 4 when the selected precoding matrix 2 of the selected layer is used on the entire bandwidth; 比较所述选定层的每个预编码矩阵二对应的所述信道容量四,将最大所述信道容量四对应的预编码矩阵二的第一类PMI作为所述选定层的最优第一类PMI。Comparing the channel capacity 4 corresponding to each precoding matrix 2 of the selected layer, and taking the first type PMI of the precoding matrix 2 corresponding to the maximum channel capacity 4 as the optimal first PMI of the selected layer Class PMI. 5.根据权利要求1所述的方法,其特征在于,所述按照所述预设准则从各个层的所述最优第一类PMI及最优第二类PMI中选出与当前信道最匹配的第一类PMI及第二类PMI,并将所述最匹配的第一类PMI及第二类PMI对应的层数作为信道矩阵的秩RI,包括:5 . The method according to claim 1 , wherein, according to the preset criterion, the optimal first-type PMI and the optimal second-type PMI of each layer are selected to best match the current channel. 6 . The first type PMI and the second type PMI, and the number of layers corresponding to the most matching first type PMI and the second type PMI is used as the rank RI of the channel matrix, including: 读取整个带宽上使用选定层的预编码矩阵时的信道容量,所述选定层的预编码矩阵是由选定层的所述最优第一类PMI及最优第二类PMI指示的预编码矩阵;Read the channel capacity when using the precoding matrix of the selected layer over the entire bandwidth, the precoding matrix of the selected layer is indicated by the optimal first type PMI and the optimal second type PMI for the selected layer precoding matrix; 比较各个层的所述信道容量,将最大所述信道容量对应的预编码矩阵的最优第一类PMI及最优第二类PMI作为与当前信道最匹配的第一类PMI及第二类PMI,并将所述最匹配的第一类PMI及第二类PMI对应的层数作为信道矩阵的秩RI。Compare the channel capacity of each layer, and take the optimal first-type PMI and the optimal second-type PMI of the precoding matrix corresponding to the maximum channel capacity as the first-type PMI and the second-type PMI that best match the current channel , and the number of layers corresponding to the most matched first-type PMI and second-type PMI is used as the rank RI of the channel matrix. 6.根据权利要求1所述的方法,其特征在于,所述第一类PMI为第二级码本的索引,所述第二类PMI为第一级码本的索引。6 . The method according to claim 1 , wherein the first-type PMI is an index of a second-level codebook, and the second-type PMI is an index of a first-level codebook. 7 . 7.一种信道状态信息获取装置,其特征在于,所述装置包括:7. An apparatus for acquiring channel state information, wherein the apparatus comprises: 第一选择模块,用于为每一层选择第一类预编码码本索引PMI,并根据每一层的所述第一类PMI及第二类PMI集合按照预设准则为每一层选出最优第二类PMI;根据每一层的所述最优第二类PMI及第一类PMI集合按照所述预设准则为每一层选出最优第一类PMI;A first selection module, configured to select the first type of precoding codebook index PMI for each layer, and select the first type of PMI and the second type of PMI set for each layer according to a preset criterion for each layer the optimal second-type PMI; according to the optimal second-type PMI and the first-type PMI set of each layer, the optimal first-type PMI is selected for each layer according to the preset criterion; 第二选择模块,用于按照所述预设准则从各个层的所述最优第一类PMI及最优第二类PMI中选出与当前信道最匹配的第一类PMI及第二类PMI,并将所述最匹配的第一类PMI及第二类PMI对应的层数作为信道矩阵的秩RI。The second selection module is configured to select the first-type PMI and the second-type PMI that best match the current channel from the optimal first-type PMI and the optimal second-type PMI of each layer according to the preset criterion , and the number of layers corresponding to the most matched first-type PMI and second-type PMI is used as the rank RI of the channel matrix. 8.根据权利要求7所述的装置,其特征在于,所述装置还包括:估计模块,用于在所述为每一层选择第一类预编码码本索引PMI,并根据每一层的所述第一类PMI及第二类PMI集合按照预设准则为每一层选出最优第二类PMI之前,利用导频信号估计获得每个子载波上的信道系数矩阵及噪声方差矩阵。8. The apparatus according to claim 7, wherein the apparatus further comprises: an estimation module, configured to select the first type of precoding codebook index PMI for each layer, Before selecting the optimal second-type PMI for each layer according to the preset criteria, the first-type PMI and the second-type PMI set use pilot signal estimation to obtain the channel coefficient matrix and the noise variance matrix on each subcarrier. 9.根据权利要求7所述的装置,其特征在于,所述第一选择模块包括:9. The apparatus according to claim 7, wherein the first selection module comprises: 选定模块,用于从选定层的第一类PMI集合中为所述选定层随机选一个第一类PMI;A selection module, configured to randomly select a first-type PMI for the selected layer from the first-type PMI set of the selected layer; 容量计算模块,用于根据信道系数矩阵及噪声方差矩阵,计算每个子载波上使用所述选定层的选定预编码矩阵一时的信道容量一,所述选定层的选定预编码矩阵一是由所述选定层的所述第一类PMI及第二类PMI集合中的一个第二类PMI指示的预编码矩阵;The capacity calculation module is used to calculate the channel capacity 1 when the selected precoding matrix 1 of the selected layer is used on each subcarrier according to the channel coefficient matrix and the noise variance matrix, and the selected precoding matrix 1 of the selected layer is used. is a precoding matrix indicated by a second-type PMI in the first-type PMI and second-type PMI set for the selected layer; 容量累加模块,用于将每个子载波的所述信道容量一累加,获得整个带宽上使用所述选定层的选定预编码矩阵一时的信道容量二;A capacity accumulating module, configured to accumulate the channel capacity 1 of each subcarrier to obtain the channel capacity 2 when the selected precoding matrix of the selected layer is used in the entire bandwidth; 比较模块,用于比较所述选定层的每个预编码矩阵一对应的所述信道容量二,将最大所述信道容量二对应的预编码矩阵一的第二类PMI作为所述选定层的最优第二类PMI。A comparison module, configured to compare the channel capacity 2 corresponding to each precoding matrix 1 of the selected layer, and use the second type PMI of the precoding matrix 1 corresponding to the maximum channel capacity 2 as the selected layer The optimal second-class PMI. 10.根据权利要求7所述的装置,其特征在于,所述装置还包括:10. The apparatus of claim 7, wherein the apparatus further comprises: 上报模块,用于上报所述信道矩阵的秩RI和所述与当前信道最匹配的第一类PMI及第二类PMI。A reporting module, configured to report the rank RI of the channel matrix and the first type PMI and the second type PMI that best match the current channel. 11.根据权利要求7所述的装置,其特征在于,所述第一类PMI为第二级码本的索引,所述第二类PMI为第一级码本的索引。The apparatus according to claim 7, wherein the first-type PMI is an index of a second-level codebook, and the second-type PMI is an index of a first-level codebook.
CN201610162298.5A 2016-03-21 2016-03-21 Method and device for acquiring channel state information Active CN107222249B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201610162298.5A CN107222249B (en) 2016-03-21 2016-03-21 Method and device for acquiring channel state information
PCT/CN2017/076481 WO2017162066A1 (en) 2016-03-21 2017-03-13 Channel state information acquisition method and apparatus, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610162298.5A CN107222249B (en) 2016-03-21 2016-03-21 Method and device for acquiring channel state information

Publications (2)

Publication Number Publication Date
CN107222249A CN107222249A (en) 2017-09-29
CN107222249B true CN107222249B (en) 2020-07-03

Family

ID=59899316

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610162298.5A Active CN107222249B (en) 2016-03-21 2016-03-21 Method and device for acquiring channel state information

Country Status (2)

Country Link
CN (1) CN107222249B (en)
WO (1) WO2017162066A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112543045B (en) * 2019-09-23 2024-10-15 深圳市中兴微电子技术有限公司 A method and device for obtaining PMI
CN115136699B (en) * 2020-02-14 2025-09-09 华为技术有限公司 Information sending method, information receiving method and device
CN112600773B (en) * 2020-12-18 2023-01-10 展讯通信(上海)有限公司 Channel estimation method and device, computer readable storage medium and terminal
CN115378484B (en) * 2022-08-25 2025-02-11 Oppo广东移动通信有限公司 A rank indication determination method, device, terminal and storage medium
CN115296739B (en) * 2022-10-08 2023-03-07 南昌大学 SCMA-assisted fast decoding method and system for visible light communication

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101969366A (en) * 2010-09-26 2011-02-09 华中科技大学 Pre-coding method for MIMO system of 8 transmitting antennas
CN103391158A (en) * 2012-05-11 2013-11-13 电信科学技术研究院 Cycle feedback method, device and system of broadband channel information
WO2014000206A1 (en) * 2012-06-28 2014-01-03 华为技术有限公司 Method and terminal for handling channel state information

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102223212B (en) * 2010-04-16 2014-06-25 电信科学技术研究院 Method and device for reporting PMI (precoding matrix index)
CN103684556A (en) * 2012-09-02 2014-03-26 张萌萌 Method and equipment for selecting and feeding back precoding matrix
KR102160008B1 (en) * 2013-06-17 2020-09-25 삼성전자 주식회사 Method and apparatus for transmitting and receiving channerl state information
CN104348590B (en) * 2013-07-25 2019-02-01 中兴通讯股份有限公司 Method, terminal and the base station for obtaining precoding of feeding back channel state information

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101969366A (en) * 2010-09-26 2011-02-09 华中科技大学 Pre-coding method for MIMO system of 8 transmitting antennas
CN103391158A (en) * 2012-05-11 2013-11-13 电信科学技术研究院 Cycle feedback method, device and system of broadband channel information
WO2014000206A1 (en) * 2012-06-28 2014-01-03 华为技术有限公司 Method and terminal for handling channel state information

Also Published As

Publication number Publication date
CN107222249A (en) 2017-09-29
WO2017162066A1 (en) 2017-09-28

Similar Documents

Publication Publication Date Title
US10630355B2 (en) Methods and devices for determining precoder parameters in a wireless communication network
JP7450625B2 (en) Method and apparatus for feedback reporting in a wireless communication network
CN114039635B (en) Apparatus and method for compressing and/or decompressing channel state information
JP5611447B2 (en) Information feedback and precoding method and apparatus
CN107222249B (en) Method and device for acquiring channel state information
US9941942B2 (en) Method and device for processing channel state information, user equipment and evolved node B
CN112003638B (en) Method for determining precoding matrix indication, user equipment and base station
CN106170927B (en) A method and device for feeding back and receiving channel state information
KR101336690B1 (en) Method and device for constructing codebook, method, device and system for precoding
US9654192B2 (en) Apparatus and method for channel feedback in multiple input multiple output system
US9344160B2 (en) Data transmission method and system, transmitter, and receiver
CN112311431B (en) Indication method and device for space-frequency merging coefficient
WO2016008330A1 (en) Method and device for quantizing and feeding back channel information and precoding data
CN103379652A (en) Method, device and system for achieving user pairing of user scheduling
TW201212570A (en) A method and system for orthogonalized beamforming in multiple user multiple input multiple output (MU-MIMO) communication systems
CN102792623A (en) Code book control method, base station apparatus and mobile station apparatus
EP3657711A1 (en) Channel state information feedback method and device
WO2015095844A1 (en) Adaptive precoding in a mimo wireless communication system
CN111602378B (en) Information acquisition method, device, equipment and storage medium
JP5865485B2 (en) Spatial channel state information feedback method and system for multiple input / output (MIMO)
WO2015196974A1 (en) Transmission weighting method and device for csi feedback system
CN103685093B (en) Explicit feedback method and device
US20110292926A1 (en) Multiple input multiple output communication system and communication method of configuring codebook
US12407391B2 (en) Methods and apparatuses for codebook restriction for type-II feedback reporting and higher layer configuration and reporting for linear combination codebook in a wireless communications network
CN108667490B (en) Channel state information feedback method and device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant