[go: up one dir, main page]

CN107463708B - A Method for Joint Visualization of UKF Fiber Tracking Data - Google Patents

A Method for Joint Visualization of UKF Fiber Tracking Data Download PDF

Info

Publication number
CN107463708B
CN107463708B CN201710715941.7A CN201710715941A CN107463708B CN 107463708 B CN107463708 B CN 107463708B CN 201710715941 A CN201710715941 A CN 201710715941A CN 107463708 B CN107463708 B CN 107463708B
Authority
CN
China
Prior art keywords
data
tensor
fiber
ukf
visualization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710715941.7A
Other languages
Chinese (zh)
Other versions
CN107463708A (en
Inventor
张文耀
赵稳
宁建国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201710715941.7A priority Critical patent/CN107463708B/en
Publication of CN107463708A publication Critical patent/CN107463708A/en
Application granted granted Critical
Publication of CN107463708B publication Critical patent/CN107463708B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/904Browsing; Visualisation therefor
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/005General purpose rendering architectures

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Graphics (AREA)
  • Image Generation (AREA)

Abstract

本发明涉及一种对UKF纤维追踪数据进行联合可视化的方法,属于磁共振成像中的纤维追踪数据可视化领域。该方法将由UKF纤维追踪算法得到的纤维追踪数据(包括纤维轨迹数据、弥散张量数据和张量测度数据),综合到一个统一的框架下同时进行可视化处理;本发明建立了一个新的棱柱体张量图符,通过棱柱体张量图符的形状、大小和方向来可视化弥散张量数据,与此同时通过棱柱体表面的颜色来可视化多个张量测度数据,然后把棱柱体张量图符串接在纤维轨迹曲线上,由此实现UKF纤维追踪数据在同一视图中的联合可视化。避免了不同数据视图之间的切换问题和对齐问题,可有效提高数据的可视化分析效率,提高UKF纤维追踪数据的分析深度和广度。

The invention relates to a method for joint visualization of UKF fiber tracking data, which belongs to the field of fiber tracking data visualization in magnetic resonance imaging. The method combines the fiber tracking data (comprising fiber track data, diffusion tensor data and tensor measurement data) obtained by the UKF fiber tracking algorithm into a unified framework and performs visual processing simultaneously; the present invention establishes a new prism Volume tensor icon, which visualizes the diffusion tensor data through the shape, size and orientation of the prism tensor icon, and at the same time visualizes multiple tensor measurement data through the color of the prism surface, and then the prism tensor Quantity icons are concatenated on the fiber trajectory curve, thereby enabling joint visualization of UKF fiber tracking data in the same view. The problem of switching and alignment between different data views is avoided, the efficiency of data visualization analysis can be effectively improved, and the analysis depth and breadth of UKF fiber tracking data can be improved.

Description

一种对UKF纤维追踪数据进行联合可视化的方法A Method for Joint Visualization of UKF Fiber Tracking Data

技术领域technical field

本发明涉及一种多属性数据可视化方法,特别涉及一种包含一个张量属性和多个标量属性的神经纤维追踪数据的可视化方法,属于磁共振成像中的纤维追踪数据可视化领域。The invention relates to a multi-attribute data visualization method, in particular to a visualization method for nerve fiber tracking data including one tensor attribute and multiple scalar attributes, and belongs to the field of fiber tracking data visualization in magnetic resonance imaging.

背景技术Background technique

基于磁共振弥散张量成像(Diffusion Tensor Imaging,DTI)和弥散加权成像(Diffusion Weighted Imaging,DWI)的纤维追踪技术(Tractography),是神经科学领域和临床应用邻域探索活体神经纤维结构的重要方法,在中枢神经系统组织形态学和病理学的研究中有广泛应用。为此,相关领域的研究人员提出了很多纤维追踪算法,例如流线型追踪算法(S.Mori,B.Crain,V.Chacko,P.Van Zijl.Three-dimensional tracking of axonalprojections in the brain by magnetic resonance imaging.Annals of Neurology,45(2),265-269,1999)和概率追踪算法(J.Berman,S.Chung,P.Mukherjee,C.Hess,E.Han,R.Henry.Probabilistic streamline q-ball tractography using the residualbootstrap.NeuroImage,39(1),215-222,2008)等等;其中比较常见的是流线型追踪算法,但是流线型追踪算法不能处理纤维交叉和纤维分叉等复杂情况(D.C.Alexander,G.Barker,S.Arridge.Detection and modeling of non-Gaussian apparent diffusioncoefficient profiles in human brain data.Magnetic Resonance in Medicine,48(2),331-340,2002)。Tractography based on magnetic resonance diffusion tensor imaging (DTI) and diffusion weighted imaging (DWI) is an important method for exploring the structure of living nerve fibers in the field of neuroscience and clinical application , It is widely used in the study of central nervous system histomorphology and pathology. For this reason, researchers in related fields have proposed many fiber tracking algorithms, such as the streamline tracking algorithm (S.Mori, B.Crain, V.Chacko, P.Van Zijl. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging .Annals of Neurology,45(2),265-269,1999) and probabilistic pursuit algorithm (J.Berman,S.Chung,P.Mukherjee,C.Hess,E.Han,R.Henry.Probabilistic streamline q-ball tractography using the residual bootstrap.NeuroImage, 39(1), 215-222, 2008) and so on; among them, the streamline tracking algorithm is more common, but the streamline tracking algorithm cannot handle complex situations such as fiber crossing and fiber bifurcation (D.C.Alexander, G . Barker, S. Arridge. Detection and modeling of non-Gaussian apparent diffusion coefficient profiles in human brain data. Magnetic Resonance in Medicine, 48(2), 331-340, 2002).

为了处理纤维交叉和分叉的情况,Malcolm等人提出了一种基于多张量模型和UKF(unscented Kalman filter)技术的纤维追踪算法(J.G.Malcolm,M.E.Shenton,Y.Rathi.Filtered multi-tensor tractography.IEEE Trans.on Medical Imaging,29(9),1664–1675,2010),简称为UKF纤维追踪算法。最近,Chen等人的研究工作表明UKF纤维追踪算法在处理交叉纤维和水肿区域等复杂情况时具有明显优势(Z.Chen,Y.Tie,O.Olubiyi,L.Rigolo,A.Mehrtash,I.Norton,O.Pasternak,Y.Rathi,A.J.Golby,L.J.O’Donnell.Reconstruction of the arcuate fasciculus for surgical planning in thesetting of peritumoral edema using two-tensor unscented Kalmanfiltertractography.NeuroImage:Clinical,7,815-822,2015)。In order to deal with fiber crossing and bifurcation, Malcolm et al. proposed a fiber tracking algorithm based on multi-tensor model and UKF (unscented Kalman filter) technology (J.G.Malcolm, M.E.Shenton, Y.Rathi.Filtered multi-tensor tractography .IEEE Trans.on Medical Imaging,29(9),1664–1675,2010), referred to as the UKF fiber tracking algorithm. Recently, the research work of Chen et al. showed that the UKF fiber tracking algorithm has obvious advantages in dealing with complex situations such as crossing fibers and edema regions (Z. Chen, Y. Tie, O. Olubiyi, L. Rigolo, A. Mehrtash, I. Norton, O. Pasternak, Y. Rathi, A.J. Golby, L.J. O'Donnell. Reconstruction of the arcuate fasciculus for surgical planning in the setting of peritumoral edema using two-tensor unscented Kalman filter tractography. NeuroImage: Clinical, 7, 815-822, 2015).

纤维追踪算法得到的结果是描述纤维结构和及其属性特征的数据集,通常由三部分组成:(1)纤维轨迹(fiber tracts),(2)与纤维轨迹对应的弥散张量(diffusiontensors),(3)以及各种从弥散张量导出的测度数据(derived measures)。为了分析和了解纤维追踪结果,需要对这些数据进行可视化处理。The result obtained by the fiber tracking algorithm is a data set describing the fiber structure and its attribute characteristics, which usually consists of three parts: (1) fiber tracts, (2) the diffusion tensors corresponding to the fiber tracts, (3) and various derived measures derived from the diffusion tensor. In order to analyze and understand fiber tracking results, this data needs to be visualized.

目前,纤维轨迹一般可视化为三维空间的曲线。弥散张量则表示为三维空间的几何图符(glyphs)。常见的弥散张量图符是椭球体(ellipsoids),因为椭球体在大小、形状和方向上的6个自由度刚好可以与描述弥散张量的6个参数(特征向量e1、e2和e3,以及对应的特征值λ1、λ2和λ3)一一对应(C.Pierpaoli,P.J.Basser.Toward a quantitativeassessment of diffusion anisotropy.Magnetic Resonance in Medicine,36(6),893-906,1996)。纤维轨迹和弥散张量可以单独可视化,也可以结合在一起可视化。在纤维追踪算法中,弥散张量数据一般都是作为纤维轨迹样本点的属性数据而存储的。因此,在可视化处理的时候,通常将表示弥散张量的图符附着在表示纤维轨迹的曲线上,以便将局部属性与全局特征结合起来进行关联分析。Currently, fiber trajectories are generally visualized as curves in three-dimensional space. Diffusion tensors are represented as geometric symbols (glyphs) in three-dimensional space. The common diffusion tensor symbol is ellipsoids, because the 6 degrees of freedom of ellipsoids in size, shape and direction can be compared with the 6 parameters describing the diffusion tensor (eigenvectors e 1 , e 2 and e 3 , and the corresponding eigenvalues λ 1 , λ 2 and λ 3 ) in one-to-one correspondence (C. Pierpaoli, PJ Basser. Toward a quantitative assessment of diffusion anisotropy. Magnetic Resonance in Medicine, 36(6), 893-906, 1996). Fiber trajectories and diffusion tensors can be visualized individually or combined. In the fiber tracking algorithm, the diffusion tensor data is generally stored as the attribute data of the fiber track sample points. Therefore, during visualization, the icon representing the diffusion tensor is usually attached to the curve representing the fiber trajectory, so as to combine local attributes with global features for association analysis.

但是,从数据分析的角度看,仅仅可视化纤维轨迹和弥散张量是不够的,因为从弥散张量导出的测度数据,例如Volume Ratio(VR)、Mean Diffusivity(MD)、FractionalAnisotropy(FA)等,也是全面分析和了解纤维追踪结果的重要途径,有的甚至比纤维轨迹和弥散张量本身更为重要。这些测度数据一般都是标量,分别从不同的角度度量弥散张量的属性特征。对于这些张量测度数据,目前常用的可视化方法是:(1)作为独立数据单独可视化,即为不同的测度数据分别建立不同的视图。这种方式简单易行,但是在综合分析时,需要在不同的视图间进行对齐和切换操作。这既不方便也不准确,还严重影响数据分析的效率。(2)作为纤维轨迹或弥散张量的附加数据,与之联合起来同时进行可视化,例如将FA值映射为张量图符或纤维轨迹曲线的颜色。这种方式可以将纤维轨迹、弥散张量和测度数据结合在一起进行可视化展示,提高了数据分析效率。然而不幸的是,目前的张量图符或纤维轨迹所能承载的附加数据极其有限。例如,纤维轨迹只能通过颜色属性表现一种测度数据;张量椭球体也只有颜色属性可以用来编码一种附加数据。但是,在实际应用中,从弥散张量导出的测度数据高达十几种。这种情况严重制约了纤维追踪数据的分析深度和广度。However, from the perspective of data analysis, it is not enough to only visualize the fiber trajectory and the diffusion tensor, because the measurement data derived from the diffusion tensor, such as Volume Ratio (VR), Mean Diffusivity (MD), FractionalAnisotropy (FA), etc., It is also an important way to comprehensively analyze and understand the results of fiber tracking, and some are even more important than fiber track and diffusion tensor itself. These measurement data are generally scalars, which measure the attribute characteristics of the diffusion tensor from different angles. For these tensor measurement data, the commonly used visualization methods are: (1) Separate visualization as independent data, that is, different views are established for different measurement data. This method is simple and easy to implement, but during comprehensive analysis, alignment and switching operations between different views are required. This is neither convenient nor accurate, and seriously affects the efficiency of data analysis. (2) As additional data of the fiber trajectory or diffusion tensor, it is combined with it and visualized at the same time, for example, the FA value is mapped to the tensor icon or the color of the fiber trajectory curve. In this way, the fiber trajectory, diffusion tensor and measurement data can be combined for visual display, which improves the efficiency of data analysis. Unfortunately, the additional data that current tensor graphs or fiber trajectories can carry is extremely limited. For example, the fiber track can only express one kind of measurement data through the color attribute; the tensor ellipsoid also has only the color attribute that can be used to encode one kind of additional data. However, in practical applications, there are as many as ten kinds of measurement data derived from the diffusion tensor. This situation severely limits the depth and breadth of analysis of fiber tracking data.

作为纤维追踪算法之一,UKF纤维追踪算法也面临着同样的问题,即如何对纤维追踪数据进行高效全面的可视化分析。为了全面分析UKF纤维追踪数据,深入了解背后的纤维结构和组织形态特征,必须发展新的UKF纤维追踪数据可视化方法。As one of the fiber tracking algorithms, the UKF fiber tracking algorithm also faces the same problem, that is, how to perform efficient and comprehensive visual analysis on fiber tracking data. In order to comprehensively analyze UKF fiber tracking data and gain an in-depth understanding of the underlying fiber structure and histomorphological characteristics, it is necessary to develop a new visualization method for UKF fiber tracking data.

在实际应用中,UKF纤维追踪算法一般采用简化的双张量模型,即假定弥散加权成像信号In practical applications, the UKF fiber tracking algorithm generally uses a simplified double tensor model, which assumes that the diffusion-weighted imaging signal

其中s0是基准信号,b是信号获取常量,ui是梯度向量,为ui的转置,D1和D2是简化的二阶张量。对于常规二阶张量,一般有三个不同的特征值λ1、λ2和λ3。但是此处的D1和D2是简化的张量,只有两个不同的特征值λ1和λ2(另外的λ3=λ2)。其结果是:D1可以由主特征向量v1以及主特征值λ11和次特征值λ12刻画,D2可以由主特征向量v2以及主特征值λ21和次特征值λ22刻画(J.G.Malcolm,M.E.Shenton,Y.Rathi.Filtered multi-tensortractography.IEEE Trans.on Medical Imaging,29(9),1664–1675,2010)。where s0 is the reference signal, b is the signal acquisition constant, u i is the gradient vector, For the transpose of u i , D1 and D2 are simplified second - order tensors. For regular second-order tensors, there are generally three distinct eigenvalues λ 1 , λ 2 and λ 3 . But D 1 and D 2 here are simplified tensors with only two distinct eigenvalues λ 1 and λ 2 (another λ 32 ). The result is: D 1 can be described by the main eigenvector v 1 and the main eigenvalue λ 11 and the secondary eigenvalue λ 12 , D 2 can be described by the main eigenvector v 2 and the main eigenvalue λ 21 and the secondary eigenvalue λ 22 ( JG Malcolm, ME Shenton, Y. Rathi. Filtered multi-tensortractography. IEEE Trans. on Medical Imaging, 29(9), 1664–1675, 2010).

基于上述模型,UKF纤维追踪算法输出的纤维追踪数据是:一个纤维轨迹数据集L={lk},其中每条纤维轨迹lk由一系列采样点组成,即lk={pj},每个样本点pj有两个关联的弥散张量D1和D2,每个弥散张量都可以导出如下测度数据:Mean Diffusivity(MD)、Apparent Diffusion Coefficient(ADC)、Volume Ratio(VR)、Fractional Anisotropy(FA)、Rational Anisotropy(RA)、General Anisotropy(GA)、Linear anisotropy(CL)、Planar anisotropy(CP)、Spherical anisotropy(CS)和Trace(TR)等等(A.Vilanova,S.Zhang,G.Kindlmann,D.Laidlaw.An Introduction to Visualization of DiffusionTensor Imaging and Its Applications.In:J.Weickert,H.Hagen(eds.),Visualizationand Processing of Tensor Fields,pp.121-153,Springer,Heidelberg,2006)。Based on the above model, the fiber tracking data output by the UKF fiber tracking algorithm is: a fiber track data set L={l k }, where each fiber track l k is composed of a series of sampling points, that is, l k ={p j }, Each sample point p j has two associated diffusion tensors D 1 and D 2 , and each diffusion tensor can derive the following measurement data: Mean Diffusivity (MD), Apparent Diffusion Coefficient (ADC), Volume Ratio (VR) , Fractional Anisotropy (FA), Rational Anisotropy (RA), General Anisotropy (GA), Linear anisotropy (CL), Planar anisotropy (CP), Spherical anisotropy (CS) and Trace (TR), etc. (A.Vilanova, S. Zhang, G. Kindlmann, D. Laidlaw. An Introduction to Visualization of DiffusionTensor Imaging and Its Applications. In: J. Weickert, H. Hagen (eds.), Visualization and Processing of Tensor Fields, pp.121-153, Springer, Heidelberg ,2006).

与一般纤维追踪数据不同的是,UKF纤维追踪数据中的弥散张量D1和D2都只有两个不同的特征值:主特征值和次特征值。基于这一特殊性,本发明提供了一种将UKF纤维追踪数据中的纤维轨迹、弥散张量和测度数据结合起来进行联合可视化的方法。Different from the general fiber tracking data, the diffusion tensors D 1 and D 2 in the UKF fiber tracking data have only two different eigenvalues: the main eigenvalue and the secondary eigenvalue. Based on this particularity, the present invention provides a method for joint visualization of fiber trajectories, diffusion tensor and metric data in UKF fiber tracking data.

发明内容Contents of the invention

本发明的目的是提供一种对UKF纤维追踪数据进行联合可视化的方法,将由UKF纤维追踪算法得到的纤维追踪数据(包括纤维轨迹数据、弥散张量数据和张量测度数据),综合到一个统一的框架下同时进行可视化处理,以此提高数据分析效率以及数据分析的深度和广度。The purpose of the present invention is to provide a method for joint visualization of UKF fiber tracking data, which integrates the fiber tracking data (including fiber track data, diffusion tensor data and tensor measurement data) obtained by the UKF fiber tracking algorithm into one Visualization processing is performed simultaneously under a unified framework to improve the efficiency of data analysis as well as the depth and breadth of data analysis.

本发明的目的是通过以下技术方案实现的。The purpose of the present invention is achieved through the following technical solutions.

一种对UKF纤维追踪数据进行联合可视化的方法,包括以下步骤:A method for joint visualization of UKF fiber tracking data comprising the steps of:

步骤一、输入UKF纤维追踪数据集,其中包括纤维轨迹数据、弥散张量数据和张量测度数据。Step 1. Input the UKF fiber tracking data set, which includes fiber track data, diffusion tensor data and tensor measurement data.

步骤二、从张量测度数据集中,选取3个或3个以上需要可视化的张量测度,将选中的张量测度分别标记为m1、m2、…、mN,其中N为选中的测度数目。Step 2. Select 3 or more tensor measures that need to be visualized from the tensor measure data set, and mark the selected tensor measures as m 1 , m 2 , ..., m N , where N is The number of measures selected.

步骤三、根据参数N,建立基本的张量图符G,方法是:构造一个高度为1、侧面数量为N、顶端外接圆直径1的正棱柱体;将该棱柱体的中心置于笛卡尔坐标系XYZ的原点,使其轴向与Z轴重合,且其中一个矩形侧面的法向量与X轴正向一致。不失一般性,令法向量与X轴正向一致的矩形侧面为f1,其他侧面依次标记为f2、f3、…、fN,其中标记的顺序可以是顺时针或者是逆时针,也可以是其他自定义的次序。与此同时,在Z轴正向所指的棱柱体端面,把中心点与各个顶点连接起来,将该端面剖分成N个三角形,并按照与侧面f1、f2、…、fN一致的顺序将三角形依次标记为t1、t2、…、tNStep 3, according to the parameter N, establish the basic tensor icon G, the method is: construct a regular prism with a height of 1, the number of sides is N, and the diameter of the top circumscribed circle is 1; the center of the prism is placed in Cartesian The origin of the coordinate system XYZ, so that its axis coincides with the Z axis, and the normal vector of one of the sides of the rectangle is consistent with the positive direction of the X axis. Without loss of generality, let the side of the rectangle whose normal vector coincides with the positive direction of the X axis be f 1 , and the other sides are marked as f 2 , f 3 , ..., f N in turn, where the order of marking can be clockwise or counterclockwise, Other custom orders are also possible. At the same time, on the end face of the prism pointed by the positive direction of the Z axis, connect the center point with each apex, divide the end face into N triangles, and follow the same principle as the side faces f 1 , f 2 ,..., f N Sequentially label the triangles as t 1 , t 2 , . . . , t N .

步骤四、建立张量测度数据m1、m2、…、mN的颜色映射方案,以便将测度数据映射为具体的颜色。其中的颜色映射方案可以是基于规则的颜色映射方案或者是基于颜色查找表的颜色映射方案,但不限于此。本发明优选的颜色映射方案是基于规则的,具体的映射规则是:基于HSV颜色模型,设定每个测度的颜色饱和度为完全饱和,然后为m1、m2、…、mN分别指定不同的颜色色调,最后再令每个测度的颜色亮度与该测度的具体数值成正比。Step 4: Establish a color mapping scheme for the tensor measurement data m 1 , m 2 , . . . , m N , so as to map the measurement data into specific colors. The color mapping scheme may be a rule-based color mapping scheme or a color lookup table-based color mapping scheme, but is not limited thereto. The preferred color mapping scheme of the present invention is based on rules, and the specific mapping rules are: based on the HSV color model, the color saturation of each measurement is set to be fully saturated, and then respectively specify m1, m2 , ..., mN Different color hues, and finally make the color brightness of each measure proportional to the specific value of the measure.

步骤五、从输入数据集中,选取部分或全部纤维轨迹,针对每条选中的纤维轨迹F,依次执行步骤六和步骤七。其中选取纤维轨迹的方法是(但不限于该方法):根据纤维轨迹的序号从小到大依次等间隔选取指定编号的纤维轨迹,其中的序号间隔根据实际需要设定。Step 5: Select part or all of the fiber trajectories from the input data set, and perform steps 6 and 7 in sequence for each selected fiber trajectories F. The method for selecting fiber tracks is (but not limited to): select fiber tracks with specified numbers at equal intervals according to the serial numbers of the fiber tracks from small to large, and the serial number intervals are set according to actual needs.

步骤六、根据纤维轨迹F的采样点的坐标值,绘制表示纤维轨迹的三维曲线,其中曲线颜色可以是某种固定的颜色,以可以随曲线切线方向变化而变化的颜色,具体情况视实际需要而定。Step 6. According to the coordinate values of the sampling points of the fiber trajectory F, draw a three-dimensional curve representing the fiber trajectory, wherein the color of the curve can be a certain fixed color, or a color that can change with the direction of the tangent of the curve, depending on the actual needs depends.

步骤七、按照一定的采样间隔,从纤维轨迹F上依次选取一系列采样点,针对每个采样点p,依次执行步骤八和步骤九。其中采样点的采样间隔是事先设定的,可根据实际需要调整。Step 7. According to a certain sampling interval, a series of sampling points are sequentially selected from the fiber track F, and for each sampling point p, step 8 and step 9 are executed in sequence. The sampling interval of the sampling points is preset and can be adjusted according to actual needs.

步骤八、可视化采样点p的弥散张量数据D1及其导出的张量测度数据,方法是:将基本张量图符G复制为G′,然后将G′平移到点p的位置,并进行旋转和伸缩变换,使G′的Z轴正向与D1的主特征向量v1方向一致、高度等于D1的主特征值λ11、顶端外接圆直径等于D1的次特征值λ12;随后根据测度m1、m2、…、mN的颜色映射方案以及D1在各个测度上的具体数值,得到D1的各个测度数据对应的颜色值c1、c2、…、cN;采用颜色值c1、c2、…、cN依次对G′的侧面f1、f2、…、fN和顶端三角形t1、t2、…、tN着色。Step 8. Visualize the diffusion tensor data D 1 of sampling point p and the derived tensor measurement data, the method is: copy the basic tensor icon G as G′, and then translate G′ to the position of point p, And carry out rotation and telescopic transformation, so that the positive direction of the Z axis of G′ is consistent with the direction of the main eigenvector v 1 of D 1 , the height is equal to the main eigenvalue λ 11 of D 1 , and the diameter of the circumscribed circle at the top is equal to the secondary eigenvalue λ of D 1 12 ; then according to the color mapping scheme of measures m 1 , m 2 , ..., m N and the specific values of D 1 on each measure, the color values c 1 , c 2 , ..., c corresponding to each measure data of D 1 are obtained N ; use color values c 1 , c 2 , ..., c N to color the sides f 1 , f 2 , ..., f N and the top triangles t 1 , t 2 , ..., t N of G′ in sequence.

步骤九、可视化采样点p的弥散张量数据D2及其导出的张量测度数据,方法是:将基本张量图符G复制为G′,然后将G′平移到点p的位置,并进行旋转和伸缩变换,使G′的Z轴正向与D2的主特征向量v2方向一致、高度等于D2的主特征值λ21、顶端外接圆直径等于D2的次特征值λ22;随后根据测度m1、m2、…、mN的颜色映射方案以及D2在各个测度上的具体数值,得到D2的各个测度数据对应的颜色值c1、c2、…、cN;采用颜色值c1、c2、…、cN依次对G′的侧面f1、f2、…、fN和顶端三角形t1、t2、…、tN着色。Step 9. Visualize the diffusion tensor data D 2 of sampling point p and the derived tensor measurement data, the method is: copy the basic tensor icon G as G′, and then translate G′ to the position of point p, And carry out rotation and telescopic transformation, so that the positive direction of the Z axis of G′ is consistent with the direction of the main eigenvector v 2 of D 2 , the height is equal to the main eigenvalue λ 21 of D 2 , and the diameter of the circumscribed circle at the top is equal to the secondary eigenvalue λ of D 2 22 ; then according to the color mapping scheme of measures m 1 , m 2 , ..., m N and the specific values of D 2 on each measure, the color values c 1 , c 2 , ..., c corresponding to each measure data of D 2 are obtained N ; use color values c 1 , c 2 , ..., c N to color the sides f 1 , f 2 , ..., f N and the top triangles t 1 , t 2 , ..., t N of G′ in sequence.

有益效果Beneficial effect

本发明所述的一种对UKF纤维追踪数据进行联合可视化的方法,实际上是发明了一种新的棱柱体张量图符,通过棱柱体张量图符的形状、大小和方向来可视化弥散张量数据,与此同时通过棱柱体表面的颜色来可视化多个张量测度数据,然后把棱柱体张量图符串接在纤维轨迹曲线上,由此实现UKF纤维追踪数据(包括纤维轨迹数据、弥散张量数据和张量测度数据)在同一视图中的联合可视化。A method of joint visualization of UKF fiber tracking data described in the present invention is actually a new prism tensor icon invented to visualize the dispersion through the shape, size and orientation of the prism tensor icon Tensor data, at the same time, visualize multiple tensor measurement data through the color of the prism surface, and then concatenate the prism tensor icon on the fiber trajectory curve, thereby realizing UKF fiber tracking data (including fiber trajectory data, diffusion tensor data, and tensor measure data) in the same view.

与现有纤维追踪数据可视化方法相比,本发明的方法具有以下几个方面的优点:Compared with the existing fiber tracking data visualization method, the method of the present invention has the following advantages:

(1)本发明方法可以在同一视图中同时可视化UKF纤维追踪数据(包括纤维轨迹数据、弥散张量数据和张量测度数据)。(1) The method of the present invention can simultaneously visualize UKF fiber tracking data (including fiber track data, diffusion tensor data and tensor measure data) in the same view.

(2)本发明方法中的棱柱体张量图符可以通过颜色映射同时可视化多个张量测度数据。(2) The prism tensor icon in the method of the present invention can simultaneously visualize multiple tensor measurement data through color mapping.

(3)本发明方法在同一视图中可视化多种不同性质的UKF纤维追踪数据,避免了不同数据视图之间的切换问题和对齐问题,可有效提高数据的可视化分析效率。(3) The method of the present invention visualizes a variety of UKF fiber tracking data with different properties in the same view, avoids switching and alignment problems between different data views, and can effectively improve the efficiency of data visualization analysis.

(4)本发明方法通过不同数据的联合可视化,可以提高UKF纤维追踪数据的分析深度和广度。(4) The method of the present invention can improve the analysis depth and breadth of UKF fiber tracking data through joint visualization of different data.

附图说明Description of drawings

图1基本张量图符;Figure 1 Basic tensor icon;

图2彩色的基本张量图符;Figure 2 Basic tensor notation in color;

图3纤维轨迹1的绘制结果;Drawing results of fiber track 1 in Fig. 3;

图4纤维轨迹1的联合可视化结果;Fig. 4 Joint visualization results of fiber track 1;

图5纤维轨迹1上弥散张量数据D1及其测度数据的可视化结果;Fig.5 Visualization results of diffusion tensor data D 1 and its measurement data on fiber track 1;

图6纤维轨迹1上弥散张量数据D2及其测度数据的可视化结果;Fig. 6 Visualization results of diffusion tensor data D 2 and its measurement data on fiber track 1;

图7实施实例的最终可视化结果。Figure 7 is the final visualization result of the implementation example.

具体实施方式Detailed ways

下面结合附图和实施例对本发明做详细说明。The present invention will be described in detail below in conjunction with the accompanying drawings and embodiments.

实施例Example

一种对UKF纤维追踪数据进行联合可视化的方法,包括以下步骤:A method for joint visualization of UKF fiber tracking data comprising the steps of:

步骤1、输入UKF纤维追踪数据集,其中包括纤维轨迹数据、弥散张量数据和张量测度数据。Step 1. Input the UKF fiber tracking dataset, which includes fiber track data, diffusion tensor data and tensor measure data.

本发明采用一个简单的胼胝体神经纤维数据集作为实施实例。该数据集是按照UKF纤维追踪算法计算得到的,包含7条穿越大脑胼胝体的神经纤维轨迹,以及与这些纤维轨迹上的样本点关联的弥散张量数据和张量测度数据,其中每个样本点都有两个简化的弥散张量D1和D2,与D1和D2关联的张量测度数据有:Fractional Anisotropy(FA)、Trace(TR)、Major Eigenvalue(Major)、Minor Eigenvalue(Minor)、Volume Ratio(VR)、GeneralAnisotropy(GA)、Linear anisotropy(CL)、Planar anisotropy(CP)、Sphericalanisotropy(CS)等。The present invention uses a simple corpus callosum nerve fiber data set as an implementation example. The data set is calculated according to the UKF fiber tracing algorithm, including 7 nerve fiber trajectories passing through the corpus callosum of the brain, and the diffusion tensor data and tensor measurement data associated with the sample points on these fiber trajectories, where each sample Each point has two simplified diffusion tensors D 1 and D 2 , and the tensor measurement data associated with D 1 and D 2 are: Fractional Anisotropy (FA), Trace (TR), Major Eigenvalue (Major), Minor Eigenvalue (Minor), Volume Ratio (VR), General Anisotropy (GA), Linear anisotropy (CL), Planar anisotropy (CP), Spherical anisotropy (CS), etc.

步骤2、从张量测度数据集中,选取6个需要可视化的张量测度:FractionalAnisotropy(FA)、Trace(TR)、Minor Eigenvalue(Minor)、Volume Ratio(VR)、Linearanisotropy(CL)、Spherical anisotropy(CS),分别这些测度标记为m1、m2、m3、m4、m5、m6Step 2. From the tensor measurement data set, select 6 tensor measurements that need to be visualized: FractionalAnisotropy (FA), Trace (TR), Minor Eigenvalue (Minor), Volume Ratio (VR), Linearanisotropy (CL), Spherical anisotropy (CS), these measures are denoted m 1 , m 2 , m 3 , m 4 , m 5 , m 6 , respectively.

步骤3、根部步骤2确定的张量测度,建立基本的张量图符G。Step 3. Based on the tensor measure determined in step 2, a basic tensor graph G is established.

具体方法是:构造一个高度为1、侧面数量为6、顶端外接圆直径1的正棱柱体;将该棱柱体的中心置于笛卡尔坐标系XYZ的原点,使其轴向与Z轴重合,且其中一个矩形侧面的法向量与X轴正向一致。不失一般性,令法向量与X轴正向一致的矩形侧面为f1,其他侧面按逆时针顺序依次标记为f2、f3、…、f6。与此同时,在Z轴正向所指的棱柱体端面,把中心点与各个顶点连接起来,将该端面剖分成6个三角形,并按照与侧面f1、f2、…、f6一致的顺序,将6个三角形依次标记为t1、t2、…、t6The specific method is: construct a regular prism with a height of 1, the number of sides is 6, and the diameter of the circumscribed circle at the top is 1; the center of the prism is placed at the origin of the Cartesian coordinate system XYZ, so that its axis coincides with the Z axis, And the normal vector of one of the sides of the rectangle is consistent with the positive direction of the X axis. Without loss of generality, let the side of the rectangle whose normal vector coincides with the positive direction of the X axis be f 1 , and the other sides are marked as f 2 , f 3 , . . . , f 6 in counterclockwise order. At the same time, on the end face of the prism pointed by the positive direction of the Z axis, connect the central point with each apex, divide the end face into six triangles, and follow the same principle as the side f 1 , f 2 ,..., f 6 In order, the six triangles are marked as t 1 , t 2 , . . . , t 6 in sequence.

按照上述方法建立的基本张量图符G如图1所示。The basic tensor graph G established according to the above method is shown in Figure 1.

步骤4、建立张量测度数据m1、m2、…、m6的颜色映射方案,以便将测度数据映射为具体的颜色。Step 4. Establish a color mapping scheme for the tensor measurement data m 1 , m 2 , . . . , m 6 so as to map the measurement data into specific colors.

本实施实例优选的颜色映射方案是:基于HSV颜色模型,设定每个测度的颜色饱和度为完全饱和,然后为测度m1、m2、…、m6分别指定固定的颜色色调值0°、60°、120°、180°、240°、300°,最后令每个测度的颜色亮度与该测度的具体数值成正比。The preferred color mapping scheme in this implementation example is: based on the HSV color model, set the color saturation of each measure to be fully saturated, and then specify a fixed color hue value of 0° for the measures m 1 , m 2 , ..., m 6 , 60°, 120°, 180°, 240°, 300°, and finally make the color brightness of each measure proportional to the specific value of the measure.

按照上述颜色映射方案,在各个测度的具体数值都取最大值的情况下,各测度m1、m2、…、m6对应的颜色分别是:红色、黄色、绿色、青色、蓝色、紫色。采用测度m1、m2、…、m6对应的颜色依次对基本张量图符G的f1、f2、…、f6以及t1、t2、…、t6进行着色,可以得到如图2所示的彩色基本张量图符。According to the above color mapping scheme, when the specific values of each measure take the maximum value, the colors corresponding to each measure m 1 , m 2 , ..., m 6 are: red, yellow, green, cyan, blue, purple . Use the colors corresponding to the measures m 1 , m 2 , ..., m 6 to color f 1 , f 2 , ..., f 6 and t 1 , t 2 , ..., t 6 of the basic tensor graph G in sequence, and we can get Colored basic tensor icons as shown in Figure 2.

步骤5、从输入数据集中,选取部分或全部纤维轨迹,针对每条选中的纤维轨迹F,依次执行步骤6和步骤7。Step 5. Select part or all of the fiber trajectories from the input data set, and perform steps 6 and 7 in sequence for each selected fiber trajectories F.

不失一般性,本实施实例按照纤维轨迹的编号依次选取全部纤维轨迹,然后针对每条纤维轨迹F依次执行步骤6和步骤7。Without loss of generality, in this implementation example, all fiber trajectories are sequentially selected according to the numbers of the fiber trajectories, and then step 6 and step 7 are sequentially performed for each fiber trajectory F.

步骤6、根据纤维轨迹F的采样点的坐标值,绘制表示纤维轨迹的三维曲线。其中曲线颜色可以是某种固定的颜色,以可以随曲线切线方向变化而变化的颜色,具体情况视实际需要而定。Step 6. Draw a three-dimensional curve representing the fiber trajectory according to the coordinate values of the sampling points of the fiber trajectory F. The color of the curve can be a certain fixed color or a color that can change with the change of the tangent direction of the curve, depending on actual needs.

本实施实例设定纤维轨迹的颜色为黑色。对于编号为1纤维轨迹,其绘制结果如图3所示。In this implementation example, the color of the fiber track is set to black. For the fiber track numbered 1, the drawing results are shown in Figure 3.

步骤7、在纤维轨迹F上,每间隔50个样本点选取一个采样点,得到一系列采样点,针对每个采样点p,依次执行步骤8和步骤9。Step 7. On the fiber trajectory F, select a sampling point at intervals of 50 sampling points to obtain a series of sampling points, and perform steps 8 and 9 in sequence for each sampling point p.

在本实施实例中,编号为1的纤维轨迹是由535个样本点依次连接而成的,每间隔50个样本点选取一个采样点,共选取了10个采样点。In this implementation example, the fiber track numbered 1 is formed by sequentially connecting 535 sample points, and a sampling point is selected at intervals of 50 sample points, and a total of 10 sampling points are selected.

步骤8、可视化采样点p的弥散张量数据D1及其导出的张量测度数据。Step 8. Visualize the diffusion tensor data D 1 of the sampling point p and the derived tensor measure data.

具体方法是:将基本张量图符G复制为G′,然后将G′平移到点p的位置,并进行旋转和伸缩变换,使G′的Z轴正向与D1的主特征向量v1方向一致、高度等于D1的主特征值λ11、顶端外接圆直径等于D1的次特征值λ12;随后根据测度m1、m2、…、m6的颜色映射方案以及D1在各个测度上的具体数值,得到D1的各个测度数据对应的颜色值c1、c2、…、c6;采用颜色值c1、c2、…、c6依次对G′的侧面f1、f2、…、f6和顶端三角形t1、t2、…、t6着色。The specific method is: copy the basic tensor icon G as G', then translate G' to the position of point p, and perform rotation and stretch transformation, so that the Z axis of G' is positively aligned with the main eigenvector v of D 1 1 direction is the same, the height is equal to the main eigenvalue λ 11 of D 1 , and the diameter of the top circumscribed circle is equal to the minor eigenvalue λ 12 of D 1 ; then according to the color mapping scheme of measures m 1 , m 2 ,..., m 6 and D 1 in The specific numerical values on each measure can obtain the color values c 1 , c 2 , ..., c 6 corresponding to each measure data of D 1 ; use the color values c 1 , c 2 , ..., c 6 to compare the side f 1 of G′ in turn , f 2 , ..., f 6 and top triangles t 1 , t 2 , ..., t 6 are colored.

步骤9、可视化采样点p的弥散张量数据D2及其导出的张量测度数据。Step 9. Visualize the diffusion tensor data D 2 of the sampling point p and the derived tensor measure data.

具体方法是:将基本张量图符G复制为G′,然后将G′平移到点p的位置,并进行旋转和伸缩变换,使G′的Z轴正向与D2的主特征向量v2方向一致、高度等于D2的主特征值λ21、顶端外接圆直径等于D2的次特征值λ22;随后根据测度m1、m2、…、m6的颜色映射方案以及D2的在各个测度上的具体数值,得到D2的各个测度数据对应的颜色值c1、c2、…、c6;采用颜色值c1、c2、…、c6依次对G′的侧面f1、f2、…、f6和顶端三角形t1、t2、…、t6着色。The specific method is: copy the basic tensor icon G as G', then translate G' to the position of point p, and perform rotation and stretch transformation, so that the Z axis of G' is positively aligned with the main eigenvector v of D 2 2 have the same direction, the height is equal to the main eigenvalue λ 21 of D 2 , the diameter of the top circumscribed circle is equal to the secondary eigenvalue λ 22 of D 2 ; then according to the color mapping scheme of the measures m 1 , m 2 ,..., m 6 and the The specific numerical values on each measure can obtain the color values c 1 , c 2 , ..., c 6 corresponding to each measure data of D 2 ; use the color values c 1 , c 2 , ..., c 6 to sequentially compare the side f of G′ 1 , f 2 , . . . , f 6 and top triangles t 1 , t 2 , . . . , t 6 are colored.

对于编号为1的纤维轨迹,重复执行步骤8到步骤9,直到步骤7所选取的每个采样点都处理完毕,可得到如图4所示的联合可视化结果。图4的可视化结果是包含了步骤8中弥散张量数据D1及其测度数据的可视化结果(如图5所示),以及步骤9中弥散张量数据D2及其测度数据的可视化结果(如图6所示)。对比分析,可以看到:张量D1和D2之间相互关系一目了然;张量D1的方向(主特征值方向)与纤维轨迹的切线方向是一致的,张量D2则以不同的角度与纤维轨迹交叉;每个张量图符的大小、方向、形状和颜色都各不相同,揭示了纤维轨迹上不同位置各不相同的属性特征。For the fiber track numbered 1, repeat steps 8 to 9 until each sampling point selected in step 7 is processed, and the joint visualization result shown in Figure 4 can be obtained. The visualization result in Fig. 4 includes the visualization result of the diffusion tensor data D 1 and its measurement data in step 8 (as shown in Fig. 5), and the visualization result of the diffusion tensor data D 2 and its measurement data in step 9 ( As shown in Figure 6). Through comparative analysis, it can be seen that the relationship between tensor D 1 and D 2 is clear at a glance; the direction of tensor D 1 (the direction of the main eigenvalue) is consistent with the tangent direction of the fiber trajectory, while tensor D 2 is different The angles intersect the fiber tracks; each tensor glyph varies in size, orientation, shape, and color, revealing attribute characteristics that vary at different locations on the fiber track.

对于本实施实例采用的纤维轨迹数据集,由于在步骤5中选取了全部纤维轨迹,因此在针对每条纤维轨迹依次执行完步骤6和步骤7(其中包含步骤8和步骤9)之后,将得到如图7所示的实施实例的最终可视化结果。For the fiber track data set used in this implementation example, since all fiber tracks are selected in step 5, after performing step 6 and step 7 (including step 8 and step 9) in turn for each fiber track, it will be obtained The final visualization result of the implementation example is shown in Figure 7.

上述步骤说明了本发明所述的对UKF纤维追踪数据进行联合可视化的方法的全部过程。The above steps illustrate the whole process of the method for joint visualization of UKF fiber tracking data according to the present invention.

应该理解的是,本实施方式只是本发明实施的具体实例,不应该是本发明保护范围的限制。在不脱离本发明的精神与范围的情况下,对上述内容进行等效的修改或变更均应包含在本发明所要求保护的范围之内。It should be understood that this embodiment is only a specific example of the implementation of the present invention, and should not limit the protection scope of the present invention. Without departing from the spirit and scope of the present invention, equivalent modifications or changes to the above contents shall be included in the scope of protection claimed by the present invention.

Claims (1)

1. a kind of pair of UKF Fiber track data carry out joint visualization method, which comprises the following steps:
Step 1: input UKF Fiber track data set, estimates including fiber track data, dispersion tensor data and tensor Data;
Step 2: estimating in data set from tensor, chooses 3 or 3 or more and visual tensor is needed to estimate, that will be chosen Measurement degree is respectively labeled as m1、m2、…、mN, wherein N be choose estimate number;
Step 3: establishing basic tensor icon G according to parameter N;
Method is: construction one height be 1, the regular prism that side quantity is N, top circumscribed circle diameter is 1;By the prism Center be placed in the origin of cartesian coordinate system XYZ, be overlapped it axially with Z axis, and the normal vector of one of rectangle sides It is positive consistent with X-axis;Enabling normal vector and the positive consistent rectangle sides of X-axis is f1, other sides are successively labeled as f2、f3、…、 fN, wherein the sequence marked can be customized;At the same time, the prism end face positive signified in Z axis, central point with it is each Vertex connects, which is split into N number of triangle, and according to side f1、f2、…、fNConsistent sequence is by triangle Successively it is labeled as t1、t2、…、tN
Step 4: establishing tensor estimates data m1、m2、…、mNColor mapping scheme, be mapped as specifically so that data will be estimated Color;
Step 5: being concentrated from input data, selected part or whole fiber tracks, the fiber track F chosen for every, successively Execute step 6 and step 7;
Step 6: drawing the three-dimensional curve for indicating fiber track according to the coordinate value of the sampled point of fiber track F;
Step 7: a series of sampled points are successively chosen from fiber track F according to certain sampling interval, for each sampling Point p successively executes step 8 and step 9;Wherein the sampling interval of sampled point is previously set;
Step 8: the dispersion tensor data D of visualization sampled point p1And its derived tensor estimates data, method is: will open substantially Spirogram symbol G copies as G ', G ' is then moved to the position of point p, and carry out rotation and stretching, make the Z axis forward direction of G ' with D1Main feature vector v1Direction is consistent, is highly equal to D1Dominant eigenvalue λ11, top circumscribed circle diameter be equal to D1Sub-eigenvalue λ12;Then basis estimates m1、m2、…、mNColor mapping scheme and D1It is each estimate on specific value, obtain D1's It is each to estimate the corresponding color value c of data1、c2、…、cN;Using color value c1、c2、…、cNSuccessively to the side f of G '1、f2、…、 fNWith tip triangular shape t1、t2、…、tNColoring;
Step 9: the dispersion tensor data D of visualization sampled point p2And its derived tensor estimates data, method is: will open substantially Spirogram symbol G copies as G ', G ' is then moved to the position of point p, and carry out rotation and stretching, make the Z axis forward direction of G ' with D2Main feature vector v2Direction is consistent, is highly equal to D2Dominant eigenvalue λ21, top circumscribed circle diameter be equal to D2Sub-eigenvalue λ22;Then basis estimates m1、m2、…、mNColor mapping scheme and D2It is each estimate on specific value, obtain D2's It is each to estimate the corresponding color value c of data1、c2、…、cN;Using color value c1、c2、…、cNSuccessively to the side f of G '1、f2、…、 fNWith tip triangular shape t1、t2、…、tNColoring.
CN201710715941.7A 2017-08-21 2017-08-21 A Method for Joint Visualization of UKF Fiber Tracking Data Active CN107463708B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710715941.7A CN107463708B (en) 2017-08-21 2017-08-21 A Method for Joint Visualization of UKF Fiber Tracking Data

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710715941.7A CN107463708B (en) 2017-08-21 2017-08-21 A Method for Joint Visualization of UKF Fiber Tracking Data

Publications (2)

Publication Number Publication Date
CN107463708A CN107463708A (en) 2017-12-12
CN107463708B true CN107463708B (en) 2019-10-18

Family

ID=60549045

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710715941.7A Active CN107463708B (en) 2017-08-21 2017-08-21 A Method for Joint Visualization of UKF Fiber Tracking Data

Country Status (1)

Country Link
CN (1) CN107463708B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101872385A (en) * 2010-04-30 2010-10-27 天津大学 Fast Marching Fiber Tracking Method Based on Topology Preservation
JP2012034772A (en) * 2010-08-05 2012-02-23 Aze Ltd Image processor
CN103049901A (en) * 2012-08-03 2013-04-17 上海理工大学 Magnetic resonance diffusion tensor imaging fiber bundle tracking device
CN106296808A (en) * 2016-08-15 2017-01-04 浙江工业大学 Interactive brain fiber selection and visualization method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7480400B2 (en) * 2006-03-16 2009-01-20 Siemens Medical Solutions Usa, Inc. Detection of fiber pathways

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101872385A (en) * 2010-04-30 2010-10-27 天津大学 Fast Marching Fiber Tracking Method Based on Topology Preservation
JP2012034772A (en) * 2010-08-05 2012-02-23 Aze Ltd Image processor
CN103049901A (en) * 2012-08-03 2013-04-17 上海理工大学 Magnetic resonance diffusion tensor imaging fiber bundle tracking device
CN106296808A (en) * 2016-08-15 2017-01-04 浙江工业大学 Interactive brain fiber selection and visualization method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
磁共振弥散张量成像的处理和可视化;白玫;《中国医疗器械信息》;20041231;第10卷(第6期);第33-46页 *

Also Published As

Publication number Publication date
CN107463708A (en) 2017-12-12

Similar Documents

Publication Publication Date Title
Yushkevich et al. Structure-specific statistical mapping of white matter tracts
Ennis et al. Orthogonal tensor invariants and the analysis of diffusion tensor magnetic resonance images
Jones Determining and visualizing uncertainty in estimates of fiber orientation from diffusion tensor MRI
Styner et al. Framework for the statistical shape analysis of brain structures using SPHARM-PDM
Xie et al. DiffusionKit: a light one-stop solution for diffusion MRI data analysis
Chen et al. Positive semidefinite generalized diffusion tensor imaging via quadratic semidefinite programming
Schwartzman et al. False discovery rate analysis of brain diffusion direction maps
CN103440639B (en) Camera internal parameter calibration method based on regular triangle template
CN104766324B (en) Based on the colored blood cell image leucocyte dividing method of super-pixel and abnormality detection
CN106600537A (en) Inverse-distance-weighting anisotropic three-dimensional space interpolation method
Vos et al. Multi-fiber tractography visualizations for diffusion MRI data
CN101621711A (en) Method for calibrating camera by adopting two same circles
US9092886B2 (en) Rendering a view from an image dataset
CN105825547A (en) Optical three-dimensional imaging method based on voxel and adaptive optical transmission model
Sanguinetti et al. Sub-Riemannian fast marching in SE (2)
Clayden et al. Improved segmentation reproducibility in group tractography using a quantitative tract similarity measure
Wen et al. Brain tissue classification based on DTI using an improved fuzzy C-means algorithm with spatial constraints
Ehricke et al. Visualizing MR diffusion tensor fields by dynamic fiber tracking and uncertainty mapping
CN107463708B (en) A Method for Joint Visualization of UKF Fiber Tracking Data
TWI551876B (en) Magnetic field sensing device and method
Yeh et al. Mesh-based anatomically-constrained tractography for effective tracking termination and structural connectome construction
Astola et al. Finsler streamline tracking with single tensor orientation distribution function for high angular resolution diffusion imaging
Astola et al. A Riemannian scalar measure for diffusion tensor images
CN106556806A (en) A kind of very big Measurement Method for Magnetic Field and device
Jia et al. Axisymmetric membranes with edges under external force: buckling, minimal surfaces, and tethers

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant