[go: up one dir, main page]

CN107230630A - The preparation method of gallium nitride field effect transistor - Google Patents

The preparation method of gallium nitride field effect transistor Download PDF

Info

Publication number
CN107230630A
CN107230630A CN201610178302.7A CN201610178302A CN107230630A CN 107230630 A CN107230630 A CN 107230630A CN 201610178302 A CN201610178302 A CN 201610178302A CN 107230630 A CN107230630 A CN 107230630A
Authority
CN
China
Prior art keywords
layer
region
metal
gate
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610178302.7A
Other languages
Chinese (zh)
Inventor
刘美华
孙辉
林信南
陈建国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Peking University Founder Group Co Ltd
Shenzhen Founder Microelectronics Co Ltd
Original Assignee
Peking University
Peking University Founder Group Co Ltd
Shenzhen Founder Microelectronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University, Peking University Founder Group Co Ltd, Shenzhen Founder Microelectronics Co Ltd filed Critical Peking University
Priority to CN201610178302.7A priority Critical patent/CN107230630A/en
Publication of CN107230630A publication Critical patent/CN107230630A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/015Manufacture or treatment of FETs having heterojunction interface channels or heterojunction gate electrodes, e.g. HEMT
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/20Electrodes characterised by their shapes, relative sizes or dispositions 
    • H10D64/23Electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. sources, drains, anodes or cathodes
    • H10D64/251Source or drain electrodes for field-effect devices
    • H10D64/257Source or drain electrodes for field-effect devices for lateral devices wherein the source or drain electrodes are characterised by top-view geometrical layouts, e.g. interdigitated, semi-circular, annular or L-shaped electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/20Electrodes characterised by their shapes, relative sizes or dispositions 
    • H10D64/27Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
    • H10D64/311Gate electrodes for field-effect devices
    • H10D64/411Gate electrodes for field-effect devices for FETs
    • H10D64/511Gate electrodes for field-effect devices for FETs for IGFETs
    • H10D64/512Disposition of the gate electrodes, e.g. buried gates

Landscapes

  • Junction Field-Effect Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明实施例提供一种氮化镓场效应晶体管的制作方法,该方法首先通过在器件的第一区域上制作晶体管的欧姆接触电极和栅极,其中,所述器件包括衬底以及依次生长在所述衬底表面上的GaN缓冲层和AlGaN势垒层;再通过在所述器件的表面上淀积第一PETEOS氧化层,并在所述器件的第二区域上对所述器件进行刻蚀,直至刻蚀掉部分所述衬底为止,形成穿通孔,其中,所述第二区域与所述第一区域的交集为空;最后通过在所述器件的表面上淀积金属层,并对所述金属层进行刻蚀,形成所述氮化镓场效应晶体管,缓解了漏极和栅极之间的电场,减小了源极的互连电阻和寄生电感,提高了氮化镓场效应晶体管的性能。

An embodiment of the present invention provides a method for manufacturing a gallium nitride field effect transistor. The method firstly manufactures an ohmic contact electrode and a gate of the transistor on the first region of the device, wherein the device includes a substrate and sequentially grown on a GaN buffer layer and an AlGaN barrier layer on the surface of the substrate; and then by depositing a first PETEOS oxide layer on the surface of the device, and etching the device on the second region of the device , until a part of the substrate is etched away to form a through hole, wherein the intersection of the second region and the first region is empty; finally by depositing a metal layer on the surface of the device, and The metal layer is etched to form the gallium nitride field effect transistor, which relieves the electric field between the drain and the gate, reduces the interconnection resistance and parasitic inductance of the source, and improves the gallium nitride field effect transistor. Transistor performance.

Description

氮化镓场效应晶体管的制作方法GaN Field Effect Transistor Fabrication Method

技术领域technical field

本发明实施例涉及半导体器件的制造工艺技术领域,尤其涉及一种氮化镓场效应晶体管的制作方法。Embodiments of the present invention relate to the technical field of manufacturing technology of semiconductor devices, in particular to a method for manufacturing GaN field effect transistors.

背景技术Background technique

随着对功率转换电路需求的日益增加,具有低功耗、高速度等特性的功率器件已成为本领域的关注焦点。氮化镓(GaN)是第三代宽禁带半导体材料,由于其具有大禁带宽度、高电子饱和速率、高击穿电场,较高热导率,耐腐蚀和抗辐射性能,在高压、高频、高温、大功率和抗辐照环境条件下具有较强的优势,被认为是短波光电子器件和高压高频率大功率器件的最佳材料。并且,随着近年来研究的深入,GaN场效应晶体管已成为功率器件中的研究热点。With the increasing demand for power conversion circuits, power devices with characteristics such as low power consumption and high speed have become the focus of attention in this field. Gallium Nitride (GaN) is the third generation of wide bandgap semiconductor material, due to its large bandgap, high electron saturation rate, high breakdown electric field, high thermal conductivity, corrosion resistance and radiation resistance, it can be used in high voltage, high It has strong advantages in high frequency, high temperature, high power and anti-irradiation environmental conditions, and is considered to be the best material for short-wave optoelectronic devices and high-voltage, high-frequency and high-power devices. Moreover, with the deepening of research in recent years, GaN field effect transistors have become a research hotspot in power devices.

但是,对于现有的GaN场效应晶体管的制造工艺而言,其制造的GaN场效应晶体管仍旧存在漏极和栅极之间的电场强度较强,源极的互连电阻和寄生电感较高等问题,这些问题严重影响了GaN场效应晶体管的性能。However, for the existing GaN field effect transistor manufacturing process, the GaN field effect transistor manufactured by it still has problems such as strong electric field strength between the drain and the gate, and high interconnection resistance and parasitic inductance of the source. , these problems seriously affect the performance of GaN FETs.

发明内容Contents of the invention

本发明实施例提供一种氮化镓场效应晶体管的制作方法,用以提高氮化镓场效应晶体管的性能。An embodiment of the present invention provides a method for manufacturing a GaN field effect transistor, so as to improve the performance of the GaN field effect transistor.

本发明实施例提供的氮化镓场效应晶体管的制作方法,包括:The fabrication method of the gallium nitride field effect transistor provided by the embodiment of the present invention includes:

在器件的第一区域上制作晶体管的欧姆接触电极和栅极,其中,所述器件包括衬底以及依次生长在所述衬底表面上的GaN缓冲层和氮化铝镓(AlGaN)势垒层;Forming ohmic contact electrodes and gates of transistors on a first region of a device comprising a substrate and a GaN buffer layer and an aluminum gallium nitride (AlGaN) barrier layer sequentially grown on a surface of the substrate ;

在所述器件的表面上淀积第一PETEOS氧化层;depositing a first PETEOS oxide layer on the surface of the device;

在所述器件的第二区域上对所述器件进行刻蚀,直至刻蚀掉部分所述衬底为止,形成穿通孔,其中,所述第二区域与所述第一区域的交集为空;Etching the device on the second region of the device until a part of the substrate is etched away to form a through hole, wherein the intersection of the second region and the first region is empty;

在所述器件的表面上淀积金属层,并对所述金属层进行刻蚀,形成所述氮化镓场效应晶体管。A metal layer is deposited on the surface of the device, and the metal layer is etched to form the gallium nitride field effect transistor.

本发明实施例提供的氮化镓场效应晶体管的制作方法,首先通过在器件的第一区域上制作晶体管的欧姆接触电极和栅极,其中,所述器件包括衬底以及依次生长在所述衬底表面上的GaN缓冲层和AlGaN势垒层;再通过在所述器件的表面上淀积第一PETEOS氧化层,并在所述器件的第二区域上对所述器件进行刻蚀,直至刻蚀掉部分所述衬底为止,形成穿通孔,其中,所述第二区域与所述第一区域的交集为空;最后通过在所述器件的表面上淀积金属层,并对所述金属层进行刻蚀,形成所述氮化镓场效应晶体管,缓解了漏极和栅极之间的电场,减小了源极的互连电阻和寄生电感,提高了氮化镓场效应晶体管的性能。The method for manufacturing a GaN field effect transistor provided by an embodiment of the present invention firstly manufactures an ohmic contact electrode and a gate electrode of the transistor on the first region of the device, wherein the device includes a substrate and sequentially grows on the substrate GaN buffer layer and AlGaN barrier layer on the bottom surface; then by depositing a first PETEOS oxide layer on the surface of the device, and etching the device on the second region of the device until the forming a through hole until part of the substrate is etched away, wherein the intersection of the second region and the first region is empty; finally by depositing a metal layer on the surface of the device, and Layer is etched to form the eGaN field effect transistor, which relieves the electric field between the drain and the gate, reduces the interconnection resistance and parasitic inductance of the source, and improves the performance of the eGaN field effect transistor .

附图说明Description of drawings

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. For those skilled in the art, other drawings can also be obtained according to these drawings without any creative effort.

图1为本发明一实施例提供的氮化镓场效应晶体管的制作方法的流程示意图;FIG. 1 is a schematic flow chart of a method for manufacturing a gallium nitride field effect transistor provided by an embodiment of the present invention;

图2为图1所示方法中步骤101的执行方法流程图;Fig. 2 is the execution method flowchart of step 101 in the method shown in Fig. 1;

图3为图2所示方法中淀积氮化硅钝化层和第二PETEOS氧化层后的结构示意图;Fig. 3 is the structural representation after depositing silicon nitride passivation layer and the second PETEOS oxide layer in the method shown in Fig. 2;

图4为图2所示方法中形成欧姆接触孔后的结构示意图;FIG. 4 is a schematic structural view after forming an ohmic contact hole in the method shown in FIG. 2;

图5为图2所示方法中形成欧姆接触电极后的结构示意图;Fig. 5 is the structural representation after forming the ohmic contact electrode in the method shown in Fig. 2;

图6为图2所示方法中形成栅极接触孔后的结构示意图;FIG. 6 is a schematic structural diagram after forming a gate contact hole in the method shown in FIG. 2;

图7为图2所示方法中形成栅极后的结构示意图;FIG. 7 is a schematic structural diagram after forming a gate in the method shown in FIG. 2;

图8为图1所示方法中形成穿通孔后的结构示意图;FIG. 8 is a schematic structural diagram after forming a through hole in the method shown in FIG. 1;

图9为经过图1所示方法后形成的氮化镓场效应晶体管的结构示意图。FIG. 9 is a schematic structural diagram of a GaN field effect transistor formed after the method shown in FIG. 1 .

附图标记:Reference signs:

1-衬底; 2-GaN缓冲层; 3-AlGaN势垒层;1-substrate; 2-GaN buffer layer; 3-AlGaN barrier layer;

4-氮化硅钝化层; 5-第二PETEOS氧化层; 6-欧姆接触孔;4-Silicon nitride passivation layer; 5-Second PETEOS oxide layer; 6-Ohm contact hole;

7-欧姆接触电极; 8-栅极接触孔; 9-栅极;7-ohm contact electrode; 8-gate contact hole; 9-gate;

10-第一PETEOS氧化层; 11-穿通孔; 12-金属层。10 - first PETEOS oxide layer; 11 - through hole; 12 - metal layer.

具体实施方式detailed description

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.

本发明的说明书和权利要求书的术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤的过程或方法不必限于清楚地列出的那些步骤而是可包括没有清楚地列出的或对于这些过程或方法固有的其它步骤。The terms "comprising" and "having" and any variations thereof in the description and claims of the present invention are intended to cover a non-exclusive inclusion, for example, a process or method comprising a series of steps need not be limited to those explicitly listed Instead, the steps may include other steps not explicitly listed or inherent to the process or method.

图1为本发明一实施例提供的氮化镓场效应晶体管的制作方法的流程示意图,如图1所示,本实施例提供的氮化镓场效应晶体管的制作方法包括以下步骤:FIG. 1 is a schematic flowchart of a method for manufacturing a GaN field effect transistor provided in an embodiment of the present invention. As shown in FIG. 1 , the method for manufacturing a GaN field effect transistor provided in this embodiment includes the following steps:

步骤101、在器件的第一区域上制作晶体管的欧姆接触电极和栅极,其中,所述器件包括衬底1以及依次生长在所述衬底表面上的GaN缓冲层2和AlGaN势垒层3。Step 101, fabricating the ohmic contact electrode and the gate of the transistor on the first region of the device, wherein the device includes a substrate 1 and a GaN buffer layer 2 and an AlGaN barrier layer 3 grown sequentially on the surface of the substrate .

具体的,图2为图1所示方法中步骤101的执行方法流程图,如图2所示,本步骤可以通过如下执行方式实现:Specifically, FIG. 2 is a flow chart of the execution method of step 101 in the method shown in FIG. 1. As shown in FIG. 2, this step can be implemented through the following execution methods:

步骤1011、采用淀积工艺在所述器件的AlGaN势垒层3的表面上依次淀积氮化硅钝化层4和第二PETEOS氧化层5。Step 1011, using a deposition process to sequentially deposit a silicon nitride passivation layer 4 and a second PETEOS oxide layer 5 on the surface of the AlGaN barrier layer 3 of the device.

图3为图2所示方法中淀积氮化硅钝化层和第二PETEOS氧化层后的结构示意图,其中图3所示结构可以通过如下方法获得:Fig. 3 is a schematic diagram of the structure after depositing a silicon nitride passivation layer and a second PETEOS oxide layer in the method shown in Fig. 2, wherein the structure shown in Fig. 3 can be obtained by the following method:

首先在低温(温度小于300摄氏度)的条件下,通过淀积工艺在AlGaN势垒层3的表面上淀积一层氮化硅钝化层4。在获得氮化硅层4之后,再优选通过化学气相淀积工艺,在氮化硅钝化层4的表面上淀积一层电浆加强型二氧化四乙基正硅酸盐(PETEOS)氧化层5(即第二PETEOS氧化层)。First, a silicon nitride passivation layer 4 is deposited on the surface of the AlGaN barrier layer 3 by a deposition process under low temperature conditions (temperature less than 300 degrees Celsius). After the silicon nitride layer 4 is obtained, a layer of plasma-enhanced tetraethyl orthosilicate (PETEOS) oxidation is deposited on the surface of the silicon nitride passivation layer 4, preferably by chemical vapor deposition. Layer 5 (ie the second PETEOS oxide layer).

步骤1012、采用刻蚀工艺,对位于第三区域内的所述第二PETEOS氧化层5和所述氮化硅钝化层4进行刻蚀,形成欧姆接触孔6,其中,所述第三区域包含于所述第一区域。Step 1012: Etching the second PETEOS oxide layer 5 and the silicon nitride passivation layer 4 in the third region by using an etching process to form an ohmic contact hole 6, wherein the third region contained in the first region.

具体的,图4为图2所示方法中形成欧姆接触孔后的结构示意图,其中,图4所示结构可以通过以下方法获得:Specifically, FIG. 4 is a schematic diagram of the structure after the ohmic contact hole is formed in the method shown in FIG. 2, wherein the structure shown in FIG. 4 can be obtained by the following method:

首先,在第二PETEOS氧化层5的表面上,位于预设的第三区域以外的区域上涂抹光刻胶,并于涂抹光刻胶后,在光刻胶的阻挡下对第三区域内的第二PETEOS氧化层5进行刻蚀,直至露出氮化硅钝化层4为止,经此刻蚀后第二PETEOS氧化层5在位于第三区域内的位置上形成氧化层开孔(第一氧化层开孔)。First, on the surface of the second PETEOS oxide layer 5, apply photoresist on the area outside the preset third area, and after applying the photoresist, under the blocking of the photoresist, the photoresist in the third area The second PETEOS oxide layer 5 is etched until the silicon nitride passivation layer 4 is exposed. After this etching, the second PETEOS oxide layer 5 forms an oxide layer opening (the first oxide layer) at the position in the third region. opening).

在形成第一氧化层开孔后,继续采用干法刻蚀工艺对第一氧化层开孔内的氮化硅钝化层4进行刻蚀,直至露出AlGaN势垒层3的表面为止。并于刻蚀完成后去除光刻胶。经此刻蚀之后,即形成位于第三区域的欧姆接触孔6。After the openings in the first oxide layer are formed, the silicon nitride passivation layer 4 in the openings in the first oxide layer is continuously etched by dry etching until the surface of the AlGaN barrier layer 3 is exposed. And the photoresist is removed after the etching is completed. After the etching, the ohmic contact hole 6 located in the third area is formed.

步骤1013、采用淀积工艺,在所述器件的表面上淀积欧姆电极金属层。Step 1013, using a deposition process to deposit an ohmic electrode metal layer on the surface of the device.

本实施例中,优选采用但不仅限于采用磁控溅射镀膜工艺淀积欧姆电极金属层。具体的,首先通过采用磁控溅射镀膜工艺在器件的表面上淀积一层Ti金属层,再通过在Ti金属层上依次淀积金属Al层、金属Ti层和金属TiN层,形成欧姆电极金属层。In this embodiment, preferably, but not limited to, a magnetron sputtering coating process is used to deposit the ohmic electrode metal layer. Specifically, firstly, a layer of Ti metal layer is deposited on the surface of the device by magnetron sputtering coating process, and then a metal Al layer, a metal Ti layer and a metal TiN layer are sequentially deposited on the Ti metal layer to form an ohmic electrode. metal layer.

进一步的,为了形成良好的欧姆接触的电极金属,本实施例在淀积欧姆电极金属层之前,还可以依次使用稀氟氢酸、标准化第一步清洗以及标准化第二步清洗对AlGaN势垒层3的表面的表面进行清洗。并于获得欧姆电极金属层后,将器件在温度为840摄氏度和氮气氛围的条件下执行退火30秒。Further, in order to form a good ohmic contact electrode metal, before depositing the ohmic electrode metal layer in this embodiment, dilute hydrofluoric acid, standardized first-step cleaning and standardized second-step cleaning can be used sequentially to clean the AlGaN barrier layer. 3. The surface of the surface is cleaned. And after the ohmic electrode metal layer is obtained, the device is annealed for 30 seconds at a temperature of 840 degrees Celsius and a nitrogen atmosphere.

步骤1014、采用刻蚀工艺,对所述欧姆电极金属层进行刻蚀,形成欧姆接触电极7。Step 1014 , using an etching process to etch the metal layer of the ohmic electrode to form the ohmic contact electrode 7 .

具体的,图5为图2所示方法中形成欧姆接触电极后的结构示意图,其中,图5所示结构的制作方法,可以根据现有的欧姆接触电极制作工艺获得,在这里不再赘述。Specifically, FIG. 5 is a schematic diagram of the structure of the ohmic contact electrode formed in the method shown in FIG. 2, wherein, the manufacturing method of the structure shown in FIG. 5 can be obtained according to the existing ohmic contact electrode manufacturing process, and will not be repeated here.

步骤1015、采用刻蚀工艺对第四区域内的第二PETEOS氧化层5、氮化硅钝化层4以及部分AlGaN势垒层进行刻蚀,形成栅极接触孔8,其中,所述第四区域包含于所述第一区域,且与所述第三区域的交集为空。Step 1015, using an etching process to etch the second PETEOS oxide layer 5, the silicon nitride passivation layer 4 and part of the AlGaN barrier layer in the fourth region to form a gate contact hole 8, wherein the fourth The area is included in the first area, and the intersection with the third area is empty.

具体的,图6为图2所示方法中形成栅极接触孔后的结构示意图,如图6所示,栅极接触孔8的直径小于所述第四区域的直径,且所述栅极接触孔8所在的位置与所述欧姆接触电极所在的位置相离。Specifically, FIG. 6 is a schematic structural view of the gate contact hole formed in the method shown in FIG. 2. As shown in FIG. 6, the diameter of the gate contact hole 8 is smaller than the diameter of the fourth region, and the gate contact The holes 8 are located away from the positions of the ohmic contact electrodes.

值得说明的是,本步骤中形成栅极接触孔8所采用的刻蚀工艺,可以为现有刻蚀工艺中的任意一种,在这里不做详述。It is worth noting that the etching process used to form the gate contact hole 8 in this step may be any of the existing etching processes, which will not be described in detail here.

步骤1016、采用淀积工艺,在所述器件的表面上淀积一层栅极金属层,并通过刻蚀工艺对所述栅极金属层进行刻蚀,形成栅极9。Step 1016 , using a deposition process to deposit a gate metal layer on the surface of the device, and etching the gate metal layer through an etching process to form a gate 9 .

具体的,图7为图2所示方法中形成栅极后的结构示意图,如图7所示,本步骤形成的栅极,其位于第二PETEOS氧化层5表面上的栅极金属不与欧姆电极金属接触。并且值得说明的是,本步骤中形成栅极9的方法,与现有的栅极制作工艺类似,在这里不再赘述。Specifically, FIG. 7 is a schematic diagram of the structure of the gate formed in the method shown in FIG. 2. As shown in FIG. 7, the gate metal formed in this step is not in contact with the ohmic electrode metal contact. And it is worth noting that the method for forming the gate 9 in this step is similar to the existing gate fabrication process, and will not be repeated here.

步骤102、在所述器件的表面上淀积第一PETEOS氧化层10。Step 102, depositing a first PETEOS oxide layer 10 on the surface of the device.

步骤103、在所述器件的第二区域上对所述器件进行刻蚀,直至刻蚀掉部分所述衬底为止,形成穿通孔11,其中,所述第二区域与所述第一区域的交集为空。Step 103: Etching the device on the second region of the device until part of the substrate is etched away to form a through hole 11, wherein the second region and the first region The intersection is empty.

具体的,图8为图1所示方法中形成穿通孔后的结构示意图,图8所示结构的制作方法如下:Specifically, FIG. 8 is a schematic diagram of the structure after the through hole is formed in the method shown in FIG. 1, and the manufacturing method of the structure shown in FIG. 8 is as follows:

在器件除第二区域以外的区域上涂抹光刻胶,并在光刻胶的阻挡下对第一PETEOS氧化层、第二PETEOS氧化层5、氮化硅钝化层4、AlGaN势垒层3、GaN缓冲层2以及部分衬底1进行刻蚀,并在刻蚀完成后,去除光刻胶。其中,衬底1优选为硅衬底。Apply photoresist on the area of the device except the second area, and under the blocking of the photoresist, the first PETEOS oxide layer, the second PETEOS oxide layer 5, the silicon nitride passivation layer 4, and the AlGaN barrier layer 3 , the GaN buffer layer 2 and part of the substrate 1 are etched, and after the etching is completed, the photoresist is removed. Among them, the substrate 1 is preferably a silicon substrate.

步骤104、在所述器件的表面上淀积金属层,并对所述金属层进行刻蚀,形成所述氮化镓场效应晶体管。Step 104 , depositing a metal layer on the surface of the device, and etching the metal layer to form the GaN field effect transistor.

其中,图9为经过图1所示方法后形成的氮化镓场效应晶体管的结构示意图。如图9所示,首先通过淀积工艺在器件的表面上淀积一层金属层12,在获得金属层12后,对金属层12进行刻蚀,从而形成如图9所示的晶体管。其中,淀积金属层12的工艺和刻蚀工艺均与相应的现有技术类似,在这里不再赘述。Wherein, FIG. 9 is a schematic structural diagram of a GaN field effect transistor formed after the method shown in FIG. 1 . As shown in FIG. 9 , a metal layer 12 is first deposited on the surface of the device through a deposition process, and after the metal layer 12 is obtained, the metal layer 12 is etched to form a transistor as shown in FIG. 9 . Wherein, the process of depositing the metal layer 12 and the etching process are similar to the corresponding prior art, and will not be repeated here.

本实施例提供的氮化镓场效应晶体管的制作方法,首先通过在器件的第一区域上制作晶体管的欧姆接触电极和栅极,其中,所述器件包括衬底以及依次生长在所述衬底表面上的GaN缓冲层和AlGaN势垒层;再通过在所述器件的表面上淀积第一PETEOS氧化层,并在所述器件的第二区域上对所述器件进行刻蚀,直至刻蚀掉部分所述衬底为止,形成穿通孔,其中,所述第二区域与所述第一区域的交集为空;最后通过在所述器件的表面上淀积金属层,并对所述金属层进行刻蚀,形成所述氮化镓场效应晶体管,缓解了漏极和栅极之间的电场,减小了源极的互连电阻和寄生电感,提高了氮化镓场效应晶体管的性能。The method for manufacturing a GaN field effect transistor provided in this embodiment firstly manufactures an ohmic contact electrode and a gate of the transistor on the first region of the device, wherein the device includes a substrate and sequentially grows on the substrate GaN buffer layer and AlGaN barrier layer on the surface; then by depositing a first PETEOS oxide layer on the surface of the device, and etching the device on the second region of the device until the etching A through hole is formed until part of the substrate is removed, wherein the intersection of the second region and the first region is empty; finally, by depositing a metal layer on the surface of the device, and the metal layer Etching is performed to form the GaN field effect transistor, which eases the electric field between the drain and the gate, reduces the interconnection resistance and parasitic inductance of the source, and improves the performance of the GaN field effect transistor.

最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。Finally, it should be noted that: the above embodiments are only used to illustrate the technical solutions of the present invention, rather than limiting them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: It is still possible to modify the technical solutions described in the foregoing embodiments, or perform equivalent replacements for some or all of the technical features; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the technical solutions of the various embodiments of the present invention. scope.

Claims (7)

1.一种氮化镓场效应晶体管的制作方法,其特征在于,包括:1. A method for manufacturing a gallium nitride field effect transistor, characterized in that, comprising: 在器件的第一区域上制作晶体管的欧姆接触电极和栅极,其中,所述器件包括衬底以及依次生长在所述衬底表面上的GaN缓冲层和AlGaN势垒层;Fabricating an ohmic contact electrode and a gate of a transistor on a first region of a device, wherein the device includes a substrate and a GaN buffer layer and an AlGaN barrier layer grown sequentially on the surface of the substrate; 在所述器件的表面上淀积第一PETEOS氧化层;depositing a first PETEOS oxide layer on the surface of the device; 在所述器件的第二区域上对所述器件进行刻蚀,直至刻蚀掉部分所述衬底为止,形成穿通孔,其中,所述第二区域与所述第一区域的交集为空;Etching the device on the second region of the device until a part of the substrate is etched away to form a through hole, wherein the intersection of the second region and the first region is empty; 在所述器件的表面上淀积金属层,并对所述金属层进行刻蚀,形成所述氮化镓场效应晶体管。A metal layer is deposited on the surface of the device, and the metal layer is etched to form the gallium nitride field effect transistor. 2.根据权利要求1所述的方法,其特征在于,所述在器件的第一区域上制作晶体管的欧姆接触电极和栅极,包括:2. The method according to claim 1, wherein said forming the ohmic contact electrode and gate of the transistor on the first region of the device comprises: 采用淀积工艺在所述器件的AlGaN势垒层表面上依次淀积氮化硅钝化层和第二PETEOS氧化层;Depositing a silicon nitride passivation layer and a second PETEOS oxide layer sequentially on the surface of the AlGaN barrier layer of the device by a deposition process; 采用刻蚀工艺,对位于第三区域内的所述第二PETEOS氧化层和所述氮化硅钝化层进行刻蚀,形成欧姆接触孔,其中,所述第三区域包含于所述第一区域;Using an etching process, the second PETEOS oxide layer and the silicon nitride passivation layer located in the third region are etched to form an ohmic contact hole, wherein the third region is included in the first area; 采用淀积工艺,在所述器件的表面上淀积欧姆电极金属层;Depositing an ohmic electrode metal layer on the surface of the device by using a deposition process; 采用刻蚀工艺,对所述欧姆电极金属层进行刻蚀,形成欧姆接触电极;Etching the metal layer of the ohmic electrode by using an etching process to form an ohmic contact electrode; 采用刻蚀工艺对第四区域内的第二PETEOS氧化层、氮化硅钝化层以及部分AlGaN势垒层进行刻蚀,形成栅极接触孔,所述栅极接触孔的直径小于所述第四区域的直径,且所述栅极接触孔所在的位置与所述欧姆接触电极所在的位置相离,其中所述第四区域包含于所述第一区域,且与所述第三区域的交集为空;Etching the second PETEOS oxide layer, the silicon nitride passivation layer and part of the AlGaN barrier layer in the fourth region by an etching process to form a gate contact hole, the diameter of the gate contact hole is smaller than the first The diameter of four regions, and the position of the gate contact hole is far away from the position of the ohmic contact electrode, wherein the fourth region is included in the first region and intersects with the third region Is empty; 采用淀积工艺,在所述器件的表面上淀积一层栅极金属层,并通过刻蚀工艺对所述栅极金属层进行刻蚀,形成栅极。A gate metal layer is deposited on the surface of the device by a deposition process, and the gate metal layer is etched by an etching process to form a gate. 3.根据权利要求2所述的方法,其特征在于,所述采用淀积工艺在所述器件的AlGaN势垒层表面上依次淀积氮化硅钝化层和第二PETEOS氧化层,包括:3. The method according to claim 2, wherein the step of depositing a silicon nitride passivation layer and a second PETEOS oxide layer sequentially on the surface of the AlGaN barrier layer of the device using a deposition process comprises: 在温度小于300摄氏度的条件下,在所述AlGaN势垒层的表面上淀积所述氮化硅钝化层;Depositing the silicon nitride passivation layer on the surface of the AlGaN barrier layer under the condition that the temperature is less than 300 degrees Celsius; 采用化学气相淀积的工艺在所述氮化硅钝化层的表面上淀积所述第二PETEOS氧化层。The second PETEOS oxide layer is deposited on the surface of the silicon nitride passivation layer by chemical vapor deposition. 4.根据权利要求2所述的方法,其特征在于,所述采用刻蚀工艺,对位于第三区域内的所述第二PETEOS氧化层和所述氮化硅钝化层进行刻蚀,形成欧姆接触孔,包括:4. The method according to claim 2, wherein the etching process is used to etch the second PETEOS oxide layer and the silicon nitride passivation layer in the third region to form Ohmic contacts, including: 在所述第二PETEOS氧化层的表面上,位于所述第三区域以外的区域上涂抹一层光刻胶;On the surface of the second PETEOS oxide layer, apply a layer of photoresist on the area other than the third area; 在光刻胶的遮挡下对所述第二PETEOS氧化层进行刻蚀直至露出所述氮化硅钝化层为止,形成第一氧化层开孔;Etching the second PETEOS oxide layer under the cover of the photoresist until the silicon nitride passivation layer is exposed, forming openings in the first oxide layer; 采用干法刻蚀工艺对所述第一氧化层开孔内的氮化硅钝化层进行刻蚀,直至露出所述AlGaN势垒层的表面为止,形成所述欧姆接触孔,并去除光刻胶。The silicon nitride passivation layer in the opening of the first oxide layer is etched by a dry etching process until the surface of the AlGaN barrier layer is exposed, the ohmic contact hole is formed, and the photolithography is removed. glue. 5.根据权利要求2所述的方法,其特征在于,所述采用淀积工艺,在所述器件的表面上淀积欧姆电极金属层之前,还包括:5. method according to claim 2, is characterized in that, described adopting deposition process, before depositing ohmic electrode metal layer on the surface of described device, also comprises: 对位于所述欧姆接触孔内的所述AlGaN势垒层的表面进行清洗。cleaning the surface of the AlGaN barrier layer located in the ohmic contact hole. 6.根据权利要求1所述的方法,其特征在于,所述采用淀积工艺,在所述器件的表面上淀积欧姆电极金属层,包括:6. The method according to claim 1, wherein said adopting a deposition process to deposit an ohmic electrode metal layer on the surface of said device comprises: 采用磁控溅射镀膜工艺依次在所述器件的表面上淀积金属Ti层、金属Al层、金属Ti层和金属TiN层。A metal Ti layer, a metal Al layer, a metal Ti layer and a metal TiN layer are sequentially deposited on the surface of the device by using a magnetron sputtering coating process. 7.根据权利要求6所述的方法,其特征在于,所述采用磁控溅射镀膜工艺依次在器件的表面上淀积金属Ti层、金属Al层、金属Ti层和金属TiN层之后,还包括:7. method according to claim 6, is characterized in that, after described employing magnetron sputtering film process to deposit metal Ti layer, metal Al layer, metal Ti layer and metal TiN layer on the surface of device successively, also include: 在温度为840摄氏度和氮气氛围的条件下执行退火30秒。Annealing was performed for 30 seconds at a temperature of 840 degrees Celsius and a nitrogen atmosphere.
CN201610178302.7A 2016-03-25 2016-03-25 The preparation method of gallium nitride field effect transistor Pending CN107230630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610178302.7A CN107230630A (en) 2016-03-25 2016-03-25 The preparation method of gallium nitride field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610178302.7A CN107230630A (en) 2016-03-25 2016-03-25 The preparation method of gallium nitride field effect transistor

Publications (1)

Publication Number Publication Date
CN107230630A true CN107230630A (en) 2017-10-03

Family

ID=59933039

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610178302.7A Pending CN107230630A (en) 2016-03-25 2016-03-25 The preparation method of gallium nitride field effect transistor

Country Status (1)

Country Link
CN (1) CN107230630A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1750273A (en) * 2004-09-17 2006-03-22 松下电器产业株式会社 Semiconductor device and manufacturing method thereof
US20070131968A1 (en) * 2005-11-25 2007-06-14 Matsushita Electric Industrial Co., Ltd. Field effect transistor
US20140103357A1 (en) * 2012-10-17 2014-04-17 Imec Schottky diode structure and method of fabrication

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1750273A (en) * 2004-09-17 2006-03-22 松下电器产业株式会社 Semiconductor device and manufacturing method thereof
US20070131968A1 (en) * 2005-11-25 2007-06-14 Matsushita Electric Industrial Co., Ltd. Field effect transistor
US20140103357A1 (en) * 2012-10-17 2014-04-17 Imec Schottky diode structure and method of fabrication

Similar Documents

Publication Publication Date Title
CN103632948B (en) A kind of semiconductor devices and its manufacturing method
CN106847895B (en) GaN-based high electron mobility transistor based on TiN/Cu/Ni gate electrode and manufacturing method
WO2020135770A1 (en) High electron mobility transistor and fabrication method therefor
CN107316901A (en) Based on doping HfO2The enhanced HEMT devices of AlGaN/GaN and preparation method of ferroelectricity gate medium
CN107248528B (en) Low frequency loss GaN-based microwave power device and manufacturing method thereof
CN106298887A (en) A kind of preparation method of high threshold voltage high mobility notched gates MOSFET
CN107170822A (en) GaN base groove insulated gate enhancement type high electron mobility transistor based on negative capacitance medium
CN110660643A (en) Method for optimizing passivation of gallium nitride high electron mobility transistor
JP2014199864A (en) Semiconductor device and method of manufacturing the same
CN107634009A (en) A kind of GaN MOS HEMT devices and preparation method thereof
KR20090091868A (en) The method for reducing a leakage current of the nitride compound semiconductor device
CN106373874A (en) Fabrication Method of Ohmic Contact Electrode Based on AlGaN/GaN HEMT
CN107578999A (en) High electron mobility transistor device with patterned gate region and manufacturing method
CN113809154B (en) A nitride barrier stress modulation device and its preparation method
CN107230625A (en) Gallium nitride transistor and its manufacture method
CN106449737A (en) Low-contact resistor type GaN-based device and manufacturing method thereof
CN107230722A (en) HEMT and preparation method thereof
CN118738116A (en) A digitally etched recessed gate enhanced GaN HEMT device and its preparation method
CN107919397A (en) A kind of High Linear FET device and preparation method thereof
CN112820774A (en) GaN device and preparation method thereof
CN107104047A (en) The manufacture method of gallium nitride Schottky diode
CN107195548B (en) InAs/AlSb HEMT and preparation method of MOS-HEMT device
CN107230630A (en) The preparation method of gallium nitride field effect transistor
CN107230624A (en) Gallium nitride transistor and its manufacture method
CN107230629A (en) The preparation method and gallium nitride field effect transistor of gallium nitride field effect transistor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20171003