CN107315230A - Metallized optical fibre - Google Patents
Metallized optical fibre Download PDFInfo
- Publication number
- CN107315230A CN107315230A CN201710318312.0A CN201710318312A CN107315230A CN 107315230 A CN107315230 A CN 107315230A CN 201710318312 A CN201710318312 A CN 201710318312A CN 107315230 A CN107315230 A CN 107315230A
- Authority
- CN
- China
- Prior art keywords
- optical fiber
- metal
- fiber
- cable
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 86
- 229910052751 metal Inorganic materials 0.000 claims abstract description 65
- 239000002184 metal Substances 0.000 claims abstract description 65
- 239000000835 fiber Substances 0.000 claims abstract description 48
- 238000000034 method Methods 0.000 claims description 17
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 12
- 238000000576 coating method Methods 0.000 claims description 12
- 229910052802 copper Inorganic materials 0.000 claims description 12
- 239000010949 copper Substances 0.000 claims description 12
- 239000011248 coating agent Substances 0.000 claims description 11
- 238000005253 cladding Methods 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 4
- 229910000510 noble metal Inorganic materials 0.000 claims description 3
- 239000004020 conductor Substances 0.000 abstract description 19
- 230000001902 propagating effect Effects 0.000 abstract 1
- 230000001681 protective effect Effects 0.000 description 7
- 239000000203 mixture Substances 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 5
- 238000009713 electroplating Methods 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 230000002452 interceptive effect Effects 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- -1 platinum group metals Chemical class 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/44—Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/44—Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
- G02B6/4401—Optical cables
- G02B6/4402—Optical cables with one single optical waveguide
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/44—Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
- G02B6/4401—Optical cables
- G02B6/4415—Cables for special applications
- G02B6/4416—Heterogeneous cables
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/44—Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
- G02B6/4401—Optical cables
- G02B6/4429—Means specially adapted for strengthening or protecting the cables
- G02B6/443—Protective covering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B11/00—Communication cables or conductors
- H01B11/18—Coaxial cables; Analogous cables having more than one inner conductor within a common outer conductor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B11/00—Communication cables or conductors
- H01B11/22—Cables including at least one electrical conductor together with optical fibres
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Communication Cables (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Insulated Conductors (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
Abstract
金属化光纤,其包含:A)光纤,和B)导电金属,所述导电金属围绕光纤并且与光纤接触,所述导电金属的厚度为光纤厚度的至少0.15倍。金属化光纤可形成混合光纤/共轴缆线部件,提供良好的保护以使沿光纤传播的数据信号免受来自邻近或附近导电体的电流的干扰。
A metallized optical fiber comprising: A) an optical fiber, and B) a conductive metal surrounding and in contact with the optical fiber, the conductive metal having a thickness of at least 0.15 times the thickness of the optical fiber. Metallized optical fibers can form hybrid fiber/coaxial cable components that provide good protection for data signals propagating along the fiber from electrical currents from adjacent or nearby electrical conductors.
Description
本发明申请是基于申请日为2013年9月5日,申请号为201380061311.2(国际申请号为PCT/US2013/058182),发明名称为“金属化光纤”的专利申请的分案申请。The application of the present invention is based on the divisional application of the patent application with the filing date of September 5, 2013, the application number of 201380061311.2 (the international application number is PCT/US2013/058182), and the title of the invention is "metallized optical fiber".
技术领域technical field
本发明涉及光纤。一方面,本发明涉及包含金属化条或涂层的光纤,而另一方面,本发明涉及作为混合光纤/共轴缆线一部件的金属化光纤。The present invention relates to optical fibers. In one aspect, the present invention relates to optical fibers comprising metallized strips or coatings, and in another aspect, the present invention relates to metallized optical fibers as part of a hybrid optical fiber/coaxial cable.
背景技术Background technique
自20世纪90年代初,组合光纤和共轴缆线的混合光纤/共轴缆线已被有线电视运营商全球性普遍使用。有需要电力和数据传输二者的许多应用。例如,在智能住宅中,存在用于照明、温度控制、多媒体、安全设备、窗与门操作和许多其它功能的高级自动化系统。该智能功能通过将编码信号借助于家里布线发送到开关和插座实现,所述开关和插座程序化以操作在住宅每一部分的电器和电子设备。信号发送包括电力和数据信号二者。Hybrid fiber/coax cables that combine fiber optic and coaxial cables have been commonly used by cable television operators worldwide since the early 1990s. There are many applications that require both power and data transmission. For example, in a smart home, there are advanced automation systems for lighting, temperature control, multimedia, security equipment, window and door operation, and many other functions. This smart function is accomplished by sending coded signals through the home wiring to switches and outlets that are programmed to operate electrical and electronic devices in every part of the home. Signaling includes both power and data signals.
另一实例为塔顶无线基站(TTR)手机信号塔。将TTR经由小直径缆线与常见设备连接,所述小直径缆线包含输送数字信号的玻璃或塑料纤维和供应电力的一对铜线。在需要电力和数据传输二者的应用中,需要混合缆线。然而,许多消费者应用需要尺寸小和重量更轻的布线或缆线,这使得混合缆线的电力和数据承载部件总是较紧密地在一起。这反过来可导致电力信号干扰数据信号的问题,或反之亦然。因此,存在混合缆线的需要,所述混合缆线可包含彼此接近的电力和数据导线但不彼此干扰的功能。Another example is a tower top radio (TTR) cell phone tower. The TTR is connected to common equipment via a small diameter cable consisting of glass or plastic fibers carrying digital signals and a pair of copper wires supplying power. In applications requiring both power and data transmission, hybrid cables are required. However, many consumer applications require wiring or cables that are smaller in size and lighter in weight, so that the power and data carrying components of hybrid cables are always brought closer together. This in turn can lead to problems with power signals interfering with data signals, or vice versa. Therefore, there is a need for a hybrid cable that can contain power and data conductors that are close to each other without interfering with each other's functionality.
发明内容Contents of the invention
在一个实施方式中,本发明为金属化光纤,其包含:In one embodiment, the invention is a metallized optical fiber comprising:
A)光纤,和A) optical fiber, and
B)导电金属,导电金属围绕光纤并且与光纤接触,导电金属的厚度为光纤厚度的至少0.15倍。B) Conductive metal surrounding and in contact with the optical fiber, the thickness of the conductive metal being at least 0.15 times the thickness of the optical fiber.
在一个实施方式中,本发明为混合光纤/共轴缆线,其包含:In one embodiment, the invention is a hybrid fiber optic/coaxial cable comprising:
A)共轴缆线,和A) coaxial cable, and
B)金属化光纤,其包含:B) Metallized optical fiber comprising:
1)光纤;和1) optical fiber; and
2)导电金属,导电金属围绕光纤并且与光纤接触,导电金属的厚度2) Conductive metal, the conductive metal surrounds the optical fiber and is in contact with the optical fiber, the thickness of the conductive metal
为光纤厚度的至少0.15倍。At least 0.15 times the thickness of the optical fiber.
在一个实施方式中,本发明为金属化光纤或混合光纤/共轴缆线,二者如上所述与电源连接。In one embodiment, the invention is a metallized fiber optic or hybrid fiber/coaxial cable, both of which are connected to a power source as described above.
在一个实施方式中,本发明为通过金属化光纤传输数据信号的方法,所述方法包括通过金属化光纤传输数据信号的步骤,金属化光纤包含光纤以及围绕光纤并且与光纤接触的金属涂层,金属涂层的厚度大于数据信号的波长。In one embodiment, the invention is a method of transmitting a data signal through a metallized optical fiber, said method comprising the step of transmitting a data signal through a metallized optical fiber comprising the optical fiber and a metal coating surrounding and in contact with the optical fiber, The thickness of the metal coating is greater than the wavelength of the data signal.
附图说明Description of drawings
图1为金属化光纤的示意图。Figure 1 is a schematic diagram of a metallized optical fiber.
图2为现有技术混合光纤/共轴缆线的示意图。FIG. 2 is a schematic diagram of a prior art hybrid fiber/coaxial cable.
图3为本发明混合光纤/共轴缆线的一个实施方式的示意图。Figure 3 is a schematic diagram of one embodiment of the hybrid fiber/coaxial cable of the present invention.
具体实施方式detailed description
定义definition
除非相反指出,否则从上下文暗示或现有技术惯例,所有的份和百分比均基于重量。针对美国专利实践的目的,任何涉及的专利、专利申请或公开的内容在此全部引入作为参考(或其等价的US同族也引入作为参考),特别是关于本领域中的合成技术、定义(不与本申请具体提供的任何定义不一致)和常识的披露。Unless stated to the contrary, implicit from the context, or customary in the art, all parts and percentages are by weight. For purposes of U.S. patent practice, the contents of any referenced patent, patent application, or publication are hereby incorporated by reference in their entirety (or their equivalent U.S. equivalents), particularly with respect to synthetic techniques, definitions ( not inconsistent with any definition specifically provided in this application) and common sense disclosure.
本申请中的数字范围是近似值,因此除非另有所指,否则其可以包括该范围以外的值。数值范围包括以1个单位增加的从较低值到较高值的所有数值,条件是在任意较低值与任意较高值之间存在至少2个单位的间隔。例如,如果组成、物理或其它性质,如分子量、粘度、熔融指数等是100至1,000,意指明确地列举了所有的单个数值,如100、101、102等,以及所有的子范围,如100至144、155至170、197至200等。对于包含小于1的数值或者包含大于1的分数(例如1.1、1.5等)的范围,适当时将1个单位看作0.0001、0.001、0.01或0.1。对于包含小于10(例如1至5)的个位数的范围,通常将1个单位看作0.1。这些仅仅是具体所意指的内容的示例,并且所列举的最低值与最高值之间的数值的所有可能组合都被认为清楚记载在本申请中。本申请内的数字范围尤其提供了金属涂层围绕光纤缆线的厚度。Numerical ranges in this application are approximations and therefore may include values outside the range unless otherwise indicated. Numerical ranges include all values from the lower value to the upper value, in increments of 1 unit, provided that there is a separation of at least 2 units between any lower value and any higher value. For example, if compositional, physical or other properties, such as molecular weight, viscosity, melt index, etc., are from 100 to 1,000, it is meant that all individual values are explicitly recited, such as 100, 101, 102, etc., and all subranges, such as 100 to 144, 155 to 170, 197 to 200, etc. For ranges containing numbers which are less than one or containing fractional numbers greater than one (eg 1.1, 1.5 etc.), 1 unit is considered to be 0.0001, 0.001, 0.01 or 0.1 as appropriate. For ranges containing single digit numbers less than ten (eg, 1 to 5), 1 unit is typically considered to be 0.1. These are merely examples of what is specifically intended and all possible combinations of values between the lowest and highest values enumerated are considered to be expressly recited in this application. The numerical ranges within this application provide, inter alia, the thickness of the metal coating around the fiber optic cable.
“包含”、“包括”、“具有”和它们的派生词,并不意指排除存在任何另外的部件、步骤或程序,无论是否具体公开相同内容。为了消除任何怀疑,使用术语“包含”要求保护的所有组合物可以包括任何另外的添加剂、辅料或混配物,无论是聚合物还是其它物质,除非相反指出。相比之下,术语“基本由......组成”从任何随后记述的范围内排除任何其它部件、步骤或程序,除去了对操作不必要的那些部件、步骤或程序。术语“由……组成”排除没有具体叙述或列举的任何部件、步骤或程序。"Comprising", "comprising", "having" and their derivatives are not intended to exclude the presence of any additional elements, steps or procedures, regardless of whether the same content is specifically disclosed. In order to remove any doubt, using the term "comprising" all compositions claimed may include any additional additive, adjuvant or compound, whether polymeric or otherwise, unless stated to the contrary. In contrast, the term "consisting essentially of" excludes from the scope of any subsequent recitation any other parts, steps or procedures, except those parts, steps or procedures that are not necessary for the operation. The term "consisting of" excludes any component, step or procedure not specifically recited or enumerated.
“缆线”、“电缆”等术语意指保护性夹套或护套内的至少一根线材或光纤。典型地,缆线为两根或更多根捆缚在一起的线材或光纤,其典型地在同一保护性夹套或护套中。夹套内部的单根线材或纤维可以是裸露的、包覆的或绝缘的。混合缆线或组合缆线可以包含电线和光纤二者。可设计缆线等用于低压、中压和高压应用。典型的缆线设计描述于USP 5,246,783、6,496,629和6,714,707中。"Cable", "cable" and like terms mean at least one wire or optical fiber within a protective jacket or sheath. Typically, a cable is two or more wires or optical fibers bundled together, typically in the same protective jacket or sheath. The individual wires or fibers inside the jacket can be bare, sheathed or insulated. Hybrid or combination cables may contain both electrical wires and optical fibers. Cables and more can be designed for low, medium and high voltage applications. Typical cable designs are described in USP 5,246,783, 6,496,629 and 6,714,707.
“光纤”等术语意指由芯和包覆层组成的纤维,其选择用于由于二者间的折射率差引起的全内反射。包覆层通常涂布有丙烯酸酯聚合物或聚酰亚胺层。该涂层保护纤维免受破坏但不有助于它的光的波长性质。"Optical fiber" and like terms mean a fiber consisting of a core and cladding selected for total internal reflection due to the difference in refractive index between the two. The cladding is typically coated with an acrylate polymer or polyimide layer. The coating protects the fiber from damage but does not contribute to its light wavelength properties.
“共轴缆线”、“同轴缆线”等术语意指缆线,其包含通过挠性、管状绝缘层围绕,通过管状导电屏蔽围绕的内部导体。术语“同轴”是指内部导体和外部屏蔽共有一条几何轴线。The terms "coaxial cable", "coaxial cable" and like terms mean a cable comprising an inner conductor surrounded by a flexible, tubular insulation, surrounded by a tubular conductive shield. The term "coaxial" means that the inner conductor and outer shield share a geometric axis.
金属化光纤metallized optical fiber
在一个实施方式中,本发明为金属化光纤。一种设计示于图1中。金属化光纤10包含光纤11和金属条12。光纤11具有一般的圆柱体构造,尽管它的构造可根据需要变化。芯的组成(例如,玻璃或塑料;未示出)以及包覆层(一层或多层)的层数、厚度和组成(例如,丙烯酸酯、酰亚胺等;未示出)也可根据需要变化。关于光纤组成和结构的这些和其它考虑因素,以及它们的构造方法在本领域中是公知的。In one embodiment, the invention is a metallized optical fiber. One design is shown in Figure 1. Metallized optical fiber 10 includes optical fiber 11 and metal strip 12 . Optical fiber 11 has a generally cylindrical configuration, although its configuration can vary as desired. The composition of the core (e.g., glass or plastic; not shown) and the number, thickness, and composition of the cladding layer(s) (e.g., acrylate, imide, etc.; not shown) can also be determined according to Change is needed. These and other considerations regarding optical fiber composition and construction, and methods of their construction, are well known in the art.
金属条11与光纤10接触。金属条11可包含任何导电金属,例如铜、铝、铂系元素的金属(铂、钯等)、贵金属(例如金、银)等,金属条11的尺寸、构造和厚度可变化。铜为优选的用于本发明的金属。在一个实施方式中,金属条完全、或几乎完全(例如,小于100%但大于90%、或大于95%、或大于99%)包覆光纤的整个表面。在一个实施方式中,金属条包覆得小于光纤的整个表面,在这种实施方式中,金属条包覆至少89%、优选至少50%、更优选至少20%和甚至更优选至少10%的光纤表面。如果金属条包覆得小于光纤的整个表面积,则金属条的构造可根据需要变化,例如直线、Z字形、蛇形、螺旋形等,金属条沿光纤纵轴延伸。The metal strip 11 is in contact with the optical fiber 10 . The metal strip 11 may comprise any conductive metal, such as copper, aluminum, platinum group metals (platinum, palladium, etc.), noble metals (eg, gold, silver), etc., and the size, configuration, and thickness of the metal strip 11 may vary. Copper is the preferred metal for use in the present invention. In one embodiment, the metal strip completely, or nearly completely (eg, less than 100% but greater than 90%, or greater than 95%, or greater than 99%) covers the entire surface of the optical fiber. In one embodiment, the metal strip covers less than the entire surface of the fiber, in such an embodiment the metal strip covers at least 89%, preferably at least 50%, more preferably at least 20% and even more preferably at least 10% of the fiber surface. If the metal strip covers less than the entire surface area of the optical fiber, the configuration of the metal strip can be changed according to needs, such as straight line, zigzag, serpentine, spiral, etc., and the metal strip extends along the longitudinal axis of the optical fiber.
金属条的厚度大于所传输的信号频率。对于设计为承载60赫兹(Hz)频率信号的光纤,金属(例如,铜)厚度为典型地约8.5毫米(mm)。只要金属条的厚度大于由光纤承载的信号频率,那么所传输的信号与通过具有相同表面积的金属棒传输的信号相同。由于金属的厚度,电力信号将在金属条皮上传送,而电力信号不通过光纤本身,因此电力信号将不干扰、或仅以标称水平干扰由光纤承载的数据信号。对于任何给定信号频率的金属厚度计算在本领域中是已知的,如在以下文献中示例的:Electrical Losses in Coaxial Cable byEaton and Kmiec,International Wire&Cable Symposium,Proceedings of the 57thIWCS,pp.515-520(Nov 2008)。The thickness of the metal strip is greater than the transmitted signal frequency. For an optical fiber designed to carry 60 hertz (Hz) frequency signals, the metal (eg, copper) thickness is typically about 8.5 millimeters (mm). As long as the thickness of the metal strip is greater than the frequency of the signal carried by the fiber, the transmitted signal is the same as through a metal rod with the same surface area. Due to the thickness of the metal, the power signal will travel on the metal strip without passing through the fiber itself, so the power signal will not interfere, or only at a nominal level, with the data signal carried by the fiber. Metal thickness calculations for any given signal frequency are known in the art, as exemplified in: Electrical Losses in Coaxial Cable by Eaton and Kmiec, International Wire & Cable Symposium , Proceedings of the 57 th IWCS, pp.515 -520 (Nov 2008).
导体的皮层效应是电流本身分布在导体内使得密度导体表面附近的电流密度大于导体的芯处的电流密度的趋势。皮深度δ与频率的平方成反比:The skin effect of a conductor is the tendency of the current itself to distribute within the conductor such that the density of the current near the surface of the conductor is greater than the current density at the core of the conductor. The skin depth δ is inversely proportional to the square of the frequency:
δ(m)=sqrt((2*ρ)/*ω*μ))δ(m)=sqrt((2*ρ)/*ω*μ))
其中ρ为导体的电阻率,ω为电流的角频率=2π,和μ为导体的绝对磁导率。对于铜导体,该方程归纳如下:where ρ is the resistivity of the conductor, ω is the angular frequency of the current = 2π, and μ is the absolute permeability of the conductor. For copper conductors, the equation is summarized as follows:
δ(m)=0.06/sqrt(频率(Hz)).δ(m)=0.06/sqrt(frequency(Hz)).
在60Hz,皮深度为8.5mm;在1MHz,皮深度为66μm;和在1GHz,皮深度为2.08μm。At 60 Hz, the skin depth was 8.5 mm; at 1 MHz, the skin depth was 66 μm; and at 1 GHz, the skin depth was 2.08 μm.
在本发明的一个实施方式中,光纤上的金属厚度为光纤的尺寸例如厚度或直径的函数。典型地,金属厚度为光纤厚度或直径的至少0.15倍、更典型地至少1倍和甚至更典型地至少2倍。因此,如果光纤的厚度或直径为1mm,那么与光纤接触的金属的厚度为至少0.15mm、优选至少1mm和甚至更优选至少2mm。In one embodiment of the invention, the thickness of the metal on the fiber is a function of the dimension of the fiber, eg thickness or diameter. Typically, the metal thickness is at least 0.15, more typically at least 1, and even more typically at least 2 times the thickness or diameter of the optical fiber. Thus, if the fiber has a thickness or diameter of 1 mm, the thickness of the metal in contact with the fiber is at least 0.15 mm, preferably at least 1 mm and even more preferably at least 2 mm.
金属可以任何方便的方式施用于光纤,例如通过电镀、电解镀、使用粘合剂(参见,例如2011年12月20日提交的USSN 61/577918)等。这些方法在本领域中是已知的,可彼此组合使用,例如,将薄的(例如1-100微米)初始层施用于光纤表面,随后在初始层顶部电镀一层或多层从而构成总厚度为1,000微米,1,500微米或更大。尽管电镀和电解镀非常适合于涂布光纤的整个表面,但通过利用各种已知的掩蔽和漂洗技术,这些技术也用于涂布得小于光纤的整个表面。如果使用粘合剂,则其典型地具有良好的介电性质并且显示良好的对于金属和光纤最外包覆层的组成(例如丙烯酸类)的粘合强度。混合光纤/共轴缆线The metal can be applied to the optical fiber in any convenient manner, such as by electroplating, electrolytic plating, use of adhesives (see, eg, USSN 61/577918 filed December 20, 2011), and the like. These methods are known in the art and can be used in combination with each other, for example, applying a thin (e.g., 1-100 micron) initial layer to the fiber surface, followed by electroplating one or more layers on top of the initial layer to make up the total thickness 1,000 microns, 1,500 microns or larger. While electroplating and electrolytic plating are well suited for coating the entire surface of an optical fiber, these techniques are also used to coat less than the entire surface of an optical fiber by utilizing various known masking and rinsing techniques. If an adhesive is used, it typically has good dielectric properties and exhibits good bond strength to the metal and the composition of the optical fiber's outermost cladding (eg, acrylic). Hybrid Fiber/Coax
混合缆线包括但不限于,光纤缆线、共轴缆线和导电体,例如铜。这些混合缆线承载数据和电力。在本发明的混合缆线中,导电体例如铜可替换为涂布有承载电流的金属条的光纤。与共轴缆线相比,光纤缆线可承载更多数据(较高的带宽),而噪音低和易受干扰性较低。Hybrid cables include, but are not limited to, fiber optic cables, coaxial cables, and electrical conductors such as copper. These hybrid cables carry both data and power. In the hybrid cable of the present invention, electrical conductors such as copper may be replaced by optical fibers coated with current-carrying metal strips. Fiber optic cables can carry more data (higher bandwidth) with less noise and less susceptibility to interference than coaxial cables.
在一个实施方式中,本发明为混合光纤/共轴缆线。图2说明混合光纤共轴缆线现有技术设计的一个实施方式。混合光纤/共轴缆线20包含中心芯强度构件21,其设计为赋予混合缆线以承载强度。混合缆线的该构件典型地由金属或高强度塑料制成,该构件不承载电力或信息。导电体22、23和25典型地由铜或铝制成,承载电力即电流。这些导体典型地嵌入一个或多个半导体和/或绝缘护套(未示出)中。缆线24为共轴缆线。In one embodiment, the invention is a hybrid fiber/coaxial cable. Figure 2 illustrates one embodiment of a prior art design for a hybrid fiber coaxial cable. Hybrid fiber/coaxial cable 20 includes a central core strength member 21 designed to impart load bearing strength to the hybrid cable. This member of the hybrid cable is typically made of metal or high strength plastic, the member does not carry power or information. Electrical conductors 22, 23 and 25, typically made of copper or aluminum, carry electricity, ie current. These conductors are typically embedded in one or more semiconductor and/or insulating sheaths (not shown). Cable 24 is a coaxial cable.
光纤缆线26包含四根嵌入保护性夹套的光纤。每根光纤本身可嵌入一个或多个保护性护套中,四根光纤之间的空间可填充有基质填料,基质填料提供保护和介电绝缘二者。Fiber optic cable 26 contains four optical fibers embedded in a protective jacket. Each fiber may itself be embedded in one or more protective sheaths, and the space between the four fibers may be filled with a matrix filler that provides both protection and dielectric insulation.
将混合缆线的强度构件和各种导体嵌入填料基质27中,填料基质27提供免受物理性损伤的保护和介电绝缘二者。然后,将该基质嵌入半导体绝缘护套28内,转而将半导体绝缘护套28嵌入外部的保护性夹套29内。基质填料、半导体护套和保护性夹套的各种组成和制造基质填料、半导体护套和保护性夹套的各种方法在本领域中都是公知的。The strength members and various conductors of the hybrid cable are embedded in a filler matrix 27 which provides both protection from physical damage and dielectric insulation. This matrix is then embedded within a semiconductive insulating sheath 28 which in turn is embedded within an outer protective jacket 29 . Various compositions of matrix packings, semiconducting jackets and protective jackets and various methods of making matrix packings, semiconducting jackets and protective jackets are well known in the art.
本发明混合缆线的一个实施方式描述于图3中。混合缆线30的设计类似于混合缆线20,不同之处在于混合缆线30不包含单股的(stand-alone)导电体22、23和25。相反,光纤缆线26替换为光纤缆线36,在光纤缆线36中将四根光纤金属化,即,它们包含金属涂层,其中的一个实施方式描述于图1中。该金属条或涂层执行图2中所述现有技术混合缆线的一个或多个导电体的功能。One embodiment of the hybrid cable of the present invention is depicted in FIG. 3 . Hybrid cable 30 is similar in design to hybrid cable 20 except that hybrid cable 30 does not contain stand-alone electrical conductors 22 , 23 and 25 . Instead, the fiber optic cable 26 is replaced by a fiber optic cable 36 in which the four optical fibers are metallized, ie they contain a metal coating, one embodiment of which is depicted in FIG. 1 . This metal strip or coating performs the function of one or more electrical conductors of the prior art hybrid cable described in FIG. 2 .
将本发明的混合缆线以与已知混合缆线相同的方式使用。将缆线与电源,一个或多个数据传输源,例如计算机、传感器连接,最后与终端装置,例如计算机、家用电器、工业或娱乐设备等连接。适当厚度的连接到光纤的金属使得由邻近或附近导电体接收(或来自任何其它源)的任何电流传输能够沿纤维传输到终端装置而不干扰纤维的数据传输。The hybrid cable of the present invention is used in the same manner as known hybrid cables. Connect the cable to a power source, one or more data transmission sources such as computers, sensors, and finally to end devices such as computers, household appliances, industrial or entertainment equipment, etc. A suitable thickness of metal connected to the optical fiber enables any current transmission received by adjacent or nearby electrical conductors (or from any other source) to be transmitted along the fiber to the terminal device without interfering with the fiber's data transmission.
本发明包括如下方案:The present invention includes following scheme:
方案1.金属化光纤,其包含:Option 1. Metallized optical fiber comprising:
A)光纤,和A) optical fiber, and
B)金属,所述金属围绕所述光纤并且与所述光纤接触,所述金属的厚度为所述光纤厚度的至少0.15倍。B) a metal surrounding and in contact with the optical fiber, the metal having a thickness of at least 0.15 times the thickness of the optical fiber.
方案2.方案1的光纤,其中所述金属包含以下物质的至少一种:铜,铝,铂系元素的金属,或贵金属族的金属。Aspect 2. The optical fiber of Aspect 1, wherein the metal comprises at least one of the following: copper, aluminum, a metal of the platinum group, or a metal of the noble metal group.
方案3.方案1或2的光纤,其中所述金属包覆所述光纤的整个表面。Aspect 3. The optical fiber of Aspect 1 or 2, wherein the metal coats the entire surface of the optical fiber.
方案4.方案1或2的光纤,其中所述金属包覆得小于所述光纤的整个表面。Aspect 4. The optical fiber of Aspect 1 or 2, wherein the metal is clad to less than the entire surface of the optical fiber.
方案5.方案4的光纤,其中所述金属为沿所述纤维纵轴延伸的条形式。Item 5. The optical fiber of item 4, wherein said metal is in the form of a strip extending along the longitudinal axis of said fiber.
方案6.方案5的光纤,其中所述金属条包覆至少10%的所述光纤表面。Item 6. The optical fiber of item 5, wherein said metal strip coats at least 10% of said optical fiber surface.
方案7.混合光纤/共轴缆线,其包含:Option 7. Hybrid fiber/coaxial cable comprising:
A)共轴缆线,和A) coaxial cable, and
B)金属化光纤,其包含:B) Metallized optical fiber comprising:
1)光纤;和1) optical fiber; and
2)金属涂层,所述金属涂层围绕所述光纤并且与所述光纤接触,2) a metallic coating surrounding and in contact with the optical fiber,
所述金属涂层的厚度为所述光纤厚度的至少0.15倍。The thickness of the metal coating is at least 0.15 times the thickness of the optical fiber.
方案8.方案7的混合光纤/共轴缆线,其与电源连接。Item 8. The hybrid fiber optic/coaxial cable of Item 7 connected to a power source.
方案9.方案7或8的混合光纤/共轴缆线,其中所述金属为铜,所述金属包覆所述光纤的整个表面或所述光纤的几乎整个表面。Item 9. The hybrid fiber/coaxial cable of Item 7 or 8, wherein the metal is copper and the metal coats the entire surface of the optical fiber or substantially the entire surface of the optical fiber.
方案10.通过缆线传输数据信号的方法,所述方法包括将所述缆线与电源和数据信号源连接,所述缆线包含方案7的混合光纤/共轴缆线。Embodiment 10. A method of transmitting a data signal via a cable, the method comprising connecting the cable to a power source and a data signal source, the cable comprising the hybrid fiber/coaxial cable of Embodiment 7.
具体意指本发明不限于本发明所包含的实施方式和说明,但本发明包括那些实施方式的变型形式,那些实施方式包括落入权利要求范围内的实施方式的部分和不同实施方式的元素的组合。It is specifically intended that the invention is not limited to the embodiments and illustrations contained herein, but that the invention includes variants of those embodiments including parts of the embodiments and elements of different embodiments that fall within the scope of the claims. combination.
Claims (10)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201261706381P | 2012-09-27 | 2012-09-27 | |
| US61/706,381 | 2012-09-27 | ||
| CN201380061311.2A CN104813207A (en) | 2012-09-27 | 2013-09-05 | Metallized optical fiber |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201380061311.2A Division CN104813207A (en) | 2012-09-27 | 2013-09-05 | Metallized optical fiber |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN107315230A true CN107315230A (en) | 2017-11-03 |
Family
ID=49170924
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201710318312.0A Pending CN107315230A (en) | 2012-09-27 | 2013-09-05 | Metallized optical fibre |
| CN201380061311.2A Pending CN104813207A (en) | 2012-09-27 | 2013-09-05 | Metallized optical fiber |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201380061311.2A Pending CN104813207A (en) | 2012-09-27 | 2013-09-05 | Metallized optical fiber |
Country Status (9)
| Country | Link |
|---|---|
| US (1) | US10475555B2 (en) |
| EP (1) | EP2901188B1 (en) |
| JP (1) | JP6480332B2 (en) |
| KR (1) | KR102102494B1 (en) |
| CN (2) | CN107315230A (en) |
| BR (1) | BR112015003890B1 (en) |
| CA (1) | CA2881019C (en) |
| MX (1) | MX344525B (en) |
| WO (1) | WO2014051953A1 (en) |
Families Citing this family (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9555888B2 (en) | 2014-10-10 | 2017-01-31 | Goodrich Corporation | Pressure compensating air curtain for air cushion supported cargo loading platform |
| US10196146B2 (en) | 2014-10-10 | 2019-02-05 | Goodrich Corporation | Self propelled air cushion supported aircraft cargo loading systems and methods |
| US10393225B2 (en) * | 2015-01-05 | 2019-08-27 | Goodrich Corporation | Integrated multi-function propulsion belt for air cushion supported aircraft cargo loading robot |
| CN108597659A (en) * | 2017-03-08 | 2018-09-28 | 罗森伯格(上海)通信技术有限公司 | Photoelectricity mixed metal silk armoured cable |
| KR102582045B1 (en) | 2018-01-04 | 2023-09-22 | 삼성전자주식회사 | An optical signal transferring apparatus, an electronic apparatus, a source device, and method thereof |
| US10741308B2 (en) | 2018-05-10 | 2020-08-11 | Te Connectivity Corporation | Electrical cable |
| CN109473226A (en) * | 2018-12-28 | 2019-03-15 | 巨力索具股份有限公司 | Photoelectric high-strength cable and manufacturing method thereof |
| US10950367B1 (en) | 2019-09-05 | 2021-03-16 | Te Connectivity Corporation | Electrical cable |
| US10983269B1 (en) | 2019-10-02 | 2021-04-20 | Verrillon, Inc. | Optical fibers with two metal coatings surrounding the cladding |
| CN111290071B (en) * | 2020-01-22 | 2021-07-20 | 华中科技大学 | A kind of preparation method of semiconductor core optical fiber |
| CN111736284A (en) * | 2020-07-27 | 2020-10-02 | 中煤科工集团重庆研究院有限公司 | A kind of mining optoelectronic mixed cable and its flameproof cable introduction device |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4239336A (en) * | 1977-12-05 | 1980-12-16 | International Standard Electric Corporation | Optical communication cable |
| US4896939A (en) * | 1987-10-30 | 1990-01-30 | D. G. O'brien, Inc. | Hybrid fiber optic/electrical cable and connector |
| CN101196592A (en) * | 2006-12-04 | 2008-06-11 | 日立电线株式会社 | Optical fiber for optical fiber laser device and optical fiber laser device |
| JP2009222749A (en) * | 2008-03-13 | 2009-10-01 | Hitachi Cable Ltd | Photoelectric composite transmission module and photoelectric composite cable |
| CN202142351U (en) * | 2011-08-16 | 2012-02-08 | 徐云 | Full-dry type photoelectric composite cable |
Family Cites Families (28)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| IL52404A0 (en) | 1976-08-30 | 1977-08-31 | Hughes Aircraft Co | Metallic clad fiber optical waveguide for simultaneous optical and electrical signal transmission |
| US4577925A (en) | 1982-08-13 | 1986-03-25 | Olin Corporation | Optical fiber communication cables and method and apparatus for assembling same |
| JPS59129803A (en) | 1983-01-18 | 1984-07-26 | Fujikura Ltd | metal coated optical fiber |
| US4579420A (en) * | 1983-06-16 | 1986-04-01 | Olin Corporation | Two-pole powered ruggedized optical fiber cable and method and apparatus for forming the same |
| US4949894A (en) | 1984-06-07 | 1990-08-21 | Olin Corporation | Method and apparatus for forming ultra-small optical fiber cable assemblies |
| US4695127A (en) * | 1985-03-27 | 1987-09-22 | Cooper Industries, Inc. | Hybrid coaxial-optical cable and method of use |
| US4952012A (en) * | 1988-11-17 | 1990-08-28 | Stamnitz Timothy C | Electro-opto-mechanical cable for fiber optic transmission systems |
| US5574815A (en) * | 1991-01-28 | 1996-11-12 | Kneeland; Foster C. | Combination cable capable of simultaneous transmission of electrical signals in the radio and microwave frequency range and optical communication signals |
| US5246783A (en) | 1991-08-15 | 1993-09-21 | Exxon Chemical Patents Inc. | Electrical devices comprising polymeric insulating or semiconducting members |
| US5745627A (en) * | 1995-12-28 | 1998-04-28 | Lucent Technologies Inc. | Composite cable for fiber-to-the-curb architecture using centralized power |
| KR100217716B1 (en) * | 1996-04-25 | 1999-09-01 | 윤종용 | Drawing device and manufacturing method of metal-coated optical fiber |
| US6496629B2 (en) | 1999-05-28 | 2002-12-17 | Tycom (Us) Inc. | Undersea telecommunications cable |
| US6343172B1 (en) * | 1999-08-24 | 2002-01-29 | Corning Cable System Llc | Composite fiber optic/coaxial electrical cables |
| JP2001249252A (en) * | 2000-03-06 | 2001-09-14 | Inou Kk | Ferrule |
| US6427046B1 (en) | 2000-03-30 | 2002-07-30 | Schlumberger Technology Corporation | Optical feedthrough and method of making same |
| JP2001358387A (en) | 2000-06-09 | 2001-12-26 | Fujikura Ltd | Rare earth doped optical fiber and optical amplifier using the same |
| US7505811B2 (en) * | 2001-11-19 | 2009-03-17 | Dune Medical Devices Ltd. | Method and apparatus for examining tissue for predefined target cells, particularly cancerous cells, and a probe useful in such method and apparatus |
| US6771863B2 (en) * | 2001-12-14 | 2004-08-03 | Sci Systems, Inc. | Fiber optic cable |
| US6714707B2 (en) | 2002-01-24 | 2004-03-30 | Alcatel | Optical cable housing an optical unit surrounded by a plurality of gel layers |
| GB0524838D0 (en) * | 2005-12-06 | 2006-01-11 | Sensornet Ltd | Sensing system using optical fiber suited to high temperatures |
| US20090067776A1 (en) * | 2007-09-11 | 2009-03-12 | Schlumberger Technology Corporation | Optical fibers |
| US8206825B2 (en) * | 2008-01-03 | 2012-06-26 | Equistar Chemicals, Lp | Preparation of wires and cables |
| US8208777B2 (en) * | 2009-02-24 | 2012-06-26 | Intelliserv, Llc | Structure for electrical and/or optical cable using impregnated fiber strength layer |
| US8433165B2 (en) | 2010-07-06 | 2013-04-30 | Hon Hai Precision Ind. Co., Ltd. | Optical-electrical hybrid transmission cable |
| EP2606201A4 (en) * | 2010-08-17 | 2018-03-07 | Foro Energy Inc. | Systems and conveyance structures for high power long distance laster transmission |
| JP5159939B1 (en) * | 2011-10-18 | 2013-03-13 | 株式会社フジクラ | Manufacturing method of optical module |
| CA2858840C (en) | 2011-12-20 | 2020-09-29 | Dow Global Technologies Llc | Epoxy resin composites |
| CN102436045A (en) * | 2011-12-29 | 2012-05-02 | 武汉电信器件有限公司 | Installation and fixation structure of light-guide fiber of photoelectronic device |
-
2013
- 2013-09-05 CA CA2881019A patent/CA2881019C/en active Active
- 2013-09-05 MX MX2015004054A patent/MX344525B/en active IP Right Grant
- 2013-09-05 CN CN201710318312.0A patent/CN107315230A/en active Pending
- 2013-09-05 KR KR1020157007464A patent/KR102102494B1/en active Active
- 2013-09-05 WO PCT/US2013/058182 patent/WO2014051953A1/en active Application Filing
- 2013-09-05 CN CN201380061311.2A patent/CN104813207A/en active Pending
- 2013-09-05 BR BR112015003890-5A patent/BR112015003890B1/en active IP Right Grant
- 2013-09-05 US US14/428,697 patent/US10475555B2/en active Active
- 2013-09-05 JP JP2015534513A patent/JP6480332B2/en active Active
- 2013-09-05 EP EP13762687.5A patent/EP2901188B1/en active Active
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4239336A (en) * | 1977-12-05 | 1980-12-16 | International Standard Electric Corporation | Optical communication cable |
| US4896939A (en) * | 1987-10-30 | 1990-01-30 | D. G. O'brien, Inc. | Hybrid fiber optic/electrical cable and connector |
| CN101196592A (en) * | 2006-12-04 | 2008-06-11 | 日立电线株式会社 | Optical fiber for optical fiber laser device and optical fiber laser device |
| JP2009222749A (en) * | 2008-03-13 | 2009-10-01 | Hitachi Cable Ltd | Photoelectric composite transmission module and photoelectric composite cable |
| CN202142351U (en) * | 2011-08-16 | 2012-02-08 | 徐云 | Full-dry type photoelectric composite cable |
Also Published As
| Publication number | Publication date |
|---|---|
| EP2901188B1 (en) | 2022-09-21 |
| EP2901188A1 (en) | 2015-08-05 |
| US10475555B2 (en) | 2019-11-12 |
| US20150235742A1 (en) | 2015-08-20 |
| BR112015003890B1 (en) | 2022-01-25 |
| JP6480332B2 (en) | 2019-03-06 |
| JP2016500834A (en) | 2016-01-14 |
| WO2014051953A1 (en) | 2014-04-03 |
| BR112015003890A2 (en) | 2017-07-04 |
| CA2881019C (en) | 2021-09-21 |
| CA2881019A1 (en) | 2014-04-03 |
| KR20150060718A (en) | 2015-06-03 |
| MX344525B (en) | 2016-12-19 |
| MX2015004054A (en) | 2015-07-06 |
| CN104813207A (en) | 2015-07-29 |
| KR102102494B1 (en) | 2020-04-21 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN107315230A (en) | Metallized optical fibre | |
| EP3398195B1 (en) | Downhole cable with reduced diameter | |
| US8178785B2 (en) | Flexible electric cable | |
| CA2860452C (en) | Data cable | |
| CN104810093A (en) | Cable for signal transmission | |
| CN101335106B (en) | High speed differential transmission cable | |
| JP2010097882A (en) | Extruded flat cable for differential transmission | |
| US20150219867A1 (en) | Composite electro/optical microcable | |
| JP2016072196A (en) | Two-core parallel electric wire | |
| CA2521447A1 (en) | Electrical cables | |
| JP2020061371A (en) | Conductive water blocking material containing metal particles, optical cable and method of constructing optical cable including the same | |
| JP2010092805A (en) | Extruded flat cable for differential transmission | |
| CN201408596Y (en) | Compensation cable for temperature-resistant thermocouple | |
| CN202839056U (en) | Multicore Cable Assemblies | |
| US20150107868A1 (en) | Water and gas tight stranded conductor and umbilical comprising this | |
| WO2002041054A1 (en) | Multi-energy waveguide for simultaneously transmitting electrical and optical signals and method for manufacturing the same | |
| NL1037007C2 (en) | Cable element, data transmission cable, method for manufacturing and use of data transmission cable. | |
| CN106057282A (en) | Tensile low temperature-resisting silver-copper alloy aerospace cable | |
| CN203812606U (en) | Cable resistant to high temperature and corrosion | |
| CA2683358A1 (en) | Electrical line for the connection to non-stationary electrical loads | |
| CN210981418U (en) | Wiring structure of sensor, sensor and liquid level meter | |
| CN120642001A (en) | Data transmission cable and method for manufacturing a shielded data transmission cable | |
| CN105761788A (en) | High-tensile high-temperature computer shielding cable | |
| HK1124162A1 (en) | Fire-resistant cable |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication | ||
| RJ01 | Rejection of invention patent application after publication |
Application publication date: 20171103 |