CN107275216A - The forming method of fin formula field effect transistor - Google Patents
The forming method of fin formula field effect transistor Download PDFInfo
- Publication number
- CN107275216A CN107275216A CN201610217390.7A CN201610217390A CN107275216A CN 107275216 A CN107275216 A CN 107275216A CN 201610217390 A CN201610217390 A CN 201610217390A CN 107275216 A CN107275216 A CN 107275216A
- Authority
- CN
- China
- Prior art keywords
- fin
- field effect
- effect transistor
- forming method
- formula field
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005669 field effect Effects 0.000 title claims abstract description 50
- 238000000034 method Methods 0.000 title claims abstract description 49
- 239000004065 semiconductor Substances 0.000 claims abstract description 38
- 239000000758 substrate Substances 0.000 claims abstract description 37
- 239000000463 material Substances 0.000 claims description 35
- 230000008569 process Effects 0.000 claims description 15
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 7
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 7
- 238000005530 etching Methods 0.000 claims description 6
- 229910000577 Silicon-germanium Inorganic materials 0.000 claims description 5
- 125000006850 spacer group Chemical group 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 238000011065 in-situ storage Methods 0.000 claims description 3
- 239000013589 supplement Substances 0.000 claims 4
- 238000009413 insulation Methods 0.000 claims 2
- 238000000926 separation method Methods 0.000 claims 2
- 239000000377 silicon dioxide Substances 0.000 claims 1
- 238000005468 ion implantation Methods 0.000 abstract description 68
- 238000002955 isolation Methods 0.000 abstract description 29
- 230000000694 effects Effects 0.000 abstract description 14
- 150000002500 ions Chemical class 0.000 description 32
- 239000003989 dielectric material Substances 0.000 description 6
- 239000002019 doping agent Substances 0.000 description 5
- 229910052814 silicon oxide Inorganic materials 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 4
- 238000002513 implantation Methods 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000007943 implant Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- -1 well doping Chemical class 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/024—Manufacture or treatment of FETs having insulated gates [IGFET] of fin field-effect transistors [FinFET]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/265—Bombardment with radiation with high-energy radiation producing ion implantation
- H01L21/26586—Bombardment with radiation with high-energy radiation producing ion implantation characterised by the angle between the ion beam and the crystal planes or the main crystal surface
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Chemical & Material Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
一种鳍式场效应晶体管的形成方法,包括:提供半导体衬底,所述半导体衬底表面形成有两个以上分立且平行排列的鳍部;在所述半导体衬底表面形成隔离层,所述隔离层表面低于鳍部的顶部表面且覆盖鳍部的部分侧壁;在所述隔离层表面形成横跨一个或多个鳍部的伪栅结构,所述伪栅结构覆盖所述鳍部侧壁和顶部;对所述鳍部进行口袋离子注入,所述口袋离子注入方向垂直于鳍部的长度方向;在伪栅结构侧壁形成侧墙,然后对伪栅结构和侧墙两侧的鳍部进行轻掺杂离子注入。所述方法可以改善口袋离子注入过程中的阴影效应。
A method for forming a fin field effect transistor, comprising: providing a semiconductor substrate, the surface of the semiconductor substrate is formed with more than two discrete fins arranged in parallel; forming an isolation layer on the surface of the semiconductor substrate, the The surface of the isolation layer is lower than the top surface of the fin and covers part of the sidewall of the fin; a dummy gate structure spanning one or more fins is formed on the surface of the isolation layer, and the dummy gate structure covers the side of the fin wall and top; carry out pocket ion implantation to the fin, and the pocket ion implantation direction is perpendicular to the length direction of the fin; form side walls on the side walls of the dummy gate structure, and then perform the dummy gate structure and the fins on both sides of the side wall Lightly doped ion implantation. The method can improve the shadow effect during pocket ion implantation.
Description
技术领域technical field
本发明涉及半导体技术领域,特别涉及一种鳍式场效应晶体管的形成方法。The invention relates to the technical field of semiconductors, in particular to a method for forming a fin field effect transistor.
背景技术Background technique
随着半导体工艺技术的不断发展,工艺节点逐渐减小,后栅(gate-last)工艺得到了广泛应用,以获得理想的阈值电压,改善器件性能。但是当器件的特征尺寸进一步下降时,即使采用后栅工艺,常规的MOS场效应管的结构也已经无法满足对器件性能的需求,多栅器件作为常规器件的替代得到了广泛的关注。With the continuous development of semiconductor process technology, process nodes are gradually reduced, and gate-last (gate-last) process has been widely used to obtain an ideal threshold voltage and improve device performance. However, when the feature size of the device is further reduced, even if the gate-last process is adopted, the structure of the conventional MOS field effect transistor can no longer meet the requirements for device performance. Multi-gate devices have attracted widespread attention as a substitute for conventional devices.
鳍式场效应晶体管是一种常见的多栅器件,如图1所示,为现有的鳍式场效应晶体管的结构示意图。所述鳍式场效应晶体管包括半导体衬底10;位于衬底10上的若干鳍部20;位于半导体衬底10表面的隔离层30,所述隔离层30的表面低于鳍部20的顶部表面,并且覆盖鳍部20的部分侧壁;位于隔离层30表面且横跨所述鳍部20的栅极结构,所述栅极结构包括栅介质层41和位于所述栅介质层41表面的栅极42。所述栅极结构两侧的鳍部20内还形成有源极和漏极。为了提高鳍式场效应晶体管的沟道区面积,所述鳍式场效应晶体管的栅极结构通常横跨多个鳍部20。A fin field effect transistor is a common multi-gate device, as shown in FIG. 1 , which is a schematic structural diagram of an existing fin field effect transistor. The fin field effect transistor includes a semiconductor substrate 10; several fins 20 on the substrate 10; an isolation layer 30 located on the surface of the semiconductor substrate 10, the surface of the isolation layer 30 is lower than the top surface of the fins 20 , and cover part of the sidewall of the fin portion 20; the gate structure located on the surface of the isolation layer 30 and across the fin portion 20, the gate structure includes a gate dielectric layer 41 and a gate located on the surface of the gate dielectric layer 41 Pole 42. A source and a drain are also formed in the fins 20 on both sides of the gate structure. In order to increase the channel region area of the FinFET, the gate structure of the FinFET generally spans a plurality of fins 20 .
现有技术在形成所述鳍式场效应晶体管的过程中,通长会在栅极结构下方的沟道区域与源极、漏极区域之间进行口袋离子注入,所述口袋离子注入的掺杂离子类型与待形成的鳍式场效应晶体管的类型相反,可以提高形成的鳍式场效应晶体管的源极和漏极之间的穿通电压,从而抑制鳍式场效应晶体管的源漏穿通效应,提高鳍式场效应晶体管的性能。In the prior art, in the process of forming the fin field effect transistor, pocket ion implantation is generally performed between the channel region under the gate structure and the source and drain regions, and the doping of the pocket ion implantation The ion type is opposite to the type of the fin field effect transistor to be formed, which can increase the punch-through voltage between the source and the drain of the fin field effect transistor to be formed, thereby suppressing the source-drain punch-through effect of the fin field effect transistor and improving Performance of FinFETs.
但是,现有技术中,对鳍式场效应晶体管进行的口袋离子注入的效果较差,口袋注入的掺杂离子很难进入靠近源极区域、漏极区域中靠近沟道区域的部分,从而对鳍式场效应晶体管的性能改善有限,需要进一步改善所述口袋离子注入的工艺,以进一步提高鳍式场效应晶体管的性能。However, in the prior art, the effect of the pocket ion implantation on the fin field effect transistor is poor, and it is difficult for the dopant ions implanted in the pocket to enter the part close to the source region and the drain region close to the channel region, thereby affecting The improvement of the performance of the fin field effect transistor is limited, and it is necessary to further improve the process of the pocket ion implantation, so as to further improve the performance of the fin field effect transistor.
发明内容Contents of the invention
本发明解决的问题是提供一种鳍式场效应晶体管的形成方法,提高形成的鳍式场效应晶体管的性能。The problem to be solved by the present invention is to provide a method for forming a fin field effect transistor and improve the performance of the formed fin field effect transistor.
为解决上述问题,本发明提供一种鳍式场效应晶体管的形成方法,包括:提供半导体衬底,所述半导体衬底表面形成有两个以上分立且平行排列的鳍部;在所述半导体衬底表面形成隔离层,所述隔离层表面低于鳍部的顶部表面且覆盖鳍部的部分侧壁;在所述隔离层表面形成横跨一个或多个鳍部的伪栅结构,所述伪栅结构覆盖所述鳍部侧壁和顶部;对所述鳍部进行口袋离子注入,所述口袋离子注入方向垂直于鳍部的长度方向;在伪栅结构侧壁形成侧墙,然后对伪栅结构和侧墙两侧的鳍部进行轻掺杂离子注入。In order to solve the above problems, the present invention provides a method for forming a fin field effect transistor, comprising: providing a semiconductor substrate, the surface of the semiconductor substrate is formed with more than two discrete fins arranged in parallel; An isolation layer is formed on the bottom surface, and the surface of the isolation layer is lower than the top surface of the fin and covers part of the sidewall of the fin; a dummy gate structure spanning one or more fins is formed on the surface of the isolation layer, and the dummy gate structure is formed on the surface of the isolation layer. The gate structure covers the sidewall and top of the fin; pocket ion implantation is performed on the fin, and the pocket ion implantation direction is perpendicular to the length direction of the fin; sidewalls are formed on the sidewall of the dummy gate structure, and then the dummy gate is The structure and the fins on both sides of the sidewall are implanted with lightly doped ions.
可选的,所述口袋离子注入方向与半导体衬底的法线之间的夹角为0°~20°。Optionally, the included angle between the pocket ion implantation direction and the normal of the semiconductor substrate is 0°-20°.
可选的,所述口袋离子注入分成两次,分别对鳍部的两侧进行。Optionally, the pocket ion implantation is divided into two parts, which are respectively performed on two sides of the fin.
可选的,所述口袋离子注入的离子类型与待形成的鳍式场效应晶体管的类型相反。Optionally, the ion type of the pocket ion implantation is opposite to the type of the fin field effect transistor to be formed.
可选的,所述口袋离子注入在鳍部内形成口袋掺杂区,所述口袋掺杂区位于鳍部的沿宽度方向的中间位置。Optionally, the pocket ion implantation forms a pocket doping region in the fin, and the pocket doping region is located in the middle of the fin along the width direction.
可选的,还包括:在形成侧墙之后,对鳍部进行补充口袋离子注入。Optionally, the method further includes: performing supplementary pocket ion implantation on the fin after forming the side wall.
可选的,所述补充口袋离子注入在轻掺杂离子注入之前进行。Optionally, the supplementary pocket ion implantation is performed before the lightly doped ion implantation.
可选的,所述补充口袋离子注入在轻掺杂离子注入之后进行。Optionally, the supplementary pocket ion implantation is performed after the lightly doped ion implantation.
可选的,所述补充口袋离子注入的方向在衬底表面的投影与鳍部的长度方向之间的夹角小于90°。Optionally, the included angle between the projection of the supplementary pocket ion implantation direction on the substrate surface and the length direction of the fin is less than 90°.
可选的,所述伪栅结构顶部具有硬掩膜层。Optionally, there is a hard mask layer on the top of the dummy gate structure.
可选的,所述侧墙的形成方法包括:形成覆盖隔离层、鳍部、硬掩膜层的侧墙材料层。Optionally, the method for forming the sidewall includes: forming a sidewall material layer covering the isolation layer, the fin, and the hard mask layer.
可选的,还包括:刻蚀所述侧墙材料层,形成位于伪栅结构侧壁表面的侧墙。Optionally, the method further includes: etching the sidewall material layer to form a sidewall on the surface of the sidewall of the dummy gate structure.
可选的,所述侧墙的材料为氧化硅或氮化硅。Optionally, the material of the sidewall is silicon oxide or silicon nitride.
可选的,还包括:刻蚀伪栅结构两侧的鳍部,形成凹槽,在所述凹槽内外延形成应力层,作为源极和漏极。Optionally, the method further includes: etching the fins on both sides of the dummy gate structure to form a groove, and epitaxially forming a stress layer in the groove as a source and a drain.
可选的,所述应力层的材料为SiGe、SiC或SiP。Optionally, the material of the stress layer is SiGe, SiC or SiP.
可选的,采用原位掺杂工艺,在外延形成应力层的过程中,对所述应力层进行N型或P型离子掺杂。Optionally, the stress layer is doped with N-type or P-type ions during the process of epitaxially forming the stress layer by using an in-situ doping process.
可选的,所述口袋离子注入的离子能量为0KeV~60KeV,剂量为1E13atom/cm2~1E14atom/cm2。Optionally, the ion energy of the pocket ion implantation is 0KeV˜60KeV, and the dose is 1E13atom/cm 2 ˜1E14atom/cm 2 .
可选的,还包括去除所述伪栅结构,形成横跨鳍部的栅极结构。Optionally, removing the dummy gate structure to form a gate structure across the fin.
与现有技术相比,本发明的技术方案具有以下优点:Compared with the prior art, the technical solution of the present invention has the following advantages:
本发明的技术方案,在形成横跨鳍部的伪栅结构之后,进行口袋离子注入,然后再形成侧墙。所述口袋离子注入的所述口袋离子注入的方向与伪栅结构平行,垂直与鳍部,从而可以避免鳍部长度方向上对注入离子的阻挡作用,改善离子注入的阴影效应。而且,由于伪栅结构侧壁没有形成侧墙结构,平行于伪栅结构进行口袋离子注入,可以使形成的口袋掺杂区与伪栅结构之间的距离很小,通过扩散即可以使的伪栅结构下方具有口袋掺杂区,与现有技术相比,可以减小所述口袋离子注入的剂量,从而降低形成的鳍式场效应晶体管的电阻。In the technical solution of the present invention, after the dummy gate structure across the fin is formed, pocket ion implantation is performed, and then sidewalls are formed. The pocket ion implantation direction of the pocket ion implantation is parallel to the dummy gate structure and perpendicular to the fin, thereby avoiding the blocking effect on implanted ions in the length direction of the fin and improving the shadow effect of ion implantation. Moreover, since the sidewall of the dummy gate structure does not form a sidewall structure, performing pocket ion implantation parallel to the dummy gate structure can make the distance between the formed pocket doped region and the dummy gate structure very small, and the dummy gate structure can be formed by diffusion. There is a pocket doping region under the gate structure, and compared with the prior art, the ion implantation dose of the pocket can be reduced, thereby reducing the resistance of the formed fin field effect transistor.
进一步,可以通过调整所述口袋离子注入的离子能量,控制注入离子的深度,从而使得口袋掺杂区位于鳍部的沿宽度方向的中间位置,从而能起到最佳的防穿通效果。Further, by adjusting the ion energy of the pocket ion implantation, the depth of implanted ions can be controlled, so that the pocket doping region is located in the middle of the fin along the width direction, so as to achieve the best anti-puncture effect.
进一步,在形成侧墙之后,还可以进行补充口袋离子注入。由于所述轻掺杂离子注入的离子类型与口袋掺杂区内的掺杂离子类型相反,在扩散作用下,会导致口袋掺杂区内的带电离子浓度下降,从而进行补充口袋离子注入可以弥补带电离子浓度的下降,加强所述口袋掺杂区的防源漏穿通效果。Further, supplementary pocket ion implantation may also be performed after the sidewalls are formed. Since the ion type of the lightly doped ion implantation is opposite to the dopant ion type in the pocket doped region, the concentration of charged ions in the pocket doped region will decrease under the action of diffusion, so supplementary pocket ion implantation can compensate The decrease of the concentration of charged ions strengthens the effect of preventing source-drain punch-through of the pocket doping region.
附图说明Description of drawings
图1是本发明现有技术的鳍式场效应晶体管的结构示意图;Fig. 1 is the structural representation of the fin field effect transistor of prior art of the present invention;
图2至图6是本发明的实施例的鳍式场效应晶体管的形成过程的结构示意图。2 to 6 are structural schematic diagrams of the formation process of the fin field effect transistor according to the embodiment of the present invention.
具体实施方式detailed description
如背景技术中所述,现有的对鳍式场效应晶体管进行的口袋离子注入进入源极区域、漏极区域中靠近沟道区域的离子剂量较小,对源漏极的穿通现象改善有限。As mentioned in the background art, the existing pocket ion implantation for FinFETs has a relatively small ion dose into the source region and the drain region close to the channel region, which has limited improvement on the source-drain punch-through phenomenon.
研究发现,由于现有技术通常会在半导体衬底上形成若干相邻的鳍部,并且,鳍式场效应晶体管的栅极结构通常也会同时横跨多个鳍部,以提高鳍式场效应晶体管的沟道区面积。由于现有半导体芯片的集成度都较高,所以,相邻鳍部之间的间距也较小。为了改善短沟道效应,通常会在栅极结构侧壁形成侧墙之后,再进行口袋离子注入。所述口袋离子注入需要将掺杂离子注入沟道区域与源漏极区域之间的鳍部内,所以,所述口袋离子注入的注入方向通常会与鳍部的高度方向以及鳍部的长度方向之间具有一定的夹角,以将掺杂离子注入鳍部靠近栅极结构的位置处。The study found that due to the existing technology, several adjacent fins are usually formed on the semiconductor substrate, and the gate structure of the fin field effect transistor usually also spans multiple fins at the same time to improve the fin field effect. The area of the channel region of a transistor. Since the integration degree of existing semiconductor chips is relatively high, the distance between adjacent fins is relatively small. In order to improve the short channel effect, pocket ion implantation is usually performed after the sidewalls of the gate structure are formed. The pocket ion implantation needs to implant dopant ions into the fin between the channel region and the source-drain region. Therefore, the implantation direction of the pocket ion implantation is usually between the height direction of the fin and the length direction of the fin. There is a certain angle between them, so as to implant dopant ions into the position of the fin close to the gate structure.
由于所述鳍部为凸起的立体结构,需要分别对源极和漏极的两侧进行离子注入,现有在进行离子注入的过程中,在离子注入方向与鳍部的高度方向支架的夹角一定的情况下,一般使得离子注入方向在半导体衬底上的投影与鳍部长度方向之间的夹角为45°或90°,以便于对源极和漏极不同位置进行离子注入时,方便调整注入的角度。Since the fin is a raised three-dimensional structure, it is necessary to perform ion implantation on both sides of the source electrode and the drain electrode respectively. In the process of performing ion implantation, the clip between the ion implantation direction and the height direction of the fin portion When the angle is fixed, the angle between the projection of the ion implantation direction on the semiconductor substrate and the length direction of the fin is generally 45° or 90°, so that when ion implantation is performed on different positions of the source and drain, It is convenient to adjust the injection angle.
当所述夹角为45°时,由于相邻鳍部之间的距离较小,在进行口袋离子注入的过程中,相邻的鳍部会对注入的离子束有一定的遮挡作用,从而对离子注入产生阴影效应,导致上述口袋离子注入到达沟道区域附近的数量减少,无法有效改善源漏穿通问题;而当所述夹角为90°时,由于侧墙的阻挡,又很难使的注入离子进入沟道区域内,不能有效改善源漏穿通效应。When the included angle is 45°, since the distance between adjacent fins is relatively small, the adjacent fins will have a certain shielding effect on the implanted ion beam during pocket ion implantation, thus preventing the ion Implantation produces a shadow effect, resulting in a reduction in the number of pocket ions implanted near the channel region, which cannot effectively improve the source-drain penetration problem; and when the included angle is 90°, due to the obstruction of the sidewall, it is difficult to make the implantation Ions entering the channel region cannot effectively improve the source-drain punch-through effect.
本申请的实施例,在形成横跨鳍部的伪栅结构之后,进行口袋离子注入,所述口袋离子注入方向垂直于鳍部的长度方向,能够改善阴影效应。In the embodiment of the present application, after forming the dummy gate structure across the fin, pocket ion implantation is performed, and the pocket ion implantation direction is perpendicular to the length direction of the fin, which can improve the shadow effect.
本实施例中,所述口袋离子注入的方向与所述半导体衬底的法线之间的夹角为0°~20°,在本发明的其他实施例中,也可以根据所述鳍部的高度和相邻鳍部之间的间距,调整所述口袋离子注入与半导体衬底法线之间的夹角。In this embodiment, the angle between the direction of pocket ion implantation and the normal of the semiconductor substrate is 0°-20°. In other embodiments of the present invention, The height and the distance between adjacent fins adjust the angle between the pocket ion implantation and the normal of the semiconductor substrate.
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。In order to make the above objects, features and advantages of the present invention more comprehensible, specific embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings.
请参考图2,提供半导体衬底100,所述半导体衬底100表面形成有两个以上分立且平行排列的鳍部101;在所述半导体衬底100表面形成隔离层200,所述隔离层200表面低于鳍部101的顶部表面且覆盖鳍部101的部分侧壁;在所述隔离层200表面形成横跨一个或多个鳍部101的伪栅结构300,所述伪栅结构300覆盖所述鳍部101侧壁和顶部。Please refer to FIG. 2 , a semiconductor substrate 100 is provided, and more than two separate and parallel fins 101 are formed on the surface of the semiconductor substrate 100; an isolation layer 200 is formed on the surface of the semiconductor substrate 100, and the isolation layer 200 The surface is lower than the top surface of the fins 101 and covers part of the sidewalls of the fins 101; a dummy gate structure 300 is formed on the surface of the isolation layer 200 across one or more fins 101, and the dummy gate structure 300 covers all The sidewall and top of the fin portion 101.
所述半导体衬底100的材料包括硅、锗、锗化硅、砷化镓等半导体材料,所述半导体衬底100可以是体材料也可以是复合结构如绝缘体上硅。本领域的技术人员可以根据半导体衬底100上形成的半导体器件选择所述半导体衬底100的类型,因此所述半导体衬底100的类型不应限制本发明的保护范围。本实施例中,所述半导体衬底100的材料为单晶硅晶圆。The material of the semiconductor substrate 100 includes silicon, germanium, silicon germanium, gallium arsenide and other semiconductor materials, and the semiconductor substrate 100 may be a bulk material or a composite structure such as silicon-on-insulator. Those skilled in the art can select the type of the semiconductor substrate 100 according to the semiconductor devices formed on the semiconductor substrate 100 , so the type of the semiconductor substrate 100 should not limit the protection scope of the present invention. In this embodiment, the material of the semiconductor substrate 100 is a single crystal silicon wafer.
可以通过对半导体衬底100进行刻蚀在所述半导体衬底100上形成鳍部101,也可以在所述半导体衬底100上形成外延层之后,刻蚀所述外延层形成所述鳍部101。The fin portion 101 may be formed on the semiconductor substrate 100 by etching the semiconductor substrate 100, or the fin portion 101 may be formed by etching the epitaxial layer after forming the epitaxial layer on the semiconductor substrate 100. .
本实施例中,以在半导体衬底100上形成五个鳍部101作为示例,在本发明的其他实施例中,所述半导体衬底100上还可以形成有多个分立且平行排列的鳍部101。In this embodiment, five fins 101 are formed on the semiconductor substrate 100 as an example. In other embodiments of the present invention, multiple fins that are separated and arranged in parallel may also be formed on the semiconductor substrate 100. 101.
所述隔离层200的材料可以是氧化硅、氮化硅、碳氧化硅等绝缘介质材料,所述隔离层200作为相邻鳍部101之间的隔离结构,以及后续形成的栅极结构与半导体衬底100之间的隔离结构。The material of the isolation layer 200 can be an insulating dielectric material such as silicon oxide, silicon nitride, silicon oxycarbide, etc., and the isolation layer 200 serves as an isolation structure between adjacent fins 101, and the gate structure formed subsequently and the semiconductor The isolation structure between the substrates 100.
所述隔离层200的形成方法包括:在所述半导体衬底100上沉积隔离材料,所述隔离材料覆盖鳍部101,并且填充满相邻所述鳍部101之间的凹槽;以所述鳍部101顶部作为研磨停止层,采用化学机械研磨工艺对所述隔离材料进行平坦化处理,形成与鳍部101顶部表面齐平的隔离材料层;然后,对所述隔离材料层进行回刻蚀,使所述隔离材料层的表面高度下降,形成表面低于鳍部101顶部表面的隔离层200。The method for forming the isolation layer 200 includes: depositing an isolation material on the semiconductor substrate 100, the isolation material covers the fins 101, and fills the grooves between the adjacent fins 101; The top of the fin 101 is used as a grinding stop layer, and the isolation material is planarized by a chemical mechanical polishing process to form an isolation material layer flush with the top surface of the fin 101; then, the isolation material layer is etched back , reducing the surface height of the isolation material layer to form an isolation layer 200 whose surface is lower than the top surface of the fin portion 101 .
形成所述鳍部101之后,可以对所述鳍部101进行离子掺杂,例如阱掺杂,阈值调整掺杂等。After the fin portion 101 is formed, the fin portion 101 may be doped with ions, such as well doping, threshold adjustment doping, and the like.
所述伪栅结构300包括:伪栅介质层(图中未示出)和位于所述伪栅介质层表面的伪栅极。所述伪栅介质层的材料为氧化硅,所述伪栅极的材料为多晶硅,后续采用后栅工艺,形成金属栅极结构以取代所述伪栅结构300。The dummy gate structure 300 includes: a dummy gate dielectric layer (not shown in the figure) and a dummy gate located on the surface of the dummy gate dielectric layer. The material of the dummy gate dielectric layer is silicon oxide, and the material of the dummy gate is polysilicon. Subsequent gate-last process is adopted to form a metal gate structure to replace the dummy gate structure 300 .
所述伪栅结构还具有硬掩膜层,包括氮化硅层401和位于氮化硅层401表面的氧化硅层402。在形成所述伪栅结构300之前,可以对鳍部表面进行氧化处理,形成氧化层,作为伪栅介质层。The dummy gate structure also has a hard mask layer, including a silicon nitride layer 401 and a silicon oxide layer 402 on the surface of the silicon nitride layer 401 . Before forming the dummy gate structure 300, the surface of the fin may be oxidized to form an oxide layer as a dummy gate dielectric layer.
所述伪栅结构300的形成方法包括:在所述隔离层200表面形成伪栅介质材料层,所述伪栅介质材料层覆盖所述隔离层200和鳍部101,在所述伪栅介质材料层表面形成伪栅极材料层,然后在所述伪栅极材料层表面形成硬掩膜层,以所述硬掩膜层为掩膜,对所述伪栅极材料层和伪栅介质材料层进行图形化,形成横跨鳍部101的伪栅结构300。The method for forming the dummy gate structure 300 includes: forming a dummy gate dielectric material layer on the surface of the isolation layer 200, the dummy gate dielectric material layer covering the isolation layer 200 and the fin portion 101, and forming a dummy gate dielectric material layer on the surface of the dummy gate dielectric material A layer of dummy gate material is formed on the surface of the dummy gate material layer, and then a hard mask layer is formed on the surface of the dummy gate material layer. With the hard mask layer as a mask, the dummy gate material layer and the dummy gate dielectric material layer are Patterning is performed to form a dummy gate structure 300 across the fin portion 101 .
请参考图3,对所述鳍部101进行口袋离子注入,所述口袋离子注入方向垂直于鳍部101的长度方向,且与所述半导体衬底100的法线之间的夹角为0°~20°。Referring to FIG. 3 , pocket ion implantation is performed on the fin 101 , the pocket ion implantation direction is perpendicular to the length direction of the fin 101 , and the included angle with the normal of the semiconductor substrate 100 is 0°. ~20°.
所述伪栅结构300一侧的鳍部101为源极或漏极区域,所述口袋离子注入需要在晶体管的沟道区域与源极或漏极区域之间形成口袋掺杂区,且所述口袋离子注入的掺杂离子类型与待形成的鳍式场效应晶体管的类型相反,以提高晶体管的源漏极穿通电压。The fin 101 on one side of the dummy gate structure 300 is a source or drain region, the pocket ion implantation needs to form a pocket doped region between the channel region and the source or drain region of the transistor, and the The doping ion type of the pocket ion implantation is opposite to that of the fin field effect transistor to be formed, so as to increase the source-drain breakthrough voltage of the transistor.
所述口袋离子注入的方向与伪栅结构300平行,垂直与鳍部101,从而可以避免鳍部101长度方向上对注入离子的阻挡作用,而且,由于伪栅结构300侧壁没有形成侧墙结构,平行于伪栅结构300进行口袋离子注入,可以使形成的口袋掺杂区与伪栅结构300之间的距离很小,通过扩散即可以使的伪栅结构下方具有口袋掺杂区,与现有技术相比,可以减小所述口袋离子注入的剂量,从而降低形成的鳍式场效应晶体管的电阻。The pocket ion implantation direction is parallel to the dummy gate structure 300 and perpendicular to the fin 101, thereby avoiding the blocking effect on the implanted ions in the length direction of the fin 101, and, since the side wall of the dummy gate structure 300 does not form a sidewall structure , performing pocket ion implantation parallel to the dummy gate structure 300 can make the distance between the formed pocket doped region and the dummy gate structure 300 very small, and the pocket doped region can be made under the dummy gate structure by diffusion, which is different from the present Compared with the prior art, the dose of the pocket ion implantation can be reduced, thereby reducing the resistance of the formed fin field effect transistor.
所述口袋离子注入的离子能量为0KeV~60KeV,剂量为1E13atom/cm2~1E14atom/cm2。The ion energy of the pocket ion implantation is 0KeV-60KeV, and the dose is 1E13atom/cm 2 -1E14atom/cm 2 .
本实施例中,所述口袋离子注入分成两次进行,分别对鳍部101的两侧进行注入,这样可以减少单次注入的离子剂量,从而减少对鳍部101的单侧表面受到的注入损伤。In this embodiment, the pocket ion implantation is divided into two times, and the two sides of the fin portion 101 are respectively implanted, so that the ion dose of a single implantation can be reduced, thereby reducing the implantation damage to the surface of one side of the fin portion 101. .
在本发明的其他实施例中,也可以仅在鳍部101的一侧进行上述口袋离子注入。In other embodiments of the present invention, the aforementioned pocket ion implantation may also be performed only on one side of the fin portion 101 .
请参考图4,为形成口袋掺杂区102之后,沿垂直鳍部101方向的剖面示意图。Please refer to FIG. 4 , which is a schematic cross-sectional view along the direction vertical to the fin portion 101 after the pocket doped region 102 is formed.
本实施例中,通过调整所述口袋离子注入的离子能量,控制注入离子的深度,从而使得口袋掺杂区102位于鳍部101的沿宽度方向的中间位置,从而能起到最佳的防穿通效果。In this embodiment, by adjusting the ion energy of the pocket ion implantation, the depth of the implanted ions is controlled, so that the pocket doped region 102 is located in the middle of the fin portion 101 along the width direction, so as to achieve the best anti-puncture Effect.
在本发明的其他实施例中,所述口袋掺杂区102也可以是在其他位置。In other embodiments of the present invention, the pocket doped region 102 may also be located in other positions.
请参考图5,在所述伪栅结构300(请参考图4)侧壁形成侧墙500,然后对伪栅结构和侧墙200两侧的鳍部101进行轻掺杂离子注入。Referring to FIG. 5 , spacers 500 are formed on the sidewalls of the dummy gate structure 300 (please refer to FIG. 4 ), and then lightly doped ion implantation is performed on the dummy gate structure and the fins 101 on both sides of the sidewalls 200 .
本实施例中,所述侧墙500的形成方法包括:形成覆盖隔离层200、鳍部101、硬掩膜401、402的侧墙材料层。位于伪栅结构300侧壁表面的部分侧墙材料层作为侧墙500,本实施例中,保留了其他位置的侧墙材料层。In this embodiment, the method for forming the sidewall 500 includes: forming a sidewall material layer covering the isolation layer 200 , the fin portion 101 , and the hard mask 401 , 402 . Part of the sidewall material layer located on the sidewall surface of the dummy gate structure 300 is used as the sidewall 500 , and in this embodiment, the sidewall material layer at other positions is reserved.
在本发明的其他实施例中,还可以对所述侧墙材料层进行刻蚀,仅保留位于伪栅结构300侧壁上的侧墙材料层,作为侧墙500。In other embodiments of the present invention, the sidewall material layer may also be etched, and only the sidewall material layer on the sidewall of the dummy gate structure 300 remains as the sidewall 500 .
所述侧墙500的材料可以为氧化硅或氮化硅,本实施例中,所述侧墙500的材料为氮化硅。可以采用化学气相沉积工艺形成所述侧墙材料层。The material of the sidewall 500 may be silicon oxide or silicon nitride. In this embodiment, the material of the sidewall 500 is silicon nitride. The sidewall material layer may be formed by using a chemical vapor deposition process.
形成所述侧墙500之后,对所述伪栅结构500及其侧壁上的侧墙500两侧的鳍部进行轻掺杂离子注入,所述轻掺杂离子注入的离子类型与待形成的鳍式场效应晶体管的类型一致,用于改善晶体管的短沟道效应。After the spacer 500 is formed, the dummy gate structure 500 and the fins on both sides of the sidewall 500 on the dummy gate structure 500 and the fins on both sides of the sidewall 500 are implanted with lightly doped ions. The same type of fin field effect transistor is used to improve the short channel effect of the transistor.
通过调整所述侧墙500的厚度,可以限定形成的轻掺杂注入区与伪栅结构500下方的沟道区域之间的距离。By adjusting the thickness of the sidewall 500 , the distance between the formed lightly doped implanted region and the channel region under the dummy gate structure 500 can be limited.
请参考图6为进行所述轻掺杂离子注入,形成轻掺杂区103之后的沿鳍部长度方向的剖面示意图。Please refer to FIG. 6 , which is a schematic cross-sectional view along the length direction of the fin after performing the lightly doped ion implantation to form the lightly doped region 103 .
所述口袋掺杂区101位于轻掺杂区103与沟道区域之间能够防止源漏穿通问题。The pocket doped region 101 located between the lightly doped region 103 and the channel region can prevent the source-drain punchthrough problem.
在本发明的其他实施例中,在形成所述侧墙500之后,还可以根据实际情况,对鳍部101进行补充口袋离子注入。所述补充口袋离子注入在轻掺杂离子注入之前进行,也可以在轻掺杂离子注入之后进行。In other embodiments of the present invention, after the sidewall 500 is formed, supplementary pocket ion implantation may be performed on the fin 101 according to actual conditions. The supplementary pocket ion implantation is performed before the lightly doped ion implantation, or after the lightly doped ion implantation.
由于所述轻掺杂离子注入的离子类型与口袋掺杂区102内的掺杂离子类型相反,在扩散作用下,会导致口袋掺杂区102内的带电离子浓度下降,从而进行补充口袋离子注入可以弥补带电离子浓度的下降,加强所述口袋掺杂区的防源漏穿通效果。Since the ion type of the lightly doped ion implantation is opposite to the dopant ion type in the pocket doped region 102, under the action of diffusion, the concentration of charged ions in the pocket doped region 102 will decrease, thereby performing supplementary pocket ion implantation It can make up for the decrease of the concentration of charged ions, and strengthen the effect of preventing source-drain punch-through of the pocket doping region.
所述补充口袋离子注入的方向在衬底表面的投影与鳍部的长度方向之间的夹角小于90°,以确保所述补充口袋离子注入的离子能够进入轻掺杂区103与伪栅结构300下方的沟道区域之间。The angle between the projection of the supplementary pocket ion implantation direction on the substrate surface and the length direction of the fin is less than 90°, so as to ensure that the ions implanted in the supplementary pocket ion implantation can enter the lightly doped region 103 and the dummy gate structure 300 between the channel regions below.
本实施例中,所述鳍式场效应晶体管的形成方法还包括:刻蚀伪栅结构300两侧的鳍部101,形成凹槽,在所述凹槽101内外延形成应力层,作为源极和漏极。In this embodiment, the method for forming the FinFET further includes: etching the fins 101 on both sides of the dummy gate structure 300 to form a groove, and epitaxially forming a stress layer in the groove 101 as a source and drain.
所述应力层的材料可以为SiGe、SiC或SiP等,若所述待形成的鳍式场效应晶体管为P型场效应晶体管,则所述应力层的材料可以为SiGe,若所述待形成的鳍式场效应晶体管为N型鳍式场效应晶体管,则所述应力层的材料为SiP。The material of the stress layer can be SiGe, SiC or SiP, etc., if the fin field effect transistor to be formed is a P-type field effect transistor, the material of the stress layer can be SiGe, if the fin field effect transistor to be formed The fin field effect transistor is an N-type fin field effect transistor, and the material of the stress layer is SiP.
在外延形成应力层的过程中,可以采用原位掺杂工艺,对所述应力层进形N型或P型离子掺杂,或对形成的应力层进行中掺杂离子注入,使所述应力层为N型或P型掺杂。In the process of epitaxially forming the stress layer, an in-situ doping process can be used to carry out N-type or P-type ion doping to the stress layer, or perform intermediate doping ion implantation to the formed stress layer, so that the stress Layers are either N-type or P-type doped.
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。Although the present invention is disclosed above, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention, so the protection scope of the present invention should be based on the scope defined in the claims.
Claims (18)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610217390.7A CN107275216A (en) | 2016-04-08 | 2016-04-08 | The forming method of fin formula field effect transistor |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610217390.7A CN107275216A (en) | 2016-04-08 | 2016-04-08 | The forming method of fin formula field effect transistor |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN107275216A true CN107275216A (en) | 2017-10-20 |
Family
ID=60052451
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201610217390.7A Pending CN107275216A (en) | 2016-04-08 | 2016-04-08 | The forming method of fin formula field effect transistor |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN107275216A (en) |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040219724A1 (en) * | 2003-02-19 | 2004-11-04 | Park Chang-Hyun | Methods of fabricating MOS field effect transistors with pocket regions |
| KR20060038129A (en) * | 2004-10-29 | 2006-05-03 | 한국과학기술원 | 2 bit nonvolatile memory device fabrication method using double gate structure with asymmetric work function and its structure |
| CN102074475A (en) * | 2009-11-20 | 2011-05-25 | 中芯国际集成电路制造(上海)有限公司 | Metal-oxide semiconductor (MOS) device and forming method thereof |
| US20110238391A1 (en) * | 2010-03-26 | 2011-09-29 | Fujitsu Limited | Ion implantation distribution generation method and simulator |
| CN103715258A (en) * | 2012-09-28 | 2014-04-09 | 台湾积体电路制造股份有限公司 | Source/drain stack stressor for semiconductor device |
| CN103839822A (en) * | 2012-11-27 | 2014-06-04 | 中芯国际集成电路制造(上海)有限公司 | Fin type field effect transistor and forming method thereof |
| CN104124171A (en) * | 2013-04-28 | 2014-10-29 | 中芯国际集成电路制造(上海)有限公司 | P-type fin-type field effect transistor and forming method thereof |
| CN105225958A (en) * | 2014-06-30 | 2016-01-06 | 中芯国际集成电路制造(上海)有限公司 | The formation method of fin formula field effect transistor |
-
2016
- 2016-04-08 CN CN201610217390.7A patent/CN107275216A/en active Pending
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040219724A1 (en) * | 2003-02-19 | 2004-11-04 | Park Chang-Hyun | Methods of fabricating MOS field effect transistors with pocket regions |
| KR20060038129A (en) * | 2004-10-29 | 2006-05-03 | 한국과학기술원 | 2 bit nonvolatile memory device fabrication method using double gate structure with asymmetric work function and its structure |
| CN102074475A (en) * | 2009-11-20 | 2011-05-25 | 中芯国际集成电路制造(上海)有限公司 | Metal-oxide semiconductor (MOS) device and forming method thereof |
| US20110238391A1 (en) * | 2010-03-26 | 2011-09-29 | Fujitsu Limited | Ion implantation distribution generation method and simulator |
| CN103715258A (en) * | 2012-09-28 | 2014-04-09 | 台湾积体电路制造股份有限公司 | Source/drain stack stressor for semiconductor device |
| CN103839822A (en) * | 2012-11-27 | 2014-06-04 | 中芯国际集成电路制造(上海)有限公司 | Fin type field effect transistor and forming method thereof |
| CN104124171A (en) * | 2013-04-28 | 2014-10-29 | 中芯国际集成电路制造(上海)有限公司 | P-type fin-type field effect transistor and forming method thereof |
| CN105225958A (en) * | 2014-06-30 | 2016-01-06 | 中芯国际集成电路制造(上海)有限公司 | The formation method of fin formula field effect transistor |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11114551B2 (en) | Fin field-effect transistor having counter-doped regions between lightly doped regions and doped source/drain regions | |
| US9263549B2 (en) | Fin-FET transistor with punchthrough barrier and leakage protection regions | |
| CN107785261A (en) | Semiconductor structure and its manufacture method | |
| CN105702582A (en) | Formation method of transistor | |
| CN103928327A (en) | Fin field effect transistor and forming method thereof | |
| CN103426768B (en) | Semiconductor device manufacturing method | |
| US20160190236A1 (en) | Finfet and method of manufacturing the same | |
| CN103426769A (en) | Semiconductor device manufacturing method | |
| CN102214684A (en) | Semiconductor structure with suspended sources and drains as well as formation method thereof | |
| CN107919324A (en) | The forming method of semiconductor devices | |
| CN110047908B (en) | Semiconductor device and manufacturing method thereof | |
| CN110047754A (en) | Semiconductor devices and its manufacturing method | |
| US9263585B2 (en) | Methods of forming enhanced mobility channel regions on 3D semiconductor devices, and devices comprising same | |
| CN105448916A (en) | Transistor and method of forming same | |
| CN108630542B (en) | Semiconductor structure and forming method thereof | |
| CN103022039B (en) | Sram unit and manufacturing method thereof | |
| CN104916540B (en) | A kind of strained channel transistor and preparation method thereof | |
| CN108666221B (en) | Semiconductor structure and method of forming the same | |
| CN105225958B (en) | The forming method of fin formula field effect transistor | |
| CN103515205B (en) | A kind of FinFET channel doping process | |
| CN111627814B (en) | Semiconductor structure and forming method thereof | |
| CN109087859A (en) | A kind of manufacturing method of semiconductor devices | |
| US11038063B2 (en) | Semiconductor structure and fabrication method thereof | |
| CN108695253A (en) | Semiconductor structure and forming method thereof | |
| CN104103688B (en) | FIN-FET transistor with punch through barrier and leak protection area |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication | ||
| RJ01 | Rejection of invention patent application after publication |
Application publication date: 20171020 |